
1

Errata for “USB Revision 2.0 April 27, 2000” as of 12/7/2000

Check the http://www.usb.org website for the latest errata.

Chapter 5

Reversed Values in Transaction Overhead Tables:
Background: The tables in chapter 5 showing high-speed transaction overheads have
typographical errors where the interpacket gap and minimum bus turnaround time values were
reversed. No functional impact.

Change: p. 43, table 5-3 & p. 45, table 5-5 and p. 51, table 5-8: change “…8 bit interpacket gap,
88 bit min bus…” to “…88 bit interpacket gap, 8 bit min bus…”.

Table 5-3. High-speed Control Transfer Limits

Protocol Overhead
(173 bytes)

(Based on 480 Mb/s and 88 bit interpacket gap, 88 bit min bus
turnaround, 32 bit sync, 8 bit EOP: (9x4 SYNC bytes,
9 PID bytes, 6 EP/ADDR+CRC,6 CRC16, 8 Setup data,
9x(1+11) byte interpacket delay (EOP, etc.))

Data
Payload

Max Bandwidth
(bytes/second)

Microframe
Bandwidth

per Transfer

Max
Transfers

Bytes
Remaining

Bytes/
Microframe
Useful Data

1 344000 2% 43 18 43

2 672000 2% 42 150 84

4 1344000 2% 42 66 168

8 2624000 2% 41 79 328

16 4992000 3% 39 129 624

32 9216000 3% 36 120 1152

64 15872000 3% 31 153 1984

Max 60000000 7500

2

Table 5-8. High-speed Interrupt Transaction Limits

Protocol Overhead (Based on 480 Mb/s and 88 bit interpacket gap, 88 bit min
bus turnaround, 32 bit sync, 8 bit EOP: (3x4 SYNC bytes,
3 PID bytes, 2 EP/ADDR+CRC bytes, 2 CRC16 and a
3x(1+11) byte interpacket delay(EOP, etc.))

Data
Payload

Max
Bandwidth

(bytes/second)

Microframe
Bandwidth

per Transfer

Max
Transfers

Bytes
Remaining

Bytes/
Microframe
Useful Data

1 1064000 1% 133 52 133

2 2096000 1% 131 33 262

4 4064000 1% 127 7 508

8 7616000 1% 119 3 952

16 13440000 1% 105 45 1680

32 22016000 1% 86 18 2752

64 32256000 2% 63 3 4032

128 40960000 2% 40 180 5120

256 49152000 4% 24 36 6144

512 53248000 8% 13 129 6656

1024 49152000 14% 6 1026 6144

2048 49152000 28% 3 1191 6144

3072 49152000 42% 2 1246 6144

Max 60000000 7500

3

Table5-5. High-speed Isochronous Transaction Limits

Protocol Overhead (Based on 480 Mb/s and 88 bit interpacket gap, 88 bit min
bus turnaround, 32 bit sync, 8 bit EOP: (2x4 SYNC bytes, 2
PID bytes, 2 EP/ADDR+addr+CRC5, 2 CRC16, and a
2x(1+11)) byte interpacket delay (EOP, etc.))

Data
Payload

Max
Bandwidth

(bytes/second)

Microframe
Bandwidth

per Transfer

Max
Transfers

Bytes
Remaining

Bytes/
MicroFrame
Useful Data

1 1536000 1% 192 12 192

2 2992000 1% 187 20 374

4 5696000 1% 178 24 712

8 10432000 1% 163 2 1304

16 17664000 1% 138 48 2208

32 27392000 1% 107 10 3424

64 37376000 1% 73 54 4672

128 46080000 2% 45 30 5760

256 51200000 4% 25 150 6400

512 53248000 7% 13 350 6656

1024 57344000 14% 7 66 7168

2048 49152000 28% 3 1242 6144

3072 49152000 41% 2 1280 6144

Max 60000000 7500

4

Chapter 7

Issue with Test_SE0_NAK Behavior:
Background: While in test mode Test_SE0_NAK, upstream facing ports “must respond to any
IN token packet with a NAK handshake (only if the packet CRC is determined to be correct)
within the normal device response time.” The question has been raised as to the meaning of “any
IN token” and whether a device must NAK even if the packet is not directed to the device or
directed to any endpoint on that device. If it must, a device placed in this test mode will NAK
even when an IN token is directed to another devices, such as a mouse or keyboard, resulting in
possible problems for other devices connected to the bus during compliance testing. At this
point, there are probably implementations that interpret the spec both ways, so this erratum
expands the spec to allow either interpretation. This will have to be dealt with in compliance
testing. There will be no impact on non-test-mode operation.

Change: p. 169, section 7.1.20, 1st bullet, 3rd sentence: Change complete sentence to: “In
addition, while in this mode, upstream facing ports (and only upstream facing ports) must
respond to any IN token packet directed to the device (with an endpoint number supported by the
device), and optionally to any IN token packet which is not directed to the device or optionally
with any endpoint number, with a NAK handshake (only if the packet CRC is determined to be
correct) within the normal device response time. Note: This means that the host should send test
packets to a device under test with the device’s current address and endpoint number zero to
ensure that the device will respond.”

7.1.20 Test Mode Support
To facilitate compliance testing, host controllers, hubs, and high-speed capable functions must
support the following test modes:

• Test mode Test_SE0_NAK: Upon command, a port’s transceiver must enter the high-
speed receive mode and remain in that mode until the exit action is taken. This enables
the testing of output impedance, low level output voltage, and loading characteristics. In
addition, while in this mode, upstream facing ports (and only upstream facing ports) must
respond to any IN token packet with a NAK handshake (only if the packet CRC is
determined to be correct) within the normal allowed device response time. In addition,
while in this mode, upstream facing ports (and only upstream facing ports) must respond
to any IN token packet directed to the device (with an endpoint number supported by the
device), and optionally to any IN token packet which is not directed to the device or
optionally with any endpoint number, with a NAK handshake (only if the packet CRC is
determined to be correct) within the normal device response time. Note: This means that
the host should send test packets to a device under test with the device’s current address
and endpoint number zero to ensure that the device will respond. This enables testing of
the device squelch level circuitry and, additionally, provides a general purpose
stimulus/response test for basic functional testing.

5

Issue with Test_Force_Enable Behavior:
Background: The question has been raised as to the meaning of the language that says “…the
disconnect bit can be polled while varying the loading on the port, allowing the disconnect
detection threshold voltage to be measured.” Some implementations have allowed the port to
exit the test mode and return to the disconnected port state when the disconnect threshold is
exceeded. Others have let the port stay in the test mode and allowed the bit to be “live”. This
erratum allows either behavior. There will be no impact on non-test-mode operation.

Change: p. 170, section 7.1.20, bullet on Test_Force_Enable: Add sentence at end of paragraph,
“Disconnect detection is optionally allowed to exit test_mode and return the port to the
disconnected port state.”

• Test mode Test_Force_Enable: Upon command, downstream facing hub ports (and only
downstream facing hub ports) must be enabled in high-speed mode, even if there is no device
attached. Packets arriving at the hub’s upstream facing port must be repeated on the port
which is in this test mode. This enables testing of the hub’s disconnect detection; the
disconnect detect bit can be polled while varying the loading on the port, allowing the
disconnect detection threshold voltage to be measured. Disconnect detection is optionally
allowed to exit test_mode and return the port to the disconnected port state.

Issue with Test_Packet behavior:
Background: The question has been raised as to the minimum inter-packet gap allowed for an
upstream facing port in test mode Test_Packet. The spec states that “The inter-packet timing
must be no less than the minimum allowable inter-packet gap as defined in Section 7.1.18 and no
greater than 125us.” Unfortunately, an upstream facing port never sends back-to-back packets,
so this parameter is actually not defined. Since an upstream facing port may send a packet in
response to an incoming packet after a minimum of 8 bit times, some designers have interpreted
this to mean the minimum inter-packet gap in the test mode should be 8 bit times. This erratum
allows this interpretation. It will meet the needs of compliance testing, and there will be no
impact on non-test-mode operation.

Change: p. 170, section 7.1.20, bullet on Test_Packet: Add sentence at end of paragraph, “For
an upstream facing port, the inter-packet timing must be no less than 8 bit times.”

• Test mode Test_Packet: Upon command, a port must repetitively transmit the following test
packet until the exit action is taken. This enables the testing of rise and fall times, eye
patterns, jitter, and any other dynamic waveform specifications.

The test packet is made up by concatenating the following strings. (Note: For J/K NRZI
data, and for NRZ data, the bit on the left is the first one transmitted. “S” indicates that a bit
stuff occurs, which inserts an “extra” NRZI data bit. “* N” is used to indicate N occurrences
of a string of bits or symbols.)

6

•
NRZI Symbols
(Fields)

NRZ Bit Strings Number of NRZ Bits

{KJ * 15}, KK

(SYNC)

{00000000 * 3}, 00000001 32

KKJKJKKK

(DATA0 PID)

11000011 8

JKJKJKJK * 9 00000000 * 9 72

JJKKJJKK * 8 01010101 * 8 64

JJJJKKKK * 8 01110111 * 8 64

JJJJJJJKKKKKKK * 8 0, {111111S *15}, 111111 97

JJJJJJJK * 8 S, 111111S, {0111111S * 7} 55

{JKKKKKKK * 10}, JK 00111111, {S0111111 * 9}, S0 72

JJJKKKJJKKKKJKKK

(CRC16)

0110110101110011 16

JJJJJJJJ

(EOP)

01111111 8

A port in Test_Packet mode must send this packet repetitively. The inter-packet timing must
be no less than the minimum allowable inter-packet gap as defined in Section 7.1.18 and no
greater than 125 µs. For an upstream facing port, the inter-packet timing must be no less
than 8 bit times.

Issue with TDR Loading Specification:
Background: On page 144, Section 7.1.6.2, 4th paragraph, there is a sentence which reads “No
single excursion, however, may exceed the Through limits for more than twice the TDR rise time
(400 ps).” This is confusing, since the TDR risetime is required to be 400 ps, not 200 ps. This
erratum clarifies the language. There is no negative impact caused by this clarification.

Change: Change the sentence to read “No single excursion, however, may exceed the Through
limits for more than twice the TDR rise time (twice the 400 ps risetime is 800 ps).”

No single excursion, however, may exceed the Through limits for more than twice the TDR rise
time (twice the 400 ps risetime is 800 ps).No single excursion, however, may exceed the
Through limits for more than twice the TDR rise time (400 ps).

7

Chapter 8

Issue with Some PING STALL Response Omissions:
Background: The PING protocol state machines and “railroad diagrams” show (correctly) that
STALL is an allowed response to PING. However, two sentences in the spec do not explicitly
mention STALL. This change should cause no functional impact since the more explicit and
detailed figures show the full set of allowed responses. Any potential impact is limited to bulk
OUT and control endpoints in high-speed devices.

Change: p. 217, section 8.5.1, 4th paragraph, last sentence: change “… a NAK or an ACK
handshake.” to “…. a NAK, STALL or an ACK handshake.”

The host controller queries the high-speed device endpoint with a PING special token. The
PING special token packet is a normal token packet as shown in Figure 8-5. The endpoint either
responds to the PING with a NAK, STALL, or an ACK handshake.

Change: p. 219, section 8.5.1.1, 3rd paragraph, change “…. the allowed ACK, NAK or an
NYET handshakes for the PING mechanism.” to “…. the allowed ACK, NAK, STALL or an
NYET handshakes for the PING mechanism.”

Figure 8-27 shows the host controller state machine for the interactions and transitions between
PING and OUT/DATA tokens and the allowed ACK, NAK, STALL, or an NYET handshakes
for the PING mechanism.

Clarifying PING Related OUT NAK Responses:
Background: The PING protocol tries to limit NAK responses to OUT transactions. However,
a description in the spec suggests that NAK responses to PING transactions are unusual, (which
it not true). This change should cause no functional impact since the other descriptions of PING
more clearly identify that PING can be NAK’d “forever”. Any potential impact is limited to
bulk OUT and control endpoints in high-speed devices.

Change: p. 218, section 8.5.1.1, 2nd paragraph, 1st sentence: change “A NAK response is
expected to be an unusual occurrence.” to “A NAK response to an OUT is expected to be an
unusual occurrence.”
p. 218, section 8.5.1.1, 2nd paragraph, 3rd sentence: change “…allowed to NAK…” to “…
allowed to NAK an OUT…”

A NAK response to an OUT is expected to be an unusual occurrence. A high-speed bulk/control
endpoint must specify its maximum NAK rate in its endpoint descriptor. The endpoint is
allowed to NAK an OUT at most one time each bInterval period. A NAK suggests that the
endpoint responded to a previous OUT or PING with an inappropriate handshake, or that the
endpoint transitioned into a state where it (temporarily) could not accept data. An endpoint can
use a bInterval of zero to indicate that it never NAKs. An endpoint must always be able to
accept a PING from the host, even if it never NAKs.

8

Incorrect Figure 8-27 (Host High-speed Bulk OUT/Control Ping State
Machine):
Background: The Host High-speed Bulk OUT/Control Ping State Machine figure was
incorrectly cut and pasted from the draft specification (where it was correct). The current
(incorrect) figure is a total duplicate of figure 8-32. Any potential impact is limited to bulk OUT
and control endpoints in high-speed devices.

Change: p. 218: Replace incorrect Figure 8-27 with below:

Figure 8-27. Host High-speed Bulk OUT/Control Ping State Machine

Issue_packet(HSD1, datax);

not HC_cmd.setup and
not HC_cmd.ping

Issue_packet(
 HSD1, tokenOUT);

Issue_packet(HSD1, ping);

HC_HS_BCO

&

HSU2.PID = ACK

RespondHC(Do_OUT);

HSU2.PID = STALL

RespondHC(Do_halt);

RespondHC(Do_ping);

(HSU2.PID /= NAK and
HSU2.PID /= ACK and
HSU2.PID /= STALL) or
HSU2.timeout

HSU2.PID = ACK

RespondHC(Do_next_cmd);

RespondHC(Do_next_ping);

Wait_resp1
Wait_for_packet(
 HSU2, ITG);

Do_data1

&

(HSU2.PID /= STALL and
HSU2.PID /= NAK and
HSU2.PID /= ACK and
HSU2.PID /= NYET) or
HSU2.timeout

Packet_ready(HSU2)

HC_cmd.setup

Issue_packet(HSD1, tokensetup);

BCI_error1

IncError; ErrorCount >= 3

RespondHC(Do_halt);

ErrorCount < 3

HSU2.PID = NAK

RespondHC(Do_ping);

HSU2.PID = NYET

Do_token1

Ping_resp
Wait_for_packet(
 HSU2, ITG);

Not allowed for control
setup transaction

Packet_ready(HSU2)

HC_cmd.ping and
not HC_cmd.setup

P_err
IncError;

ErrorCount < 3

RespondHC(Do_same_cmd);

ErrorCount >= 3

RespondHC(Do_halt);

HSU2.PID = NAK

RespondHC(Do_same_cmd);

HSU2.PID = STALL

RespondHC(Do_halt);

9

Clarifying Figure Title for Figure 8-31 & 8-32:
Background: The titles on figures 8-31 and 8-32 are misleading. The current titles suggest that
the figure is uniformly applicable for all speeds, bulk/control/interrupt OUT transactions, (which
is not true). No functional impact.

Change: p.222, figure 8-31: caption should be “FS Bulk, FS/LS Control, or HS/FS/LS Interrupt
OUT Transaction Host State Machine”

HC_Do_BCINTO

Not allowed for control
setup transaction

Issue_packet(
 HSD1, tokenOUT);

Issue_packet(HSD1, tokensetup);

HSU2.PID = STALL

(HSU2.PID /= STALL and
HSU2.PID /= NAK and
HSU2.PID /= ACK) or
HSU2.timeout

Wait_resp
Wait_for_packet(
 HSU2, ITG);

Do_data

&

not HC_cmd.setup

Issue_packet(HSD1, datax);

Packet_ready(HSU2)

BCI_error

IncError;

ErrorCount >= 3

RespondHC(Do_halt);

ErrorCount < 3

RespondHC(Do_same_cmd);

Do_token

HC_cmd.setup

HSU2.PID = NAK

RespondHC(Do_same_cmd);

RespondHC(Do_halt);

HSU2.PID = ACK

RespondHC(Do_next_cmd);

Figure 8-31. FS Bulk, FS/LS / Control, or HS/FS/LS Interrupt / OUT Transaction Host State Machine

10

Change: p. 223, figure 8-32: caption should be “FS Bulk, FS/LS Control, or HS/FS/LS Interrupt
OUT Transaction Device State Machine”.

Figure 8-32. FS Bulk, /FS/LS Control, /or HS/FS/LS Interrupt OUT Transaction Device State Machine

Dchkpkt2

Packet_ready(HSD2)

token.PID = tokenOUT and
HSD2.PID = datax

token.PID = tokenSETUP and
HSD2.PID = datax

HSD2.x = device.ep(token.endpt).toggle and
HSD2.CRC16 = ok and
device.ep(token.endpt).space_avail

&

HSD2.x or
not device.ep(token.endpt).space_avail

HSD2.x /=
device.ep(token.endpt).toggle and
HSD2.CRC16 = ok

(not HSD2.x) and
HSD2.CRC16 = ok and
device.ep(token.endpt).space_avail

Dev_accept_data;

Dev_Do_BCINTO

HSD2.x = device.ep(token.endpt).toggle and
HSD2.CRC16 = ok and
not device.ep(token.endpt).space_avail

Issue_packet(HSU1, NAK);

Dev_accept_data;

device.ep(token.endpt).ep_trouble

Issue_packet(HSU1, STALL);

&

Dopkt

Issue_packet(HSU1, ACK);

Dev_wait_Odata

Wait_for_packet(
 HSD2, ITG);

(HSD2.PID = datax and
HSD2.CRC16 = bad) or
HSD2.PID /= datax or
HSD2.timeout

11

Clarifying No Data PID Sequencing for Interrupt:
Background: Typographical error in the description of high-speed, high-bandwidth endpoints
suggests that data PID sequencing is used for both isochronous and interrupt endpoints. Data
PID sequencing is only applicable to isochronous endpoints. Also a reference to chapter 5 is
incorrect. No functional impact.

Change: p. 232, last paragraph, first sentence: strike “… and interrupt…”. 2nd sentence change
reference from Section 5.9.1 to 5.9.2.

High-speed, high-bandwidth isochronous and interrupt endpoints support a similar but different
data synchronization technique called data PID sequencing. That technique is used instead of
data toggle synchronization. Section 5.9.12 defines data PID sequencing.

12

Chapter 9
Background: The table summarizing the standard device requests doesn’t reflect the test
selector value for SET_FEATURE. This value is correctly described in other places in the spec.
Also, the tabular representation of the test selector in the SET_FEATURE definition has the sub-
columns reversed (incorrectly) while the text precisely (correctly) defines the organization. No
functional impact.

Change: p. 250, table 9-3, row for “SET_FEATURE”: change column for wIndex into two sub-
columns; left sub-column has current text, new right sub-column has “Test Selector” to
correspond with Test_mode support.

Table 9-3. Standard Device Requests

bmRequestType bRequest wValue wIndex wLength Data

00000000B
00000001B
00000010B

CLEAR_FEATURE Feature
Selector

Zero
Interface
Endpoint

Zero None

10000000B GET_CONFIGURATION Zero Zero One Configurati
on Value

10000000B GET_DESCRIPTOR Descriptor
Type and
Descriptor

Index

Zero or Language ID Descriptor
Length

Descriptor

10000001B GET_INTERFACE Zero Interface One Alternate
Interface

10000000B
10000001B
10000010B

GET_STATUS Zero Zero Interface
Endpoint

Two Device,
Interface,

or Endpoint
Status

00000000B SET_ADDRESS Device
Address

Zero Zero None

00000000B SET_CONFIGURATION Configuratio
n Value

Zero Zero None

00000000B SET_DESCRIPTOR Descriptor
Type and
Descriptor

Index

Zero or Language ID Descriptor
Length

Descriptor

00000000B
00000001B
00000010B

SET_FEATURE Feature
Selector

Zero
Interface
Endpoint

Test
Selector

Zero None

00000001B SET_INTERFACE Alternate
Setting

Interface Zero None

10000010B SYNCH_FRAME Zero Endpoint Two Frame
Number

13

Change: p. 258, Section 9.4.9: the figure field wIndex reverses the “Test Selector” and “Zero
Interface Endpoint” columns to more accurately reflect the order of bitfields described in the
text.

9.4.9 Set Feature
This request is used to set or enable a specific feature.

bmRequestType bRequest wValue wIndex wLength Data

00000000B
00000001B
00000010B

SET_FEATURE Feature
Selector

Zero Interface
EndpointTest

Selector

Test
SelectorZ

ero
Interface
Endpoint

Zero None

14

Chapter 11

Incorrect Cross Reference:
Background: Wrong cross reference was made for full speed microframe timer ranges. No
functional impact.

Change: p. 300, section 11.2.1, 2nd paragraph, last sentence: Replace reference to “Table 11-2”
with reference to “Table 11-1”.

11.2.1 High-speed Microframe Timer Range
The range for a microframe timer must be from 59904 to 60096 high-speed bits.
The nominal microframe interval is 60000 high-speed bit times. The hub microframe timer
range specified above is 60000 +/- 96 high-speed bit times in order to accommodate host
accuracy, hub accuracy, repeater jittter, and hub quantization. The +/-96 full-speed bit time
variation is calculated in Table 11-2Table 11-1.

Typographical Error in Full Speed EOF1/EOF Timing Reference:
Background: A reference to EOF1 was incorrectly used instead of EOF2 in describing the EOF
points of full speed frames. Other figures clearly show the required relationships of EOF1 and
EOF2. No functional impact.

Change: p. 305, section 11.2.5.2, first sentence: Replace text ”…, the EOF1 point is 10 bit times
before EOF and EOF1 is …” with “.., the EOF2 point is 10 bit times before EOF and EOF1 is
…”.

11.2.5.2 Full-speed EOF1 and EOF2 Timing Points
When the hub operates as a full-/low-speed repeater, the EOF12 point is 10 bit times before EOF
and EOF1 is 32 bit times before EOF as shown in Figure 11-8.

15

Illegally Specified bInterval Values for Hub Class Descriptors:
Background: In section 11.23.1, the hub descriptors have several typographical errors. These
errors were introduced when the descriptors were copied from the USB 1.1 specification. Most
of the errors have an illegal USB2.0 value (FFH) for the bInterval of the hub polling period.
This was the correct value for USB1.x hubs. One descriptor incorrectly repeats the same
bAlternateSetting value for two different AlternateSettings. The changes allow both previous
USB1.1 allowed values and compliant USB2.0 values to avoid silicon changes to hub designs in
progress. The change only impacts USB2.0 hubs.

Change: p. 410, in the other_speed endpoint descriptor for the status change endpoint: the
bInterval value should be 0CH (i.e. 2(12-1) or 256ms). The current value of FFH in the
specification is a holdover from the USB 1.1 for full-speed and is an illegal value for high-speed.
Similarly, the endpoint descriptors for the status change endpoints on pages 411, 412, 415 and
416 should be changed to 0CH. The expectation is that compliance testing will accept values in
the range of 0CH to 10H (12-16) or FFH for some time with an eventual convergence on the
value of 0CH for long term compliance.
p. 410, in the hub descriptor other speed interface descriptor for multiple TT hub case (i.e. 2nd

interface descriptor on page): the bAlternateSetting should be set to 1 (not 0).

11.23.1 Standard Descriptors for Hub Class
The hub class pre-defines certain fields in standard USB descriptors. Other fields are either implementation-
dependent or not applicable to this class.
A hub returns different descriptors based on whether it is operating at high-speed or full-/low-speed. A hub can
report three different sets of the descriptors: one descriptor set for full-/low-speed operation and two sets for high-
speed operation.
A hub operating at full-/low-speed has a device descriptor with a bDeviceProtocol field set to zero(0) and an
interface descriptor with a bInterfaceProtocol field set to zero(0). The rest of the descriptors are the same for all
speeds.
A hub operating at high-speed can have one of two TT organizations: single TT or multiple TT. All hubs must
support the single TT organization. A multiple TT hub has an additional interface descriptor (with a corresponding
endpoint descriptor). The first set of descriptors shown below must be provided by all hubs. A hub that has a single
TT must set the bDeviceProtocol field of the device descriptor to one(1) and the interface descriptor
bInterfaceProtocol field set to 0.
A multiple TT hub must set the bDeviceProtocol field of the device descriptor to two (2). The first interface
descriptor has the bInterfaceProtocol field set to one(1). Such a hub also has a second interface descriptor where the
bInterfaceProtocol is set to two(2). When the hub is configured with an interface protocol of one(1), it will operate
as a single TT organized hub. When the hub is configured with an interface protocol of two(2), it will operate as a
multiple TT organized hub. The TT organization must not be changed while the hub has full-/low-speed
transactions in progress.

16

Note: For the descriptors and fields shown below, the bits in a field are organized in a little-endian fashion; that is,
bit location 0 is the least significant bit and bit location 7 is the most significant bit of a byte value.

Full-/Low-speed Operating Hub

Device Descriptor (full-speed information):

bLength 12H
bDescriptorType 1
bcdUSB 0200H
bDeviceClass HUB_CLASSCODE (09H)
bDeviceSubClass 0
bDeviceProtocol 0
bMaxPacketSize0 64
bNumConfigurations 1

Device_Qualifier Descriptor (high-speed information):

bLength 0AH
bDescriptorType 6
bcdUSB 200H
bDeviceClass HUB_CLASSCODE (09H)
bDeviceSubClass 0
bDeviceProtocol 1 (for single TT) or 2 (for

multiple TT)
bMaxPacketSize0 64
bNumConfigurations 1

Configuration Descriptor (full-speed information):

bLength 09H
bDescriptorType 2
wTotalLength N
bNumInterfaces 1
bConfigurationValue X
iConfiguration Y
bmAttributes Z
bMaxPower The maximum amount of bus

power the hub will consume in
full-/low-speed configuration

17

Interface Descriptor:

bLength 09H
bDescriptorType 4
bInterfaceNumber 0
bAlternateSetting 0
bNumEndpoints 1
bInterfaceClass HUB_CLASSCODE (09H)
bInterfaceSubClass 0
bInterfaceProtocol 0
iInterface i

Endpoint Descriptor (for Status Change Endpoint):

bLength 07H
bDescriptorType 5
bEndpointAddress Implementation-dependent;

Bit 7: Direction = In(1)
bmAttributes Transfer Type = Interrupt

(00000011B)

wMaxPacketSize Implementation-dependent
bInterval FFH (Maximum allowable

interval)

Other_Speed_Configuration Descriptor (High-speed information):

bLength 09H
bDescriptorType 7
wTotalLength N
bNumInterfaces 1 (for single TT) or 2 (for

multiple TT)
bConfigurationValue X
iConfiguration Y
bmAttributes Z
bMaxPower The maximum amount of bus

power the hub will consume in
high-speed configuration

18

Interface Descriptor:

bLength 09H
bDescriptorType 4
bInterfaceNumber 0
bAlternateSetting 0
bNumEndpoints 1
bInterfaceClass HUB_CLASSCODE (09H)
bInterfaceSubClass 0
bInterfaceProtocol 0 (for single TT)

1 (for multiple TT)
iInterface i

Endpoint Descriptor (for Status Change Endpoint):

bLength 07H
bDescriptorType 5
bEndpointAddress Implementation-dependent;

Bit 7: Direction = In(1)
bmAttributes Transfer Type = Interrupt

(00000011B)

wMaxPacketSize Implementation-dependent
bInterval 0CHFFH (Maximum

allowable interval)

Interface Descriptor (present if multiple TT hub):

bLength 09H
bDescriptorType 4
bInterfaceNumber 0
bAlternateSetting 01
bNumEndpoints 1
bInterfaceClass HUB_CLASSCODE (09H)
bInterfaceSubClass 0
bInterfaceProtocol 2
iInterface i

19

Endpoint Descriptor (present if multiple TT hub):

bLength 07H
bDescriptorType 5
bEndpointAddress Implementation-dependent;

Bit 7: Direction = In(1)
bmAttributes Transfer Type = Interrupt

(00000011B)

wMaxPacketSize Implementation-dependent
bInterval 0CHFFH (Maximum

allowable interval)

High-speed Operating Hub with Single TT

Device Descriptor (High-speed information):

bLength 12H
bDescriptorType 1
bcdUSB 200H
bDeviceClass HUB_CLASSCODE (09H)
bDeviceSubClass 0
bDeviceProtocol 1
bMaxPacketSize0 64
bNumConfigurations 1

Device_Qualifier Descriptor (full-speed information):

bLength 0AH
bDescriptorType 6
bcdUSB 200H
bDeviceClass HUB_CLASSCODE (09H)
bDeviceSubClass 0
bDeviceProtocol 0
bMaxPacketSize0 64
bNumConfigurations 1

20

Configuration Descriptor (high-speed information):

bLength 09H
bDescriptorType 2
wTotalLength N
bNumInterfaces 1
bConfigurationValue X
iConfiguration Y
bmAttributes Z
bMaxPower The maximum amount of bus

power the hub will consume in
this configuration

Interface Descriptor:

bLength 09H
bDescriptorType 4
bInterfaceNumber 0
bAlternateSetting 0
bNumEndpoints 1
bInterfaceClass HUB_CLASSCODE (09H)
bInterfaceSubClass 0
bInterfaceProtocol 0 (single TT)
iInterface i

Endpoint Descriptor (for Status Change Endpoint):

bLength 07H
bDescriptorType 5
bEndpointAddress Implementation-dependent;

Bit 7: Direction = In(1)
bmAttributes Transfer Type = Interrupt

(00000011B)

wMaxPacketSize Implementation-dependent
bInterval 0CHFFH (Maximum

allowable interval)

21

Other_Speed_Configuration Descriptor (full-speed information):

bLength 09H
bDescriptorType 7
wTotalLength N
bNumInterfaces 1
bConfigurationValue X
iConfiguration Y
bmAttributes Z
bMaxPower The maximum amount of bus

power the hub will consume in
high-speed configuration

Interface Descriptor:

bLength 09H
bDescriptorType 4
bInterfaceNumber 0
bAlternateSetting 0
bNumEndpoints 1
bInterfaceClass HUB_CLASSCODE (09H)
bInterfaceSubClass 0
bInterfaceProtocol 0
iInterface i

Endpoint Descriptor (for Status Change Endpoint):

bLength 07H
bDescriptorType 5
bEndpointAddress Implementation-dependent;

Bit 7: Direction = In(1)
bmAttributes Transfer Type = Interrupt

(00000011B)

wMaxPacketSize Implementation-dependent
bInterval FFH (Maximum allowable

interval)

22

High-speed Operating Hub with Multiple TTs

Device Descriptor (High-speed information):

bLength 12H
bDescriptorType 1
bcdUSB 200H
bDeviceClass HUB_CLASSCODE (09H)
bDeviceSubClass 0
bDeviceProtocol 2 (multiple TTs)
bMaxPacketSize0 64
bNumConfigurations 1

Device_Qualifier Descriptor (full-speed information):

bLength 0AH
bDescriptorType 6
bcdUSB 200H
bDeviceClass HUB_CLASSCODE (09H)
bDeviceSubClass 0
bDeviceProtocol 0
bMaxPacketSize0 64
bNumConfigurations 1

Configuration Descriptor (high-speed information):

bLength 09H
bDescriptorType 2
wTotalLength N
bNumInterfaces 1
bConfigurationValue X
iConfiguration Y
bmAttributes Z
bMaxPower The maximum amount of bus

power the hub will consume in
this configuration

23

Interface Descriptor:

bLength 09H
bDescriptorType 4
bInterfaceNumber 0
bAlternateSetting 0
bNumEndpoints 1
bInterfaceClass HUB_CLASSCODE (09H)
bInterfaceSubClass 0
bInterfaceProtocol 1 (single TT)
iInterface i

Endpoint Descriptor (for Status Change Endpoint):

bLength 07H
bDescriptorType 5
bEndpointAddress Implementation-dependent;

Bit 7: Direction = In(1)
bmAttributes Transfer Type = Interrupt

(00000011B)

wMaxPacketSize Implementation-dependent
bInterval 0CHFFH (Maximum

allowable interval)

Interface Descriptor:

bLength 09H
bDescriptorType 4
bInterfaceNumber 0
bAlternateSetting 1
bNumEndpoints 1
bInterfaceClass HUB_CLASSCODE (09H)
bInterfaceSubClass 0
bInterfaceProtocol 2 (multiple TTs)
iInterface i

24

Endpoint Descriptor:

bLength 07H
bDescriptorType 5
bEndpointAddress Implementation-dependent;

Bit 7: Direction = In(1)
bmAttributes Transfer Type = Interrupt

(00000011B)

wMaxPacketSize Implementation-dependent
bInterval 0CHFFH (Maximum

allowable interval)

Other_Speed_Configuration Descriptor (full-speed information):

bLength 09H
bDescriptorType 7
wTotalLength N
bNumInterfaces 1
bConfigurationValue X
iConfiguration Y
bmAttributes Z
bMaxPower The maximum amount of bus

power the hub will consume in
high-speed configuration

Interface Descriptor:

bLength 09H
bDescriptorType 4
bInterfaceNumber 0
bAlternateSetting 0
bNumEndpoints 1
bInterfaceClass HUB_CLASSCODE (09H)
bInterfaceSubClass 0
bInterfaceProtocol 0
iInterface i

25

Endpoint Descriptor (for Status Change Endpoint):

bLength 07H
bDescriptorType 5
bEndpointAddress Implementation-dependent;

Bit 7: Direction = In(1)
bmAttributes Transfer Type = Interrupt

(00000011B)

wMaxPacketSize Implementation-dependent
bInterval FFH (Maximum allowable

interval)

The hub class driver retrieves a device configuration from the USB System Software using the GetDescriptor()
device request. The only endpoint descriptor that is returned by the GetDescriptor() request is the Status Change
endpoint descriptor.

Inconsistency in ClearPortFeature Descriptions:
Background: The description of ClearPortFeature is inconsistent in some places in the spec.
The description of the PORT_INDICATOR in section 11.24.2.7.1.10 is correct, but the state
machine figure (11-11) omits a label for ClearPortFeature and the description of the
ClearPortFeature request incorrectly specifies an explicit indicator value, where there is no value
that would be meaningful. Also, the PORT_INDICATOR is not explicitly listed for
SetPortFeature as a case for having the MSB of wIndex set to zero. This change only impacts
hubs that provide port indicator control.

Change: p. 317, figure 11-11: Add “or ClearPortFeature(PORT_INDICATOR,
indicator_selector = n/a)” to the label on the transition from Manual mode to Automatic mode.

Manual Mode

Off

Amber

Green

! (Enabled or Transmit or TransmitR)
and PORT_OVER_CURRENT != 1

SetPortFeature
(PORT_POWER)

Enabled or Transmit or TransmitR

Automatic
Mode

SetPortFeature
(PORT_INDICATOR,
indicator_selector = 0)

or
ClearPortFeature

(PORT_INDICATOR,
indicator_selector = n/a)

SetPortFeature
(PORT_INDICATOR,

indicator_selector != 0)

PORT_OVER_CURRENT = 1

PORT_OVER_CURRENT = 1

Figure11-11. Port Indicator State Diagram

26

Change: p. 423, 3rd paragraph before section 11.24.2.3: replace the sentence beginning “The
selector field…” with the sentences “Clearing the PORT_INDICATOR causes a transition of the
port indicator state machine back to automatic mode (see Figure 11-11). The indicator_selector
field is ignored for ClearPortFeature.”

Clearing the PORT_ENABLE feature causes the port to be placed in the Disabled state. If the
port is in the Powered-off state, the hub should treat this request as a functional no-operation.

Clearing the PORT_POWER feature causes the port to be placed in the Powered-off state and
may, subject to the constraints due to the hub’s method of power switching, result in power being
removed from the port. Refer to Section 11.11 on rules for how this request is used with ports
that are gang-powered.

The selector field identifies the port indicator selector when clearing a port indicator. Clearing
the PORT_INDICATOR causes a transition of the port indicator state machine back to automatic
mode (see Figure 11-11). The indicator selector field is ignored for the ClearPortFeature. The
selector field is in bits 15..8 of the wIndex field.

It is a Request Error if wValue is not a feature selector listed in Table 11-17, if wIndex specifies a
port that does not exist, or if wLength is not as specified above. It is not an error for this request
to try to clear a feature that is already cleared (hub should treat as a functional no-operation).

If the hub is not configured, the hub's response to this request is undefined.

Change: p. 435, 1st paragraph: add “… or PORT_INDICATOR.” to end of the last sentence.

11.24.2.13 Set Port Feature
This request sets a value reported in the port status.

bmRequestType bRequest wValue wIndex wLength Data

00100011B SET_ FEATURE Feature
Selector

Selector Port Zero None

The port number must be a valid port number for that hub, greater than zero. The port number is in the least
significant byte (bits 7..0) of the wIndex field. The most significant byte of wIndex is zero, except when the
feature selector is PORT_TEST or PORT_INDICATOR.

27

Clarifying Standard Hub Class Requests:
Background: GET_/SET_INTERFACE requests to the hub in the summary hub class request
table do not currently indicate that they are required for multiple TT hub implementations. Since
the hub descriptors report alternate interfaces and other descriptions indicate how these interfaces
are used, these commands are clearly required.
This change only impacts hubs that support multiple TTs.

Change: p. 419, table 11-14: change Hub Response descriptions for GET_INTERFACE and
SET_INTERFACE from “Undefined….” to “Standard for multiple TT hub operating at high-
speed.”

Table 11-14. Hub Responses to Standard Device Requests

bRequest Hub Response

CLEAR_FEATURE Standard

GET_CONFIGURATION Standard

GET_DESCRIPTOR Standard

GET_INTERFACE Undefined. Hubs are allow to support only one
interface.Standard for multiple TT hub operating at high-
speed.

GET_STATUS Standard

SET_ADDRESS Standard

SET_CONFIGURATION Standard

SET_DESCRIPTOR Optional

SET_FEATURE Standard

SET_INTERFACE Undefined. Hubs are allow to support only one
interface.Standard for multiple TT hub operating at high-
speed.

SYNCH_FRAME Undefined. Hubs are not allowed to have isochronous
endpoints.

28

Minor Typographical Errors:
Background: No functional changes.

Change: p. 426, section 11.24.2.7, 2nd paragraph after figure: change “refer to Table 11-20” to
“refer to Table 11-22”

11.24.2.7 Get Port Status
This request returns the current port status and the current value of the port status change bits.

bmRequestType bRequest wValue wIndex wLength Data

10100011B GET_STATUS Zero Port Four Port Status
and Change

Status

The port number must be a valid port number for that hub, greater than zero.

The first word of data contains wPortStatus (refer to). The second word of data contains
wPortChange (refer to Table 11-20Table 11-22).

29

Change: p. 427, table 11-21, row for bit 10: change name from “High-speed Device Attached”
to “Full- or High-speed Device Attached”.

Table 11-21. Port Status Field, wPortStatus

Bit Description

0 Current Connect Status: (PORT_CONNECTION) This field reflects whether or not a device is currently
connected to this port.

0 = No device is present.
1 = A device is present on this port.

1 Port Enabled/Disabled: (PORT_ENABLE) Ports can be enabled by the USB System Software only. Ports
can be disabled by either a fault condition (disconnect event or other fault condition) or by the USB System
Software.

0 = Port is disabled.
1 = Port is enabled.

2 Suspend: (PORT_SUSPEND) This field indicates whether or not the device on this port is suspended.
Setting this field causes the device to suspend by not propagating bus traffic downstream. This field may be
reset by a request or by resume signaling from the device attached to the port.

0 = Not suspended.
1 = Suspended or resuming.

3 Over-current: (PORT_OVER_CURRENT)

If the hub reports over-current conditions on a per-port basis, this field will indicate that the current drain on the
port exceeds the specified maximum. For more details, see Section 7.2.1.2.1.

0 = All no over-current condition exists on this port.
1 = An over-current condition exists on this port.

4 Reset: (PORT_RESET) This field is set when the host wishes to reset the attached device. It remains set
until the reset signaling is turned off by the hub.

0 = Reset signaling not asserted.
1 = Reset signaling asserted.

5-7 Reserved

These bits return 0 when read.

8 Port Power: (PORT_POWER) This field reflects a port’s logical, power control state. Because hubs can
implement different methods of port power switching, this field may or may not represent whether power is
applied to the port. The device descriptor reports the type of power switching implemented by the hub.

0 = This port is in the Powered-off state.
1 = This port is not in the Powered-off state.

9 Low- Speed Device Attached: (PORT_LOW_SPEED) This is relevant only if a device is attached.

0 = Full-speed or High-speed device attached to this port (determined by bit 10).
1 = Low-speed device attached to this port.

10 Full- or High-speed Device Attached: (PORT_HIGH_SPEED) This is relevant only if a device is attached.

0 = Full-speed device attached to this port.
1 = High-speed device attached to this port.

11 Port Test Mode : (PORT_TEST) This field reflects the status of the port's test mode. Software uses the
SetPortFeature() and ClearPortFeature() requests to manipulate the port test mode.

0 = This port is not in the Port Test Mode.
1 = This port is in Port Test Mode.

12 Port Indicator Control: (PORT_INDICATOR) This field is set to reflect software control of the port indicator.
For more details see Sections 11.5.3, 11.24.2.7.1.10, and 11.24.

0 = Port indicator displays default colors.
1 = Port indicator displays software controlled color.

13-15 Reserved

These bits return 0 when read.

30

Chapter Appendix A

Missing Information in Example Split Transactions:
Background: One of the split transaction examples is missing some labels and a final complete
split transaction. No functional impact.

31

Change: p. 553, example 12 “HS CS too early…”: Add “NYET” label on final arrow from Hub
to Host. Add new uframe M+4 with HS transaction arrows: 1) host to hub: “CSPLIT” and “IN”
arrows, 2) hub to host “data” arrow.

12) HS CS too early (full-speed data not available yet)

HUB
0

Host

uFrame M + 1

SS = Free

0

SSPLIT

 Create SS entry with status = Pending

st1

uFrame M

IN

DATA0

Create CS entry
SS = Free

CS = Ready/last data

uFrame M + 2

IN

CSPLITct1

IN

Search not complete in time

Timeout ce7
Err_count = 1 -> ce3
Immediate retry CS

Send last data with DATA0

CS = Old/last data

CSPLITct1

IN

ch3

CSPLITct1

IN

No split response found

Respond with NYET

This is not the last CS -> ch3

NYET

uFrame M + 3

ch4

ch4

ct2

st2

ct2

ct2

NYET

uFrame M + 4
IN

DATA0

CSPLIT

cd1

ct1

ct2

ch1

