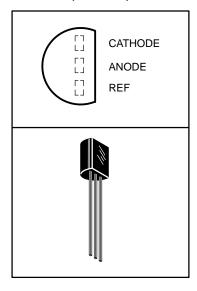
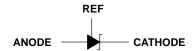
SLVS050A - JUNE 1976 - REVISED AUGUST 1995


- Temperature Compensated
- Programmable Output Voltage
- Low Output Resistance
- Low Output Noise
- Sink Capability to 100 mA

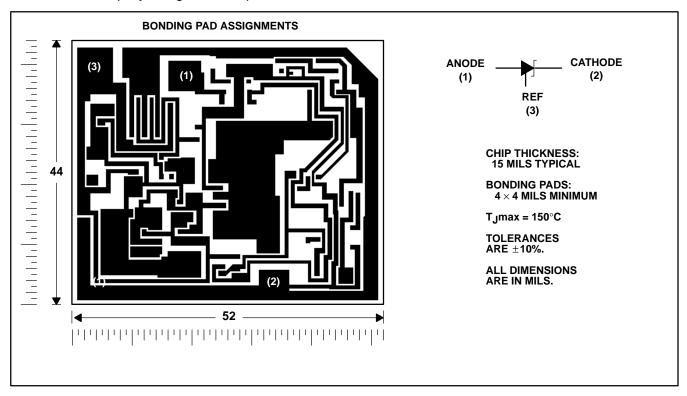
description


The TL430 is a 3-terminal adjustable shunt regulator featuring excellent temperature stability, wide operating current range, and low output noise. The output voltage may be set by two external resistors to any desired value between 3 V and 30 V. The TL430 can replace zener diodes in many applications providing improved performance

The TL430C is characterized for operation from 0° C to 70° C. The TL430I is characterized for operation from -40° C to 85° C.

LP PACKAGE (TOP VIEW)

symbol


AVAILABLE OPTIONS

	PACKAGED DEVICEST	CHIP FORM (Y)		
TA	PLASTIC (LP)			
0°C to 70°C	TL430CLP	TL430Y		
-40°C to 85°C	TL430ILP	_		

SLVS050A - JUNE 1976 - REVISED AUGUST 1995

TL430Y chip information

This chip, when properly assembled, displays characteristics similar to the TL430C. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chip may be mounted with conductive epoxy or a gold-silicon preform.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Regulator voltage (see Note 1)	30 V
Continuous regulator current	150 mA
Continuous total power dissipation at (or below) T _A = 25°C (see Note 2)	775 mW
Operating free-air temperature range, T _A : TL430C	0°C to 70°C
TL430I	–40°C to 85°C
Storage temperature range, T _{stg}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to the anode terminal.

2. For operation above 25°C free-air temperature, derate at 6.2 mW/°C.

recommended operating conditions

	MIN	MAX	UNIT	
Regulator voltage, VZ	V _{ref}	30	V	
Regulator current, IZ	2	100	mA	
Operating free-air temperature range, T _A	TL430C	0	70	°C
Operating nee-all temperature range, 14	TL430I	-40	85	

electrical characteristics over recommended operating conditions, T_A = 25°C (unless otherwise noted)

PARAMETER		TEST CONDITION		TIONS	TL430C			UNIT			
		FIGURE	TEST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNII
V _{I(ref)}	Reference input voltage	1	$V_Z = V_{I(ref)}$	$I_Z = 10 \text{ mA}$	2.5	2.75	3	2.6	2.75	2.9	V
αV _I (ref)	Temperature coefficient of reference input voltage	1	$V_Z = V_{I(ref)}$, $T_A = full range\dagger$	$I_Z = 10 \text{ mA},$		120			120	200	ppm/°C
I _{I(ref)}	Reference input current	2	$I_Z = 10 \text{ mA},$ R2 = ∞	R1 = 10 k Ω ,		3	10		3	10	μΑ
lzĸ	Regulator current near lower knee of regulation range	1	$V_Z = V_{I(ref)}$			0.5	2		0.5	2	mA
1-14	Regulator current at maximum limit of regulation range	1	$V_Z = V_{I(ref)}$		50			50			mA
IZK		2	$V_Z = 5 \text{ V to } 30 \text{ V},$	See Note 3	100			100			IIIA
r _Z	Differential regulator resistance (see Note 4)	1	$V_Z = V_{I(ref)},$ $\Delta I_Z = (52 - 2) \text{ mA}$			1.5	3		1.5	3	Ω
				$V_Z = 3 V$		50			50		
٧n	Noise voltage	2	f = 0.1 Hz to 10 Hz	V _Z = 12 V		200			200		μV
				$V_Z = 30 \text{ V}$		650			650		

[†] Full temperature range is 0°C to 70°C for the TL430C and -40°C to 85°C for the TL430I.

NOTES: 3. The average power dissipation, $V_Z \bullet I_Z \bullet$ duty cycle, must not exceed the maximum continuous rating in any 10-ms interval. 4. The regulator resistance for $V_Z > V_{I(ref)}$, r_Z , is given by:

$$r_{Z}' = r_{Z} \left(1 + \frac{R1}{R2}\right)$$

electrical characteristics over recommended operating conditions, $T_A = 25^{\circ}C$ (unless otherwise noted)

PARAMETER		TEST	TEST CONDITIONS			LINUT		
		FIGURE			MIN	TYP	MAX	UNIT
V _{I(ref)}	Reference input voltage	1	$V_Z = V_{I(ref)}$	$I_Z = 10 \text{ mA}$	2.5	2.75	3	V
I _{I(ref)}	Reference input current	2	I _Z = 10 mA, R2 = ∞	$R1 = 10 \text{ k}\Omega$,		3	10	μΑ
IZK	Regulator current near lower knee of regulation range	1	$V_Z = V_{I(ref)}$			0.5	2	mA
1=14	Regulator current at maximum limit of regulation range	1	$V_Z = V_{I(ref)}$		50			mA
IZK		2	$V_Z = 5 \text{ V to } 30 \text{ V},$	See Note 3	100			IIIA
r _Z	Differential regulator resistance (see Note 4)	1	$V_Z = V_{I(ref)}, \dots$ $\Delta I_Z = (52 - 2) \text{ mA}$			1.5	3	Ω
	Noise voltage	2	f = 0.1 Hz to 10 Hz	V _Z = 3 V		50		
Vn				V _Z = 12 V		200		μV
				V _Z = 30 V		650		

NOTES: 3. The average power dissipation, $V_Z \bullet I_Z \bullet$ duty cycle, must not exceed the maximum continuous rating in any 10-ms interval.

4. The regulator resistance for $V_Z > V_{I(ref)}$, r_z , is given by:

$$r_{Z}' = r_{Z} \left(1 + \frac{R1}{R2}\right)$$

PARAMETER MEASUREMENT INFORMATION

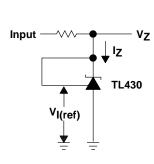


Figure 1. Test Circuit for $V_Z = V_{I(ref)}$

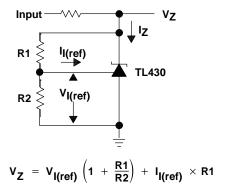


Figure 2. Test Circuit for $V_Z > V_{I(ref)}$

TYPICAL CHARACTERISTICS

SMALL-SIGNAL REGULATOR IMPEDANCE

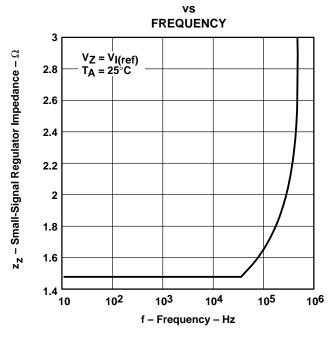


Figure 3

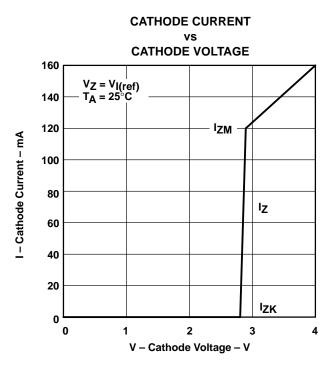


Figure 4

APPLICATION INFORMATION

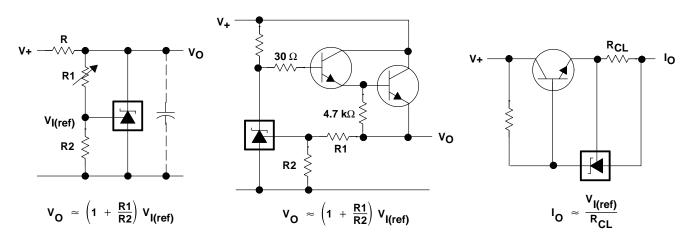


Figure 5. Shunt Regulator

Figure 6. Series Regulator

Figure 7. Current Limiter

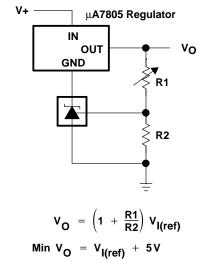


Figure 8. Output Control of a 3-Terminal Fixed Regulator

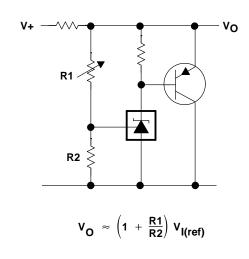


Figure 9. Higher-Current Applications

APPLICATION INFORMATION

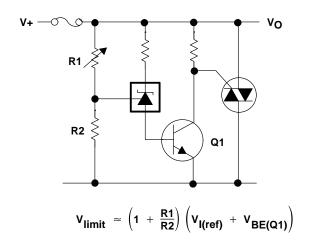
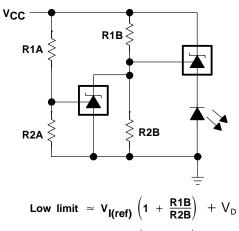



Figure 10. Crowbar

Low limit
$$\approx V_{I(ref)} \left(1 + \frac{R1B}{R2B}\right) + V_{I(ref)} \left(1 + \frac{R1A}{R2A}\right)$$

Figure 11. V_{CC} Monitor

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated