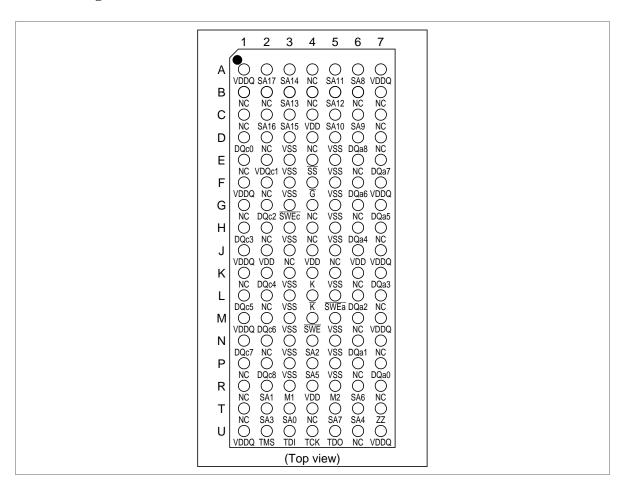
HM67S18258 Series (Target Spec.)

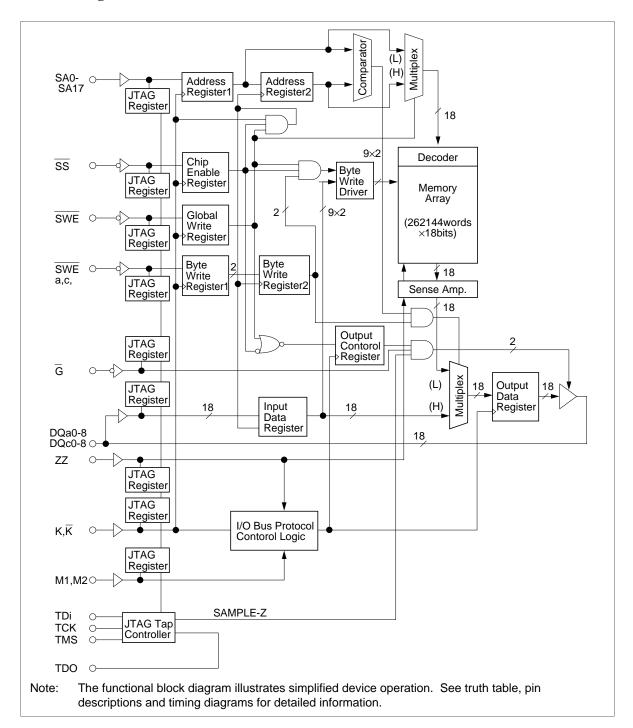
262,144-words × 18-bits Synchronous Fast Static RAM

HITACHI

ADE-203-661(Z) Product Preview Rev. 0 Oct. 1, 1996


Features

- $3.3 \pm 0.1 \text{ V Operation}$
- LVCMOS Compatible Input and Output
- Synchronous Operation
- Internal self-timed Late Write
- Asynchronous G Output Control
- Byte Write Control (2 byte write selects, one for each 9 bits)
- Power down mode is provided
- Differential PECL Clock Inputs
- Boundary Scan
- Protocol Single Clock Resister-Latch Mode


Ordering Information

Type Number	Cycle Time	Package
HM67S18258BP-7H	7.5 ns	119 Bump 1.27 mm 14 mm × 22 mm BGA (BP-119)

Pin Arrangement

Block Diagram

Pin Descriptions

Name	I/O Type	Descriptions	Note
V _{DD}		Power Supply	
V _{SS}		Ground	
V_{DDQ}		Output Power Supply	
K	Input	Input Clock	
K	Input	Input Clock	
SS	Input	Synchronous Chip Select	
SWE	Input	Synchronous Write Enable	
SAn	Input	Synchronous Address	n = 0, 1, 2, 17
SWEx	Input	Synchronous Byte Select	x = a, c
G	Input	Asynchronous Output Enables	
ZZ	Input	Power Down Mode Select	
DQxm	I/O	Synchronous Data Input/Output	x = a, c m = 0, 1, 2, 8
M1, M2	Input	Output Protocol Mode Select	1
TMS	Input	Boundary Scan Test Mode Select	
TCK	Input	Boundary Scan Test Clock	
TDI	Input	Boundary Scan Test Data In	
TDO	Output	Boundary Scan Test Data Out	
NC		No Connection	

Note: There is 1 protocol with using mode pins. Mode control pins (M1, M2) are to be tied to either V_{DD} or V_{SS} . The state of the Mode control inputs must be set before power-up and must not change during device operation. Mode control inputs are not standard inputs and may not meet V_{IH} or V_{IL} specifications.

M1	M2	Protocol
V_{DD}	V _{SS}	Single Clock Register Latch

Truth Table

SS	G	SWE	SWEa	SWEc	K	\overline{K}	K Operation		DQc
Н	Χ	Χ	Χ	Χ	L-H	H-L	Dead (not selected)	High-Z	High-Z
L	Н	Н	Х	X	L-H	H-L	H-L Dead (Dummy read)		High-Z
L	L	Н	X	X	L-H	H-L	Read	Dout	Dout
L	Χ	L	L	L	L-H	H-L	Writ	Din	Din
L	Χ	L	Н	L	L-H	H-L	Write	High-Z	Din
L	X	L	L	Н	L-H	H-L	Write	Din	High-Z

Notes: 1. X means don't care for synchronous inputs, and H or L for asynchronous inputs.

2. SWE, SS, SWEa, SWEc, SA are sampled at the rising edge of K clock.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	Note	
Supply voltage	V_{DD}	-0.5 to +4.6	V	1	
Output Supply Voltage	V_{DDQ}	-0.5 to V _{DD} +0.5	V	1, 5	
Voltage on any pin	V _{IN}	-0.5 to V _{DD} +0.5	V	1, 5	
Operating Temperature	Та	0 to 70 (Tj max = 110)	°C		
Storage Temperature	Tstg (bias)	-55 to 125	°C		
Input Latchup Current	I _{LI}	±200	mA		
Output Current per pin	lout	±25	mA		
Soft Error Rate	SER	100	FIT		

Notes: 1. All voltage are referenced to V_{ss}.

- 2. Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be restricted the Operation Conditions. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.
- 3. These Bi-CMOS memory circuits have been designed to meet the DC and AC specifications shown in the tables after thermal equilibrium has been established.
- 4. Power Up Initialization
- 5. Not exceed 4.6 V

The following supply voltage application sequence is recommended: V_{SS} , V_{DD} then V_{DDQ} . Remember according to the Absolute Maximum Ratings table, V_{DDQ} is not to exceed V_{DD} + 0.5 V, whatever the instantaneous value of V_{DD} .

Recommended DC Operating Conditions (Ta = 0 to 70° C [Tj max = 110° C])

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply voltage	V_{DD}	3.2	3.3	3.4	V	
Output Supply voltage	$V_{\scriptscriptstyle DDQ}$	3.2	3.3	3.4	V	1
		2.4	2.5	2.6	V	2
Input voltage Logic High Level	V _{IH}	2.0	_	$V_{DD} + 0.3$	V	
Logic Low Level	V _{IL}	-0.5	_	0.8	V	
PECL Logic High Level	V _{IH} (PECL)	2.135		2.420	V	
PECL Logic Low Level	V _{IL} (PECL)	1.490	_	1.825	V	

Notes: 1. For $V_{DDQ} = 3.3 \text{ V supply}$.

2. For $V_{DDQ} = 2.5 \text{ V supply}$.

DC Characteristics (Ta = 0 to 70°C [Tj max 110°C], V_{DD} = 3.3 V ± 0.1 V)

Parameter		Symbol	Min	Тур	Max	Unit	Note
Input Leakage Cur	rent	I _{LI}	-1	_	1	μΑ	1
Output Leakage C	urrent	I _{LO}	-1		1	μΑ	2
PECL Input Leaka	ge Current Low	I _{LI} (PECL)			50	μΑ	
PECL Input Leaka	ge Current High	I _{LI} (PECL)		_	150	μΑ	
V _{DD} Operating Cudrivers	rrent excluding outpu	ut I _{DD}		_	500	mA	3
Power Dissipation drivers	including output	P_d			2.7	W	3, 8
Standby Current (F	Power down mode)	I _{SB}		_	100	mA	5
Output Voltage	Logic Low	V _{OL}	0		0.4	V	4
	Logic High	V _{OH}	2.4 V _{DDQ} -0.4		V_{DDQ} V_{DDQ}	V V	4, 6 4, 7

Notes: 1. $0 \le Vin \le V_{DD}$

- 2. $0 \le VI/O \le V_{DD}$, Tristate I/O
- 3. I(I/O) = 0 mA, Address increment read 50% / write 50%, $V_{DD} = V_{DD}$ max, Frequency = 125 MHz
- 4. $I_{OH} = 2 \text{ mA or } I_{OL} = -2 \text{ mA}$
- 5. All inputs (except clock) are held at either V_{SS} or V_{DDQ} , and ZZ is held at V_{DDQ}
- 6. for $V_{DDQ} = 3.3 \text{ V supply}$
- 7. for $V_{DDQ} = 2.5 \text{ V supply}$
- 8. Output Load Capacitance = 29 pF

Input Capacitance (Ta = 25°C, f = 1 MHz)

Parameter	Symbol	Min	Max	Unit	Pin Name	Note
Address Input Capacitance	C_{INA}	_	5	pF	SAn, \overline{SS} , \overline{SWE} , \overline{SWEx}	1
Clock Input Capacitance	C _{INC}		8	pF	K, \overline{K} , \overline{G}	1
I/O Capacitance	C _{INIO}	_	7	pF	DQxm	1

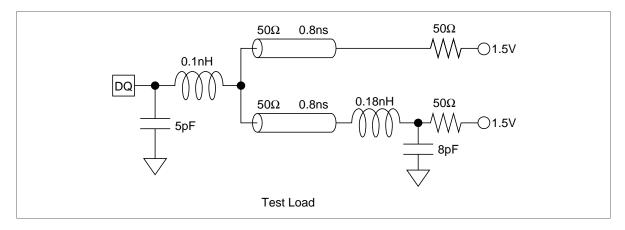
Note: This value is measured by sampling and not 100% tested.

AC Test Conditions Note

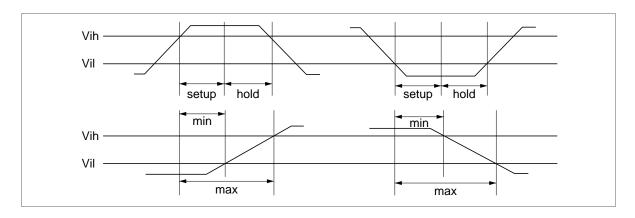
Temperature 0°C ≤ Ta ≤ 70°C (Tj max = 110°C)
 Input Reference Point for Differential Signals Differential Cross-Over Point

Input pulse levels 0 to 2.5 V

• Clock Input pulse levels 1.8 to 2.1 V


Input Rise/Fall Time
 Clock input Rise/Fall Time
 0.5 to 1.5 ns (10% to 90%)
 0.3 to 1.0 ns (10% to 90%)

Output timing reference


--- 2.0 V/0.8 V for $V_{DDQ} = 3.3 V$ 1 --- 1.65 V/1.15 V for $V_{DDQ} = 2.5 V$ 1

• Output load See figures

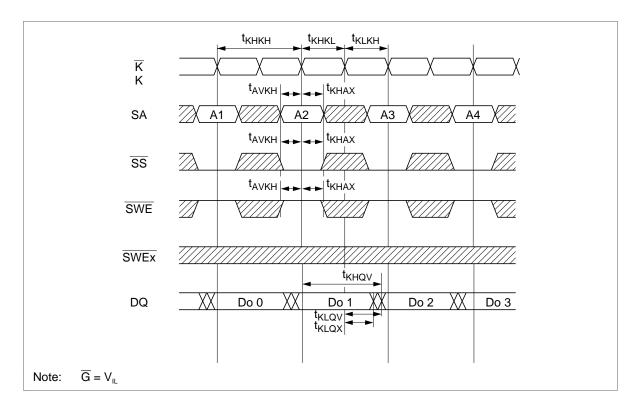
Note: These levels are efficient under open termination. load condition These vih/vil levels under termination load will be determined by correlation between open load and termination load.

AC Timing Measurement

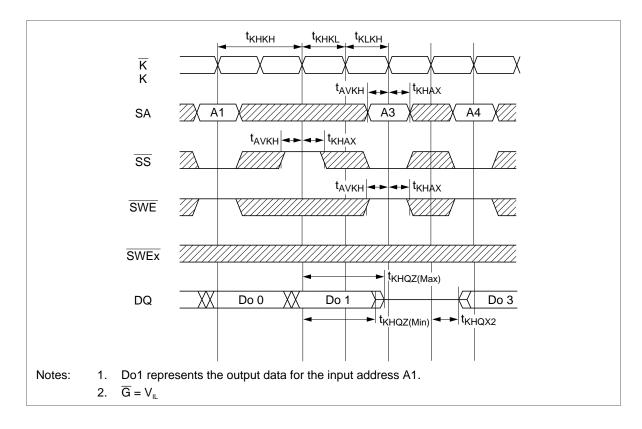
AC Characteristics (Ta = 0° to 70° C [Tj max = 110° C])

Single Differential Clock Register-Latch Mode (M1 = V_{DD} , M2 = V_{SS})

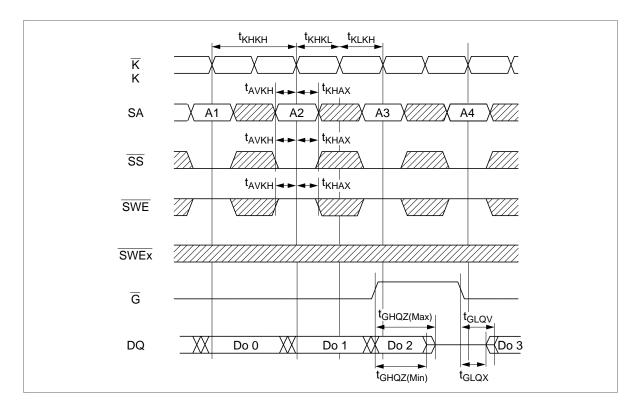
-7H

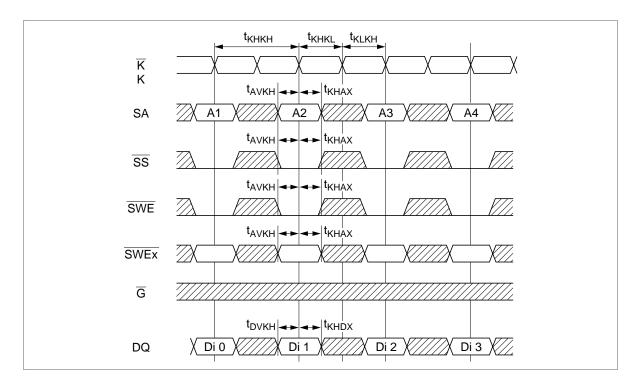

								_	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Clock Control									_
Clock Cycle	t_{KHKH}			8.0	_			ns	
Clock High Width	\mathbf{t}_{KHKL}			3.2	_			ns	
Clock Low Width	\mathbf{t}_{KLKH}			3.2	_			ns	
Read Control									
K Clock Access	\mathbf{t}_{KHQV}			_	7.5			ns	
K Clock Access	\mathbf{t}_{KLQV}			_	3.5			ns	
Output Enable Access	\mathbf{t}_{GLQV}			_	3.5			ns	
K Low to Q Change	\mathbf{t}_{KLQX}			1.0	_			ns	
Output Buffer Control									
K Low to Low-Z	\mathbf{t}_{KLQX2}			1.0	_			ns	1
Output Enable to Low-Z	\mathbf{t}_{GLQX}			0.5	_			ns	1
K Clock High to Hi-Z	\mathbf{t}_{KHQZ}			_	3.5			ns	1
Output Enable to Hi-Z	\mathbf{t}_{GHQZ}			0.0	4.0			ns	1
Setup Times									
Address Setup Time	t _{AVKH}			0.5	_			ns	$SA, \overline{SS}, \overline{SWE},$
Data Setup Time	\mathbf{t}_{DVKH}			0.5	_			ns	SWEa, SWEc
Hold Times									
Address Hold Time	\mathbf{t}_{KHAX}			1.0	_			ns	$SA, \overline{SS}, \overline{SWE},$
Data Hold Time	\mathbf{t}_{KHDX}			1.0	_			ns	SWEa, SWEc

Notes: Transition is measured ±200 mV from steady voltage with specified loading in Test Load.

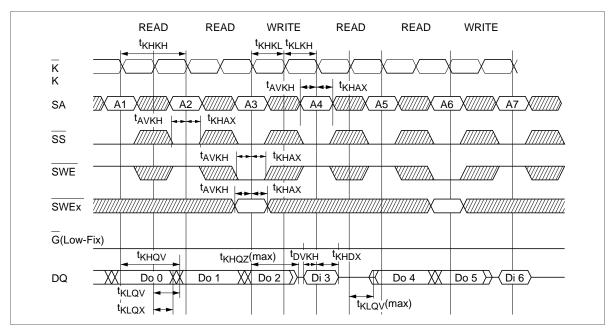

Timing Waveforms

Single Clock Register Latch Mode


Read Cycle 1


Read Cycle 2 (SS Controlled)

Read Cycle 3 (\overline{G} Controlled)



Write Cycle

13

Read-Write Cycle

Note: During this period DQ pins are in the output state so that the input signal of opposite phase to the outputs must not be applied.

Boundary Scan Test Access Port Operations

Overview

In order to perform the interconnect testing of the modules that include this SRAM, the serial boundary access port (TAP) is designed to operate in a manner consistent with IEEE Standard 1149.1 - 1990. But does not implement all of the functions required for 1149.1. the HM67S18258 contains a TAP controller. Instruction resister, Boundary scan resister, Bypass and ID resister.

Test Access Port Pins

Symbol I/O	Name
TCK	Test Clock
TMS	Test Mode Select
TDI	Test Data In
TDO	Test Data Out

Note: This Device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. To disable the TAP, TCK must be connected to V_{ss} . TDO should be left unconnected.

TAP DC Operating Characteristics (Ta = 0° C to 70° C [Tj max = 110° C])

Parameter	Symbol	Min	Max	Note
Boundary scan Input High voltage	V _{IH}	2.0 V	V _{DD} + 0.3 V	
Boundary scan Input Low voltage	V _{IL}	-0.5 V	0.8 V	
Boundary scan Input Leakage Current	l _u	–1μΑ	+1μΑ	1
Boundary scan Output Low voltage	V _{OL}	"	0.4 V	2
Boundary scan Output High voltage	V _{OH}	2.4 V		3

Notes: 1. $0 \le Vin \le V_{DD}$

2. $I_{OL} = 2 \text{ mA}$

3. $I_{OH} = -2 \text{ mA}$

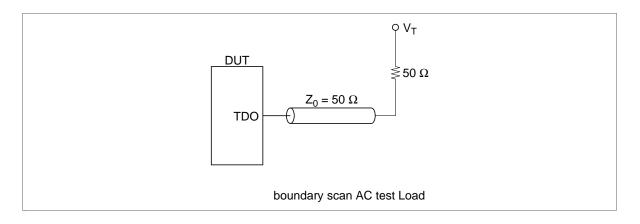
TAP AC Operating Characteristics (Ta = 0° C to 70° C [Tj max = 110° C])

Parameter	Symbol	Min	Max	Unit
Test Clock Cycle Time	t _{THTH}	67	_	ns
Test Clock High Pulse Width	t _{THTL}	30		ns
Test Clock Low Pulse Width	t _{TLTH}	30	<u> </u>	ns
Test Mode Select Setup	t _{MVTH}	10	_	ns
Test Mode Select Hold	t _{THMX}	10	_	ns
Capture Setup	t _{cs}	10	<u> </u>	ns
Capture Hold	t _{cH}	10	_	ns
TDI Valid to TCK High	t _{DVTH}	10		ns
TCK High to TDI Don't Care	t _{THDX}	10	<u> </u>	ns
TCK Low to TDO Unknown	t _{TLQX}	0	_	ns
TCK Low to TDO Valid	t _{TLQV}	_	20	ns

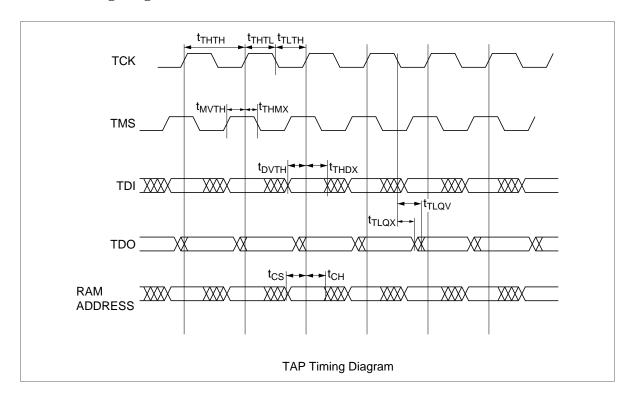
Note: $t_{CS} + t_{CH}$ defines the minimum pause in RAM I/O pad transitions to assure pad data capture.

TAP AC Test Conditions

• Temperature $0^{\circ}\text{C} \le \text{Ta} \le 70^{\circ}\text{C}$ [Tj max = 110°C]


• Input Reference Point for Single-Ended Signals 1.5 V

• Input pulse levels 0 to 2.5 V


• Input Rise/Fall Time 2.0 ns typical (10% to 90%)

Output timing reference
 Test load termination supply voltage (V_T)
 1.5 V

• Output Load See figures

TAP Timing Diagram

Test Access Port Registers

Register Name	Length	Symbol	Note
Instruction Register	3 bits	IR [0;2]	
Bypass Register	1 bits	BP	
ID Register	32 bits	ID [0;31]	
Boundary Scan Register	51 bits	BS [1;70]	

TAP Controller Instruction Set

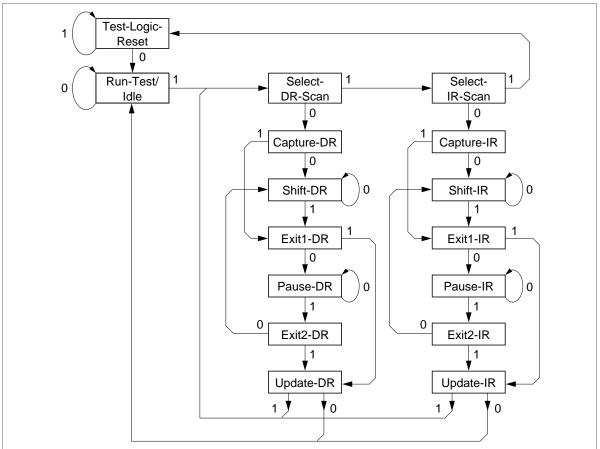
IR2	IR1	IR0	Instruction	Operation
0	0	0	SAMPLE-Z	Tristate all data drivers and capture the pad value
0	0	1	IDCODE	
0	1	0	SAMPLE-Z	Tristate all data drivers and capture the pad value
0	1	1	BYPASS	
1	0	0	SAMPLE	
1	0	1	BYPASS	
1	1	0	BYPASS	
1	1	1	BYPASS	

Note: This Device does not perform EXTEST, INTEST or the preload portion of the PRELOAD command in IEEE 1149.1.

Boundary Scan Order

Bit #	Bump ID	Signal Name	Bit #	Bump ID	Signal Name
1	5R	M2	27	2B	NC
2	6T	SA4	28	3A	SA14
3	4P	SA5	29	3C	SA15
4	6R	SA6	30	2C	SA16
5	5T	SA7	31	2A	SA17
6	7T	ZZ	32	1D	DQc0
7	7P	DQa0	33	2E	DQc1
8	6N	DQa1	34	2G	DQc2
9	6L	DQa2	35	1H	DQc3
10	7K	DQa3	36	3G	SWEc
11	5L	SWEa	37	4D	NC
12	4L	K	38	4E	SS
13	4K	K	39	4G	NC
14	4F	G	40	4H	NC
15	6H	DQa4	41	4M	SWE
16	7G	DQa5	42	2K	DQc4
17	6F	DQa6	43	1L	DQc5
18	7E	DQa7	44	2M	DQc6
19	6D	DQa8	45	1N	DQc7
20	6A	SA8	46	2P	DQc8
21	6C	SA9	47	ЗТ	SA0
22	5C	SA10	48	2R	SA1
23	5A	SA11	49	4N	SA2
24	6B	NC	50	2T	SA3
25	5B	SA12	51	3R	M1
26	3B	SA13			

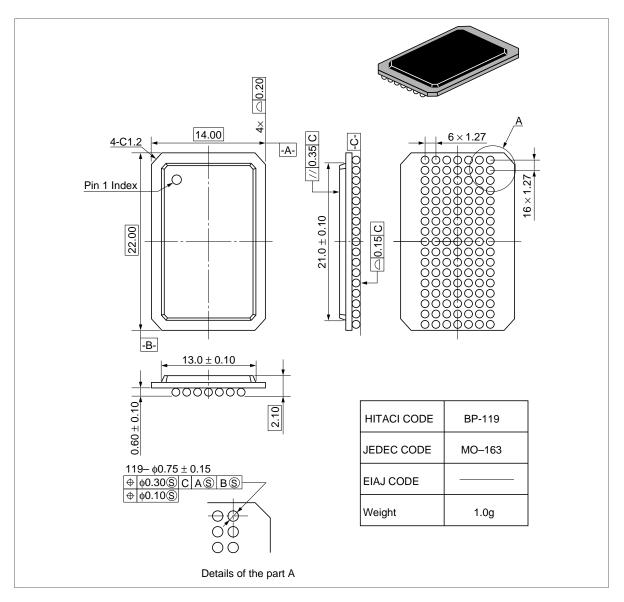
Notes: 1. Bit#1 is the first scan bit to exit the chip.


^{2.} NC pads listed in the TABLE are represented in the Boundary Scan Register by a Place Holder. Place Holder registers are internally connected to $V_{\rm ss}$.

^{3.} The clock pins (K and \overline{K}) are needed as PECL differential levels. And, clock receiver generated single clock signal. This signal and its inverted signal are used for Boundary Scan Register input signal.

ID register

Bit#	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Value	Х	Х	Χ	Χ	0	1	1	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
Vendor Revision No			IM, 6M Depth Depth			4M, 16M Width Width			Use in the future					Vendor ID No.										Fix								


TAP Controller State Diagram

Note: The value adjacent to each state transition in this figure represents the signal present at TMS at the time of a rising edge at TCK.

No matter what the original state of the controller, it will enter Test-Logic-Reset when TMS is held high for at least five rising edges of TCK.

Package Outline Unit: mm

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

23