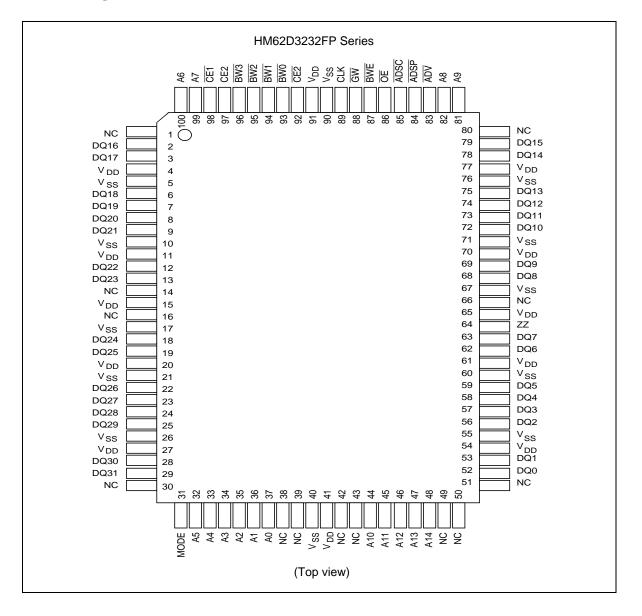
32768-word × 32-bit Synchronous Fast Static RAM with Burst Counter and Pipelined Data Output

HITACHI

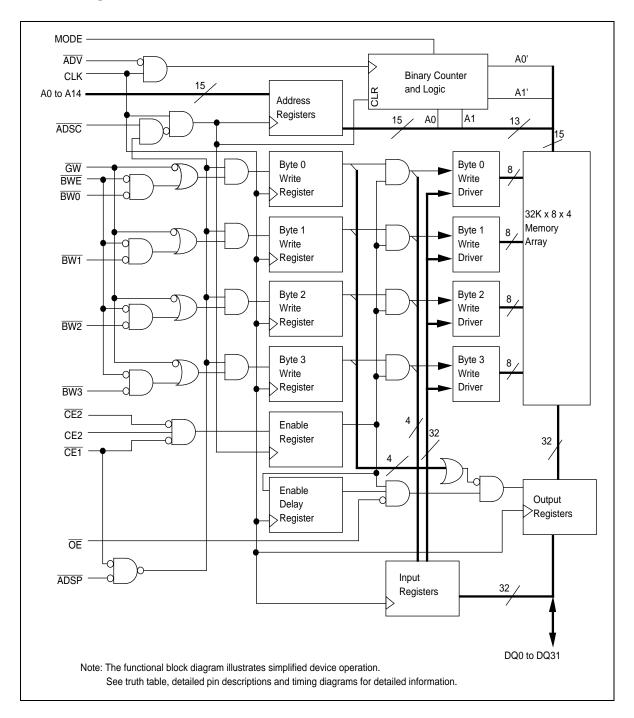
ADE-203-491A (Z) Rev. 1.0 Jun. 24, 1996


Features

- Single 3.3 V power supply (LVTTL)
- Fast clock access time: 7/8/12 ns (max)
- Low operating current: 160/140/110 mA (max)
- Address data pipeline capability
- Internal input registers (Address, Data, Control)
- Internal data output registers
- Internal self-timed write cycle
- $\overline{\text{ADSP}}$, $\overline{\text{ADSC}}$ and $\overline{\text{ADV}}$ burst control pins
- Burst mode selectable: MODE (interleaved or linear burst)
- Asynchronous output enable controlled three-state outputs
- Individual byte write control and global write
- Power down state via ZZ
- Common data inputs and data outputs
- High board density 100-lead LQFP package

Ordering Information

Type No.	Access time	CPU clock rate	Package
HM62D3232FP-7	7 ns	75 MHz	LQFP 100-pin (FP-100H)
HM62D3232FP-8	8 ns	66 MHz	
HM62D3232FP-12	12 ns	50 MHz	


Pin Arrangement

Pin name	Туре	Function	
A0 to A14	Input	Address inputs	
BWO, BW1, BW2, BW3	Input	Byte write enables	BW0 controls DQ0 to DQ7
			$\overline{\text{BW1}}$ controls DQ8 to DQ15
			BW2 controls DQ16 to DQ23
			BW3 controls DQ24 to DQ31
GW	Input	Global write	
BWE	Input	Byte write enable	
CLK	Input	Clock	
CE1	Input	Enable	
CE2, CE2	Input	Chip enable	
ŌĒ	Input	Output enable	
ADV	Input	Address advance	
ADSP	Input	Address status proc	cessor
ADSC	Input	Address status con	troller
ZZ	Input	Power down	
MODE	Input	Mode select	
NC	_	No connection	
DQ0 to DQ31	Input/Output		
V _{DD}	Supply	Power supply	
V _{ss}	Supply	Ground	

Pin Description (See Detailed Pin Description)

Block Diagram

Synchronous Truth Table

Operation	Address	CE1	CE2	CE2	ADSP	ADSC	ADV	Write	ŌĒ	CLK	DQ
Deselected cycle, power-down	None	Н	×	×	×	L	×	×	×	L-H	High-Z
Deselected cycle, power-down	None	L	×	L	L	×	×	×	×	L-H	High-Z
Deselected cycle, power-down	None	L	Н	×	L	×	×	×	×	L-H	High-Z
Deselected cycle, power-down	None	L	×	L	Н	L	×	×	×	L-H	High-Z
Deselected cycle, power-down	None	L	Н	×	Н	L	×	×	×	L-H	High-Z
READ cycle, begin burst	External	L	L	Н	L	×	×	×	L	L-H	Q
READ cycle, begin burst	External	L	L	Н	L	×	×	×	Н	L-H	High-Z
WRITE cycle, begin burst	External	L	L	Н	Н	L	×	L	×	L-H	D
READ cycle, begin burst	External	L	L	Н	Н	L	×	Н	L	L-H	Q
READ cycle, begin burst	External	L	L	Н	Н	L	×	Н	Н	L-H	High-Z
READ cycle, continue burst	Next	×	×	×	Н	Н	L	Н	L	L-H	Q
READ cycle, continue burst	Next	×	×	×	Н	Н	L	Н	Н	L-H	High-Z
READ cycle, continue burst	Next	Н	×	×	×	Н	L	Н	L	L-H	Q
READ cycle, continue burst	Next	Н	×	×	×	Н	L	Н	Н	L-H	High-Z
WRITE cycle, continue burst	Next	×	×	×	Н	Н	L	L	×	L-H	D
WRITE cycle, continue burst	Next	Н	×	×	×	Н	L	L	×	L-H	D
READ cycle, suspend burst	Current	×	×	×	Н	Н	Н	Н	L	L-H	Q
READ cycle, suspend burst	Current	×	×	×	Н	Н	Н	Н	Н	L-H	High-Z
READ cycle, suspend burst	Current	Н	×	×	×	Н	Н	Н	L	L-H	Q
READ cycle, suspend burst	Current	Н	×	×	×	Н	Н	Н	Н	L-H	High-Z
WRITE cycle, suspend burst	Current	×	×	×	Н	Н	Н	L	×	L-H	D
WRITE cycle, suspend burst	Current	Н	×	×	×	Н	Н	L	×	L-H	D

Notes: 1. H means logic HIGH, L means logic LOW. × means H or L. Write = L means any one or more byte write enable signals (BW0, BW1, BW2 or BW3) and BWE are LOW or GW is LOW. Write = H means all byte write enable signals and GW are HIGH.

2. BW0 enables write to Byte0 (DQ0 to DQ7). BW1 enables write to Byte1 (DQ8 to DQ15). BW2 enables write to Byte2 (DQ16 to DQ23). BW3 enables write to Byte3 (DQ24 to DQ31).

- 3. All inputs except $\overline{\text{OE}}$ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
- 4. Wait states are inserted by suspending burst.
- 5. For a write operation following a read operation, \overline{OE} must be HIGH before the input data required setup time and hold HIGH throughout the input data hold time.
- 6. ADSP = LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signals and BWE LOW or GW LOW for the subsequent L-H edge of CLK. Refer to WRITE timing diagram for clarification.

HITACHI

Asynchronous Truth Table

Operation	ZZ	ŌĒ	I/O status
Read	L	L	Data out
Read	L	Н	High-Z
Write	L	×	High-Z, Data in
Deselect	L	×	High-Z
Power down (Snooze)	Н	×	Hlgh-Z

Note: H means logic HIGH. L means logic LOW. × means H or L.

Partial Truth Table for Writes

Operation	<u>G</u> W	BWE	BWO	BW1	BW2	BW3
Read	Н	Н	×	×	×	×
Read	Н	L	Н	Н	Н	Н
Write byte 0	Н	L	L	Н	Н	Н
Write all bytes	Н	L	L	L	L	L
Write all bytes	L	×	×	×	×	×

Note: H means logic HIGH. L means logic LOW. × means H or L.

Interleaved Burst Sequence Table (MODE= OPEN or V_{DD})

Parameter	A14 to A2	Sequence 1 (A1, A0)	Sequence 2 (A1, A0)	Sequence 3 (A1, A0)	Sequence 4 (A1, A0)
External address	A14 to A2	0 0	0 1	10	11
1st internal address	A14 to A2	0 1	0 0	1 1	10
2nd internal address	A14 to A2	1 0	1 1	0 0	0 1
3rd internal address	A14 to A2	11	10	0 1	0 0

Note: Each Sequence wraps around to its initial state upon completion.

Linear Burst Sequence Table (MODE= $\mathbf{V}_{ss})$

Parameter	A14 to A2	Sequence 1 (A1, A0)	Sequence 2 (A1, A0)	Sequence 3 (A1, A0)	Sequence 4 (A1, A0)
External address	A14 to A2	0 0	0 1	10	11
1st internal address	A14 to A2	0 1	1 0	1 1	0 0
2nd internal address	A14 to A2	1 0	1 1	0 0	0 1
3rd internal address	A14 to A2	1 1	0 0	0 1	10

Note: Each Sequence wraps around to its initial state upon completion.

Absolute Maximum Ratings

Parameter		Symbol	Value	Unit
Supply voltage		V _{dd}	–0.5 to +4.6	V
Voltage on any pins relative	(DQ0 to DQ31, MODE)	V _T	–0.5 to V_{DD} +0.5	V
to V_{ss} (Except V_{DD})	(Others)	V _T	–0.5 to 6.0	V
Power dissipation		P _T	1.0	W
Operating temperature		Topr	0 to +70	°C
Storage temperature range (with bias)	Tstg (bias)	–10 to +85	°C
Storage temperature range		Tstg	-55 to +125	°C

Recommended DC Operating Conditions (Ta = 0 to $+70^{\circ}$ C)

Parameter		Symbol	Min	Max	Unit	Note
Supply voltage (Operation	ting voltage range)	V _{dd}	3.1	3.6	V	
Supply voltage to $\rm V_{ss}$		V _{ss}	0.0	0.0	V	
Input high voltage	(DQ0 to DQ31, MO	DE) V _{IH}	2.0	V _{DD} +0.3	V	
	(Others)	V _{IH}	2.0	5.5	V	
Input low voltage		V	-0.3	0.8	V	1, 2

Note: 1. -2.0 V for undershoot pulse width $\leq t_{cyc}$ min/2.

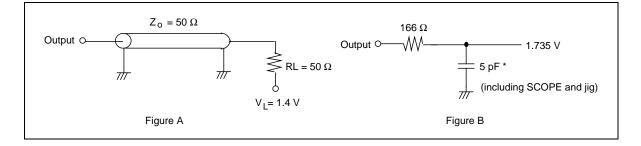
2. MODE pin must be connected to $V_{\rm ss},$ when Linear burst sequence is selected.

DC Characteristics (Ta = 0 to +70°C, V_{DD} = 3.3 V +0.3 V/-0.2 V, unless otherwise noted.)

		HM6	2D32	32						
		-7		-8		-12		-		
Parameter	Symbol	Min	Мах	Min	Мах	Min	Мах	Unit	Test conditions	Note
Input leakage current	I _{LI}	-2	2	-2	2	-2	2	μA	All inputs Vin = V_{SS} to V_{DD}	1
Output leakage current	I _{LO}	-2	2	-2	2	-2	2	μA	$\overline{OE} = V_{H}$, Vout = V_{SS} to V_{DD}	
Supply current	I _{DD}		160	_	140		110	mA	Device selected, lout = 0 mA, all inputs = V_{H} or V_{L} , cycle time = t_{CYC} min.	
Standby current	I _{SB}		30	_	25		20	mA	$ \begin{array}{l} \mbox{Device deselected} \\ \mbox{all inputs = fixed and} \\ \mbox{all inputs } \geq V_{_{DD}} - 0.2 \mbox{ V or} \\ \leq 0.2 \mbox{ V, cycle time = } t_{_{CYC}} \mbox{min.} \end{array} $	
	I _{SBZZ}	_	5	_	5	_	5	mA	$ZZ \ge V_{\text{DD}} - 0.2 \text{ V}$	
Output low voltage	V _{ol}	_	0.4	_	0.4	_	0.4	V	I _{oL} = 8 mA	
Output high voltage	$V_{\rm OH}$	2.4		2.4		2.4		V	I _{он} = -4 mА	

Note: 1. MODE pin is $-10 \ \mu$ A min and $+10 \ \mu$ A max.

Capacitance (Ta = 25°C, f = 1.0 MHz, $V_{_{DD}}$ = 3.3 V)


Parameter	Symbol	Min	Тур	Max	Unit	Note
Input capacitance	Cin	_	4	5	pF	1
Input/output capacitance	C _{I/O}		7	8	pF	1

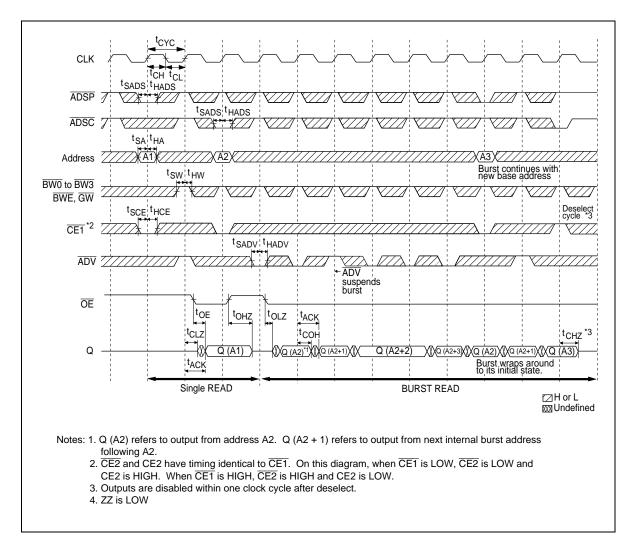
Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = 0 to +70°C, $V_{DD} = 3.3 \text{ V} + 0.3 \text{ V} - 0.2 \text{ V}$, $V_{ss} = 0 \text{ V}$ unless otherwise noted.)

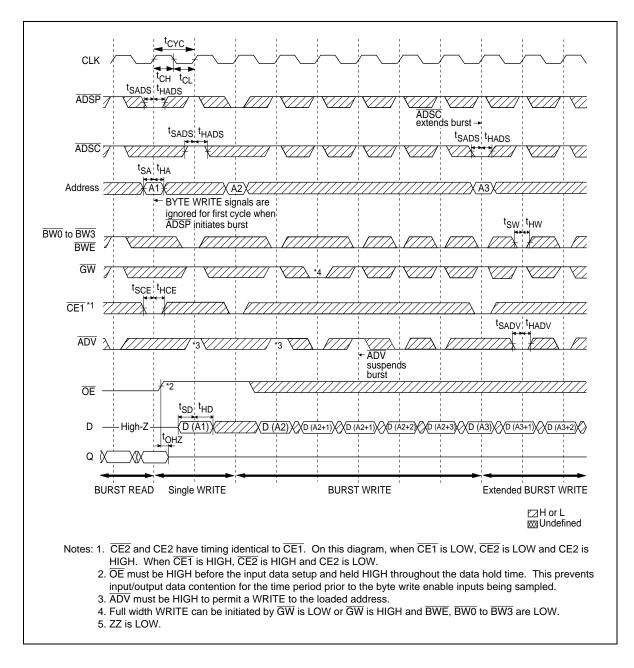
Test Conditions

- Input timing measurement reference level: 1.4 V
- Input pulse levels: 0 V to 2.8 V
- Input rise and fall time: 2 ns
- Output timing reference level: 1.4 V
- Output load: See figure A unless otherwise noted

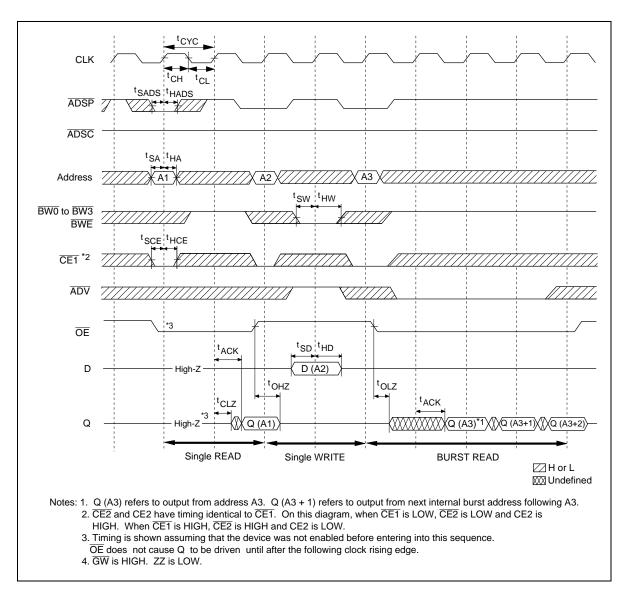
				HM62D3232						
	Symbol		-7		-8		-12		-	
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Cycle time	t _{кнкн}	t _{cyc}	13.3		15	_	20		ns	
Clock access time	t _{ĸhqv}	t _{аск}	_	7	—	8	_	12	ns	
Output enable to output valid	t _{glqv}	t _{oe}	_	5	_	5	_	6	ns	4
Clock high to output active	t _{ĸhqx1}	t _{clz}	2	_	2	_	2	_	ns	
Clock high to output change	t _{ĸHQX2}	t _{сон}	2.5	_	3	—	3	—	ns	
Output enable to output active	t _{glqz}	t _{olz}	0	—	0	_	0	_	ns	
Output disable to Q High-Z	t _{ghqz}	t _{onz}	2	6	2	6	2	6	ns	1
Clock high to Q High-Z	t _{khqz}	t _{cHZ}	—	6	_	6	_	6	ns	1
Clock high pulse width	t _{khkl}	t _{сн}	4.5	—	5	—	6	—	ns	
Clock low pulse width	t _{klkh}	t _{c∟}	4.5	_	5	_	6	_	ns	
Setup Times: Address Address Status Input Data Write Address Advance Chip Enable Hold Times:	t _{avkh} t _{adsvkh} t _{dvkh} t _{wvkh} t _{advvk} t _{evkh}	$\begin{array}{c} t_{sa} \\ t_{sads} \\ t_{sD} \\ t_{sw} \\ t_{sadv} \\ t_{sce} \end{array}$	0.5	_	2.5 0.5	_	3	_	ns	2, 3
Address Address Status Input Data Write Address Advance Chip Enable	$t_{\rm KHAX}$ $t_{\rm KHADSX}$ $t_{\rm KHDX}$ $t_{\rm KHWX}$ $t_{\rm KHADVX}$ $t_{\rm KHEX}$	$\begin{array}{c} t_{\text{HA}} \\ t_{\text{HADS}} \\ t_{\text{HD}} \\ t_{\text{HW}} \\ t_{\text{HADV}} \\ t_{\text{HCE}} \end{array}$								
ZZ Standby		t _{zzs}	6	—	6	—	6	—	ns	5, 6
ZZ Recovery		t _{zzrec}	6	—	6	—	6	—	ns	5


Notes: 1. Transition is measured ± 200mV from steady-state voltage with load of FigureB. This parameter is sampled.

2. A READ cycle is defined by byte write enables all HIGH or ADSP LOW for the required setup and hold times. A WRITE cycle is defined by at least one byte write enable LOW and ADSP HIGH for the required setup and hold times.


- 3. This is a synchronous device. All address must meet the specified setup and hold times for all rising edges of CLK when either ADSP or ADSC is LOW and chip enabled. All other Synchronous inputs must meet the setup and hold times with stable logic levels for all rising edges of clock (CLK) when chip is enabled. Chip enable must be valid at each rising edge of CLK (when either ADSP or ADSC is LOW) to remain enabled.
- 4. \overline{OE} is a " H or L " when a byte write enable is sampled LOW.
- 5. During the cycle when transition of ZZ from high to low or from low to high occurs, ADSP, ADSC, BWE, GW and BWi must be high at its rising edge of CLK.
- 6. Data-output is not guaranteed during the cycle when transition of ZZ from low to high occurs.

Timing Waveforms


Example of Read Timing

Example of Write Timing

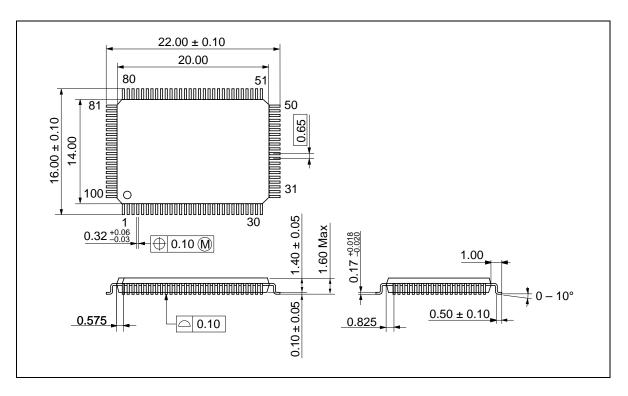
Example of Read/Write Timing

Example of Power-down StateTiming

Detailed Pin Description

LQFP pin number(s)	Symbol	Туре	Description
37, 36, 35, 34, 33, 32, 100, 99, 82, 81, 44, 45, 46, 47, 48	A0 to A14	Input	Synchronous Address Inputs: These inputs are registered and must meet setup and hold times around the rising edge of CLK.
93, 94, 95, 96	BW0, BW1 BW2, BW3	Input	Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written and must meet the setup and hold times around the rising edge of CLK. A byte write enable is LOW for a WRITE cycle and HIGH for a READ cycle. BW0 controls DQ0 to DQ7. BW1 controls DQ8 to DQ15. BW2 controls DQ16 to DQ23. BW3 controls DQ24 to DQ31. Data I/O are tri-stated if any of these four inputs are LOW.
88	GW	Input	Synchronous Global Write: This active LOW input allows a full 32 bit Write to occur independent of the \overline{BWE} and \overline{BWi} lines and must meet the setup and hold times around the rising edge of CLK. System must connect pin to V _{DD} when not used.
87	BWE	Input	Synchronous Byte Write Enable: This active LOW input permits byte write operations and must meet the setup and hold times around the rising edge of CLK. System must connect pin to V_{ss} when not used.
89	CLK	Input	Clock: This signal latches the address, data, chip enables, byte write enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge.
98	CE1	Input	Synchronous Chip Enables: This active LOW input is used to enable the device and conditions internal use of $\overline{\text{ADSP}}$. This input is sampled only when a new external address is load.
92	CE2	Input	Synchronous Chip Enable: This active LOW input is used to enable the device. This input is sampled only when a external address is loaded. This input can be used for memory depth expansion.
97	CE2	Input	Synchronous Chip Enable: This active HIGH input is used to enable the device. This input sampled only when a new external address is load. This input can be used for memory depth expansion.
86	ŌĒ	Input	Output Enable: This active LOW asynchronous input enables the data I/O output drivers.
83	ADV	Input	Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait status to be generated (no address advance). This pin must be HIGH at the rising edge of the first clock after an ADSP cycle is initiated if a write cycle is desired (to ensure use of correct address).

HITACHI


Detailed Pin Description (cont)

LQFP pin number(s)	Symbol	Туре	Description
84	ADSP	Input	Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be latched. A READ performed using the new address, independent of the byte write enables and ADSC but dependent upon CE2 and CE2. ADSP is ignored if CE1 is HIGH. Power-down state is entered if CE2 is HIGH or CE2 is LOW.
85	ADSC	Input	Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst and causes a new external address to be latched. A READ or WRITE is performed using the new address if all chip enables are active. Power-down state is entered if one or more chip enabled are inactive.
1, 14, 16, 30, 38, 39, 42, 43,49, 50, 51, 66, 80	NC	_	No Connect: These signals are internally not connected.
52, 53, 56, 57, 58, 59, 62, 63, 68, 69, 72, 73, 74, 75, 78, 79, 2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29	DQ0 to DQ31	Input/ Output	SRAM Data I/O: Byte 0 is DQ0 to DQ7; Byte 1 is DQ8 to DQ15; Byte 2 is DQ16 to DQ23; Byte 3 is DQ24 to DQ31. Input data must meet setup and hold times around the rising edge of CLK.
4, 11, 15, 20, 27, 41, 54 61, 65, 70, 77, 91	V _{dd}	Supply	Power Supply: +3.3 V +0.3 V/-0.2 V
5, 10, 17, 21, 26, 40, 55, 60, 67, 71, 76, 90	V _{ss}	Supply	Ground: GND
64	ZZ	Input	Asynchronous Power down (Snooze): This active HIGH input enables SRAM to enter a Power down (Snooze) state with data retention. During Snooze state, data retention is guaranteed. At this time, internal state of the SRAM is not preserved. After Snooze state, SRAM must be initiated with $\overline{\text{ADSP}}$ or $\overline{\text{ADSC}}$ using a new external address. This pin must be connected to V _{ss} in systems that do not use ZZ feature.
31	MODE	Input	Mode select: This input selects the burst sequence. A V _{ss} on this pin selects Linear burst. A V _{DD} or OPEN on this pin selects Interleaved burst. Do not alter input state while device is operating.

Package Dimensions

HM62D3232FP Series (FP-100H)

Unit: mm

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.