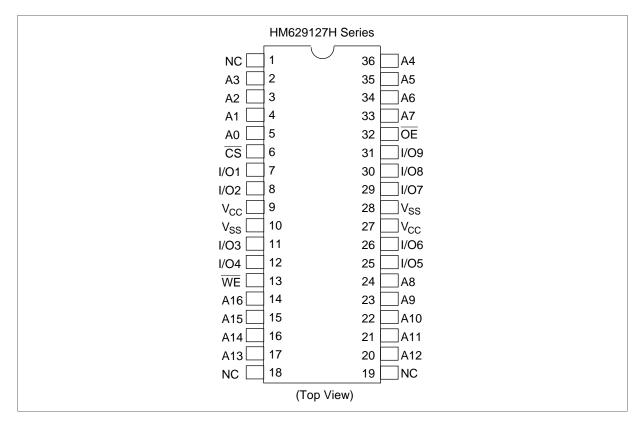
131072-word  $\times$  9-bit High Speed CMOS Static RAM

# HITACHI

Rev. 0.0 Dec. 1, 1995

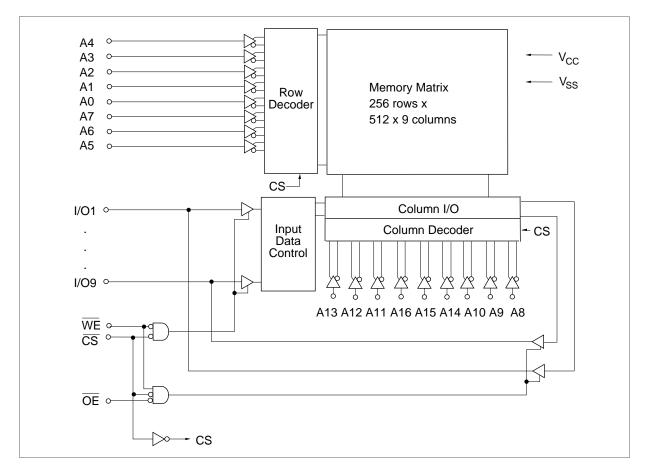
#### Description


The HM629127H is an asynchronous high speed static RAM organized as 131,072-word  $\times$  9-bit. It realizes high speed access time (20/25 ns) with employing 0.8 µm CMOS process and high speed circuit designing technology. It is most appropriate for the application which requires high speed, high density memory and wide bit width configuration, such as cache and buffer memory in system. The HM629127H is packaged in 400-mil 32/36-pin SOJ for high density surface mounting.

#### Features

- Single 5 V supply:  $5 V \pm 10\%$
- Access time 20/25 ns (max)
- Completely static memory
  No clock or timing strobe required
- Equal access and cycle times
- Directly TTL compatible All inputs and outputs
- 400-mil 36-pin SOJ package
- Center V<sub>CC</sub> and V<sub>SS</sub> type pinout

#### **Ordering Information**


| Type No.                           | Access Time    | Package                             |
|------------------------------------|----------------|-------------------------------------|
| HM629127HJP-20<br>HM629127HJP-25   | 20 ns<br>25 ns | 400-mil 36-pin Plastic SOJ (CP-36D) |
| HM629127HLJP-20<br>HM629127HLJP-25 | 20 ns<br>25 ns |                                     |



## **Pin Description**

| Pin name        | Function          |
|-----------------|-------------------|
| A0 – A16        | Address           |
| I/O1 – I/O9     | Data input/output |
| CS              | Chip select       |
| WE              | Write enable      |
| ŌĒ              | Output enable     |
| V <sub>cc</sub> | Power supply      |
| V <sub>ss</sub> | Ground            |
| NC              | No connection     |

#### **Block Diagram**



#### **Absolute Maximum Ratings**

| Parameter                                   | Symbol          | Value                                       | Unit |
|---------------------------------------------|-----------------|---------------------------------------------|------|
| Supply voltage relative to $V_{\rm ss}$     | V <sub>cc</sub> | -0.5 to +7.0                                | V    |
| Voltage on any pin relative to $\rm V_{ss}$ | V <sub>T</sub>  | -0.5 <sup>*1</sup> to V <sub>cc</sub> + 0.5 | V    |
| Power dissipation                           | Ρ <sub>τ</sub>  | 1.0 <sup>*2</sup> / 1.5 <sup>*3</sup>       | W    |
| Operating temperature                       | Topr            | 0 to +70                                    | °C   |
| Storage temperature                         | Tstg            | -55 to +125                                 | °C   |
| Storage temperature under bias              | Tbias           | -10 to +85                                  | °C   |

Notes: 1. -2.5 V for pulse width (under shoot)  $\leq 10$  ns

2. at still air condition

3. at air flow  $\geq$  1.0 m/s

### **Function Table**

| CS | ŌĒ | WE | V <sub>cc</sub> Current | I/O    | Ref. Cycle  |
|----|----|----|-------------------------|--------|-------------|
| Н  | Х  | Х  | $ _{_{SB}},  _{_{SB1}}$ | High-Z | _           |
| L  | Н  | Н  | I <sub>cc</sub>         | High-Z | _           |
| L  | L  | Н  | I <sub>cc</sub>         | Output | Read cycle  |
| L  | Х  | L  | I <sub>cc</sub>         | Input  | Write cycle |

Note: X: H or L

## **Recommended DC Operating Conditions** (Ta = 0 to $+70^{\circ}$ C)

| Parameter        | Symbol          | Min                | Тур | Max                   | Unit |
|------------------|-----------------|--------------------|-----|-----------------------|------|
| Supply voltage*2 | V <sub>cc</sub> | 4.5                | 5.0 | 5.5                   | V    |
|                  | V <sub>ss</sub> | 0                  | 0   | 0                     | V    |
| Input voltage    | V <sub>IH</sub> | 2.2                |     | V <sub>cc</sub> + 0.5 | V    |
|                  | V <sub>IL</sub> | -0.5 <sup>*1</sup> |     | 0.8                   | V    |

Notes: 1. -2.0 V for pulse width (under shoot)  $\leq 10$  ns

2. The supply voltage with all  $V_{\rm cc}$  pins must be on the same level.

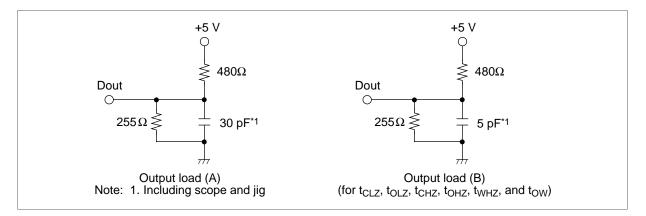
The supply voltage with all  $V_{\mbox{\scriptsize SS}}$  pins must be on the same level.

| Parameter                         | Symbol           | Min | Typ⁺¹ | Max | Unit | Test ConditionsVin = $V_{ss}$ to $V_{cc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         | Note      |
|-----------------------------------|------------------|-----|-------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------|
| Input leakage current             | I <sub>LI</sub>  |     | _     | 2   | μΑ   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         |           |
| Output leakage current            | I <sub>LO</sub>  |     |       | 2   | μΑ   | $V_{I/O} = V_{SS}$ to $V_{CC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |           |
| Operating power supply<br>current | I <sub>cc</sub>  |     | 130   | 180 | mA   | m<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\overline{S} = V_{IL}$ , lout = 0<br>A<br>other inputs =<br>$H/V_{IL}$ |           |
|                                   |                  |     | 100   | 160 | mA   | 25 ns cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |           |
| Standby power supply current      | Ι <sub>sb</sub>  |     | 50    | 90  | mA   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\overline{S} = V_{IH},$<br>wher inputs =                               |           |
|                                   |                  |     | 40    | 85  | mA   | 25 ns cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |           |
| Standby power supply current (1)  | I <sub>SB1</sub> |     |       | 2   | mA   | $V_{cc} \ge \overline{CS} \ge V_{cc} - 0  \forall \le V \text{ in } \le 0.2  \forall V_{cc} \ge V \text{ in } \ge V_{cc} - 0  \forall \ge V_{cc} = 0.2  \forall \boxtimes U_{cc} = 0.2  \forall U_{cc} = 0.2  \forall \boxtimes U_{cc} = 0.2  \forall U_{cc} = 0.2  \forall U_{cc} = 0.2  \forall U_{cc} = 0.2  \forall U_{cc$ | V or                                                                    |           |
|                                   |                  |     | _     | 0.2 | mA   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         | L-version |
| Output voltage                    | V <sub>OL</sub>  | _   | _     | 0.4 | V    | I <sub>oL</sub> = 8 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |           |
|                                   | V <sub>OH</sub>  | 2.4 |       |     | V    | I <sub>он</sub> = -4 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         |           |

## DC Characteristics (Ta = 0 to +70°C, $V_{CC} = 5 V \pm 10\%$ , $V_{SS} = 0 V$ )

Note: 1. Typical values are at  $V_{cc}$  = 5.0 V, Ta = +25°C and not guaranteed.

## **Capacitance** $(Ta = 25^{\circ}C, f = 1.0 \text{ MHz})^{*1}$

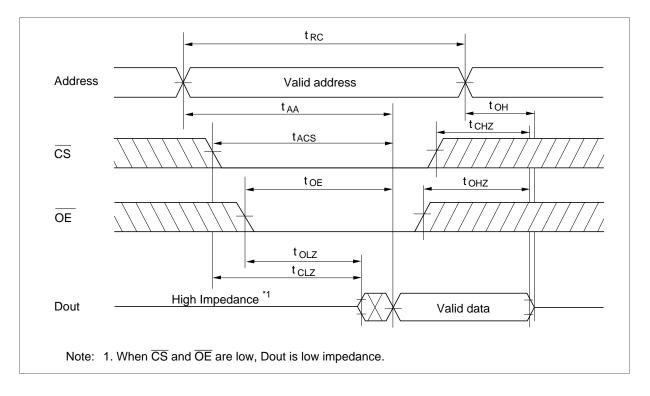

| Parameter                | Symbol           | Min | Тур | Max | Unit | Test Conditions |
|--------------------------|------------------|-----|-----|-----|------|-----------------|
| Input capacitance        | Cin              | _   | _   | 6   | pF   | Vin = 0 V       |
| Input/output capacitance | C <sub>I/O</sub> |     |     | 8   | pF   | $V_{I/O} = 0 V$ |

Note: 1. This parameter is sampled and not 100% tested.

## AC Characteristics (Ta = 0 to +70°C, $V_{cc}$ = 5 V ± 10%, unless otherwise noted.)

#### **Test Conditions**

- Input pulse levels:  $V_{SS}$  to 3.0 V
- Input rise and fall time: 3 ns
- Input and output timing reference levels: 1.5 V
- Output load: See figures




**Read Cycle** 

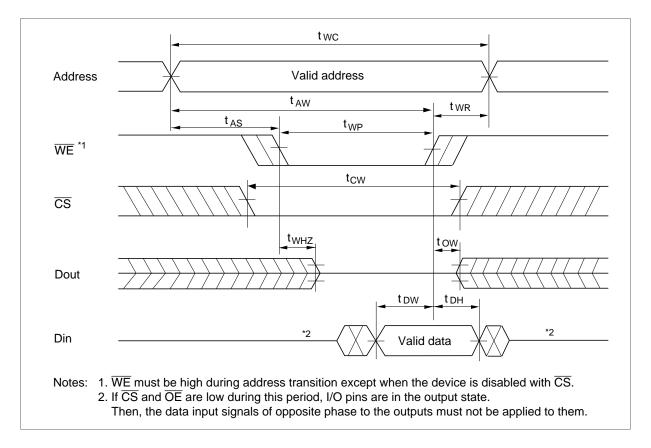
|                                    |                  | HM6291 | 27H |     |     |      |      |
|------------------------------------|------------------|--------|-----|-----|-----|------|------|
|                                    |                  | -20    |     | -25 |     |      |      |
| Parameter                          | Symbol           | Min    | Max | Min | Max | Unit | Note |
| Read cycle time                    | t <sub>RC</sub>  | 20     | _   | 25  | _   | ns   |      |
| Address access time                | t <sub>AA</sub>  | _      | 20  | _   | 25  | ns   |      |
| Chip select access time            | t <sub>ACS</sub> | _      | 20  | _   | 25  | ns   |      |
| Output enable to output valid      | t <sub>oe</sub>  | _      | 10  | _   | 12  | ns   |      |
| Output hold from address change    | t <sub>oH</sub>  | 5      |     | 5   | _   | ns   |      |
| Chip select to output in low-Z     | t <sub>cLZ</sub> | 3      |     | 3   | _   | ns   | 1    |
| Output enable to output in low-Z   | t <sub>oLZ</sub> | 1      | _   | 1   | _   | ns   | 1    |
| Chip deselect to output in high-Z  | t <sub>cHZ</sub> | _      | 7   |     | 7   | ns   | 1    |
| Output disable to output in high-Z | t <sub>oHZ</sub> |        | 7   |     | 7   | ns   | 1    |

Note: 1. Transition is measured ±200 mV from steady voltage with Load (B). This parameter is sampled and not 100% tested.

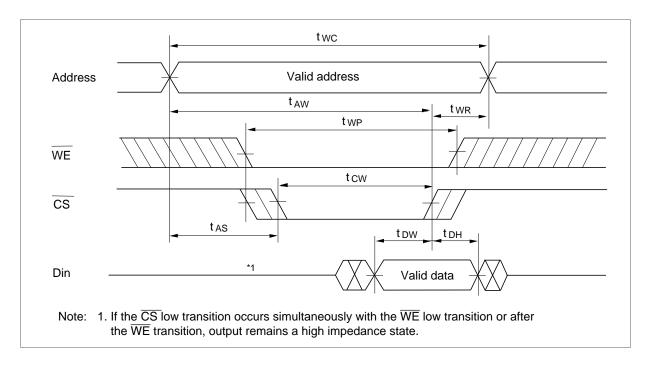
## **Read Timing Waveform**<sup>\*3</sup>



#### Write Cycle<sup>\*1</sup>


|                                  |                  | HM629 | 127H |     |     |      |       |
|----------------------------------|------------------|-------|------|-----|-----|------|-------|
|                                  |                  | -20   |      | -25 |     |      |       |
| Parameter                        | Symbol           | Min   | Max  | Min | Max | Unit | Notes |
| Write cycle time                 | t <sub>wc</sub>  | 20    | _    | 25  | _   | ns   |       |
| Address valid to end of write    | t <sub>AW</sub>  | 15    |      | 20  | _   | ns   |       |
| Chip select to end of write      | t <sub>cw</sub>  | 12    | _    | 12  | _   | ns   |       |
| Write pulse width                | t <sub>WP</sub>  | 12    | _    | 12  | _   | ns   |       |
| Address setup time               | t <sub>AS</sub>  | 0     |      | 0   |     | ns   | 2     |
| Write recovery time              | t <sub>wR</sub>  | 0     | _    | 0   | _   | ns   | 3     |
| Data to write time overlap       | t <sub>DW</sub>  | 10    |      | 10  |     | ns   |       |
| Data hold from write time        | t <sub>DH</sub>  | 0     |      | 0   |     | ns   |       |
| Write disable to output in low-Z | t <sub>ow</sub>  | 3     |      | 3   |     | ns   | 4     |
| Write enable to output in high-Z | t <sub>wHZ</sub> |       | 7    |     | 7   | ns   | 4     |

Notes: 1. A write occurs during the overlap of low  $\overline{CS}$ , low  $\overline{WE}$ .


2.  $t_{AS}$  is measured from the latest address transition to the later of  $\overline{CS}$  or  $\overline{WE}$  going low.

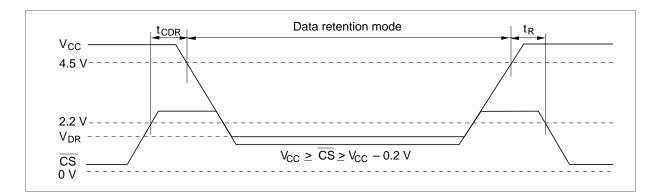
3.  $t_{WR}$  is measured from the earliest of  $\overline{CS}$  or  $\overline{WE}$  going high to the first address transition.

4. Transition is measured  $\pm 200$  mV from high impedance state's voltage with Load (B). This parameter is sampled and not 100% tested.



#### Write Timing Waveform (1) (WE Controlled)

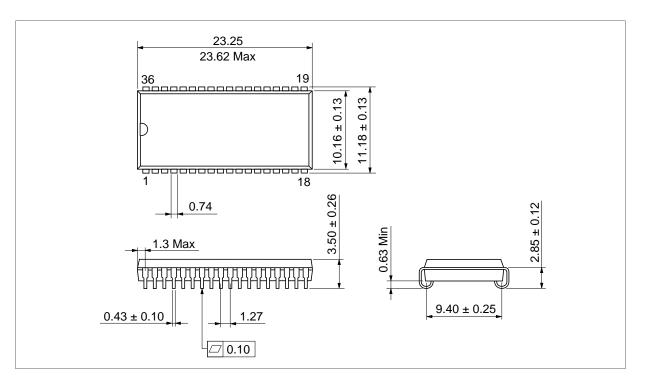



#### Write Timing Waveform (2) (CS Controlled)

## Low V<sub>cc</sub> Data Retention Characteristics (Ta = 0 to $+70^{\circ}$ C)

This characteristics is guaranteed only for L-version.

| Parameter                            | Symbol           | Min | Тур | Max              | Unit | Test Conditions                                                                                                                                                                                        |
|--------------------------------------|------------------|-----|-----|------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $V_{cc}$ for data retention          | V <sub>dr</sub>  | 2.0 | _   | —                | V    | $\begin{array}{l} V_{cc} \geq \overline{CS} \geq \\ V_{cc} - 0.2 \text{ V}, \\ V_{cc} \geq \text{Vin} \geq \\ V_{cc} - 0.2 \text{ V or} \\ 0 \text{ V} \leq \text{Vin} \leq 0.2 \text{ V} \end{array}$ |
| Data retention current               | ICCDR            |     | 2   | 80 <sup>*1</sup> | μA   |                                                                                                                                                                                                        |
| Chip deselect to data retention time | t <sub>CDR</sub> | 0   |     | _                | ns   |                                                                                                                                                                                                        |
| Operation recovery time              | t <sub>R</sub>   | 5   |     | _                | ms   |                                                                                                                                                                                                        |
| Note: 1. $V_{cc} = 3.0 V$            |                  |     |     |                  |      |                                                                                                                                                                                                        |


Low V<sub>CC</sub> Data Retention Timing Waveform



## **Package Dimensions**

#### HM629127H Series (CP-36D)

Unit: mm

