SPECIFICATION

Product Type : EPD

Model Number: GDEH0124S01

Description : Screen Size: 1.24"

Color: Black and White Segment Number: 114

Prepared : Li Lanxi Checked : Wen Xin

Approved : Jian Yongcheng

Issue Date : 2015.04.22

No.17 Gonghua Street, Shahekou District, Dalian 116021 China Tel: +86-411-84619565 Fax: +86-411-84619585-810

> Email: info@good-display.com Website: www.good-display.com

Version	Content	Date	Producer
1.0	New release	2015/01/20	
1.1	Solution change	2015/04/22	

CONTENTS

1	Gene	eral D	Description	4
2	Feat	ures		4
3	App	licatio	on	4
4	Med	hanic	eal Specifications	5
5	Driv	er IC	Electrical Characteristics	5
6	Soft	ware	Part	6
	6.1	Con	trol signal waveform.	8
	ϵ	5.1.1	Control signal waveform.	8
	ϵ	5.1.2	SPI control waveform	9
	ϵ	5.1.3	Com & Segment vs. control signal.	11
7	Med	hanic	cal Drawing of EPD module	14
8	Inpu	ıt/Out	put Terminals	15
9	App	earan	ce InspectionStandard	16
	9.1	Purp	oose	16
	9.2	Insp	ection conditions.	16
	9.3	Sam	pling conditions	17
	9.4	Acc	eptance Quality Level (AQL)	17
	9.5	Clas	sification of defects.	18
	9.6	Qua	lity Criteria	18
	9.7	Poir	nt and line standard	19
10	har	nding	safety and environmental requirements	20
11	Re	liabili	ty test.	21

1 General Description

The GDEH0124S01 is an e-paper segment panel with EPD driver. The display size is 1.24 inch with segment panel which includes 114 segments, one COM and one background pins. The power consumption is very low, and the display quality and reliability is very suitable for product design-in of all kind of applications where low power consumption and readable under sunlight is strongly demanded in design.

2 Features

High contrast segment display

114 segments design

High reflectance

Ultra wide viewing angle

Ultra low power consumption

Commercial temperature range

EPD segment driver module

I2C interface slave mode

Low power charge pump with output programmable

3 Application

Smart Card

4 Mechanical Specifications

Parameter	Parameter Specifications		Remark
Screen Size 1.24		Inch	
Active Area	7.21(V)*30.84(H)	mm	
Outline Dimension	28.2(V)×35.94(H)×0.6(T)	mm	
Segment Number	114		
Display Color	Mono color	mm	Black and White
Weight TBD		g	

5 Driver IC Electrical Characteristics

Parameter	Details	Condition	Min	Тур	Max	units
Roh	ZS0~114	ZVH=15v		2.2		K-ohm
Roh	ZS0~114	ZVH=30v		1.6		K-ohm
Roh	ZS90,ZS91,ZC0,ZC1	ZVH=15v		300		ohm
Roh	ZS90,ZS91,ZC0,ZC1	ZVH=30v		220		ohm
Rol	ZS0~114	ZVH>15v		420		ohm
Rol	ZS120.ZS121.ZC0.ZC1	ZVH>15v		230		ohm
Vih	Minimum voltage for logic 1		0.8 VDD			V
Vil	Maximum voltage for logic 0				0.2 VDD	V
VDD	Supply operation range		1.75	3	5.5	V
Ivdd	Power consumption of power down	VDD=3v			3	uА

Note: 1. These information of Roh & Roh are base on external supply voltage

- 2. For internal pumping application user can refer to section 13
- 3. User have to order RESET command then IC will get into power down mode. The value of Ivdd on above table base on non-external loading.

6. Software Part

Table 6-1

REGISTER Address	T			Data	a			
REGISTER Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
\$00H	Y8	Y7	Y6	Y5	Y4	Y 3	Y2	Y1
\$01H	Y16	Y15	Y14	Y13	Y12	Y11	Y10	Y 9
\$02H	Y24	Y23	Y22	Y21	Y20	Y19	Y18	Y17
\$03H	Y32	Y31	Y30	Y29	Y28	Y27	Y26	Y25
\$04H	Y40	Y39	Y38	Y37	Y36	Y35	Y34	¥33
\$05H	Y48	Y47	Y46	Y45	Y44	Y43	Y42	Y41
\$06H	Y56	Y55	Y54	Y53	Y52	Y51	Y50	Y49
\$07H	Y64	Y63	Y62	Y61	Y60	Y59	Y58	Y57
\$08H	Y72	Y71	Y70	Y69	Y68	Y767	Y66	Y65
\$09H	Y80	¥79	¥78	Y77	Y76	Y75	Y74	¥73
\$0AH	Y88	Y87	Y86	Y85	Y84	Y83	Y82	Y81
\$OBH	Y96	Y95	Y94	Y93	Y92	Y91	Y90	Y89
\$OCH	Y104	Y103	102	Y101	Y100	Y99	Y98	Y97
\$ODH	Y112	Y111	Y110	Y109	Y108	Y107	Y106	Y105
\$OEH	Y120	Y119	Y118	Y117	Y116	Y115	Y114	Y113
\$0FH		#	#	#			Y122	Y121
\$10H	#-	DIMENT .		OTT OTT	. #	#	TIOD! 4	Hop. 6
	CPEN	PUMPH V	MPP15	CKCH	Load	0EB	VSEL1	VSEL0

Y1~Y122 output setting:

Y1~Y120 mapping to segment pins

Y121 correspond to COM(Common) pin

Y122 correspond to BG(Background) pin

The output (0V,15V,30V) for Y[1:122] are selectable

VPP or half VPP = 1

GND = 0

Example:

If users wants Y9, Y11, Y13, Y15 would output VPP Y10, Y12, Y14, Y16 would output GND

Register \$01H = 01010101

Register "\$10h" bit7 "CPEN": Charge pump on / off CPEN=1, charge pump enable

CPEN=0, charge pump disable

Register "\$10h" bit6 "PUMPH": Adjust VPP up to 30V or 40V PUMPH=1: VPP up to 40V

PUMPH=0: VPP up to 30V

Register "\$10h" bit5 "VPP15": Half VPP output switch

VPP15=1: Hi-V channels logic high will output VX5, the voltage equal to half VPP. VPP15=0:

Hi-V channels logic high will output VPP.

Table 6-2 Hi-V pumping setting

	PUMPH=1	PUMPH=0
VPP15=1	VPP=20V	VPP=15V
VPP15=0	VPP=40V	VPP=30V

Register"\$10h" bit4 "CKCH": Adjustable frequency of internal oscillator. CKCH=1: Low frequency clock for driver.

CKCH=0: Faster frequency clock for driver.

Register"\$10h" bit3 "Load": Load or Latch Hi-V channels buffer for output synchronous Load=1: Load data to Hi-V channel buffer

Load=0: Latch the data of all Hi-V channels

Register"\$10h" bit2 "OEB": Hi-V channel floating switch

OEB=1: All Hi-V channels switch to floating state (Hi impedance mode) OEB=0: All Hi-V channels switch to output enable

Register"\$10h" bit0~1 "VSEL0~1": Adjustable internal reference voltage All the selection show in Table 6-3.

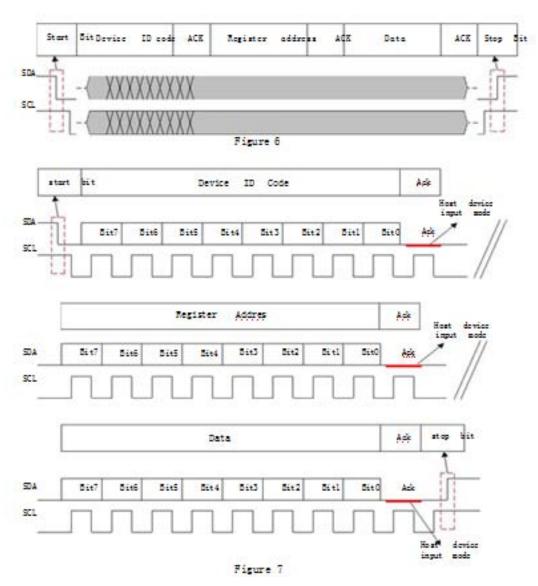
Table 6-3

VSEL[1: 0]	V1D5
00	1.5V
01	1.6V
10	1.7V
11	1.8V

Note:

All control registers don't have initialize value after power on. Users need to initialize all register manual.

\$xxH means address represent in hexadecimal.


"xxxxxxxxb" means 8-bits data of register represent in binary

6.1 Control signal waveform

6.1.1 Control signal waveform

This byte could be \$00H ~ \$10H, see chapter 2.3 EPD driver control register.

Note: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulled LOW, the data will be interpreted as command.

Device ID code:

ID code defined by (A0&A1) pins. See figure5 multi-driver application. Control signal input 8-bits "111100A1,A0" (A1,A0)=00,01,10,11 then only matched driver will operate.

Register address:

Address of control register from \$00H ~ \$10H. The control signal here follow Device ID code

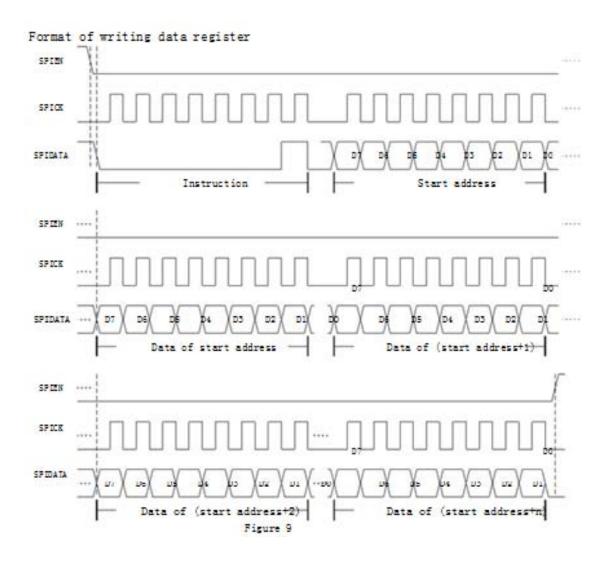
Data of register:

Definition of all control register see chapter 2.3 EPD driver control register.

Condition setting

Perform with one driver and ID code (A1,A0)=00

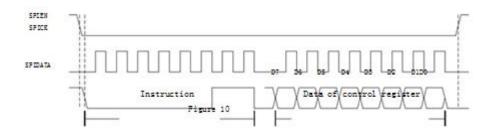
Operate flow of one byte


6.1.2 SPI control waveform

There are two format of controlled signal as the Table 6-4.

Table 6-4

Ī	Instruction code	Function			
Ī	00000001	Writing Data Register			
ſ	00000011	Writing Control Register			



- 1. SPIEN low active
- 2. SPIDATA input instruction [00000001] for writing data register
- 3. SPIDATA input start address (selectable from \$00H~\$0FH)
- 4. SPIDATA input the data of start address
- 5. SPIDATA input data of next address. For example, start address from \$00H à #FFH(contain of \$00H) à #02H (here is the contain of \$01H)....etc.
- 6. SPIEN high disable while data register writing finished.

Format of writing control register

- 1. SPIEN low active
- 2. SPIDATA input instruction [00000011] for writing control register
- 3. SPIDATA input data of control register
- 4. SPIEN high disable after control register writing done.

Note:

- 1. ID code setting isn't needed in SPI mode.
- 2. Writing data register could be sequent, but control register is single.

6.1.3 Com & Segment vs. control signal

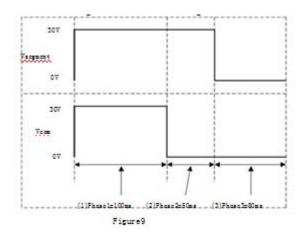


Figure 11

Condition1: 2-wires serial mode

VDD=3V , use internal pump function , perform with one driver, pin LOGICEN = 1, ID code (A1,A0)=00

Register \$10H. bit5 VPP15=0, bit6 PUMPH=0→ VPP=30V

Vsegment including Y1~Y120, Vcom is Y121, Vbg is Y122

Condition2: SPI mode

VDD=3V, use internal pump function, perform with one driver, pin LOGICEN = 0 Register

\$10H. bit5 VPP15=0, bit6 PUMPH=0 \rightarrow VPP=30V

Vsegment including Y1~Y120 , Vcom is Y121, Vbg is Y1

Operate flow

1. Control register $\$00H \sim \$0FH = "00000000b"$, \$10H = "10000000b". This step Y1~Y122 will load data from data register and output GND to all EPD pins simultaneously then enable internal charge pump.

After that \$10H = "10001000b" here will latch all EPD pins to GND

Note! 10H bit $10ad = 0 \rightarrow 1$ will load all data to EPD pins and then latch output state.

- 2. Host device delay 100ms for internal pumping stable.
- 3. Control register $\$00H \sim \$0FH = "111111111b"$, \$10H = "100000000b".

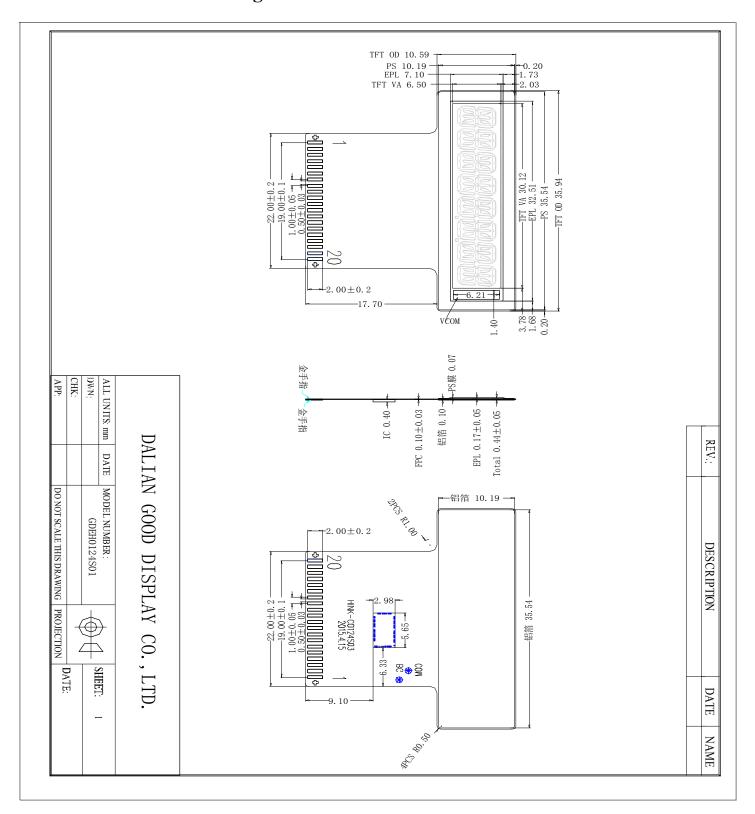
Then \$10H = "10001000b". Here all EPD pins will output VPP.

- 4. Host device delay 100ms to display phase1 pattern.
- 5. Control register $\$00H \sim \$0EH = "111111111b"$, \$0FH = "001111111b", \$10H = "100000000b".

Then 10H = 10001000b". All segment will output VPP, Y121~Y122 output GND.

- 6. Host device delay 50ms to display phase2 pattern.
- 7. Control register $\$00H \sim \$0FH = "000000000b"$, \$10H = "100000000b".

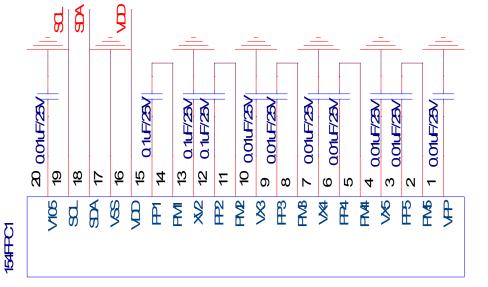
Then \$10H = "10001000b". All EPD pins will output GND.


- 8. Host device delay 80ms to display phase3 pattern.
- 9. All EPD pins output GND and disable pump if there's no pattern will be display.

Note: \$xxH means address represent in hexadecimal.

"xxxxxxxxb" means 8-bits data of register represent in binary.

7 Mechanical Drawing of EPD module



8 Input/Output Terminals

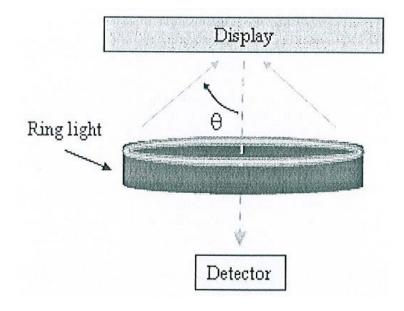
Pin number	Name	Description
1	Vpp	Push capacitor to GND
2	PM5	Positive terminal for charge pump capacitor
3	PP5	Negative terminal for charge pump capacitor
4	VX5	Charge pump output pin about 15V
5	PM4	Positive terminal for charge pump capacitor
6	PP4	Negative terminal for charge pump capacitor
7	VX4	Charge pump output pin about 7.5V
8	PM3	Positive terminal for charge pump capacitor
9	PP3	Negative terminal for charge pump capacitor
10	VX3	Charge pump output pin about 5V
11	PM2	Positive terminal for charge pump capacitor
12	PP2	Negative terminal for charge pump capacitor
13	VX2	Charge pump output pin about 2.5V
14	PM1	Positive terminal for charge pump capacitor
15	PP1	Negative terminal for charge pump capacitor
16	Vdd	Power supply pin
17	Vss	Connect to Ground
18	SDA	I2C interface data bus, please the level to high
19	SCL	I2C interface clock bus, please the level to high
20	V105	Charge pump reference voltage, tie the pin with the capacitor to ground

Input reference circuit:

9 Appearance Inspection Standard

9.1 Purpose

To establish and communicate a standardized method of inspecting segmented products (SDC/SDM) that are supplied by holitech company for cosmetic issues in a uniform and subjective way.


9.2 Inspection conditions

(1) Viewing Angle (Major X-Axis)

Item	Condition
α = 45°	Inspection under non-operating condition
α = 45°	Inspection under operating condition

^{*}The inspection shall be carried within the viewing angle range

(2) Environmental testing and inspection

Item	Condition
Ambient Temperature	25±5℃
Ambient Humidity	40~70% RH
ESD	<±200V

9.3 Sampling conditions

- (1) Lot size: Quantity of shipment lot per model.
- (2) Sampling type: Normal inspection, single sampling. (3) Inspection Level: Level II.

The inspection level determines the relationship between the lot or batch size and the sample size. Three inspection levels: I, II, and III for general use & normally, inspection Level II is used. Sampling table: GB/T2828 1-2003, unless otherwise agreed in writing.

9.4 Acceptance Quality Level (AQL)

This is usually defined as the worst case quality level, in percentage or ratio, that is still considered as acceptable.

An acceptable quality level is an inspection standard describing the maximum number of defects that could be considered acceptable during the random sampling of an inspection.

Item	AQL level
Major defect	0.65
Minor defect	1.5

9.5 Classification of defects

The defects found during inspection are sometimes classified as either a major or minor defect as defined below.

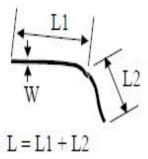
Major defect

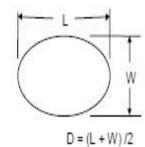
Major defects can result in the product's failure, reducing its marketability, usability or salability. Minor defect

Minor defects do not affect the product's marketability or usability, but represent workmanship defects that make
the product fall short of defined quality standards.

9.6 Quality Criteria

Inspection conditions


Item	Condition		
Ambient luminance	1000~1300 lux (Typical: 1150lux ± 150)		
Ambient temperature	23°C±5°C		
Humidity	40~70 % RH		
Supply voltage	As described in Specification sheet		
Viewing distance	30 ± 10cm		
Viewing Angle	45°		


9.7 Point and line standard

The following table outlines the allowable defect limits for the display cell.

Area of Interest	Type of Defect	Size (mm)	Allowable Quantity	Note
Active Area	Spot/bubble	D≤0.30	Ignore	
		0.3 < D ≤ 0.4	4	
		D>0.4	0	
	Line	L≤0.7, W≤0.2	2	
		L≤0.7, W>	0	
		0.2	0	
	Barrier wrinkle	L>0.7		
Inactive Area	Spot/bubble	Not allowed	Ignore	
		Zone A any size	Ignore	Defect may be partially or completely within Zone B.
Display Back	Foreign Material	Zone B any size	Ignore	
		D≤1.0	0	
	Barrier wrinkle	D>1.0	Ignore	

Spot Defect

10 handing, safety and environmental requirements

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care.

Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status		
Product specification	The data sheet contains final product specifications.	
Limiting values		

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134).

Stress above one or more of the limiting values may cause permanent damage to the device.

These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification		
ROHS		

11. Reliability test

	TEST	CONDITION	METHOD	REMARK
1	High-Temperature Operation	$T = 50^{\circ}\text{C},30\% \text{ for } 240 \text{ hrs}$	IEC 60 068-2-2Bp	
2	Low-Temperature Operation	T = 0°C for 240 hrs	IEC 60 068-2-2Ab	
3 High-Temperature Storage	$T = +70^{\circ}C$, 23% for 240 hrs	HEC (0.0(0.2.2D		
	High-Temperature Storage	Test in white pattern	IEC 60 068-2-2Bp	
4	Law Tammaratura Starage	T = -20°C for 240 hrs	IEC 60 060 2 24h	
4 Low-	Low-Temperature Storage	Test in white pattern	IEC 60 068-2-2Ab	
5	High Temperature, High-	T=+40°C,RH=90%for168hrs	IEC 60 068-2-3CA	
	Humidity Operation	T_+(0°C DH_000/5240b		
6	High Temperature, High-	T=+60°C,RH=80%for240hrs	IEC 60 068-2-3CA	
	Humidity Storage	Test in white pattern [-25°C 30mins]→		
		[+70°C 30mins] →		
7	Temperature Cycle	,70cycles	IEC 60 068-2-14NB	
		Test in white pattern		
8	UV exposure Resistance	765 W/m ² for 168 hrs,40°C	IEC 60 068-2-5 Sa	
0	O v exposure Resistance	Air-mode:+/-8kV,	IEC 00 008-2-3 3a	
O Flootmostatio dia	Electrostatic discharge	Contact-mode:+/-6kV,	IEC61000-4-2	
9	9 Electrostatic discharge	330Ω,150pF	TEC01000-4-2	
		1.04G,Frequency: 10~500Hz		
		Direction : X,Y,Z	Full packed for	
10 Pa	Package Vibration	Duration: 1 hours in each	shipment	
		direction	Simplificit	
		Drop from height of 122 cm on		
11 I		Concrete surface		
	Package Drop Impact	Drop sequence:1 corner,	Full packed for	
**	Tuesdage Brop Impact	3edges,6 face One drop for	shipment	
		each.		
12	Altitude test Operation	700hPa (=3000 m),48Hr		
	Altitude test Storage	260hPa (=10000 m),48Hr		
13		Test in white pattern		
	Stylus Tapping	POLYACETAL		
		Pen: Top R:0.8mm	Test should be	Pass criteria – no glass
14		Load: 300gf Speed:	done with a	breakage or damage to
		30times/min Total13,500times,	bezel	micro capsules

Actual EMC level to be measured on customer application.

Note : The protective film must be removed before temperature test.