Spartan-6 FPGA
Memory Interface
Solutions

User Guide

UG416 July 25, 2012

& XILINX.

& XILINX
®
Notice of Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum
extent permitted by applicable law: (1) Materials are made available "AS 1S" and with all faults, Xilinx hereby DISCLAIMS ALL
WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising
under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action
brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same.
Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are
subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be
subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-
safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical
Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2009-2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, ARM, ARM1176JZ-S, CoreSight,
Cortex, and PrimeCell are trademarks of ARM in the EU and other countries. All other trademarks are the property of their respective
owners.

Revision History

The following table shows the revision history for this document.

Date Version Revision
12/2/09 1.0 Initial Xilinx release.
2/23/10 1.1 Updated Figure 1-30. Revised the text below the Calibrated Input Termination bullet on
page 26. Added Xilinx ISim to first paragraph in Functional Simulation, page 44.
3/3/10 1.2 Added note about device migration to page 27.
10/5/10 1.3 Added ARM® AMBA® specifications web link to References. Added paragraph about

creating an MCB base memory interface in the EDK environment to the first page of
Chapter 1, Getting Started. Added note after step 1 and updated step 5 in Setting up a
New Project, page 9. Added information to step 1 in Selecting a Memory Standard.
Updated Figure 1-10 and Figure 1-23. Added description of axi_s6_ddrx instances after
Figure 1-11. Updated Frequency bullet in Setting Controller Options, page 15. Added
information to step 8, updated step 9, and added step 10 and Figure 1-27 in Multi-Port
Configuration. Updated first paragraph, step 14, and step 14 of Setting FPGA Options,
page 26. Updated and added note after Figure 1-37. Added Table 1-1. Added
<component name>/example_design/rtl/mcb_controller, page 33. Updated and added
note after Table 1-6. Updated parameter description of CMD_PATTERN in Table 1-11.
Added last paragraph (about changing command patterns) to Custom Command
Sequences.

Added Chapter 2, EDK Flow Details.
Changed “ctr]_state[4:0]” to “ctr]l_state[144:0]”, “ctrl_cmd” to “ctrl_cmd[2:0]”, and

“cal_state[3:0]” to “cal_state[144:0]" in Table 3-1. Added “ASCII radix”to descriptions of
ctrl_state[144:0] and cal_state[144:0] in Table 3-1.

10/18/10 1.3.1 Revised document file name.

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com UG416 July 25, 2012

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

Date

Version

Revision

06/22/11

1.4

Chapter 1: Removed step 14 about calibration memory address and associated figure
from Setting FPGA Options, page 26. Revised notes on page 33 and page 34. Revised
Functional Simulation, page 44.

Chapter 2: Revised Interface Clock, page 60. Added Simulation Considerations, page 63.
Updated ui_clk in Table 2-2.

Chapter 3: Added Figure 3-3.

10/19/11

1.5

ISE 13.3 tool release.

¢ Removed Preface and added Appendix A, Additional Resources.
¢ Added note to Debug Signals.

01/18/12

1.6

ISE 13.4 tool release.

¢ Changed bus width of addr_mode_i from [1:0] to [2:0] in Table 1-12.
* Added CORE Generator Tool with AXI4 Interface Only, page 53.

07/25/12

1.7

ISE 14.2 tool release. Corrected addr_mode_i setting to 011 in step 8, page 52.

UG416 July 25, 2012

www.xilinx.com Spartan-6 FPGA Memory Interface Solutions

http://www.xilinx.com

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com UG416 July 25, 2012

http://www.xilinx.com

Table of Contents

Revision History 2

Chapter 1: Getting Started

MIG OVerview. 7
Supported Tools and System Requirements 8
Usingthe MIG Tool........ 9
MIG Directory Structure and File Descriptions 31
MIG Example Design with Traffic Generator................................ 37

Chapter 2: EDK Flow Details

EDK OVerview. 59
AXI Spartan-6 FPGA DDRx Memory Controller 60

Chapter 3: Debugging MCB Designs

Introduction 67
Debug Tools 68
Simulation Debug 69
Synthesis and Implementation Debug...................... 74
Hardware Debug........ 75

Appendix A: Additional Resources

XilINX RESOUICOS oottt e e i 79

Solution Centerst 79

Referenceso 79
Spartan-6 FPGA Memory Interface Solutions www.xilinx.com

UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

Chapter 1

Getting Started

MIG Overview

This document describes the design tool flow and debug procedures for external memory
interfaces implemented with the memory controller block (MCB) in Spartan®-6 FPGAs.
For more information on the functionality and operation of the MCB, refer to Spartan-6
FPGA Memory Controller User Guide [Ref 1].

This chapter describes how to use the MIG tool available in the CORE Generator™ tool or
in the Embedded Development Kit (EDK) environment to implement a memory interface
based on the memory controller block (MCB) in Spartan-6 FPGAs. It contains these
sections:

¢ MIG Overview

® Supported Tools and System Requirements

* Using the MIG Tool

¢ MIG Directory Structure and File Descriptions

e MIG Example Design with Traffic Generator

If the MIG tool is invoked from the CORE Generator tool, an MCB design can be
configured with either a standard (native) interface or an advanced extensible interface
(AXI4). When invoking the MIG tool in the EDK environment, only the AXI4 interface

option is supported. For additional details on creating an MCB based memory interface in
the EDK environment, see Chapter 2, EDK Flow Details.

The MIG tool guides the user through a series of steps that define all the necessary
attributes required to implement the desired memory interface. In general, these attributes
determine the following types of memory interface characteristics:

e Memory device attributes

Memory type, data width, timing characteristics and other memory behavior

e User (fabric side) Interface configuration

Number of ports, port type, and port width

¢ Controller configuration

Addpress ordering, arbitration schemes, and other controller behavior

When the required steps are completed, the MIG tool generates RTL code and a user
constraints file (UCF) for implementing the desired memory interface. For Spartan-6
devices, the RTL code includes a top-level “wrapper” file that incorporates the MCB hard
block and any other FPGA resources required to implement the requested memory
solution. When invoked from the CORE Generator tool, the MIG tool also produces the

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 7

UG416 July 25, 2012

http://www.xilinx.com

Chapter 1: Getting Started & XILINX.

necessary script files for simulation and design implementation (synthesis, map, par) of
the interface.

Finally, the MIG tool produces a “Traffic Generator” synthesizable test bench to verify or
demonstrate the MCB based memory interface in a simulation or hardware environment
(CORE Generator tool native interface only). The bitstream created from this example
design flow can be targeted to a Spartan-6 FPGA SP601 or SP605 hardware evaluation
board to demonstrate DDR2 or DDRS3 interfaces, respectively. The example design can also
be targeted to any hardware environment with an MCB based memory interface. See MIG
Example Design with Traffic Generator, page 37 for more information.

Supported Tools and System Requirements

Operating System Requirements

For a list of system requirements, see the Xilinx Design Tools: Release Notes Guide.

Tools
e ISE® Design Suite, version 14.2

8 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/irn.pdf

& XILINX. Using the MIG Tool

Using the MIG Tool

This section provides a walkthrough of the MIG GUI, detailing all necessary steps for
implementing a Spartan-6 FPGA memory interface based on the MCB.

Note: The screen captures in this chapter are conceptual representatives of their subjects and
provide general information only. For the latest information, see the MIG GUI tool. The exact behavior
of the MIG tool and the appearance of some pages might differ depending on what type of user
interface is selected and whether the MIG tool is invoked from the CORE Generator tool or from XPS

(EDK). These differences are noted where appropriate.

Setting up a New Project

These steps set up a new CORE Generator tool project in preparation for launching the
MIG tool:

1. The CORE Generator system is launched by selecting
Start > Xilinx ISE Design Suite <Release #>> ISE > Accessories >
CORE Generator.
Note: To invoke the MIG tool from XPS, select Memory and Memory Controller > AXI S6 Memory

Controller from the XPS IP catalog (when adding new IP to the system) or right-click the
axi_s6_ddrx component in the XPS System Assembly View and select Configure IP..., then skip to

Creating an MCB Design, page 14.

* Xilinx CORE Generator, - No Project ‘T”E‘&‘
File View Help -
O H G core Generator e K7
~|IP Catalog 8 X

ety Function | view by Hame | lagiC P Xilinx CORE Generator
& Iame Mersion | Status | License

|7 Automative & Industrial
J Bask Elements There is no project open.
ommunication & Ketworking
ebug & Verification You may browse the IP Catalog but you will not be able to generate any cores until you
igital Signal Processing open or create a project.

wample Cores

PGA Features and Design

7 Math Functions

lemories & Storage Elements
tandard Bus Interfaces

Copyright () 1995-2008 %iinx, Inc, All rights reserved,

Console & X
LUIEgELGp a1 Tauy S, A
coregen.cap already exists, £
Closed praject file,
Mew Project Cancelled, =
Ad
Search IP Catalog: H Clear] [Gearch Console | ‘ [Find]
AllIP versions [only IP compatible with chasen part Infarmation ‘ _,'_\. Warnings " @ Errars ‘

Part: Unset Design Entry: Unset)

UG416_c1_01_091409

Figure 1-1: CORE Generator Tool

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com
UG416 July 25, 2012

http://www.xilinx.com

Chapter 1: Getting Started & XILINX.

2. Choose File > New Project to open a New Project dialog box.

® Xilinx CORE Generator -
S8 ¥iew Help
Chel+r

‘3 Open Project Chrl+0
Close Project Chrl+w
Recent Projects L3

H Save Chrl+5

Save As...

=] ereferences...

Exit Chrl+y

UG416_c1_02_091409

Figure 1-2: Create a New CORE Generator Tool Project

3. Enter a project name (for example, Spartan6_MIG_Example_ Design)and location.
Then click Save.

Save in: I@Proiecl j 2] ﬁ(-

Iy Fecent
Documents

@
Desktop

ey

My Documents

My Computer

-

MyMetwork File name: ISpartanS_MIG_EkampIe_Design j Save |
Places
j Cancel
|

UG416_c1_03_091409

Save as lype: |><i|inx CORE Generatar Project File [*.cgp)

Figure 1-3: Naming the New Project

10 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

Using the MIG Tool

4. Select the Spartan-6 family, and then the target device, the package, and the speed
grade (for example, xc6sIx16, cs324, -2) on the Project Options page. Click on

Generation in the left pane to access the design flow options.

% Project Options

i+ Part
i Generation
- hdvanced

Part
Select the part for your project:

Farnily
paciage

[[o]4][Cancel][Apply][Help

Figure 1-4:

UG416_c1_04_091409

Device Selection

5. Select Verilog or VHDL as the Design Entry option and ISE for Vendor Flow Settings.
Click OK to finish the Project Options setup.

® Project Options

o Part
- aeneration
o Advanced

Flow
@ Design Entry
() Custom Output Products

Please refier to the online help For information about compiling behavioral
models using compxlb and using WED (Verllog) templates,

Flow Settings
Yendor |ISE ~ |

Metlist Bus Format |B<n:m> |

Preferred Implementation Files
) EDIF Metlist
(®) NGC File

Simulation Files

ehavioral
Behavioral WHDL
Structural Wetilog
| I
O Mone

Other Output Products
[asv Symbol File

[[s]4] [Cancel] [Apply] [Help

UG416_c1_05_091409

Figure 1-5: Setting Up the Design Flow Options

Spartan-6 FPGA Memory Interface Solutions

UG416 July 25, 2012

www.Xxilinx.com

1

http://www.xilinx.com

Chapter 1: Getting Started

& XILINX.

Launching MIG

The steps in this section launch the MIG tool in preparation for creating the desired
memory interface based on the MCB:

1.

Review the project settings summarized in the Information section of the right

window to make sure they are correct.

File

nx CORE Generator - Spartan6_MIG_Example_Desi

Project Yiew Help

O E B core cenerator Help R?‘ Y

TP Catalog

View by Function | View by Name |

Spartan6_MIG_Example_Design

Hame
-

3

= Automotive & Industrial
Basic Elements
Commurication & Networking
Debug & Yerification

Digital Signal Processing
Example Cores

FPGA Features and Design
Math Functions

Memories & Storage Elements
Standard Bus Interfaces
Storage, NAS and SAN

Test Cores.

7 ¥ideo & Image Processing

| Version | Stabus | License

Select [P you wish ko wark with,

Information

Project filename: C:|ProjectsiSpartang_MIG_Example_Design.cop
Fanmily: spartant

Device: HCBsIx 16

Package: 5324

Speed Grade: g3

Actions

The fallowing actions are available for this project:
L Project Options
F Import Existing Customised [P

Copyright (¢} 1995-2008 Kiinx, Inc. &l vights reserved.

Console & x

=

Wroke project file Ci\ProjectsiProject|Spartané_MIG_Example_Design.cop e

Closed project file,

wirate project file C:\ProjectsiSpartane_MIG_Example_Design.cop L |
v

Search [P Catalog:

[clear] sevehconsele [mnd] [save][cea |

AP versions

[©nly [P campatible with chosen part Information [8\ warrings | @ Erars |

Part: xc6sbel 6-205324 | Design Entry: VHDL)

UG416_c1_06_091409

Figure 1-6: Project Page

2. ExpandtheMemories & Storage Elements folder in the left window to access the
MIG tool. Double-click the latest version under Memories & Storage Elements >
Memory Interface Generators > MIG to launch the MIG tool.

& Xilinx CORE Generator,

rtant_MIG_Example_Design.ce

Fle Project View Help
DPEHE eNin¥
) [P Catalog 8 X|| perenence MIG <] A
o | ety Function | view by Nane | DESIGH Show
= Project
4, |t * [version | Licansa e
|77 &utomative & Industrial N . _
| 5 Sas Eenerts This core is compatible with your current project aptions.
: |7 Commurication & Networking .
i) =7 Debug & verffication Information
) =7 Digital Signal Processing Care type: MG
a FPGA Features and Design Yersion: 30
Ry Math Functions Care Summary: This Memory Inkerface Generator is a simple menu driven tool b generate 4
& Memories & Stor age Elements advanced memory interfaces. DORZ SDRAM, DOR SORAM, DDRIL SRAM, QDRI
n CAMs SRAM, and RLDRAM IT are supported. This tool generates HDL and pin
FIFOs placennert constraints that wil help you design your application.
w - | 7 Memary Interface Generators
. 1L (@)3uppcrted Fanilies
= - £ Mia (o) o0 LA Current Prosct Optians
EH MG in) 2.2
- EH miG (D) 23 :
7 RAMS BROMS Actions
Standard Bus Interfaces The following actions are avalable for this core: =5
Storage, 1AS and SAN
7 video & Image Frocessing Customize
[#ien User Guide
A tiew ersion Information 3
| Consale: a x
-~
A4
Search IP Catalog: [dear] [march console ‘ [] [EE
Al 1P versions [only IP compatible with chosen part Infarmation ‘J}. Warnings “0 Errors |
Part: xcisbcl6-2c5324 | Desion Entry: Verlog|)

UG416_c1_07_091409

Figure 1-7: Launching the MIG Tool

12

Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

www.Xxilinx.com

http://www.xilinx.com

& XILINX.

Using the MIG Tool

Options page.

® Xilinx Memory Interface Generator

REFERENCE
DESIGN [

Memory
Interface

Generator

S XILINX

3. When the MIG tool startup page appears, click Next to advance to the MIG Output

Pemory Interface Generator

The Memary Interface Generator (MIG) creates memory controllers for Xiinx FPGAs. MIG creates complete customized Verilog or YHDL RTL source
code, pin-out and design constraints for the FPGA selected, and script Files For implementation and simulation,

CORE Generator Options

This GUI includes all confi options along with expl to aid In ion of the required controller. Pleass nots that some of the options

selected in the CORE Generator Project Options will bs ussd in generation of the contrallsr. Tt is very important that the corract CORE Gensrator
Project Options are sslected, These options are listed below.

Selected CORE Generator Project Options:

FPGA Family Spartan-6
FPGA Part wc6sll6-cs32e
Speed Grade 2

Synthesis Tool 5T

Design Entry YERILOG

If any of these options are incorrect, please click on "Cancel”, change the CORE Generator Praject Options, and restart MIG.

UG416_c1_08_091409

Figure 1-8: MIG Tool Startup Page

4. Select Create Design to create a new MCB based memory interface. Enter a name for

the memory interface in the Component Name field. Click Next to begin defining the
MCB based memory interface.

4 Xilinx Memory Interface Generator

REFERENCE
DESIGN [1]

Memory

Interface

Generator

£ XILINX.

MIG Cutput Dptions

(%) Create Design

Select this option to generate a new memory contreller, Generating a memery controller will create RTL, design constraints (UCF), implementation and
simulation files

Component Hame

Please spedify the component name for the memory intetface. The design divectories wil be generated undsr drectary with this name. Three
directories wil be created "example_esign’, “user_design” and "docs”. The user_design will contain the generated memory interface. The
example_desian adds a sinple =xample application connected to the generated memory interface.

Component Name | mig_30

cpack | [meex | [concal

UG416_c1_09_091409

Figure 1-9: MIG Output Options

Spartan-6 FPGA Memory Interface Solutions

UG416 July 25, 2012

www.Xxilinx.com

13

http://www.xilinx.com

Chapter 1: Getting Started & XILINX.

The output files and directories generated by the MIG tool are placed in a folder named
<Component Name>.

Note: <Component Name> cannot contain special characters. Only alphanumeric characters can
be used to specify a component name, and the name should always start with a letter of the alphabet
(a-z).

Creating an MCB Design

This section details the steps required to customize and generate an MCB based memory
interface using the MIG tool.

Selecting a Memory Standard

The Memory Selection page is used to choose a supported memory standard (DDR
SDRAM, DDR2 SDRAM, DDR3 SDRAM, LPDDR) for one or more of the memory
controller blocks. Spartan-6 devices contain either two or four MCBs, depending on the
size of the device. In general, the left or lower left memory controller block should be the
first choice when implementing a single memory interface. The predefined MCB I/O
locations for this core have fewer multi-function pins (for example, not shared with
configuration related pins). In addition, this core location is given priority for supporting
migration between different Spartan-6 devices in the same package type.

4 Xilinx Memory Interface Generator Q@@
REFERENCE Memory Selection
DESIGN [H]
Select the memory interface bype from the Memory Type selection box provided For each bank. Hardware verified devices are listed in the User Guide.
The MCE in Bank 3 (matked with an asterisk below) has Fewer multi-purpose 10 pins and is thereFare the preferred location for designs with a single
contraller, The ather MCE locations have mare multi-purpase pins. Check your design to make sure there are no conflicts with MCB interface pins.
Controller Options
cs
Memary Options Enable AXI interface for All MCBs
cs
Multi-port Configuration
e Bank 0
AXI Parameter
cs
S (c4) {C5)
Arbitration Memary Type i ; of o Mermary Type
cs <:> me | & €| McB
none v - = DDR3 SDRAM

FPGA Options

xc6slx100-fggb76

cs5 Memary Type Memory Type

Summary none b <::> Mid g ; Mid none b
Memory Model MCE | ® c| MCE

w
PCB Information * =

Design Notes

Bank 2

& XILINX.

[User Guide] [MCB Usser Gu\de] [Version Info] < Back] I [ERGES 1 [Cancel

UG416_c1_10_081010

Figure 1-10: Memory Selection Page

When working with a Spartan-6 device that contains four MCBs, the two MCBs on the
same side of the device must share the pair of system clocks generated from one of the
on-chip PLL blocks. Therefore, the data rates of the memory interfaces implemented by
these two MCBs must be the same. See the “Clocking” section in Spartan-6 FPGA Memory
Controller User Guide [Ref 1] for more details on MCB clocking requirements.

14 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

Using the MIG Tool

Click the Enable AXI check box to add an AXI4 user interface to all MCBs (this option
is only available for Verilog designs). Otherwise, the MIG design is generated with the
standard (or Native) user interface by default. Select a memory standard from the
Memory Type drop-down menu for each MCB that implements a memory interface
(only DDR2 and DDR3 are available when using an AXI4 interface). Click Next.

Memary Type

none [~ <:>

e

DDR. SDRAM
DOR3 SORAM
LPODR.

UG416_c1_11_091409

Figure 1-11: Memory Standard Selection

When invoked from XPS (EDK), only one MCB site can be active per axi_s6_ddrx instance.
Multiple controllers are implemented as multiple separate instances of axi_s6_ddrx in XPS.

Setting Controller Options

The Controller Options page is used to define some general characteristics of the memory
interface. If the design has multiple controllers, this page is repeated for each controller.
These characteristics of the memory solution can be defined on this page:

Frequency

This option indicates the operating frequency of the controller (equivalent to the
memory clock frequency, for example, 400 MHz for an 800 Mb/s DDR interface). The
frequency specified here should be half of the clock rate coming from the BUFPLL
driver to the MCB (see the “Clocking” section in Spartan-6 FPGA Memory Controller
User Guide [Ref 1] for more details on the clocking requirements for the MCB). The
controller frequency is limited by factors such as the selected FPGA device and speed
grade. In the EDK flow, an extra check box (selected by default) allows the user to
specify that the frequency information should be calculated automatically from EDK.

Memory Part

This option selects a target memory device for the design. The selection can be made
from the existing list of supported devices or a new custom device can be created.

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 15

UG416 July 25, 2012

http://www.xilinx.com

Chapter 1: Getting Started & XILINX.

% Xilinx Memory Interface Generator (=63

REFERENCE Options for C3 - DDR2 SDRAM
DESIGHN [1]

Frequency: The allowed frequency range is a function of the selected FPGA part, FPGA speed grade and
Memory Contralier bype. Choose the clack period For the desired Frequency. Refer ta User Guide for 2500 %|ps [400.00MHz
supported frequency range

Memary Part: Select the memary part. Parks marked with a warning syrbal are not compatible with the
frequency selection above. If the xact part that you wil be using s not avallable here, you may be able to
find an equivalent part. Altemately, you can create a part using the "Create Custom Part” selection at the

Memory Options boktom of this drop box. Refer ko Lser Guids for complete list of memary devices supported.

c3

MT47H128MBxK-25 v

Multi-port Configuration
3

Arbitration
[=]

FPGA Options
(=1

Summary

Memory Model

PCE Information

Design Notes

v
o Memaory Details: 16, x8, row:14, col: 10, bank:3, data bits per strobe:6, with data mask, singls rank
]

Com) e] [(a=

UG416_c1_12_102709

Figure 1-12: Controller Options Page

2. Enter the appropriate value for the Frequency selection by using the arrows on the
spin box or directly typing in the value. Values entered are restricted based on the
minimum and maximum frequencies supported.

Frequency: The allowed frequency range is a Function of the selected FPGA part, FPGA speed
qrade, memory controller type, and clocking bype, Mote that the available memory parts and the data |4UU &
width will be: limited based on this selection,

UG416_c1_13_091409

Figure 1-13: Entering Memory Interface Frequency

3. Select the desired Memory Part from the drop-down menu (see Figure 1-14). If the
required part or its equivalent is unavailable, a new memory part can be created. To
create a custom part, select the Create Custom Part option from the list, which causes
anew window to appear as shown in Figure 1-15. If not creating a custom part, skip to
step 5.

Memory Part: Select the memary part for the interface, IF the exact part that you will be using is
nok available here, vou may be able to find an equivalent part. Alternately, vou can create a part
using the "Create Custom Part” selection at the bottom of this drop box, Refer o Userguide for MT47H2SEM$0-25E F
complete list of memory devices supported, MT47HZSEM4RK-25E
MT47HE4MERR-25E-IT
EDE1116&4CEG-5E
EDES1164J6G-5E
HYB18TC1G160C2F-2.5
HYB1ETCS12160C2F-2.5
C tom Part

UG416_c1_14_091409

Figure 1-14: Selecting a Memory Device

16 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

Using the MIG Tool

® Create Custom Pari

Cuskarn Mernory Park

This option creates a new memory part, Mote that the new part will be a modification of the "Base Part” wou select
below, The timing parameters and the density can be changed, Also note that wou will require read/write
permissions in the XILINX install area to create a new part,

Select Base Part MT47H256M4R-25E vl

Enter Mew Memary Part Mame | MIG-Custom_MEM |

Change the reguired Timing Parameters. "Walue” is the only field that can be edited.

Parameter Walue Range Uniks Descriptions ~
trfic 127.5 75-3275 s Refresh to Active or Refresh to Refresh
bty 7.5 7.5-10 ns Read following a Write to the same device
Euar 15 15-1% ns ‘Write recavery time
tras 45 40-45 ns Active ko Precharge command
krtp 7.5 7575 ns Internal Read to Precharge command delay |
tred 12,5 11.25-20 ns Active to Read or write delay 2
Row Address |14 vl
Calumn Address |11 vl
Bark Address |3 A’ |

l Help] I Save] Delete

UG416_c1_15_091409

Figure 1-15: Creating a Custom Memory Device

The Create Custom Part window allows a new memory device to be defined by modifying
parameters of an existing part from the list of supported devices.

4. To create a custom memory device:

a.

Select a supported device in the Select Base Part drop-down menu that has similar
parameters to the device being created.

Enter a name for the new device in the Enter New Memory Part Name box (for
example, MIG-Custom_MEM).

Edit the timing parameter values and row/column/bank address bit counts as
needed.

Click Save to add the new device to the list of supported devices as shown in
Figure 1-16.

This new device is saved in the local MIG database for future use.

Memory Part: Select the memory part for the interface, IF the exact part that you wil be using is
nik available here, you may be able to find an equivalent part. Alternately, vou can create a part
using the "Create Cuskom Part” selection af the bottom of this drop b, Refer b Userquide For
complete list of memary devices supparted.

UG416_c1_16_091409

Figure 1-16: Selecting a Custom Memory Device from the Memory Part List

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 17

UG416 July 25, 2012

http://www.xilinx.com

Chapter 1: Getting Started & XILINX.

5. Select or unselect the Data Mask check box (see Figure 1-17) to determine whether or
not the generated MIG design includes data mask pins. The bottom of the Controller
Options page displays the details of the selected memory configuration as shown in
Figure 1-18. Click Next to continue to the Memory Options page.

Data Mask: ‘fou wil be able to enable/disable the generation of Data Mask{DM) pins using this check.

bz, You will be able to change this option only if the memory part you have selecked has DM pins,
Uncheck this box if vou would ike to nat use data masks, and save FPGA I0s that are used for DM

signals,

UG416_c1_17_091409

Figure 1-17: Setting the Data Mask Option

Memory Details: 1Gh, x4, row:14, col:11, bank:3, data bits per strobe:4, with data mask|

UG416_c1_18_091409

Figure 1-18: Memory Configuration Details

Setting Memory Device Options

The Memory Options page is used to set up various mode register values that are loaded
into the memory device during initialization. The list of available settings is determined by
the memory standard selected for the interface. Burst length and CAS latency are
automatically set by the MIG tool to offer the best performance.

Figure 1-19 shows the available settings for the DDR2 controller as an example. Figure 1-20
through Figure 1-22 show how these settings change for DDR, DDR3, and LPDDR
controllers, respectively.

18 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

Using the MIG Tool

* Xilinx Memory Interface Generator

Memory Options for Controller 3 - DDR2 SDRAM

REFERENCE
DESIGN H
Choose the Memary Options settings For the memary device, Settings are restricted to those supported by the controller,
Output Drive Strength
Selecting reduced strength wil reduce all oukputs to approximately 60 percent of the drive strength, Fullstrength v
Controller Dptions 14
o3 RTT (nominal) - 0DT
This Feature allaws to apply internal termination resistance of the memary module For signals DG, DOSIDOS#, T Disabled 3
LDQS{LDGS#, UDQS{UDGS# and LDM/UDM. This improwes the signal integrity of the memory channel.
Multi-port Configuration DQs# Enable
Crasstalk and simulkaneous switching output impact on the strobe autput driver can be reduced with this option OM,
G When Enabled D3 is differential and when disabled DOS is single-ended.
Arbitration High Temparature Self Refresh Rate
3 et this bit ko enable self-refresh rate in case of higher than 85 C kemperature self-refresh operation, Application can [
use selfrefresh I/F to enter self refresh state,

FPGA Options

3
Summary
Memaory Model License
PCB Information
Design Notes

Finish

& XILINX

l < Back H Hexts H Cancel]

UG416_c1_19_091409

Figure 1-19: Mode Register Settings for the DDR2 SDRAM Controller

Memory Options for MEMC 3 - DDR SDRAM

Choose the Memory Options settings for the memory device. Settings are restricted to those supported by the controller,

Output Drive Strength

Selecting reduced strength will reduce all outputs to approximately 54 percent of the drive strength,

UG416_c1_20_091409

Figure 1-20: Mode Register Settings for the DDR Controller

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com

UG416 July 25, 2012

19

http://www.xilinx.com

Chapter 1: Getting Started & XILINX.

Memory Options for MEMC 3 - DDR3 SDRAM

Choose the Memory Options settings for the memory device. Settings are restricted to those supported by the controller,

Output Drive Strength
To calibrate the output driver impedance, an external precision resistor (RZG) is connected between the 20 ball and RZG/6 <
%350, The value of the resistor must be 240ohm +/-1 percent.

RTT {nominal) - ODT

The ODT feature is designed to improve signal integrity of the memary channel by enabling the DDR3 SDRAM controller [—
- Disabled v
to independently turn onfoff ODT,

Auto Self Refresh
‘when ASR is disabled, the self refresh mode's refresh rate is assumed to be at the normal 85 C limitireferred to as 1%

refresh rate). Enabling ASR assumed the DRAM self refresh rate is changed automatically from 13 ko 2X when the case |Disabled v

temperature exceeds 85 C.

High Temparature Self Refresh Rate
In the Mormal mode, SRT requires the user ko ensure the DRAM never exceeds a Tc of 85 C while in self refresh mode

unless the user enables ASR. In Extended mode, the DRAM self refresh is changed internally From 1% ta 2%, regardless

of the case temperature.

RTT_WR
‘with dynaric ODT(RTT_WR) enabled, the DRAM switches From normal ODT{RTT _MNOM) ta dynarnic ODT{RTT _WR) when Orvmamic OO off z
beginning a WRITE burst and subsequently switches bak to QDT(RTT_MOM) at the completion of the WRITE burst, il

UG416_c1_21_091409

Figure 1-21: Mode Register Settings for the DDR3 Controller

Memory Options for MEMC 3 - LPDDR

Choose the Memory Options settings for the memory device, Settings are restricted to those supported by the controller,

Partial-Array Self Refresh
This Feature allows the contraller to select the amount of memary that wil be refreshed during self refrash, Full Array v

Drive Strength
Drive strength should be selected based on the expected loading of the memary bus, Full-Strength v

UG416_c1_22_091409

Figure 1-22: Mode Register Settings for the LPDDR Controller

6. Select the desired mode register setting for each entry. Then click Next to advance to
multi-port configuration setup.

20 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX. Using the MIG Tool

Multi-Port Configuration

There are five possible port configurations for the MCB User Interface to the FPGA logic.
For details on port configurations, see the “Port Configurations” section in Spartan-6 FPGA
Memory Controller User Guide [Ref 1]. Based on the selected configuration, the MIG tool
generates the necessary user signal names and assignments in the top-level wrapper file.

Xilinx Memory Interface Generator

REFERENCE Port Configuration for C3 - DDR3 SDRAM
DESIGH [
Select ane of five configurations From the configuration menu and the ports from the table, As you select the port configuration, the below figure and
table will get updated. You can select the number of parts in & configuration, and data port settings Fram the table.
Configuration Selection
|Tw\:| 32-bit bi-directional and Four 32-bit unidirectional ports v
Controller Dptions v Port Selection Interface Direction
[}
Portd MATIVE Bi-directional
Memory Options W
3 Partl MATIVE Bi-directional
Portz MWATIVE Read -
AXI Parameter Part3 MNATIVE Read Ad
3
Part4 NATIVE Read v
Arbitration
3 Ports MATIVE Read i
FPGA Options
c3
Summary Memory Address Mapping Selection
Memory Model User Address
PCB Information B
3 .
Design Notes 5 o
@ | ROW [eanc] coumn |
O [eanx | ROW [comn |
&~)
[User Guide] [MCB User Guide] [“ersion Info] [< Back] [Mext>] [Cancel

UG416_c1_23_081010

Figure 1-23: Port Configuration Page

7. Select the desired port configuration from the Configuration Selection drop-down
menu as shown in Figure 1-24. The port selection table is updated based on the chosen
configuration.

Configuration |Two 32-hit bi-directional and Four 32-bit unidirectional ports F
Z-bit. bi-directional and Four
Four 32-hit bi-directional ports
One 64-bit bi-directional and two 32-bit bi-directional ports
Tiwo &3-bik bi-directional ports

Zine 128-bit bi-directional port

it unidirectional ports

UG416_c1_24_091409

Figure 1-24: Selecting a Port Configuration
8. Select the check box in front of each port used in the design under the Port Selection
column.
e Unchecked ports are disabled.
¢ For unidirectional ports, the Direction column must be set to either Read or Write.

® The Interface column indicates whether all ports are implemented with the
Native (standard) or AXI4 user interface based on the earlier GUI selection.
Selecting Native interface results in a standard MCB user interface for the port.
Selecting AXI interface results in the addition of an AXI4 memory mapped slave

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 21
UG416 July 25, 2012

http://www.xilinx.com

Chapter 1: Getting Started & XILINX.

bridge to the native interface (the AXI4 interface is the only option in the EDK
flow).

For more information on the AXI4 slave interface, see Chapter 2, EDK Flow Details.

Port Selection Direction
Partd Bi-directional
Part1 Bi-directional
Partz Wirite v
Port3 Read w
Part4 Write v
Ports Read v

UG416_c1_25_091409

Figure 1-25: Setting Port Selection and Direction

The mapping between the User Interface address bus and the physical memory row, bank,
and column is configurable. Depending on how the application data is organized, it might
be desirable to change the addressing scheme to optimize controller efficiency. For
example, in Row-Bank-Column addressing, when requesting a long burst transaction that
extends beyond the end of an open row, the controller can open up a new bank to continue
the burst and thereby avoid the penalty (efficiency loss) of closing the open row (precharge
command) and issuing another row activate command in the same bank.

9. Select the Memory Address Mapping that works best for the application as shown in
Figure 1-26. The User Configuration Interface diagram on the right of the page (not
available for AXI4 interfaces) now shows a summary of the completed multi-port
configuration (see Figure 1-27). Click Next to proceed.

Memary Address Mapping Selection

User Address

4 4
2
8 0

O | ROW [eanc] coumn |

@ [zan | ROW | comn |

UG416_c1_26_091409

Figure 1-26: Selecting the Memory Address Mapping Scheme

User Interface Configuration:

~
pO_arb_en ﬁPDRTU ——>p0_cmd_empty =
pO_cmd_clk. — ——>p0_crnd _full
po_cmd en =3 CMD

p0_crd_instr[2:0] ——3 PORT
pO_cmd_bi[s:0] ——
p0_cmd_addr[25-0] ——34

pO_rd_ck —— ——>p0_rd_data[31-0]
po_rd_sn —3| DATA |—p0_rd_full
pO_wr_ck ——N PORT |——p0_rd_empty

pO_wr_en ——3 [—>p0_rd_count{&:0] T
pO_wr_mask[3-0] ——3 ——>p0_rd_overflow
pO_wr_data[31-0] ——X ——>p0_rd_srror

——>p0_ar_full
_)pD_wr_empty

——>p0_wr_count[6:0]
—>p0_wr_underrun
_)pD_wr_ermr

UG416_c1_27_091409

Figure 1-27: User Interface Port Configuration

22

www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

Using the MIG Tool

For designs using the AXI user interface option, a page appears to set the parameters for
each AXI port (see Figure 1-28).

This feature allows the selection of AXI parameters for the controller. These are standard
AXI parameters or parameters specific to the AXI4 interface. Details are available in the
ARM® AMBA® specifications. [Ref 10]

Interconnect parameters are also available in the EDK flow. Details on the interconnect
parameters are available in the EDK documentation. Some of these parameter options
might exist in the EDK flow only:

e Address Width and AXI ID Width: When invoked from XPS, Address width and ID
width settings are automatically set by XPS so the options are not shown.

e Base and High Address (EDK flow only): Sets the system address space allocated to
the memory controller. These values must be a power of 2 with a size of at least 4 KB,
and the base address must be aligned to the size of the memory space.

¢ Narrow Burst Support (EDK flow only): Deselecting this option allows the AXI4
interface to remove logic to handle AXI narrow bursts to save resources and
improving timing. XPS normally auto-calculates whether narrow burst support can
be disabled based on the known behavior of connected AXI masters.

* Enforce Strict of Write Coherency Across All Ports: Sets whether BRESP (AXI Write
Response) should be provided early when the transaction completes on that port

(unchecked) or only after the transaction is known to have completed across all ports
(checked).

¢ Enable Auto-Precharge On Each Transaction: When checked, all MCB read /write
transactions on that port close the bank/page to be closed (with auto-precharge) after
the transaction completes.

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 23

UG416 July 25, 2012

http://www.xilinx.com

Chapter 1: Getting Started

& XILINX.

10. Choose whether to enforce strict checking for write coherency on each port. This is
recommended for designs with more than one port. Choose whether to enable auto-
precharge for each AXI port. Select the Data, Address, and AXI ID width for each port
(see Figure 1-28). Click Next.

4% Xilinx Memory Interface Generator

REFERENCE
DESIGN [E|

Controller Options v
(=1

Memory Options v
(=1

Multi-port Configuration v
(=1

Arbitration
(=1
FPGA Dptions
(=1
Summary
Memory Madel
PCB Information

Design Notes

& XILINX.

AXI Parameter Options C3 - DDR3_SDRAM

Enfarces strict checking across all MCB ports For write data
coherency. This will ensure no race conditionswill exist between
the BRESP and any other readwrite commandon a different:
MCB port Not necessary For single port MCE operation.

Enables auto-precharge on each transaction send ko the
memory controller

Data Width of the AXI readiwrite channals

Address with of the AXT address readfaddress write channels

AXDID Width

PO PL P2 P3 P4 Ps

O O O O O O

PO PL P2 P3 P4 Ps

O O O O O O

PO PL P2 P3 P4 Ps

Bz W [z ™ [z W] [;2] [z] [z ¥
PO PL P2 P3 P4 Ps

2 @ | (2B | (2B | [=E | [|=E||=E
PO PL P2 P3 P4 Ps

[User Guide] [MCB User Gu\dE] [Wersion Info]

< Back. H Mext> H Cancel

UG416_c1_45_081010

Figure 1-28: Selecting AXI User Interface Parameters

24

www.Xxilinx.com

Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

Using the MIG Tool

Arbitration Table Programming

The MIG tool uses a round-robin arbitration scheme by default. However, a custom
arbitration scheme can also be defined. The port priority decreases from left to right in the
time-slot entry boxes.

When using the custom option, care should be taken to make sure that all ports have some
access to the memory device. In general, each port should receive the highest priority in at
least one time slot. The MIG tool generates a RED warning indicator when this guideline is
not followed, but it does not prevent such schemes. See the “Arbitration” section in

Spartan-6 FPGA Memory Controller User Guide [Ref 1] for more information on arbitration.

11. Select either Round Robin or Custom in the Select Arbitration Algorithm drop-down
menu. If Custom is selected, enter the preferred port priority for each time slot. Then
click Next.

“# Xilinx Memory Interface Generator,

Arbitration for MEMC 3

REFERENCE
DESIGN EH| Select either round robin or custom For part arbitration. You can alter the port priorities in custom arbitration, For each timeslot, the leftmast part
number has the highest priority. The order of port priarity decreases From left o right. Each port should be given highest priority in t lsast one
timeslok. Below port check box will be set ko a red cross mark if the port is not given highest priority in at least one timeslot,
Select Arbitration Algorithm [Round Robin []]
] Round Robin
Controller Options v Timeslot 0 012345
o Portd @ | | Portl @ || Portz @ ol ol arl
Memory Options 14 Timeslot 1 123450
(=]
Multi-port Configuration % Timeslot 2 234501
(=]
Timeslot 3 345012
FPGA Options Timeslot 4 450123
(=]
Summary Timeslot § s01234
Memory Model License
PCB Information Timeslat & 012345
Design Notes
Finish Timeslot 7 123450
Timeslot 8 234501
Timeslot 9 345012
Timesiot 10 [450123
Timesiot 11 [s01234

|

UG416_c1_28_091409

Figure 1-29: Setting Up the Arbitration Scheme

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 25

UG416 July 25, 2012

http://www.xilinx.com

Chapter 1: Getting Started & XILINX.

Setting FPGA Options

The FPGA Options page is used to configure some remaining aspects of the memory
interface solution. In the EDK flow, this is the last page. Clicking the Finish button saves
the changes and returns the user to XPS.

& Xilinx Memory Interface Generator

REFERENCE FPGA Options for C3 - DDR2 SDRAM
DESIGN [H
SSTL Qutput Drive Strength
Class IT is recommended for all SSTL signals in memary interfaces, However, better signal integrity may sometimes be achieved with Class I for
Address & Control. IF IBIS simulations indicate that Class I is superior For your application, select Class I below, This can be changed after
generation by modifying the LICF. This option changes the drive strength for Data, Address & Cantrol,
Class for Address and Control |ClassII v Class for Data |Class I+
Controller Dptions v
3 Memary Intsrface Pin Tarmination
Memory Options v calibrated Input Termination: Provides calibrated on-die input termination resistors. Calibration requires two extra pins to be added ta
3 (&) theinterface: RZQ and 210, An external resistor with a value 2x trace impedance needs to be connected from RZG pin to ground, and the
Multi-port Configuration v ZI0 pins need ko be left unconnected, These additional pins and their locations will be listed in the generated UCF constraints file.
3 () Un-calibrated Input Termination: Provides un-callbrated (approximated) on-die input termination resistors to Yoco and Ground.
Arbitration 1% () External Input Termination: Provides discrete termination resistors For the controller on the PCE.
3
DQ/DQS |25 Dhms
R Bypass Calibration: Turn on this bit if user wants to skip the calibration stage in functional simulation,
Memory Model
PCB Information Debug Signals for Memaory Controller: This allaws the debug signals ta be monitored on the ChipScope kool. Selecting this
option will port map the debug signals to the ChipScope modules in the design top module, Debug is supparted only For one Disable
Design Notes contraller.
System Clack: Choose the desired input dlock configuration, Differential |+
&~ ®
[User Guide] IMCB User Gulde] I Yersion Info l < Back] I [ext= l [Cancel

UG416_c1_29_021710

Figure 1-30: FPGA Options Page

12. Set the FPGA output driver strength to either SSTL Class | or Class Il for both
Address and Control and Data pins. Class II is recommended by default, but Class I
can provide better signal integrity for some applications.

SSTL Oukpuk Drive Strength

Class IT is recommended For all SSTL signals in memory inkerfaces. However, better signal integrity may sometimes be achieved with Class I
for Address & Control, If IEIS simulations indicate that Class I is superior For ywour application, select Class I below, This can be changed
after generation by modifying the UCF. This option changes the drive strength For Address & Contral.

Class for Address and Control |ClassII % Class for Data |Class 11 %

UG416_c1_30_091409

Figure 1-31: Setting FPGA Output Driver Strength

The MIG tool provides multiple options for FPGA input termination. The two basic forms
of input termination offered are:

e (Calibrated Input Termination

This option uses the Soft Calibration module that is automatically generated by the
MIG (or EDK) tool to match the input impedance of the memory interface pins to an
external resistor value. Calibrated input termination provides for an on-chip, precisely
calibrated termination, resulting in superior signal integrity and reduced component
count compared to the other available termination options.

26 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

Using the MIG Tool

The Soft Calibration module uses two I/O pins, RZQ and ZIO, generated by the MIG
tool (or EDK) to perform calibration of the input termination. RZQ is a required pin for
all MCB designs. When calibrated input termination is used, a resistor must be
connected between the RZQ pin and ground with a value that is twice that of the
desired input impedance (for example, a 100Q2 resistor to achieve a 50Q effective input
termination). RZQ should be left as a no-connect (NC) pin for designs not using
calibrated input termination. In addition, the RZQ pin must be within the same I/O
bank as the memory interface pins.

The ZIO pin is only required for designs using calibrated input termination and must
be a no-connect pin (for example, not connected to any PCB trace) assigned to a valid
package pin (for example, bonded I/0) location within the MCB bank. The default
locations of the RZQ and ZIO pins can be found in the UCF constraints files. See the
“Calibration” section in Spartan-6 FPGA Memory Controller User Guide [Ref 1] for more
details on using calibrated input termination.

Note: If device migration is desired (that is, migrating between device sizes in the same
package type), the designer must verify that the chosen RZQ and ZIO locations are available
(bonded out) as User I/Os for all planned devices. These pins can be relocated as necessary by
modifying the UCF.

* Uncalibrated Input Termination

This option provides two means of input termination:

e The FPGA can create an “approximated” on-die input termination value of 25Q,
509, or 7582, as selected from the DQ/DQS and Address/Control drop-down
boxes.

or

¢ These settings can be left as “none” for situations where external termination
resistors are provided.

In either case, no static or active calibration takes place to optimize the termination
values.

IMemory Inkerface Pin Termination

Calibrated Input Termination: Provides calibrated on-die inpuk termination resistors, Calibration required bwo extra pins to be

added to the interface: RZQ and 210, An external resiskor with & walue 2x trace impedance needs to be connected from RZG pin ko
ground and the ZIO pins need ko be no conmeck, These additional pins and their locations will be listed in the generated LCF

conskraints file.

Un-calibrated Input Termination: Provides un-calibrated (approximated) on-die input bermination resistors to Yeco and Ground.

Choose "none” for external termination if the preference is to provide discrete bermination resistors for the controller on the PCE,

DQ;/DOS Address;Control

UG416_c1_31_091409

Figure 1-32: Selecting the Method of Input Termination

13. Select either Calibrated or Uncalibrated input termination with the appropriate check
box. If uncalibrated termination is selected, make the desired selections from the
DQ/DQS drop-down menu.

The MCB provides a user interface to allow the initial DQ and DQS calibration process to
be retriggered (see the “Calibration” section in Spartan-6 FPGA Memory Controller User
Guide [Ref 1] for details on DQ/DQS calibration). This is especially important for
applications that require suspend mode operation. The MIG tool allows a user-specified
Calibration Memory Address to be reserved to avoid overwriting user application data
during a recalibration process. A training pattern is written to the specified location when
a recalibration is requested, and the MIG tool verifies the calibration address space to
ensure that it does not cross a row boundary, an additional safeguard to protect the user
application data.

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 27

UG416 July 25, 2012

http://www.xilinx.com

Chapter 1: Getting Started & XILINX.

14. Check the Bypass Calibration box to skip initial calibration during functional
simulation (not shown in the EDK flow).

EBrypass Calibration
Turn on this bit if user wants to skip the calibration stage in functional simulation,
Bypass Calibration

UG416_c1_33_091409

Figure 1-33: Bypassing Calibration During Functional Simulation

The MIG tool simplifies the process of setting up the memory design for ChipScope™ tool
debug. If desired, the MIG tool can be directed to port map user debug signals to
ChipScope tool modules in the top-level design (not available in the EDK flow), allowing
the ChipScope tool to monitor traffic on the User Interface ports (see Debug Signals in
Chapter 3 for more information on which User Interface signals are connected to the
ChipScope tool modules). When the memory design is implemented using the
ise_flow.bat batch mode script in the design’s PAR folder, the CORE Generator tool is
automatically called to generate ChipScope tool modules (that is, NGC files are generated)
for monitoring the debug signals. If the debug option is not selected, the debug signals are
left unconnected in the design top module, and no ChipScope tool modules are generated.

15. Set the Debug Signals for Memory Controller pull-down menu to Enable to monitor
debug signals using the ChipScope tool. Otherwise, leave this option set to Disable.
Click Next to see the summary of all options and settings for the current project.

Debug Signals Control

This allows the debug signals to be monitared on the ChipScope toal, Selecting this option will port map the debug signals ko the ChipScope
modules in the design top module,

Debug Signals for Memory Controller |Disable w

UG416_c1_34_091409

Figure 1-34: Setting Up Debug Signal Control

28

www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

Using the MIG Tool

Design Summary

The Summary page (not shown in the EDK flow) provides a detailed summary of design
parameters, interface parameters, CORE Generator tool options, and FPGA options for the
memory interface design as shown in Figure 1-35.

% Xilinx Memory Interface Generator

REFERENCE
DESIGN [H]

CORE Generator Options:
FPGL Family: Spartan-6
FEGL Part: xc6slxl6-cs3z4

Controller Dptions
3
Memory Options
3
Multi-port Configuration
3
Arbitration
a3
FPGA Options
3

X X ¥ X <« ¥

Memory Model License
PCB Information
Design Notes

Finish

Speed Grade: -2
Synthesis Tool: XST
Design Entry: VERILOG

Generator Project Options, and restart HIG.

Options:
Module Nere: wmig 30
No of MENCs: 1

MENC 1:

Interface Parameters:
Freguency: 400
Memary Configuration: DDRZ_SDRAM:Components
Part Number: MT47HZSEM4ZE-Z5E
Supported Part Numbers: MT47Mo4M16HR-ZSE
Data Uidth: 4
Data Mask: 1

FPGA Options:
Class for Address and Control: Class IT
Class for Data: Class II

Dezign Parameters:
Mode Begister:
Burst Length: 4
Burst Type: sequential

QUXILINX

43 Latency: S
DLL Reset: no

If mny of the whove options are incorzect, please click on "Cancel”, change the CORE

3

v

[<ga [hes [coel |

Figure 1-35: Summary Page

UG416_c1_35_091409

16. After reviewing the summary page to make sure all information is correct, click Next
to move on to Memory Model License agreements.

Spartan-6 FPGA Memory Interface Solutions

UG416 July 25, 2012

www.Xxilinx.com

29

http://www.xilinx.com

Chapter 1: Getting Started & XILINX.

Memory Model License

The MIG tool can output a vendor memory model to support simulation of DDR, DDR2,
DDR3, and LPDDR devices (not available in the EDK flow). To access the models in the
output SIM folder, the user must read and agree to the vendor license agreement. If the
license agreement is not agreed to, no memory models are produced and it is not possible
to simulate the design.

17. Read the vendor license agreement, and click the Accept License Agreement check
box to have a memory model created for the design. Then click Next.

“# Xilinx Memory Interface Generator

REFERENCE e
DESIGN [

Micron Technology, Inc, Sirmulation Model License Agreement

PLEASE READ THIS SIMULATION MODEL LICENSE AGREEMENT ("AGREEMEMT") FROM MICROMN TECHNOLOGY,
INC. {"MTI") CAREFULLY BEFORE INSTALLING OR USING THIS SIMULATION MODEL {THE "MODEL"). BY

Gl by e ¥ | [NSTALLING OR USTNG THE MODEL, YOU ARE ACCEPTING AND AGREEING TO THE TERMS AND CONDITIONS

(& OF THIS AGREEMEMT. IF ¥0OU DO MOT AGREE WITH THE TERMS ANMD CONDITIONS OF THIS AGREEMENT, I
Memory Options ¥ |THEN DO MOT INSTALL OR USE THE MODEL.

,B SOFTWARE LICENSE: You acknowledge and agree that it is your sole responsibility to obtain the appropriate
e (T T v license or permission from the owner(s) of the software platform(s) that are necessary for you to operate

=] the Maodel, MTI is under no obligation whatsoever to offer, provide or secure such license or permission for
Arbitration ¥ [you

= - MODEL LICENSE: MTI hereby grants to you the right to install, use and modify the Model solely for testing
FPGA Options ¥ (the Mode! and designing your product(s) in connection with the Model, You shall not use the Model ar any

3 modifications for any other purpose, and shall not copy, rent, or lease the Model or the modifications to any
Summary ¥ | |third party. MTI may make changes to the Model at any time without notice to you. MTI is under no

W | |obligation whatsoever to update, maintain, or provide new versions or other support for the Model,

FCB Information OWNERSHIP OF MATERIALS: Vou acknowledge and agree that the Model is proprietary property of MTT and —
Design Motes is protected by United States copyright law and international treaty provisions. The Model may not be
Finish copied, reproduced, published, uploaded, posted, transmitted, or distributed in any way without MTI's prior

written permission. Except as expressly provided heregin, MTI does not grant any express or implied right to
you under any patents, copyrights, trademarks, or trade secret information. This Agreement does not
convey to you an interest in ar to the Model, but only a3 limited right to use and modify the Madel in
accordance with the terms of this Agreement.

DISCLAIMER OF WARRANTY: THE MODEL IS PROVIDED "AS 15" WITHOUT WARRANTY OF ANY KIMD. MTI
EXPRESSLY DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
MONIMFRINGEMENT OF THIRD PARTY RIGHTS, AND AMY IMPLIED WARRANTIES OF MERCHANMTABILITY OR
FITHESS FOR ANY PARTICULAR PURPOSE, MTI DOES NOT WARRANT THAT THE MODEL WILL MEET YOUR b

s
Accept License Agreement (If you do not accept this agreement, the simulation output directory will not contain the memary

model so you will need to acquire and configure a memory model appropriately).

o) e (o

UG416_c1_36_021810

Figure 1-36: Vendor Memory Model License Agreement

PCB Information

The PCB Information page provides a list of PCB design guidelines for MIG generated
designs.

18. Click Next to advance to the Design Notes page.

Design Notes

The Design Notes page contains information about the specific MIG release used to create
the memory interface.

19. Click Generate to have the MIG tool create all the necessary design files for simulation
and implementation of the specified memory interface solution.

The MIG tool generates two output directories: example_design and user_design.
Finish

After the design is generated, a README page is displayed with additional useful

information.

20. Click Close to complete the MIG tool flow.

30 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX. MIG Directory Structure and File Descriptions

MIG Directory Structure and File Descriptions

This section explains the MIG tool directory structure and provides detailed output file
descriptions.

Output Directory Structure

The MIG tool (non-EDK flow) places all output files and directories in a folder named
<component name>, where <component name> was specified on the MIG Output
Options page in step 4, page 13 of the MCB design creation flow.

Figure 1-37 shows the output directory structure for the memory controller design. There
are three folders created within the <component name> directory:

e docs
e example_design

e yuser_design

= |2 mig_sp6&
|2 docs
= | 2) example_design
I par
= (vl
1) mcb_conkroller
I traffic_gen
=]
|2 swnth
= |[2) user_design
1= par
=)t
120 mcb_controller
|2 sim
|2 synth

UG416_c1_37_081610

Figure 1-37: MIG Directory Structure for Native Interface Designs

Note: In the EDK flow, the MIG project file and related files are stored in <EDK Project
Directory>/__xps/<Instance Name> and is regenerated when the XPS project is built. The MIG
UCF with pin location information is written to <EDK Project Directory>/__xps/<Instance
Name>/mig.ucf and is translated to an EDK core-level UCF at <EDK Project Directory>/
implementation/<Instance Name>_wrapper/<Instance Name>.ucf during builds. Though
these files are regenerated during builds, it is useful to retain or refer to them for debug purposes.

Directory and File Contents (CORE Generator Tool Flow Only)

<component name>/docs

The docs directory contains all PDF documentation related to the memory design,
including this document.

<component name>/example_design/

The example_design directory structure contains all necessary RTL, constraints, and
script files for simulation and implementation of the complete MIG example design with
traffic generator. For more details on the example design, see MIG Example Design with
Traffic Generator, page 37. The optional ChipScope tool module is also included in this
directory structure.

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 31
UG416 July 25, 2012

http://www.xilinx.com

Chapter 1: Getting Started & XILINX.

<component name>/example_design/rtl

The rt1 folder in this directory contains the MIG generated top-level files shown in
Table 1-1.

Table 1-1: example_design/rtl/ Directory File Descriptions

File Name Description

example_top.v The top-level file generated by the MIG tool.

Spartan-6 FPGA PLL and clock network resources required for the

infrastructure.v .
memory design.

The test bench stimulus module with the Init Memory Control
block and the Traffic Pattern Generator. All six MCB ports can be
instantiated for the test bench even when not all ports are used.
The unused interface ports can be ignored.

memc_tb_top.v

The top-level wrapper file containing an MCB and other FPGA
resources necessary to create the desired memory interface. This
memc_wrapper.v file contains both Native and AXI4 interface port options
regardless of selections made in the MIG tool. The unused
interface port option can be ignored.

<component name>/example_design/rtl/traffic_gen

The traffic_gen subfolder contains the synthesizable HDL files for the traffic generator.
Table 1-2 describes all files within this folder.

Table 1-2: example_design/rtl/traffic_gen Directory File Descriptions

File Name Description

a_fifo.v This module is the Synchronous FIFO using LUT RAM.

This module is the command generator. It provides
cmd_gen.v independent control for generating types of commands,
addresses, and burst length.

This module is the PRBS generator. It generates PRBS

cmd_prbs_gen.v commands, PRBS address, and PRBS burst length.

This module is a 32-bit LFSR for generating the PRBS data

data_prbs_gen.v pattern.

This module generates flow control logic for the traffic

init_mem_pattern_ctr.v
- P - generator.

This module generates flow control logic between the
mcb_flow_control.v memory controller core and the cmd_gen, read_data_path
and write_data_path modules.

mcb_traffic_gen.v This module is the top level of the traffic generator.

pipeline_inserter.v This module is used to insert pipeline stages.

This module generates timing control for read and ready

rd_data_gen.v signals tomcb_flow_control.w.

read_data_path.v This module is the top level for the read datapath.

32 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

MIG Directory Structure and File Descriptions

Table 1-2: example_design/rtl/traffic_gen Directory File Descriptions (Contd)

File Name Description

This module stores the read command sent to the memory
read_posted_fifo.v controller. Its FIFO output generates expected data for read
data comparison.

sp6_data_gen.v This data gen file generates different data patterns.

This module generates timing control for write and ready

dat . .
wr_data_gen.v signals to mcb_flow_control.w.

write_data_path.v This module is the top level for the write datapath.

<component name>/example_design/rtl/mcb_controller

This directory contains the soft calibration module and the lower level wrapper files for the
MCB.

Note: If the AXI4 interface is enabled, the <component name>/example_design/ directory is
empty because the traffic generator is not supported for AXI designs. For more information on the
AXIl4 interface, refer to Chapter 2, EDK Flow Details.

<component name>/example_design/par

The par folder contains the necessary constraint and script files for design
implementation. Table 1-3 describes all files within this folder.

Table 1-3: example_design/par Directory File Descriptions

File Name Description

This file is the UCF for the core and the example
design.

example_top.uct

The user double-clicks this file to create an ISE tool
project. The generated ISE tool project contains the
recommended build options for the design. To run
the project in GUI mode, the user double-clicks the
ISE tool project file to open up the ISE tool in GUI
mode with all project settings.

create_ise.bat

This script file runs the design through synthesis,
build, map, and par. It sets all the required options.
Users should refer to this file for the recommended
build options for the design.

ise_flow.bat

Caution! Recommended Build Options. The ise_flow.bat file in the par folder of the
component name directory contains the recommended build options for the design. Failure to
follow the recommended build options could produce unexpected results.

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 33

UG416 July 25, 2012

http://www.xilinx.com

Chapter 1: Getting Started & XILINX.

<component name>/example_design/synth

The synth folder contains the necessary tool constraints and script files for synthesizing
the example design. Table 1-4 describes all files within this folder.

Table 1-4: example_design/synth Directory File Descriptions

File Name Description

The SDC file has design constraints for the
Synplify Pro synthesis tool.

mem_interface_top_synp.sdc

script_synp.tcl These script files set various tool options.

<component name>/example_design/sim

The sim folder contains the vendor memory model, top-level simulation module, and
other files necessary for simulating the example design. Table 1-5 describes all files within
this folder.

Table 1-5: example_design/sim Directory File Descriptions

File Name Description

ddr<n>_model_c<x>.v This file is the DDR SDRAM memory model.

This file contains the DDR memory model

ddr<n>_model_parameters_c<x>.v .
parameter settings.

This file is the ModelSim simulator script file for

sim.do the example design.

The user double-clicks on this executable file to
sim.exe automatically simulate the design using the
ModelSim simulator.

sim_tb_top.v This file is the simulation top-level file.

<component name>/user_design

The user_design directory structure contains all necessary RTL, constraints, and script
files for simulation and implementation of a complete MCB based memory interface ready
for integration into the overall FPGA application.

<component name>/user_design/rtl

The rt1 folder in this directory contains the MIG generated top-level design files
described in Table 1-6.

Table 1-6: user_design/rtl Directory File Descriptions

File Name Description

This is the top-level file of the customized wrapper for the

t . .
seomponent_name=-v jedicated memory controller block.

This is the Spartan-6 FPGA PLL and clock network resources

infrastructure.v . .
required for the memory design.

This is the top-level wrapper file containing an MCB and other

memc_wrapper .v : .
—wrapp FPGA resources necessary to create the desired memory interface.

Note: If the AXI4 interface is enabled, there is an additional directory
<component name>/user_design/rtl/axi which contains the AXI RTL files. For more
information on the AXI4 interface, refer to Chapter 2, EDK Flow Details.

34

www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

MIG Directory Structure and File Descriptions

<component name>/user_design/par

The par folder contains the necessary constraint and script files for design
implementation. Table 1-7 describes all files within this folder.

Table 1-7: user_design/par Directory File Descriptions

File Name Description

This file is the UCF for the core and the
example design.

<component_name>.ucf

The user double-clicks this file to create an
ISE tool project. The generated ISE tool
project contains the recommended build
create_ise.bat options for the design. To run the project in
GUI mode, the user double-clicks the ISE
tool project file to open up the ISE tool in
GUI mode with all project settings.

This script file runs the design through
synthesis, build, map, and par. It sets all
ise_flow.bat the required options. Users should refer to
this file for the recommended build

options for the design.

Caution! Recommended Build Options. The ise_flow.bat file in the par folder of the
component name directory contains the recommended build options for the design. Failure to
follow the recommended build options could produce unexpected results.

<component name>/user_design/synth

The synth folder contains the necessary tool constraints and script files for synthesizing
the user design. Table 1-8 describes all files within this folder.

Table 1-8: user_design/synth Directory File Descriptions

File Name Description

This SDC file has design constraints for the
Synplify Pro synthesis tool.

mem_interface_top_synp.sdc

script_synp.tcl These script files set various tool options.

<component name>/user_design/sim

The sim folder contains the vendor memory model, top-level simulation module, and
other files necessary for simulating the user design. Table 1-9 describes all files within this
folder.

Table 1-9: user_design/sim Directory File Descriptions

File Name Description

a_fifo.v This file is the synchronous FIFO using LUT RAM.

cmd_gen.v

This module contains the command generator. It provides independent
control for generating types of commands, addresses, and burst length.

cmd_prbs_gen.v

This module contains the PRBS generator. It generates PRBS commands,
PRBS addresses, and PRBS burst lengths.

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 35

UG416 July 25, 2012

http://www.xilinx.com

Chapter 1: Getting Started

& XILINX.

Table 1-9:

user_design/sim Directory File Descriptions (Cont'd)

File Name

Description

data_prbs_gen.v

This file is a 32-bit LFSR for generating a PRBS data pattern.

ddr<n>_model_c<x>.v

This file is the DDR SDRAM memory model.

ddr<n>_model_parameters_c<x>.vh

This file contains the DDR memory model parameter settings.

init_mem_pattern_ctr.v

This file generates flow control logic for the traffic generator.

mcb_flow_control.v

This module generates flow control logic between the memory controller
core and the cmd_gen, read_data_path, and write_data_path modules.

mcb_traffic_gen.v

Top level of the traffic generator.

pipeline_inserter.v

This file is used to insert pipeline stages.

rd_data_gen.v

This module generates timing control for read and ready signals to
mcb_flow_control.w

read_data_path.v

This file is the top level for the read datapath.

read_posted_fifo.v

This module stores the read command sent to the memory controller. Its
FIFO output generates expected data for read data comparisons.

sim.do

This is the ModelSim simulator script file for the user design.

sim.exe

Double-click on this executable file to automatically simulate the design
using the ModelSim simulator.

sim_tb_top.v

This file is the simulation top-level file.

spb6_data_gen.v

This data gen file generates different data patterns.

wr_data_gen.v

This module generates timing control for write and ready signals to
mcb_flow_control.w

write_data_path.v

This file is the top level for the write datapath.

36

www.xilinx.com Spartan-6 FPGA Memory Interface Solutions

UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

MIG Example Design with Traffic Generator

MIG Example Design with Traffic Generator

This section describes an example design for the native interface. Refer to CORE Generator
Tool with AXI4 Interface Only, page 53 for an example design using the AXI4 interface.

CORE Generator Tool Native Interface Only

This section explains how to simulate and implement the MIG generated example design.
This design includes a traffic generator for demonstrating and testing the MCB based
memory interface. The bitstream created from implementation of the example design can
be targeted to a Spartan-6 FPGA SP601 or SP605 hardware evaluation board to
demonstrate DDR2 or DDR3 interfaces, respectively.

The example design includes these modules as shown in Figure 1-38:

* Spartan-6 FPGA MIG Wrapper: top-level wrapper file produced by the MIG tool,
containing an MCB and other FPGA resources necessary to create the desired memory

interface.

e TB_top: test bench stimulus module with the Init Memory Control block and the
Traffic Pattern Generator.

¢ Clock Infrastructure: Spartan-6 FPGA PLL and clock network resources required for
the memory design.

Example Design

Clock Infrastructure

TB_Top

- | Parameter:

- BEGIN_ADDR,
END_ADDR,
DATA_PATTERN,
CMD_PATTERN

Traffic

Pattern

Init Memory Generator
Control

PO

P1

P2

P3

P4

P5

Spartan-6 FPGA MIG Wrapper

Command_lInstr
Burst Length
User_Address
Command_Full

wr_full
wr_en
wr_data

rd_en
rd_data
rd_empty

Spartan-6
FPGA
Memory
Controller
Block

DDR Memory

Figure 1-38: MIG Example Design with Synthesizable Traffic Generator

UG416_c1_38_091409

Spartan-6 FPGA Memory Interface Solutions

UG416 July 25, 2012

www.Xxilinx.com

37

http://www.xilinx.com

Chapter 1: Getting Started & XILINX.

Traffic Generator Operation

The Traffic Generator module contained within the synthesizable test bench can be
parameterized to create various stimulus patterns for the memory design. It can produce
repetitive test patterns for verifying design integrity as well as pseudo-random data
streams that model “real world” traffic.

The MIG tool creates a separate traffic generator for each enabled port of the User
Interface. Each traffic generator can create traffic patterns for the entire address space of its
associated port. A default address space for each port is assigned by the MIG tool using the
BEGIN_ADDRESS and END_ADDRESS parameters found in the top-level test bench file
(tb_top.v). See Modifying the Example Design, page 45 for information on using these
parameters to change the port address space.

The test bench first initializes the entire address space of the port with the requested data
pattern (data pattern options are discussed in the following subsections). The Init Memory
Control block directs the traffic generator to step sequentially through all addresses in the
port address space, writing the appropriate data value to each location in the memory
device as determined by the selected data pattern. By default, the test bench uses the
address as the Data pattern.

When the memory has been initialized, the traffic generator begins stimulating the User
Interface ports to create traffic to and from the memory device. By default, the traffic
generator sends pseudo-randomized commands to the port, meaning that the instruction
sequences (R/W, R, W, etc.), addresses, and burst lengths are determined by pseudo-
random bitstream (PRBS) generator logic in the test bench. As with the address space and
data pattern, the default PRBS command pattern can be changed as described in
Modifying the Example Design, page 45.

The read data returning from the memory device is accessed by the traffic generator
through the User Interface read data port and compared against internally generated
“expect” data. If an error is detected (for example, there is a mismatch between read data
and expect data), an error signal is asserted and the readback address, readback data, and
expect data are latched into the error_status outputs.

Each stimulus data pattern is described in the following subsections.

Address as Data Pattern (Default)

This pattern writes each memory location with its own address, a simple test for finding
address bus related issues (see Figure 1-39).

38

www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX. MIG Example Design with Traffic Generator

mcb_cmd_addr_o0[29:0] 00000200 > 00000440
1
mcb_cmd_instr_o[2:0] 1 0
1
mcb_cmd_bl_o[5:0] 9 X4
1
mcb_cmd_en_o ;
cmd_eno | 1 [L
mcb_cmd_full_i i L
0000440 00000448 00000800 00000808 00000810
mcb_wr_data_o[31:0] 000 00000450 /
|woo444 0000044C 00000804 0000080C 00000814
mcb_wr_en ' \ | |
| l
Write 5 words to byte Read Command with burst Next User Write Command is accepted to
address 0x440 with the length of 10 to address 0x200 Write data to the MCB when FIFO full is deasserted
begin data the same as is accepted to the MCB when address 0x800 for the user write data words
the starting address mcb_cmd_full is deasserted 0x440, 0x444, 0x448, 0x44C, 0x450

UG416_c1_39_091409

Figure 1-39: Address as Data Pattern on DQ Bus

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 39
UG416 July 25, 2012

http://www.xilinx.com

Chapter 1: Getting Started & XILINX.

mcbx_dram_addr[12:0]

mcbx_dram_ras_n
mcbx_dram_cas_n
mcbx_dram_we_n
mcbx_dram_dq[15:0]
mcbx_dram_dq[15]
mcbx_dram_dq[14]
mcbx_dram_dq[13]
mcbx_dram_dq[12]
mcbx_dram_dq[11]
mcbx_dram_dq[10]
mcbx_dram_dq[9]
mcbx_dram_dq[8]
mcbx_dram_dq([7]
mcbx_dram_dq[6]
mcbx_dram_dq[5]
mcbx_dram_dq[4]
mcbx_dram_dq[3]
mcbx_dram_dq[2]
mcbx_dram_dq[1]

mcbx_dram_dq[0]

mcbx_dram_dgs

Hammer Data Pattern

This pattern stresses the memory interface with simultaneous switching output (SSO)
noise (see Figure 1-40). When multiple output drivers switch simultaneously, they can
cause a voltage drop or ground bounce on the power planes of the PCB or inside the device

package.
0000 X Xoor)oooo XOooor Y Xooor X Yoo Y Yooor X Yooor Y Yooor X Xoooo
u o u [N N 5 R 6 & 5
u o u o oo ooy
= Q0000000000000 CRKRARKARXARXCNKARXARRAN_ 0000 XXRXKAXXARXAAXXANKAAXA_)

U Trnmun—
U Trnmun—
U Trnmun—

U Trnmun—
Sl Ui tUuu—

UG416_c1_40_091409

Figure 1-40: Hammer Data Pattern on DQ Bus

40

www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX. MIG Example Design with Traffic Generator

Neighbor Data Pattern

This pattern is similar to the Hammer pattern with the exception that one DQ pin remains
Low on any given cycle (see Figure 1-41). This pattern can be used to measure the degree of
noise coupling on a static I/O pin due to SSO noise created by other pins.

mcbx_dram_ras_n L1

mcbx_dram_cas_n L L L] L]

mcbx_dram_we_n L] | L | L
mcbx_dram_dgs S L
mcbx_dram_dq[15:0] 2222
mcbx_dram_dq[15] U~
mcbx_dram _dq[14] U e
mcbx_dram_dq[13] JEREREpEpEpEpEpEpEpEpa R pEpE
mcbx_dram_dq[12] U U U T UL
mcbx_dram_dg[11] SEREREREREpEpEpEpEpR R pREEE T
mcbx_dram_dq[10] Uy e
mabx_dram_dq[9)] Uy U e
mebx_dram_dq(8] Uy L
mcbx_dram_dq[7] Uy T
mcbx_dram_da[6] o UL e
mebx_dram_dq(5] oL
mcbx_dram_dq[4] U UL L
mebx_dram_dq(3] Uy L
mcbx_dram_dq[2] Uy
mcbx_dram_da[1] Iy
mcbx_dram_dq[0] L T

UG416_c1_41_091409

Figure 1-41: Neighbor Data Pattern on DQ Bus

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 41
UG416 July 25, 2012

http://www.xilinx.com

Chapter 1: Getting Started

& XILINX.

mcbx_dram_ras_n
mcbx_dram_cas_n

mcbx_dram_we_n

mcbx_dram_dq[15:0]

mcbx_dram_dq[15]
mcbx_dram_dq[14]
mcbx_dram_dq[13]
mcbx_dram_dq[12]
mcbx_dram_dq[11]
mcbx_dram_dq[10]
mcbx_dram_dq[9]
mcbx_dram_dq[8]
mcbx_dram_dq[7]
mcbx_dram_dq[6]
mcbx_dram_dq[5]
mcbx_dram_dq[4]
mcbx_dram_dq[3]
mcbx_dram_dq[2]
mcbx_dram_dq[1]
mcbx_dram_dq[0]

mcbx_dram_dgs

Walking 1s and Walking Os Data Pattern

The Walking 1s and Walking Os patterns (see Figure 1-42 and Figure 1-43, respectively)
ensure that each memory bit location can be set to both 1 and 0, independently from other
bits. The DQ bus connectivity on the PCB can also be verified with these tests.

2227

L] [[

L] [[

0000000000000 000000000000000000
. I [1—
! [l [l—
1 [M_r—
! M Mn_ —
. I I —
! M M —
. M M —
. I I —
. M M —
. I —
. M M —
. I I —
L1 M —
LI I —
L1 [—
| I —

UG416_c1_42_091409

Figure 1-42: Walking 1s Data Pattern on DQ Bus

42

www.Xxilinx.com

Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX. MIG Example Design with Traffic Generator

mcbx_dram_ras_n

mcbx_dram_cas_n

L L
[L
[L
[L

mcbx_dram_we_n
mcbx_dram_dqgs

mcbx_dram_dq[15:0] 22

N
N
N
N

mcbx_dram_dq[15]

C

mcbx_dram_dq[14]

155

mcbx_dram_dq[13]
mcbx_dram_dq[12] ! L L
mcbx_dram_dq[11] I [l L

C

mcbx_dram_dq[10] | M| L

mcbx_dram_dq[9] I [l L
mcbx_dram_dq[8]] L L
mcbx_dram_dq[7] : LI L
mcbx_dram_dq[6] I L L
mcbx_dram_dq(5] ' LI L
mcbx_dram_dq[4] ! M| L
mcbx_dram_dq[3]] L L

mcbx_dram_dq[2] I | | L
an
il

mcbx_dram_dq[1]

rrrrrrrrrrrrnrr

mcbx_dram_dq[0]

UG416_c1_43_091409

Figure 1-43: Walking 0s Data Pattern on DQ Bus

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 43
UG416 July 25, 2012

http://www.xilinx.com

Chapter 1: Getting Started

& XILINX.

mcb_cmd_addr_o[29:0] 00000200

PRBS Data Pattern

This pattern creates PRBS data. The starting address of each data burst is used as a seed to
a 32-bit LFSR circuit to generate bursts with randomized data, approximating a “real
world” application test.

X 00000480

mcb_cmd_instr_o[2:0] 1

X0

mcb_cmd_bl_o[5:0] 12

X0

mcb_cmd_en_o |
mcb_cmd_full_i | |

CA492BD8

mcb_wr_data_o[31:0] A@@\' X

mcb_wr_full_i

1

L~

2924IAE2F A492IBSBC 924AE37A 492B8C62

24AE314D
O X X P X XX X /XX

9492’5775 5249:505E 4925’71 BD 2495’(3631

I | X I }
925718C4 / CA4930D8

mcb_wr_en _I

\ f [
Write 11 random words Asserting Write MCB Controller
to starting byte address Command to accepted Write
0x480. 0x480 is the seed address 0x480. Command data.
used in the LFSR for
generating the random data.

UG416_c1_44_091409

Figure 1-44: PRBS Data Pattern on DQ Bus

Setting Up for Simulation

In simulation, the user ports in the traffic generator are assigned with a small address
range to avoid memory overflow if the system has limited physical memory installed. For
hardware testing, the user can manually modify the HWTESTING parameter in
example_top for a larger address space range.

See the “Simulation” section in Spartan-6 FPGA Memory Controller User Guide [Ref 1] for
more details on simulating designs with the MCB.

Functional Simulation

To simulate the MIG example design or the MIG user design, the Xilinx® UNISIM library
must be compiled and mapped to the simulator. Currently, MIG generated designs are
supported only for Xilinx ISim and ModelSim version 6.4b or above. However, the
encrypted model of the Spartan-6 FPGA MCB is provided for ISim, ModelSim, and
Cadence Incisive Enterprise Simulator (IES). EDK generated designs using the MCB are
supported on all three of these simulators.

The Traffic Generator test bench provided with the example design allows
pre-implementation functional simulations to be performed on the generated memory
interface solution.

Memory Devices Supported for Functional Simulation

The MIG tool supports Micron DDR SDRAM, DDR2 SDRAM, DDR3 SDRAM, and LPDDR
memory devices. It also supports Elpida DDR2 SDRAM memory devices for simulation.
ModelSim and ISim are the simulation tools supported. ModelSim supports all of the listed
memory devices, while ISim supports only the Micron devices.

To run the simulation:

44

www.xilinx.com Spartan-6 FPGA Memory Interface Solutions

UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

MIG Example Design with Traffic Generator

1. Go to this directory:
<project_dir>/<component_name>/example_design/sim/functional

2. Run the script command that corresponds to the chosen simulation tool and operating
system:

* Windows
- For ModelSim, type at the prompt: sim.do
- For ISim, type at the prompt: isim
¢ Linux
- For ModelSim, type at the prompt: source sim.do

- For ISim, type at the prompt: source isim.do

Implementing the Example Design

The MIG tool automatically generates the ise_flow.bat script file found in the par
folder of the example design. This script runs the design through the synthesis, translate,
map, and par operations. Refer to this file to see all recommended build options for the
design.

Modifying the Example Design

The test bench in the MIG generated example design can be modified to implement
different data and command patterns. This section defines the test bench parameters and
signal names that should be understood when making changes to the example design.

Top-Level Parameters

The top-level test bench file (tb_top . v) contains several parameters that can be modified
to change the behavior of the traffic generator. Table 1-10 describes these parameters and
identifies any default values. In general, the data pattern and address space parameters are
the most likely to be modified, because the other parameters are normally fixed
characteristics of the memory and MCB configuration.

The easiest way to change the data pattern implemented by the traffic generator is to open
the example_top.v file in the rt1 directory and edit the local parameter for Data Mode
(for example, C3_p0_DATA_MODE). The four-bit code for this parameter can be changed
using the binary values defined for the data_mode_i[3:0] signals in Table 1-12, page 48.

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 45

UG416 July 25, 2012

http://www.xilinx.com

Chapter 1: Getting Started

& XILINX.

Table 1-10: Parameters for the TB_TOP Module

Parameter

Parameter Description

Parameter Value

BEGIN_ADDRESS

Sets the memory start address
boundary

This parameter defines the start boundary for the port
address space. The least-significant bits [3:0] of this
value are ignored.

DATA_PATTERN

Sets the data pattern to be
generated

Valid settings for this parameter are:
ADDR (Default): The address is used as a data
pattern.

HAMMER: All 1s are on the DQ pins during the
rising edge of DQS, and all Os are on the DQ pins
during the falling edge of DQS.

WALKINGI1: Walking 1s are on the DQ pins and the
starting position of 1 depends on the address value.
0: Walking Os are on the DQ pins and the starting
position of 1 depends on the address value.

NEIGHBOR: The Hammer pattern is on all DQ pins
except one. The address determines the exception
pin location.

PRBS: A 32-stage LFSR generates random data and
is seeded by the starting address.

DWIDTH

The MIG tool sets the default
based on the User Data port
width

Valid settings for this parameter are 32, 64, and 128 bits.

END_ADDRESS

Sets the memory-end address
boundary

This parameter defines the end boundary for the port
address space. The least-significant bits [3:0] of this
value are ignored.

FAMILY

Indicates the Family type

The value of this parameter is “SPARTAN6".

NUM_DQ_PINS

The MIG tool sets the default
based on the number of data
(DQ) pins for the selected

memory

Valid settings for this parameter are “4”, “8”, and “16”.

PORT_MODE

The MIG tool sets the default
based on the port
configuration (bidirectional,
W only, or R only)

Valid settings for this parameter are:
BI_MODE: Generate a WRITE data pattern and
monitor the READ data for comparison.
WR_MODE: Generate only WRITE data patterns.
No comparison logic is generated for the port.

RD_MODE: Generate only READ control logic for
the port.

PRBS_EADDR_MASK_POS

Sets the 32-bit AND MASK
position

This parameter is used with the PRBS address
generator to shift random addresses down into the port
address space. The END_ADDRESS value is ANDed
with the PRBS address for bit positions that have a “1”
in this mask.

PRBS_SADDR_MASK_POS

Sets the 32-bit OR MASK
position

This parameter is used with the PRBS address
generator to shift random addresses up into the port
address space. The BEGIN_ADDRESS value is ORed
with the PRBS address for bit positions that have a “1”
in this mask.

46

www.Xxilinx.com

Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

MIG Example Design with Traffic Generator

Traffic Generator Parameter

The CMD_PATTERN parameter can be modified within the Traffic Generator module (see
Table 1-11). This parameter is not brought to the top-level test bench because it should not
be modified under normal circumstances. However, certain situations might require a

change to the default value, such as when address, burst length, and instruction values are

provided from a block RAM (see Custom Command Sequences, page 51).

Table 1-11:

Parameter for the Traffic Generator Module

Parameter Name

Parameter Description

Parameter Value

CMD_PATTERN

Parameter for setting
command pattern
circuits to be
generated. For larger
devices, the
CMD_PATTERN can
be set to
“CGEN_ALL". This
parameter enables all
supported command
pattern circuits to be
generated. However, it
is sometimes necessary
to limit a specific
command pattern
because of limited
resources in a smaller
device.

Valid settings for this signal are:

CGEN_FIXED: The address, burst length,
and instruction are taken directly from the
fixed_addr_i, fixed_bl_i, fixed_instr_i inputs.

CGEN_SEQUENTIAL: The address is
incremented sequentially, and the increment
is determined by the data port size.

CGEN_BRAM: The address, burst length,
and instruction are taken directly from the
bram_cmd_i input bus.

CGEN_PRBS: A 32-stage LFSR generates
pseudo-random addresses, burst lengths,
and instruction sequences. The seed can be
set from the 32-bit cmd_seed input.

CGEN_ALL (Default): This option turns on
all of the above options and allows
addr_mode_i, instr_mode_i, and bl_mode_i
to select the type of generation during run-
time.

Traffic Generator

Signal Descriptions

Table 1-12 describes all traffic generator signals. In the example design, the Init Memory
Control block controls most of these signals to implement the default test flow (that is,
initialize the memory with the data pattern, then start running traffic by generating
pseudo-random command patterns). Any modification of the design to control these
signals by other means should only be done with a thorough understanding of their

behavior.

Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

www.Xxilinx.com

47

http://www.xilinx.com

Chapter 1: Getting Started

& XILINX.

Table 1-12: Traffic Generator Signal Descriptions

Signal Name

Direction

Description

addr_mode_i[2:0]

Input

Valid settings for this signal are:
000: Block RAM address mode. The address comes from the
bram_cmd_i input bus.
001: FIXED address mode. The address comes from the fixed_addr_i
input bus.
010: PRBS address mode (Default). The address is generated from the
internal 32-bit LFSR circuit. The seed can be changed through the
cmd_seed input bus.
011: SEQUENTIAL address mode. The address is generated from the
internal address counter. The increment is determined by the User
Interface port width.

bl_mode_i[1:0]

Input

Valid settings for this signal are:
00: Block RAM burst mode. The burst length comes from the
bram_cmd_i input bus.
01: FIXED burst mode. The burst length comes from the fixed_instr_i
input bus.
10: PRBS burst mode (Default). The burst length is generated from the
internal 16-bit LFSR circuit. The seed can only be changed through the
parameter section.

bram_cmd_i[38:0]

Input

This bus contains the block RAM interface ports: {BL, INSTR,
ADDRESS}.

bram_rdy_o

Output

This block RAM interface output indicates when the traffic generator is
ready to accept input from bram_cmd_i bus.

bram_valid_i

Input

For the block RAM interface, the bram_cmd_i bus is accepted when both
bram_valid_i and bram_rdy_o are asserted.

clk_i

Input

This signal is the clock input.

cmd_seed_i[31:0]

Input

This bus is the seed for the command PRBS generator.

counts_rst

Input

When counts_rst is asserted, wr_data_counts and rd_data_counts are
reset to zero.

48

www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

MIG Example Design with Traffic Generator

Table 1-12: Traffic Generator Signal Descriptions (Cont'd)

Signal Name Direction Description
Valid settings for this signal are:
0000: Reserved.
0001: FIXED data mode. Data comes from the fixed_data_i input bus.
0010: DGEN_ADDR (Default). The address is used as the data
pattern.
0011: DGEN_HAMMER. All 1s are on the DQ pins during the rising
edge of DQS, and all Os are on the DQ pins during the falling edge of
DQS. This option is only valid if parameter
DATA_PATTERN = “DGEN_HAMMER” or “DGEN_ALL".
0100: DGEN_NEIGHBOR. All 1s are on the DQ pins during the rising
edge of DQS except one pin. The address determines the exception
data_mode_i[3:0] Input pin location. This option is only valid if parameter DATA_PATTERN
N - = “DGEN_ADDR” or “DGEN_ALL".
0101: DGEN_WALKINGL1. Walking 1s are on the DQ pins. The
starting position of 1 depends on the address value. This option is
only valid if parameter DATA_PATTERN = “DGEN_WALKING” or
“DGEN_ALL".
0110: DGEN_WALKINGO. Walking 0s are on the DQ pins. The
starting position of 0 depends on the address value. This option is
only valid if parameter DATA_PATTERN = “DGEN_WALKINGO0” or
“DGEN_ALL".
0111: DGEN_PRBS. A 32-stage LFSR generates random data and is
seeded by the starting address. This option is only valid if parameter
DATA_PATTERN = “DGEN_PRBS” or “DGEN_ALL".
data_seed_i[31:0] Input This bus is the seed for the data PRBS generator.
i This bus defines the end-address boundary for the port address space.
end_addr_i[31:0] Input The least-significant bits [3:0] are ignored.
This signal is asserted when the readback data is not equal to the
error Output
expected value.
This signal latches these values when the error signal is asserted:
[31:0]: Read start address
[37:32]: Read burst length
[39:38]: Reserved
error_status[n:0] Output [40]: mcb_cmd_full
[41]: mcb_wr_full
[42]: mcb_rd_empty
[64 + (DWIDTH - 1):64]: expected_cmp_data
[64 + 2*DWIDTH - 1):64 + DWIDTH]: read_data
fixed_addr_i[31:0] Input This 32-bit input is the fixed address input bus.
fixed_bl_i[5:0] Input This 6-bit input is the fixed burst length input bus.
fixed_data_i[31:0] Input This 32-bit input is the fixed data input bus.
fixed_instr_i[2:0] Input This 3-bit input is the fixed instruction input bus.

Spartan-6 FPGA Memory Interface Solutions

UG416 July 25, 2012

www.Xxilinx.com 49

http://www.xilinx.com

Chapter 1: Getting Started

& XILINX.

Table 1-12: Traffic Generator Signal Descriptions (Cont'd)

Signal Name Direction Description
Valid settings for this signal are:
0000: Block RAM instruction mode. The instruction comes from the
bram_cmd_i input bus.
0001: FIXED instruction mode. The instruction comes from the
fixed_instr_i input bus.
0010: W/R instruction mode (Default). This mode generates pseudo-
random WRITE and READ instruction sequences.
instr_mode_i[3:0] Input 0011: WP/RP instruction mode. This mode generates pseudo-
- B random WRITE precharge and READ precharge instruction
sequences.
0100: W/WP/R/RP. This mode generates pseudo-random WRITE,
WRITE precharge, READ, and READ precharge instruction
sequences.
0101: W/WP/R/RP/REFE. This mode generates pseudo-random
WRITE, WRITE precharge, READ, READ precharge, and REFRESH
instruction sequences.
mcb_cmd_addr_o[29:0] Output | MCB’s Command port interface.
mcb_cmd_bl_o[5:0] Output | MCB’s Command port interface.
mcb_cmd_en_o Output | MCB’s Command port interface.
mcb_cmd_full i Input MCB’s Command port interface.
mcb_cmd_instr_[2:0] Output | MCB’s Command port interface.
mcb_rd_data_i[DWIDTH-1:0] Input MCB’s Data port interface.
mcb_rd_empty_i Input MCB’s Data port interface.
mcb_rd_en_o Input MCB’s Data port interface.
mcb_wr_data_o[DWIDTH-1:0] Output | MCB’s Data port interface.
mcb_wr_en_o Output | MCB’s Data port interface.
mcb_wr_full_i Input MCB'’s Data port interface.
When this signal is asserted (High), the values in addr_mode_i,
mode_load_i Input instr_mode_i, bl_mode_i, and data_mode_i are latched and the next
traffic pattern is based on the new settings.
rd_data_counts[47:0] Output The value of this bus is incremented when data is read from the MCB’s
read data port.
rst_i Input This signal is the Reset input.
When this signal is asserted (High), the traffic generator starts generating
run_traffic_i Input command and data patterns. This signal should be only be asserted
when mode_load_i is not asserted.
— This input defines the start address boundary for the port address space.
start_addr_i[31:0] Input The least-significant bits [3:0] are ignored.
wr_data_counts[47:0] Output The value of this output is incremented when data is sent to the MCB’s

write data port.

50

www.xilinx.com Spartan-6 FPGA Memory Interface Solutions

UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

MIG Example Design with Traffic Generator

Modifying Port Address Space

The address space for a port can be easily modified by changing the BEGIN_ADDRESS
and END_ADDRESS parameters found in the top-level test bench file. These two values
must be set to align to the port data width. The two additional parameters,
PRBS_SADDR_MASK_POS and PRBS_EADDR_MASK_POS, are used in the default PRBS
address mode to ensure that out-of-range addresses are not sent to the port.

The PRBS_SADDR_MASK_POS parameter creates an OR mask that shifts PRBS generated
addresses with values below BEGIN_ADDRESS up into the valid address space of the
port. It should be set to a 32-bit value equal to the BEGIN_ADDRESS parameter. The
PRBS_EADDR_MASK_POS parameter creates an AND mask that shifts PRBS generated
addresses with values above END_ADDRESS down into the valid address space of the
port. It should be set to a 32-bit value, where all bits above the most-significant address bit
of END_ADDRESS are set to 1 and all remaining bits are set to 0. Table 1-13 shows some
examples of setting the two mask parameters.

Table 1-13: Example Settings for Address Space and PRBS Masks

SADDR EADDR PRBS_SADDR_MASK_POS |PRBS_EADDR_MASK_POS
0x1000 OXFFFF 0x00001000 OXFFFF0000
0x2000 OxXFFFF 0x00002000 OxFFFF0000
0x3000 OXFFFF 0x00003000 OXFFFF0000
0x4000 0XFFFF 0x00004000 OXFFFF0000
0x5000 OxXFFFF 0x00005000 OxFFFF0000
0x2000 0x1FFF 0x00002000 OXFFFFE000
0x2000 0x2FFF 0x00002000 OXFFFFDO000
0x2000 Ox3FFF 0x00002000 OxFFFFC000
0x2000 0x4FFF 0x00002000 OXFFFF8000
0x2000 0xX5FFF 0x00002000 OXFFFF8000
0x2000 Ox6FFF 0x00002000 OxFFFF8000
0x2000 0xX7FFF 0x00002000 OXFFFF8000
0x2000 0x8FFF 0x00002000 OXFFFF0000
0x2000 Ox9FFF 0x00002000 OxFFFF0000
0x2000 OXAFFF 0x00002000 OXFFFF0000
0x2000 0xXBFFF 0x00002000 OXFFFF0000
0x2000 OxCFFF 0x00002000 OxFFFF0000
0x2000 O0xXDFFF 0x00002000 OXFFFF0000
0x2000 O0XEFFF 0x00002000 OXFFFF0000
0x2000 OxXFFFF 0x00002000 OxFFFF0000

Custom Command Sequences

The traffic generator can send a custom command sequence to the User Interface port by
reading address, instruction, and burst length values directly from a block RAM via the
bram_cmd_i input bus. The CMD_PATTERN parameter in the Traffic Generator module
must be set to “CGEN_ALL” (default) or “CGEN_BRAM” for this mode of operation. In
the CGEN_ALL case, the addr_mode_i, instr_mode_i, and bl_mode_i inputs must be set to
their respective block RAM mode values.

Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

www.Xxilinx.com 51

http://www.xilinx.com

Chapter 1: Getting Started & XILINX.

The bram_cmd_i input bus is a combination of the burst length, instruction, and address
values as follows:

bram_cmd_i[38:0] = {BL[5:0], INSTR[2:0], ADDRESS[29:2]}

Address bits [1:0] and [31:30] are padded with 0Os. The traffic generator accepts the
bram_cmd_i value when both bram_valid_i and bram_rdy_o are asserted (High).

The command patterns instr_mode_i, addr_mode_i and bl_mode_i of the traffic_gen
module can each be set independently. The provided init_mem pattern_ctr module
has interface signals to allow the command pattern to be modified in real time using the
ChipScope tool's VIO. To change command pattern:

1. Setvio_modify_enable to “1”.
2. Set vio_addr_mode_value to:
0: bram address input.
1: fixed_address.
2: prbs address.
3: sequential address.
3. Set vio_bl_mode_value to:
0: bram bl input.
1: fixed bl.
2: prbs bl. If bl_mode value is set to 2, the addr_mode value is forced to 2.

4. Setvio_fixed_bl_value to: 1 — 64.

Memory Initialization and Traffic Test Flow

After power up, the Init Memory Control block directs the traffic generator to initialize the
memory with the selected data pattern through the memory initialization procedure.

Memory Initialization

1. The data_mode_i input is set to select the data pattern (for example, data_mode_i[3:0]
= 0010 for the address as the data pattern).

The start_addr_i input is set to define the lower address boundary.

The end_addr_i input is set to define the upper address boundary.

bl_mode_i is set to 01 to get the burst length from the fixed_bl_i input.

The fixed_bl_i input is set to either 16 or 32.

instr_mode_i is set to 0001 to get the instruction from the fixed_instr_i input.

The fixed_instr_i input is set to the “WR” command value of the memory device.

® N DN

addr_mode_i is set to 011 for the sequential address mode to fill up the memory
space.

9. mode_load_i is asserted for one clock cycle.

When the memory space has been initialized with the selected data pattern, the Init
Memory Control block instructs the traffic generator to begin running traffic through the
traffic test flow procedure (by default, the addr_mode_i, instr_mode_i, and bl_mode_i
inputs are set to select PRBS mode).

Traffic Test Flow
1. The addr_mode_i input is set to the desired mode (PRBS is the default).

52

www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

MIG Example Design with Traffic Generator

2. The cmd_seed_i and data_seed_i input values are set for the internal PRBS generator.
This step is not required for other patterns.

3. Theinstr_mode_i input is set to the desired mode (PRBS is the default).
The bl_mode_i input is set to the desired mode (PRBS is the default).

The data_mode_i input should have the same value as in the memory pattern
initialization stage detailed in Memory Initialization.

The run_traffic_i input is asserted to start running traffic.

If an error occurs during testing (that is, the read data does not match the expected
data), the error bit is set until reset is applied.

8. Upon an error, the error_status bus latches the values defined in Table 1-12, page 48.

With some modifications, the example design can be changed to allow addr_mode_i,
instr_mode_i, and bl_mode_i to be changed dynamically when run_traffic_i is deasserted.
However, after changing the setting, the memory initialization steps need to be repeated to
ensure the proper pattern is loaded into the memory space.

CORE Generator Tool with AXI4 Interface Only

This section describes an example design for the AXI4 interface. Refer to CORE Generator
Tool Native Interface Only, page 37 for an example design using the native interface.

The MIG tool provides a synthesizable AXI4 test bench (per controller) to generate various
traffic patterns to the memory controller with AXI4 user interface. This test bench consists
of a controller, a traffic generator (traffic_generator) that generates traffic patterns through
the AXI4 interface to a Spartan-6 FPGA MIG wrapper with AXI4 interface
(memc_wrapper) core, and an infrastructure core that provides clock resources. A block
diagram of the example design test bench is shown in Figure 1-45.

Spartan-6 FPGA MIG Wrapper
with AXI4 Interface

Clock
Infrastructure ™
s6_axi4_tg
- » PO
Spartan-6
- > P1 FPGA
Memory - > MDDRX
emory
AXl4 > po Controller
Port Block
Traffic % ggject
Generator Logic - P3
»{ P4
- P5

X12412

Figure 1-45: Synthesizable Example Design Block for AXI4 Interface

The Spartan-6 FPGA MIG wrapper can have up to six ports defined. Ports PO and P1 are
bidirectional, and ports P2 to P5 are unidirectional. Options for these configurable ports
are located in Spartan-6 FPGA Memory Controller User Guide [Ref 1]. In Figure 1-45, the ports
P0 and P1 are 64-bit bidirectional ports, ports P2 and P4 are set as 32-bit write ports,
whereas P3 and P5 are set as 32-bit read ports. The port select logic dynamically selects one
of the ports to perform a write or a read transaction. It also takes care of matching the

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 53

UG416 July 25, 2012

http://www.xilinx.com

Chapter 1: Getting Started & XILINX.

widths for data integrity checks when transactions are performed on ports that have
different widths. For example, a write transaction is performed on a 64-bit port (P0) and
the same data is read with a 32-bit port (P5).

The AXI4 traffic generator (AXI4 TG) block generate AXI4 write and read transactions.
Figure 1-46 shows the simple write transaction being performed on the AXI4 traffic
generator interface. This consists of a command phase, a data phase, and a response phase,
as shown in Figure 1-46. This follows the standard AXI4 protocol.

yole

Figure 1-46: AXIl4 Interface Write Cycle

Figure 1-47 shows the simple read transaction being performed on the AXI4 interface. This
transaction consists of a command phase and a data phase, as shown in Figure 1-47. This
follows the standard AXI4 protocol.

Figure 1-47: AXI4 Interface Read Cycle

The example design generated when the AXI4 interface is selected as the user interface is
different compared to the standard user interface of the traffic generator. This
synthesizable test bench verifies the basic AXI4 transactions as well as the memory
controller transactions. However, this test bench does not verify all memory controller
features It verifies the AXI4 Shim features. Table 1-14 shows the signals of interest during
verification of the AXI4 test bench. These signals can be found in the example_top module.

Table 1-14: Signals of Interest During Simulation for AXI4 Test Bench

Signal Description

test_cmptd When asserted, this signal indicates that the current round of tests
with random reads and writes completed. This signal is deasserted
when a new test starts.

write_cmptd This signal is asserted for one clock indicating that the current write
transaction completed.

54

www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX. MIG Example Design with Traffic Generator

Table 1-14: Signals of Interest During Simulation for AXI4 Test Bench (Cont'd)

Signal Description

cmd_err When asserted, this signal indicates that the command phase of the
AXI4 transaction (read or write) had an error.

write_err When asserted, this signal indicates that the write transaction to
memory resulted in an error.

dbg_wr_sts_vld When asserted, this signal indicates a valid status for the write
transaction on the dbg_wr_sts bus. This signal is asserted even if the
write transaction does not complete.

dbg_wr_sts This signal indicates the status of the write transaction. The status
details are described in Table 1-15.

read_cmptd This signal is asserted for one clock, indicating that the current read
transaction completed.

read_err When asserted, this signal indicates that the read transaction to the
memory resulted in an error.

dbg_rd_sts_vld When asserted, this signal indicates a valid status for the read
transaction on the dbg_rd_sts bus. This signal is asserted even if the
read transaction does not complete.

dbg_rd_sts This signal indicates the status of the read transaction. The status
details are described in Table 1-16.

cmptd_one_wr_rd This signal indicates at least one write and one read transaction
completed.

The initialization and the calibration sequence remain the same as that indicated in the
previous section. The status generated for a write transaction can be found in Figure 1-48.

e e e i i o e e e e

Figure 1-48: Status for the Write Transaction
Table 1-15 contains the information of the status signal dbg_wr_sts.

Table 1-15: Debug Status for the Write Transaction

Bits Status Description
1:0 This is the write response received for the AXI4
' interface.
50 These indicate the response ID for the write
' response.
Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 55

UG416 July 25, 2012

http://www.xilinx.com

Chapter 1: Getting Started & XILINX.

Table 1-15: Debug Status for the Write Transaction (Contd)

Bits Status Description

AXI wrapper write FSM state when time-out
(watchdog timer should be enabled) occurred.

e 3'b001: Data write transaction
* 3'b010: Waiting for acknowledgment for

8:6 .
written data
* 3'b011: Dummy data write transaction
* 3'b100: Waiting for response from the
response channel
15:9 Reserved
16 Command error occurred during write
transaction.
17 Write error occurred. The write transaction

could not be completed.

Data pattern used for the current transaction:
* 000:5Aand A5

* 001: PRBS pattern

20:18 * 010: Walking zeros

* 011: Walking ones

* 100: All ones

* 101: All zeros

31:21 Reserved

Figure 1-49 lists the status that is generated for a read transaction.

Figure 1-49: Status for the Read Transaction

Table 1-16 contains the information of the status signal dbg_rd_sts.

Table 1-16: Debug Status for the Read Transaction

Bits Status Description
0 Read error response on the AXI4 interface.
1 Incorrect response ID presented by the AXI slave.
56 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions

UG416 July 25, 2012

http://www.xilinx.com

& XILINX. MIG Example Design with Traffic Generator

Table 1-16: Debug Status for the Read Transaction (Cont’d)

Bits Status Description
AXI wrapper read FSM state when time-out (watchdog timer should be
30 enabled) occurred.
' * 2'b01: Read command transaction
® 2'bl0: Data read transaction
15:4 Reserved
16 Command error occurred during read transaction.
17 Read error occurred. The read transaction could not be completed.
18 Data mismatch occurred between the written data and read data.
26:19 Pointer value for which the mismatch occurred.
Data pattern used for the current check:
e 000:5Aand A5
99:07 e 001: PRBS. pattern
* 010: Walking zeros
* 011: Walking ones
e 100: All ones
31:30 Reserved

The AXI4 write and read transactions are started only after the cx_calib_done signal is
asserted, where x is the controller number.

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 57
UG416 July 25, 2012

http://www.xilinx.com

Chapter 1: Getting Started

& XILINX.

58

www.Xxilinx.com

Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.
Chapter 2

EDK Flow Details

This chapter describes how to use the MIG tool available in Xilinx® Platform Studio (XPS).
It contains these sections:

e EDK Overview
e AXI Spartan-6 FPGA DDRx Memory Controller

EDK Overview

The Embedded Development Kit (EDK) provides an alternative package to the RTL than
that of the MIG tool flow in the CORE Generator™ interface. The XPS IP Catalog contains
the IP core axi_s6_ddrx with the same RTL that is provided by the MIG tool. The
difference is that the RTL is packaged as an EDK pcore suitable for use in embedded
processor based systems. The axi_s6_ddrx pcore only provides an AXI4 slave interface
for each of the ports that are enabled. If a native MCB port is needed, refer to the Multi-Port
Memory Controller (MPMC) IP provided by EDK as an alternative.

The axi_s6_ddrx IP is configured using the same MIG tool that is used in the

CORE Generator tool. The GUI flow is the same as described in the MIG Overview in
Chapter 1. However, instead of generating the UCF/RTL, the MIG tool sets the parameters
for the RTL in the XPS MHS file. From the parameters, the pcore can generate the correct
constraints for itself during platgen. Because the pcore is only a component in the system,
the clock/reset structure must also be configured in XPS as it is not automatically
generated as is done in the CORE Generator tool RTL. After the IP is configured and the
ports are connected, the XPS tool is relied on to perform all other aspects of IP management
including generating a bitstream and running simulations. For more information about
EDK and XPS, see EDK Concepts, Tools, and Techniques [Ref 2] and Embedded System Tools
Reference Guide [Ref 3].

The simplest way to get started with the axi_s6_ddrx memory controller is to use the
base system builder (BSB) wizard in XPS. The BSB guides the user through a series of
options to provide an entire embedded project with an optional axi_s6_ddrx memory
controller. If the memory controller is selected, an already configured, connected, and
tested axi_s6_ddrx controller is provided for a particular reference board, such as the
SP601 and SP605 boards.

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 59
UG416 July 25, 2012

http://www.xilinx.com

Chapter 2: EDK Flow Details & XILINX.

AXI Spartan-6 FPGA DDRx Memory Controller

The Advanced eXtensible Interface (AXI) Spartan®-6 FPGA DDRx Memory Controller
core provides a high-performance multi-ported AXI4 slave front-end connection to
LPDDR SDRAM/DDR/DDR2/DDR3 external memory. This core use the Memory
Control Block (MCB) primitive and adapts the MCB native interface to use the AXI4 slave
interface. This provides full functionality of all the features present on the Spartan-6 FPGA
MCB core.

Feature Overview

In addition to the MCB feature set, the AXI features include:

® Supports read-only and write-only modes.

* Supports AXI4 INCR/WRAP transactions.

® Supports a mode to guarantee write coherency between ports.
¢ Does not reorder transactions.

¢ Round-Robin Read/Write arbitration.

e Little-endian AXI4 slave interface.

¢ One up to six AXI4 slave compliant memory interface(s).

¢ AXI4 slave interface running 1:1 clock rate to the Spartan-6 FPGA MCB controller port
interface (can be asynchronous to memory).

e AXI4 slave interface data width of 32, 64, or 128 bits. AXI4 data width cannot be
greater than the MCB native data width.

* Support for all MCB-supported memories (LPDDR, DDR, DDR2, and DDR3).
* Support for AXI4 long bursts up to 256 data beats.

Feature Description and AXI Protocol Support

This section describes how the AXI Spartan-6 FPGA DDRx Memory Controller interprets
and supports the AXI4 specification. These interpretations of the AXI4 specification as it
relates to a memory controller follow the Xilinx design conventions that balance
performance, size, and complexity.

Interface Width

The AXIRead and Write data width can be 32, 64, or 128. It must be equal to the MCB data
width. The MCB data width can be 32, 64, or 128 bits, depending on MCB configuration.

Interface Clock

Each AXI4 slave interface can run with a completely independent clock from each other
and from the memory clock. All AXI channels and interface logic within a specific AXI4
slave interface use the same clock, with no additional clock conversion before passing into
the associated MCB port.

Address Width

The address width must be parameterized to support the desired system address bus
width. If the system address bus is defined wider than the memory size, it is acceptable to
alias/wrap the memory across the address space. The MCB interface supports a maximum

60

www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

AXI Spartan-6 FPGA DDRx Memory Controller

of 30 bits for the address bus. The MSB of the AXI address is cut off, if necessary. A 32-bit
constant address width is used for compatibility with EDK. The address also wraps if the
address range specified by the base and high address is smaller than the memory size.

Read-Only or Write-Only AXI Ports

Each AXI4 interface can be configured as Read-only or Write-only even when connected to
a bidirectional MCB port. This permits logic optimization when bidirectional data flow is
not required. The Read-only or Write-only AXI port is required when connected to a
unidirectional MCB port. When placed in Read-only or Write-only mode, unnecessary
Read /Write arbitration logic and datapath logic are removed. If the MCB port is natively a
bidirectional port, the MIG GUI and source RTL allow the user to choose a Read only or
Write only AXI4 interface for FPGA resource savings.

Reset

The AXI4 interface has a single synchronous reset, active Low signaling, that resets the
entire core and brings it to a known initialized state. A reset event causes a full reset
including recalibration of the controller.

Bursts

These rules apply:

The AXI Spartan-6 FPGA DDRx Memory Controller supports INCR and WRAP bursts
including AXI4 extensions of INCR burst up to 256 data beats.

Attempting FIXED bursts does not hang the AXI4 interface, but a FIXED burst does
not have a logical meaning for a memory controller. For simplicity, FIXED burst
commands result in an INCR command. No errors are flagged.

Supports burst size down to 1 byte wide burst. Burst sizes below the native data
width of the MCB port controller datapath is called a subsize burst or “narrow”
transfer. Subsize burst is supported, but the AXI protocol defines a subsize burst to
have data rotate through the correct byte lanes. Narrow burst support is conditional.
If the system has no masters that produce narrow bursts, then significant logic can be
reduced by removing support for the narrow bursts. This is controlled by the

C_S<Port Num>_AXI_SUPPORTS_NARROW_BURST parameter.

The AXI Spartan-6 FPGA DDRx Memory Controller can assume that bursts do not
cross a 4 KB address boundary as defined in the AXI4 specification. However, a burst
that crosses a 4 KB boundary does not hang the interface, but it can cause that
transaction to have undefined behavior on memory contents.

Cache Bits
These cache bit rules apply:

The AXI Spartan-6 FPGA DDRx Memory Controller does not implement bridging,
speculative pre-fetching, or L2 caching functions so it can ignore all CACHE bits and
treat them as 00000.

The AXI Spartan-6 FPGA DDRx Memory Controller attempts to return B Responses
as soon as possible without violating AXI ordering rules to reduce latency to master
waiting for B Responses.

Because the AXI Spartan-6 FPGA DDRx Memory Controller is connected to a multi-
ported hard memory controller, it must not issue a B Response until the Write has
completed to memory. The B response must guarantee that another Write or Read on

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 61

UG416 July 25, 2012

http://www.xilinx.com

Chapter 2: EDK Flow Details & XILINX.

another MCB port that accesses the same memory location could not complete ahead
of the current Write transaction. The parameter
C_S<Port_Num>_AXI_STRICT_COHERENCY can be set to 0 to relax write
coherency checking so that the B Response is returned earlier when the transaction is
known to have completed relative to that port instead of being delayed to ensure the
write completes across all ports.

Protection Bits

The AXI Spartan-6 FPGA DDRx Memory Controller ignores the AXI PROT bits and assume
all transactions are normal, non-secure accesses.

Exclusive Access

This IP does not currently support exclusive access.

Response Signaling
The AXI Spartan-6 FPGA DDRx Memory Controller always generates an OKAY response.

IDs, Threads, and Reordering

The MCB interface is strictly linear; therefore no reordering or threads is implemented in
the bridge. Transactions are returned in the exact order they are received.

Read/Write Acceptance Depth

The read acceptance depth is five outstanding transactions. The Write acceptance depth is
four outstanding transactions.

Read/Write Arbitration

AXI has separate Read and Write channels. An external memory has only a single address
bus. Therefore the AXI Spartan-6 FPGA DDRx Memory Controller must arbitrate between
coincident Read and Write requests to determine which one to execute to memory. The
arbitration algorithm for Read and Write requests is Round-Robin.

Endianess
The AXI Spartan-6 FPGA DDRx Memory Controller is little-endian only.
Region Bits

The AXI Spartan-6 FPGA DDRx Memory Controller does not have to make use of REGION
bits and can ignore this signal.

Low Power Interface

The AXI Spartan-6 FPGA DDRx Memory Controller does not support low power interface.

Limitations
The AXI Spartan-6 FPGA DDRx Memory Controller does not support QoS.

62 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

AXI Spartan-6 FPGA DDRx Memory Controller

Simulation Considerations

To simulate a design using axi_s6_ddrx, the user must create a test bench that connects
a memory model to the axi_s6_ddrx 1/O signals. This is generally performed by editing
the system_tb.v/.vhd test bench template file created by the Simgen tool in XPS to add
a memory model. Alternatively, users can transfer the simulator compile commands from
Simgen into their own custom simulation/test bench environment.

Note: axi_s6_ddrx does not generally support structural simulation because it is not a supported
flow for the underlying MIG PHYs. Thus structural simulation is not recommended.

Anaxi_s6_ddrxsimulation should be performed in the behavioral/functional level and

requires a simulator capable of mixed-mode Verilog and VHDL language support.

It might be necessary for the test bench to place weak pull-down resistors on all DQ and
DQS signals so that the calibration logic can resolve logic values under simulation.
Otherwise, “X” propagation of input data might cause simulation of the calibration logic to

fail.

For behavioral simulation, the sysclk_2x, sysclk_2x_180, and ui_clk ports of

axi_s6_ddrx must also be completely phase-aligned.

Top-Level Parameters

Table 2-1 lists the AXI parameters present on the AXI Spartan-6 FPGA DDRx Memory
Controller. The <Port_Num> is 1 through 6. For details on the other parameters, refer to the
Spartan-6 FPGA Memory Controller User Guide [Ref 1].

Table 2-1: AXI Per-Port Top-Level Parameters
Default Format I
Parameter Name Value (Range) Description
C_S<Port_Num>_AXI_ENABLE 0 Integer Enables the AXI/MCB port.
0,1)
C_S<Port_Num>_AXI_ADDR_WIDTH 32 Integer Width of all ADDR signals.
(32)
C_S<Port_Num>_AXI_DATA_WIDTH 32 Integer Width of AXI WDATA, RDATA
(32,64,128) signals.
C_S<Port_Num>_AXI_ENABLE_AP 0 Integer Enables Auto-Precharge on each
0, 1) transaction sent to the memory
controller.
C_S<Port_Num>_AXI_ID_WIDTH 4 Integer Width of all ID signals for all
(1-16) channels.
C_S<Port_Num>_AXI_PROTOCOL AXI4 String Specifies the AXI protocol.
(AXI3, AXI4)
C_S<Port_Num>_AXI_REG_ENO 0x00000 | Hexadecimal | Reserved.
C_S<Port_Num>_AXI_REG_EN1 0x01000 | Hexadecimal | Reserved.
C_S<Port_Num>_AXI_STRICT_COHERENCY 1 Integer Delays B channel response until it
0,1) can be guaranteed the write has
been commited to memory.
Required when accessing the same
address between different ports.

Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

www.Xxilinx.com

63

http://www.xilinx.com

Chapter 2: EDK Flow Details

& XILINX.

Table 2-1: AXI Per-Port Top-Level Parameters (Cont'd)
Default Format _—
Parameter Name Value (Range) Description
C_S<Port_Num>_AXI_SUPPORTS_NARROW_BURST 1 Integer Enables logic to support narrow
0,1) transfers over MCB. Required if the
slave receives transactions smaller
than the AXI/MCB native data
width.
C_S<Port_Num>_AXI_SUPPORTS_READ 1 Integer Indicates whether to include the
0, 1) AXI AR/R channels.
C_S<Port_Num>_AXI_SUPPORTS_WRITE 1 Integer Indicates whether to include the
0, 1) AXI AW /W /B channels.

Ports and I/O Signals

Table 2-2 lists the available AXI Spartan-6 FPGA DDRx Memory Controller Port names,
signal direction, and width.

Table 2-2: Ports and I/O Signals

Port Name Direction Width
System Signals
sysclk_2x Input N/A
sysclk_2x_180 Input N/A
pll_ce_0 Input N/A
pll_ce_90 Input N/A
pll_lock Input N/A
pll_lock_bufpll_o Output N/A
sysclk_2x_bufpll_o Output N/A
sysclk_2x_180_bufpll_o Output N/A
pll_ce_0_bufpll_o Output N/A
pll_ce_90_bufpll_o Output N/A
sys_rst Input N/A
ui_clk (same signal as mcb_drp_clk; Input N/A
see Spartan-6 FPGA Memory
Controller User Guide [Ref 1])
uo_done_cal Output N/A
AXI Signals (per port)
s<Port_Num>_axi_aclk Input N/A
s<Port_Num>_axi_awid Input [C_s<Port_Num>_AXI_ID_WIDTH-1:0]
s<Port_Num>_axi_awaddr Input [C_s<Port_Num>_AXI_ADDR_WIDTH-1:0]
s<Port_Num>_axi_awlen Input [7:0]
s<Port_Num>_axi_awsize Input [2:0]

64

www.Xxilinx.com

Spartan-6 FPGA Memory Interface Solutions

UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

AXI Spartan-6 FPGA DDRx Memory Controller

Table 2-2: Ports and I/0 Signals (Cont’d)

Port Name Direction Width
s<Port_Num>_axi_awburst Input [1:0]
s<Port_Num>_axi_awlock Input [1:0]
s<Port_Num>_axi_awcache Input [3:0]
s<Port_Num>_axi_awprot Input [2:0]
s<Port_Num>_axi_awqos Input [3:0]
s<Port_Num>_axi_awvalid Input N/A
s<Port_Num>_axi_awready Output N/A
s<Port_Num>_axi_wdata Input [C_S<Port_Num>_AXI_DATA_WIDTH-1:0]
s<Port_Num>_axi_wstrb Input [C_S<Port_Num>_AXI_DATA_WIDTH/8-1:0]
s<Port_Num>_axi_wlast Input N/A
s<Port_Num>_axi_wvalid Input N/A
s<Port_Num>_axi_wready Output N/A
s<Port_Num>_axi_bid Output [C_S<Port_Num>_AXI_ID_WIDTH-1:0]
s<Port_Num>_axi_bresp Output [1:0]
s<Port_Num>_axi_bvalid Output N/A
s<Port_Num>_axi_bready Input N/A
s<Port_Num>_axi_arid Input [C_S<Port_Num>_AXI_ID_WIDTH-1:0]
s<Port_Num>_axi_araddr Input [C_S<Port_Num>_AXI_ADDR_WIDTH-1:0]
s<Port_Num>_axi_arlen Input [7:0]
s<Port_Num>_axi_arsize Input [2:0]
s<Port_Num>_axi_arburst Input [1:0]
s<Port_Num>_axi_arlock Input [1:0]
s<Port_Num>_axi_arcache Input [3:0]
s<Port_Num>_axi_arprot Input [2:0]
s<Port_Num>_axi_arqos Input [3:0]
s<Port_Num>_axi_arvalid Input N/A
s<Port_Num>_axi_arready Output N/A
s<Port_Num>_axi_rid Output [C_s<Port_Num>_AXI_ID_WIDTH-1:0]
s<Port_Num>_axi_rdata Output [C_s<Port_Num>_AXI_DATA_WIDTH-1:0]
s<Port_Num>_axi_rresp Output [1:0]
s<Port_Num>_axi_rlast Output N/A
s<Port_Num>_axi_rvalid Output N/A
s<Port_Num>_axi_rready Input N/A
Memory Signals
mcbx_dram_addr Output [C_MEM_ADDR_WIDTH-1:0]

Spartan-6 FPGA Memory Interface Solutions

UG416 July 25, 2012

www.Xxilinx.com

65

http://www.xilinx.com

Chapter 2: EDK Flow Details

& XILINX.

Table 2-2: Ports and I/0 Signals (Cont’d)

Port Name Direction Width
mcbx_dram_ba Output [C_MEM_BANKADDR_WIDTH-1:0]
mcbx_dram_ras_n Output N/A
mcbx__dram_cas_n Output N/A
mcbx_dram_we_n Output N/A
mcbx_dram_cke Output N/A
mcbx_dram_clk Output N/A
mcbx_dram_clk_n Output N/A
mcbx_dram_dq Input/Output [C_NUM_DQ_PINS-1:0]
mcbx_dram_dqs Input/Output N/A
mcbx_dram_dqs_n Input/Output N/A
mcbx_dram_udgs Input/Output N/A
mcbx_dram_udqs_n Input/Output N/A
mcbx_dram_udm Output N/A
mcbx_dram_ldm Output N/A
mcbx_dram_odt Output N/A
mcbx_dram_ddr3_rst Output N/A
rzq Input/Output N/A
zio Input/Output N/A

66 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions

UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

Chapter 3

Debugging MCB Designs

Introduction

This chapter defines a step-by-step debugging procedure to assist in the identification and
resolution of any issues that might arise during each phase of the design process. It
contains these sections:

¢ Introduction

e Debug Tools

* Simulation Debug

* Synthesis and Implementation Debug

e Hardware Debug

The Spartan®-6 FPGA MCB simplifies the challenges associated with memory interface
design. However, every application environment is unique and proper due diligence is still
required to ensure a robust design. Careful attention must be given to functional testing
through simulation, proper synthesis and implementation, adherence to PCB layout
guidelines, and board verification through IBIS simulation and signal integrity analysis.

This chapter defines a step-by-step debugging procedure to assist in the identification and
resolution of any issues that might arise during each phase of the design process. Details
are provided on:

e Functional verification using the MCB simulation model
¢ Design implementation verification

¢ Board layout verification

e Using the MCB physical layer to debug board-level issues

* General board-level debug techniques
The two primary issues encountered during verification of a memory interface are:

¢ (Calibration not completing properly
¢ Data corruption during normal operation
Issues might be seen in simulation and/or in hardware due to various root cause

explanations. Figure 3-1 shows the overall flow for debugging problems associated with
these two general types of issues.

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 67

UG416 July 25, 2012

http://www.xilinx.com

Chapter 3: Debugging MCB Designs & XILINX.

Debug Tools

I [
I |
| - Calibration Failure |
: - Data Bit/Byte Corruption/Errors |

| Simulation Debug |

| Synthesis/Implementation Debug |

!

| Hardware Debug |

UG416_c2_01_091409
Figure 3-1: Spartan-6 FPGA MCB Debug Flowchart

If this chapter does not help to resolve the issue, refer to Appendix A, Additional
Resources for support assistance.

Many tools are available to debug memory interface design issues. This section indicates
which resources are useful for debugging a given situation.

Example Design

Generation of an MCB design through the MIG tool produces an Example Design and a
User Design. The Example Design includes a synthesizable test bench with a Traffic
Generator that has been fully verified in simulation and hardware. This design can be used
to observe the behavior of the MCB and can also aid in identifying board-related problems.
Refer to MIG Example Design with Traffic Generator, page 37 for complete details on this
design. This chapter further discusses using the Example Design to verify setup of a proper
simulation environment and to perform hardware validation.

Debug Signals

The MIG tool includes a Debug Signals Control option on the FPGA Options screen.
Enabling this feature allows all Command Path, Write Path, and Read Path signals
documented in the “User (Fabric Side) Interface” section of Spartan-6 FPGA Memory
Controller User Guide [Ref 1] to be monitored using the ChipScope™ Analyzer. Selecting
this option port maps the debug signals to the ChipScope ILA /ICON modules in the
design top module. The ChipScope ILA module also sets up the default ChipScope tool
trigger on the calib_done (end of calibration) and error signals (in the Example Design, the
error flag from the traffic generator indicates a mismatch between actual and expected
data). Chapter 1 provides details on enabling this debug feature.

Note: The default MIG design monitors all signals only in the first enabled user interface port
irrespective of whether the port is bidirectional or unidirectional. Part of the debug bus is left
unconnected so that users can connect and monitor the desired signals.

68

www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX. Simulation Debug

Reference Boards

SP601 and SP605 are Xilinx development boards that interface the MCB to external DDR2
and DDR3 memory devices, respectively. These boards are fully validated and can be used
to test user designs and analyze board layout.

ChipScope Pro Tool

The ChipScope Pro tool inserts logic analyzer, bus analyzer, and virtual I/O software cores
directly into the design. The ChipScope Pro tool allows the user to set trigger conditions to
capture application and MCB port signals in hardware. Captured signals can then be
analyzed through the ChipScope Pro Logic Analyzer tool [Ref 5].

Simulation Debug

Figure 3-2 shows the debug flow for simulation.

Verify Successful Simulation Using
Example Design. Identify any Issues with
Simulation Environment

l

| Debug Issues with User Design Simulation |

!

| Open WebCase |

UG416_c2_02_091409

Figure 3-2: Simulation Debug Flowchart

Additional Debug Signals (Simulation Only)

The UNISIM model of the MCB primitive within the top-level MIG wrapper is encrypted,
preventing access to internal nodes. However, some additional signals that might be useful
in simulation debug have been made accessible by bringing them to the top level of the
UNISIM model. These signals can only be viewed in simulation (see Figure 3-3); they are
not accessible in hardware. The signals are located in the hierarchy path

* /memc*_mcb_raw_wrapper_inst/samc_0/B_MCB_INST.

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 69
UG416 July 25, 2012

http://www.xilinx.com

Chapter 3: Debugging MCB Designs

& XILINX.

.3 MadelSim SE-64 6.5¢
Fila Edit Yew Compile Zimulats Add Stucture Tools Layout Wincdow
[O- @@ s B oo ME || e o350 | 0 @E|| e T T T
@ 4 o (EF[W0 EICIGAA B P P B E EES || SRR
1A (g bty —————— o

¥l Instance = | Design unit B v Hame 5 value
=~ sim_th_top sim_th_tap

=} & zio_pulldovml PULLDOM M m

) r2_pulldoen PLILLDGYH

[8 MER_INST] sim_t1_top

i+ Logging sim_tt1_top

= design_lop axampla_top

£l u_tramc_gen_tap traflic_gen_top

=4 memc_wrapper_inst

<l 16_Addr

Al memct _meh_re_wrapper_ingl moch_ras_wrapper

memc1_wrapper

meh_raw_wrapper

= & u_corfig 4 mek_raw_wrapper
=8 samc_0 MCB
i B_ce ST B_mca
(-l RASSIGNAT 302 MCE
o #ASSIGNE 1351 MCE
i o #ASEIGHET3ED MCE cirl_cmd_Ih
- #A33IGNE1ITY MCE 4 cirl_rc_en 0
o #ASSIGNE13TE MCE 5 000000 00000000000000000
i) #ASEIGHA1ITT MCE
il BASSIGNATITE MCE
[RASSIGNA13TS MCE
i o #ASEIGHA1ITY MCE
il BASSIGNATITI MCE
o #ASSIGNE13T2 MCE
i) #ASEIGHA13TI MCE
i -l BASSIGNATITO MCE
. i =
ML Uinrare | & sim PEN;

Figure 3-3: Simulation Debug Signals Inside MCB in ModelSim Environment.

Table 3-1 lists the available simulation debug signals.

Table 3-1: Simulation Debug Signals
Block Domain | Internal Signal Name Description Clock Domain
Clock sysclk Internally generated clock from sysclk2x, 0° phase shift. N/A
ocks
sysclk_90 Internally generated clock from sysclk2x, 90° phase shift. N/A
ctrl_state[144:0] Controller state (see Table 3-2) ASCII radix. sysclk90
ctrl_rd_en Controller read enable. sysclk90
ctrl_wr_en Controller write enable. ~sysclk90
Controller ctrl_emd._in Coptrol}er input command flag from the arbiter or ~sysclk90
calibration logic.
ctrl_cmd[2:0] Controller command received. ~sysclk90
Controller current command count. This bus indicates
ctrl_cmd_cnt[9:0] the number of times to execute the current command. ~sysclkd0
arb_cmd_en[5:0] Arbiter enable to command FIFO. ~sysclk90
arb_p_en[7:0] Arbiter enable to data FIFO. ~sysclk90
. . Single data rate DQ bus between capture blocks and data
dqi_p[15:0] FIFOs, rising edge. sysclk90
Arbiterand Data . Single data rate DQ bus between capture blocks and data
Capture dqi_n[150] FIF%)S, falling edge. ; sysclk0
First valid data on DQ bus. It is registered on the next
sysclk_syne sysclk_90 edge. N/A
dqs_first First edge of DQS occurred. This signal indicates start of N/A
read capture cycle.

70

www.Xxilinx.com

Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX. Simulation Debug

Table 3-1: Simulation Debug Signals (Cont’d)

Block Domain | Internal Signal Name Description Clock Domain
cal_start Start calibration. This pin forces the start of a calibration ui_clk
cycle.
cal_active Calibration currently running. sysclk90
cal_dq_done_cnt[3:0] | Current DQ signal calibrating. sysclk90
cal_state[144:0] Calibration state (see Table 3-3) ASCII radix. sysclk90
cal_dgs_state[2:0] ?33:;{12?2322 state. The states proceed from 0 to 7 in sysclk90
cal_dgs_p S;rﬁ%lrea gzi rate DQSP. Should be all 1’s during sysclk9o
Calibration cal_das.n S:lllilri ﬁ?,;a. rate DQSN. Should be all 0’s during sysclko0
cal udgs_p S;rﬁ%lrz ﬂiﬁ rate UDQSP. Should be all 1’s during dgs_iol_m
cal_udgs_n S;rﬁ%lrea gii rate UDQSN. Should be all 0’s during dqs_ioi_m
aldgp | S DOsdelty L doneat |y
aldgn | kDO ety aldydoneat Ly
Table 3-2: FSM State Definitions for ctrl_state
State Description
0x00 Idle
0x01 Load Mode Register
0x02 Mode Register Wait
0x03 Precharge
0x04 Precharge Wait
0x05 Auto Refresh
0x06 Auto Refresh Wait
0x07 Active
0x08 Active Wait
0x09 First Read
0x0A Burst Read
0x0B Read Wait
0x0C First Write
0x0D Burst Write
0x0E Write Wait
0x0F Init Count 200
Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 71

UG416 July 25, 2012

http://www.xilinx.com

Chapter 3: Debugging MCB Designs

& XILINX.

Table 3-2: FSM State Definitions for ctrl_state (Contd)

State Description
0x10 Init Count 200 Wait
0x11 ZQCL

0x12 Write Read
0x13 Read Write
0x14 Dummy First Read
0x15 Deep Memory State
0x16 Jump State
0x17 Init Done
0x18 Reset

0x19 Reset Wait
0x1A Precharge All
0x1B Precharge All Wait
0x1C Self Refresh Enter
0x1D Self Refresh Wait
0x1E Self Refresh Exit
0x1F Self Refresh Exit Wait

Table 3-3: FSM State Definitions for cal_state

State Description

0x00 Init

0x02 Reset DRP interface
0x16 Preamble Pulldown
0x17 Preamble Read
0x18 Preamble Undo
0x01 Calibrate DRP/IOI
0x03 Issue Write Command
0x04 Wait for Write Command
0x05 Issue Read Command
0x06 Wait for Read Command
0x07 Wait for DRP Interface
0x08 DQS Calibration
0x09 Pre Done Calibration
0x0E Done Calibration

72

www.xilinx.com Spartan-6 FPGA Memory Interface Solutions

UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

Simulation Debug

Verify Simulation using the Example Design

The Example Design generated by the MIG tool includes a simulation test bench,
appropriately set up the memory model and parameter file based on memory selection in
the MIG tool, and a ModelSim . do script file. Refer to MIG Example Design with Traffic
Generator, page 37 for detailed steps on running the Example Design simulation.

Successful completion of this Example Design simulation verifies a proper simulation
environment. This shows that the simulation tool and Xilinx libraries are set up correctly.
For detailed information on setting up Xilinx libraries, refer to COMPXLIB in the Command
Line Tools User Guide [Ref 6] and the Synthesis and Simulation Design Guide [Ref 4]. For
simulator support and detailed information on the MCB simulation model, refer to
Simulation Debug.

A working Example Design simulation completes memory initialization and runs traffic in
response to the Traffic Generator stimulus. Successful completion of memory initialization
and calibration results in the assertion of the calib_done signal. When this signal is
asserted, the Traffic Generator takes control and begins executing writes and reads
according to its parameterization. Refer to MIG Example Design with Traffic Generator for
details on the available Traffic Generator data patterns and corresponding top-level
parameters.

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 73

UG416 July 25, 2012

http://www.xilinx.com

Chapter 3: Debugging MCB Designs & XILINX.

Synthesis and Implementation Debug

Figure 3-4 shows the debug flow for synthesis and implementation.

Verify Successful Synthesis and
Implementation Using Example Design

Verify Any Modification to the MIG Output

Verify Successful Synthesis and
Implementation Using User Design

!

Verify Design Timing in TRACE

!

Open WebCase

UG416_c2_03_091409

Figure 3-4: Synthesis / Implementation Debug Flowchart

Verify Successful Synthesis and Implementation

The Example Design and User Design generated by the MIG tool include
synthesis/implementation script files and User Constraint Files (. ucf). These files should
be used to properly synthesize and implement the targeted design and generate a working
bitstream. The synthesis/implementation script file, called ise_flow.bat, is located in
both example_design/par and user_design/par directories. Execution of this script
runs either the Example Design or the User Design through Synthesis, Translate, MAP,
PAR, TRACE, and BITGEN. The options set for each of these processes are the only options
that have been tested with the MCB MIG design. A successfully implemented design
completes all processes with no errors (including zero timing errors).

Verify Modifications to the MIG Output

The MIG tool allows the user to select which MCB to use for a particular memory interface.
Based on the selected MCB, the MIG tool outputs a . ucf file with all required pin location
constraints. This file is located in both example_design/par and user_design/par
directories and should not be modified. The selected pins are required to properly interface
to the MCB.

The MIG tool outputs an MCB wrapper file. This file should not be modified.
Modifications are not supported and should be verified independently in behavioral
simulation, synthesis, and implementation.

Identifying and Analyzing Timing Failures

The MCB design has been verified to meet timing. If timing violations are encountered, it
is important to isolate the timing errors. The timing report output by TRACE (. twx/ . twr)
should be analyzed to determine if the failing paths exist in the MIG MCB design or the
user interface to the MIG MCB design. If failures are encountered, the user must ensure the
build (that is, XST, MAP, PAR) options specified in the ise_flow.bat file are used.

74

www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

Hardware Debug

If failures still exist, Xilinx has many resources available to aid to closing timing. The
PlanAhead™ tool [Ref 7] improves performance and quality of the entire design. The
Xilinx Timing Constraints User Guide [Ref 8] provides valuable information on all available
Xilinx constraints.

Hardware Debug

Figure 3-5 shows the debug flow for hardware.

Verify Memory Implementation Guidelines
are Properly Followed

!

Run S| Simulation Using IBIS |

!

Run Example Design

!

| Isolate Bit Errors |

!

Board Measurements

- Measure Signal Integrity
- Measure Supply and V.. Voltages
- Measure Bus Timing

!

Check Clocking/Run Interface at
Slower Frequency

!

Open WebCase

UG416_c2_04_091409

Figure 3-5: Hardware Debug Flowchart

Verify Memory Implementation Guidelines

See the “PCB Layout Guidelines” section in Spartan-6 FPGA Memory Controller User Guide
[Ref 1] for specifications on pinout guidelines, termination, I/O standards, and trace
matching. The guidelines provided are specific to both memory technologies as well as
MIG output designs. It is important to verify that these guidelines have been read and
considered during board layout. Failure to follow these guidelines can result in
problematic behavior in hardware as discussed in this chapter.

Clocking

The external clock source should be measured to ensure frequency, stability (jitter), and
usage of the expected FPGA pin.

The designer must ensure that the design follows all clocking guidelines as outlined in the
“Clocking” section in Spartan-6 FPGA Memory Controller User Guide [Ref 1]. If clocking
guidelines have been followed, the next step is to run the interface at a slower speed.
Unfortunately not all designs/boards can accommodate this step. Lowering the frequency
increases marginal setup time and/or hold time due to PCB trace mismatch, poor SI, or
excessive loading.

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 75

UG416 July 25, 2012

http://www.xilinx.com

Chapter 3: Debugging MCB Designs & XILINX.

Verify Board Pinout

The board schematic needs to be compared to the <design_name>.padreport generated
by Place and Route. This step ensures the board pinout matches the pins assigned in the
implemented design.

Note: The pin LOCs selected in the MIG output UCF are required to properly interface to the MCB
and cannot be modified.

Run Signal Integrity Simulation with IBIS Models

To verify that board layout guidelines have been followed, signal integrity simulations
must be run using IBIS. These simulations should always be run both pre-board and
post-board layouts. The purpose for running these simulations is to confirm the signal
integrity on the board.

The ML561 Hardware-Simulation Correlation chapter of the Virtex-5 FPGA ML561 Memory
Interfaces Development Board User Guide [Ref 9] can be used as a guideline. This chapter
provides a detailed look at signal integrity correlation results for the ML561 board and can
be used as an example for what to look at and what is good to see. It also provides steps to
create a design-specific IBIS model to aid in setting up the simulations. While this guide is
specific to Virtex®-5 devices and the ML561 development board, the principles can be
applied to a Spartan-6 FPGA MCB design.

Run the Example Design

The MIG provided example design is a fully verified design that can be used to test the
memory interface on the board. It rules out any issues with the user’s backend logic
interfacing with the MCB. In addition, the traffic generator provided by the MIG tool can
be parameterized to send out different data patterns that test different board-level
concerns. For example, a Hammer pattern stresses the memory interface for simultaneous
switching outputs (S50), while a “Walking 1s” or “Walking 0s” pattern tests if each
memory DQ bit can be set to 1 and 0, independent of other bits. See MIG Example Design
with Traffic Generator, page 37 for full details on the available data patterns.

Debugging Common Hardware Issues

When calibration failures and data errors are encountered in hardware, the ChipScope
Analyzer should be used to analyze the behavior of datapath signals. The MIG tool
provides the Debug Signals for Memory Controller feature to aid in this analysis. When
this option is enabled in the MIG tool, the output example_design and user_design include
ChipScope Generator ILA and ICON core instantiations. When the example_design is
used in hardware, the example_design/rtl/example_top.v module should be
referenced. When the user_design is used in hardware, the
user_design/rtl/<component_name>_debug_en.v module should be referenced.

To analyze the signals mapped to the ILA core, first the designer should run the
ise_flow.bat file located in the appropriate output par directory to generate a
bitstream. This step properly generates the ChipScope tool cores and includes them in the
output bitstream. Next the designer should open ChipScope Analyzer and configure the
device.

Note: For detailed information on using ChipScope Analyzer, refer to the ChipScope Pro Software
and Cores User Guide.

After configuration, the ChipScope Analyzer tool is loaded with Data and Trigger
windows. The ports in these windows are listed as DataPort and TriggerPort signals. To

76

www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX. Hardware Debug

properly port map (name) these signals, the designer should open the appropriate rtl file
noted in the above paragraph and view the assignments of the cx_dbg_data and
cx_dbg_trig signals. Right-click the individual DataPort and TriggerPort signals to rename
them to the appropriate data or trigger signal names.

The data signals assigned in the debug port include the command path, write datapath,
and read datapath signals as defined in the “Interface Details” section in Spartan-6 FPGA
Memory Controller User Guide [Ref 1]. The trigger signals assigned in the trigger port
include the calib_done and error (example_design only) signals. The trigger can be
asserted separately on calib_done to debug calibration failures and error to debug data
errors after calibration. While analyzing data errors, refer to Isolating Bit Errors to
determine where the error occurs.

A good starting point in hardware debug is to load the provided example_design with the
Debug Signals for Memory Controller feature enabled onto the designer’s board. This
known working solution with a traffic generator design checks for data errors. This design
should complete successfully with the assertion of calib_done and no assertions of error.
Assertion of calib_done signifies calibration completion while no assertions of error
signifies the data written to and read from the memory compare with no data errors. The
designer should run the example_design on the board twice: once with the trigger in the
trigger window set to calib_done and once set to error.

Isolating Bit Errors

An important hardware debug step is to try to isolate when and where the bit errors are
occurring. Looking at the bit errors, these should be identified:

* Are errors seen on data bits belonging to certain DQS groups?
* Are the errors on accesses to certain addresses or banks?
® Do the errors only occur for certain data patterns or sequences?

This case might indicate a shorted or open connection on the PCB. It can also indicate
an SSO or crosstalk issue.

It might be necessary to isolate whether the data corruption is due to writes or reads. This
case can be difficult to determine because if writes are the cause, read back of the data is
bad as well. In addition, issues with control/address timing affect both writes and reads.

To try to isolate the issue:

e If the errors are intermittent, have the controller issue a small initial number of writes,
followed by continuous reads from those locations. If the reads intermittently yield
bad data, there is a read issue.

e If on-die termination is used, check that the correct value is enabled in the memory
device, and that the timing on the ODT signal relative to the write burst is correct.

Board Measurements

The signal integrity of the board and bus timing must be analyzed. The ML561 Hardware-
Simulation Correlation chapter in the Virtex-5 FPGA ML561 Memory Interfaces Development

Board User Guide [Ref 9] describes expected bus signal integrity. While this guide is specific

to Virtex-5 devices and the ML561 Development Board, the principles can be applied to a

Spartan-6 FPGA MCB design.

Another important board measurement is the reference voltage levels. It is important that
these voltage levels are measured when the bus is active. These levels can be correct when
the bus is idle, but might droop when the bus is active.

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 77
UG416 July 25, 2012

http://www.xilinx.com

Chapter 3: Debugging MCB Designs

& XILINX.

78

www.Xxilinx.com

Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

& XILINX.

Appendix A

Additional Resources

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

www.xilinx.com/company /terms.htm.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References

The Solution Center specific to Virtex®-6 FPGA Memory Interface Solutions is located at
Xilinx MIG Solution Center.

These references provide supplemental information useful for this document:

U

N o

10.

UG388, Spartan-6 FPGA Memory Controller User Guide
UG683, EDK Concepts, Tools, and Techniques

UG111, Embedded System Tools Reference Manual
UG626, Synthesis and Simulation Design Guide

ChipScope™ Pro Logic Analyzer tool
/ /www.xilinx.com/tools/cspro.htm

UG628, Command Line Tools User Guide, COMPXLIB

PlanAhead™ Design Analysis tool
/ /www.xilinx.com/tools/planahead.htm

UGH612, Xilinx Timing Constraints User Guide
UG199, Virtex®-5 FPGA ML561 Memory Interfaces Development Board User Guide

ARM® AMBA® Specifications
http:/ /www.arm.com/products/system-ip /amba/amba-open-specifications.php

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 79

UG416 July 25, 2012

http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/support/answers/34243.htm
http://www.xilinx.com/support
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/edk_ctt.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/est_rm.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/devref.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/sim.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/ug612.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug199.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/ipmeminterfacestorelement_meminterfacecontrol_mig-v6.htm
http://www.xilinx.com/tools/cspro.htm
http://www.xilinx.com/tools/planahead.htm
http://www.xilinx.com/support/documentation/boards_and_kits/ug199.pdf
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php

Appendix A: Additional Resources & XILINX.

80 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 July 25, 2012

http://www.xilinx.com

	Spartan-6 FPGA Memory Interface Solutions
	Revision History
	Table of Contents
	Getting Started
	MIG Overview
	Supported Tools and System Requirements
	Operating System Requirements
	Tools

	Using the MIG Tool
	Setting up a New Project
	Launching MIG
	Creating an MCB Design

	MIG Directory Structure and File Descriptions
	Output Directory Structure
	Directory and File Contents (CORE Generator Tool Flow Only)

	MIG Example Design with Traffic Generator
	CORE Generator Tool Native Interface Only
	CORE Generator Tool with AXI4 Interface Only

	EDK Flow Details
	EDK Overview
	AXI Spartan-6 FPGA DDRx Memory Controller
	Feature Overview
	Feature Description and AXI Protocol Support
	Simulation Considerations
	Top-Level Parameters

	Debugging MCB Designs
	Introduction
	Debug Tools
	Example Design
	Debug Signals
	Reference Boards
	ChipScope Pro Tool

	Simulation Debug
	Additional Debug Signals (Simulation Only)
	Verify Simulation using the Example Design

	Synthesis and Implementation Debug
	Verify Successful Synthesis and Implementation
	Verify Modifications to the MIG Output
	Identifying and Analyzing Timing Failures

	Hardware Debug
	Verify Memory Implementation Guidelines
	Debugging Common Hardware Issues
	Isolating Bit Errors

	Additional Resources
	Xilinx Resources
	Solution Centers
	References

