
XAPP636 (v1.2) June 11, 2003 www.xilinx.com 1
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this
feature, application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you
may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any
warranties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary This application note and reference design describes a high-speed, optimized implementation
of a Virtex™-II pipelined multiplier primitive (MULT18X18 and MULT18X18S) implemented in
VHDL and Verilog. In addition, an accumulator unit has been designed for use as an
attachment to the pipeline multiplier. Combining these two modules, a designer can implement
a fast and efficient Multiply Accumulate (MAC) circuit in Virtex-II and Virtex-II Pro™ devices.

Note: All designs were tested using Synplicity.

Introduction The multiplier block in Virtex-II devices is an 18-bit by 18-bit two's complement signed multiplier
optimized for high-speed operations. Additionally, the power consumption is lower compared to
a slice implementation of an 18-bit by 18-bit multiplier. However, when pipelining the input and
the output of the multiplier block, speed can be optimized by using appropriate location and
timing constraints.

Full 16-bit by
16-bit Multiplier
Overview

Using Virtex-II multipliers without constraints leads to non-optimized performance when
creating an I/O pipelined 16-bit by 16-bit multiplier. The reference design file contains VHDL,
Verilog, and UCF files to illustrate a speed-optimized pipelined design implementation. Table 1
and Table 2 list the performance improvement available by following the guidelines in this
application note.

Application Note: Virtex-II Family

XAPP636 (v1.2) June 11, 2003

Optimal Pipelining of I/O Ports of the
Virtex-II Multiplier
Author: Markus Adhiwiyogo

R

Table 1: Non-Pipelined 16 x 16 Bit Multiplier Performance Improvement
(Unconstrained vs. Constrained)5

Device
Speed
Grade

Unconstrained Constrained Units

Standard Design -4 50 85 MHz

-5 59 103 MHz

-6 81 162 MHz

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

2 www.xilinx.com XAPP636 (v1.2) June 11, 2003
1-800-255-7778

Full 16-bit by 16-bit Multiplier Overview
R

MULT16X16S_PLUS

The MULT16X16S_PLUS module contains an instantiated and pipelined I/O MULT18X18S
design using both the input and output of a basic Xilinx register primitive (FDR). Each register
uses RLOC and BEL attributes. To make a 16 x 16 multiplier, the two input MSBs are tied to
zero.

The input pattern has all of the input to port A of the multiplier on a slice column to the left of the
multiplier, while the input to port B of the multiplier is on a slice column to the right of the
multiplier. The design minimizes the distance of the register to the input ports to ensure high-
speed results. In addition, timing constraints are used in the UCF file on the nets of the design
to guarantee the fastest register to multiplier net delay.

Enhanced Design -4 64 127 MHz

-5 73 146 MHz

-6 81 162 MHz

Notes:
1. Measurements taken using speed files from ISE 4.2i Service Pack 3. The standard design with

-6 speed grade devices uses the speed file of stepping 1.
2. The XC2V40, XC2V1000, XC2V3000, XC2V4000, and XC2V6000 devices have both standard

and enhanced multipliers. Enhanced multipliers require speed files stepping 1.
3. The XC2V80, XC2V250, XC2V1500, XC2V2000, and XC2V8000 devices have only enhanced

multipliers. Enhanced multipliers require speed files stepping 1.
4. 16 x 16 bit non-pipelined multiplier is instantiated using MULT18X18 with the two input MSBs

tied to 0.
5. The unconstrained design uses timing constraints but no location constraints. The constrained

design uses timing constraints and location constraints.

Table 2: Pipelined 16 x 16 Bit Multiplier Performance Improvement
(Unconstrained vs. Constrained)5

Device
Speed
Grade

Unconstrained Constrained Units

Standard Design -4 87 118 MHz

-5 101 139 MHz

-6 133 246 MHz

Enhanced Design -4 103 190 MHz

-5 117 215 MHz

-6 133 246 MHz

Notes:
1. Measurements taken using speed files from ISE 4.2i Service Pack 3. The standard design with

-6 speed grade devices uses the speed file of stepping 1.
2. The XC2V40, XC2V1000, XC2V3000, XC2V4000, and XC2V6000 devices have both standard

and enhanced multipliers. Enhanced multipliers require speed files stepping 1.
3. The XC2V80, XC2V250, XC2V1500, XC2V2000, and XC2V8000 devices have only enhanced

multipliers. Enhanced multipliers require speed files stepping 1.
4. 16 x 16 bit pipelined multiplier is instantiated using MULT18X18S with the two input MSBs tied

to 0.
5. The unconstrained design uses timing constraints but no location constraints. The constrained

design uses timing constraints and location constraints.

Table 1: Non-Pipelined 16 x 16 Bit Multiplier Performance Improvement
(Unconstrained vs. Constrained)5 (Continued)

Device
Speed
Grade

Unconstrained Constrained Units

http://www.xilinx.com

Full 16-bit by 16-bit Multiplier Overview

XAPP636 (v1.2) June 11, 2003 www.xilinx.com 3
1-800-255-7778

R

For the best results, target the net delays across the multiplier input port to be as short and as
fast as possible. If some input nets are longer than others, it is best to place the longer nets on
the MSBs of the input port. The net delays across the inputs should be relatively equal.

The output port pattern simply places all the outputs two slice columns to the left and right of the
multiplier. This is similar to the input ports. A UCF file is used to guarantee the fastest net delay
between register to multiplier.

The net delays across the multiplier output port should be short and as fast as possible. If some
output nets are longer than others, place the longer nets on the LSBs of the output port.

SAMPLE_WRAPPER_MULT16X16S_PLUS

The sample_wrapper_mult16X16S_plus design file illustrates how to call the
MULT16X16S_PLUS in a module.

SAMPLE_WRAPPER_MULT16X16S_PLUS.UCF

The example .ucf file, sample_wrapper_mult16X16S_plus.ucf, is used to control the
placement of the multiplier block and registers for MULT16X16S_PLUS. It shows the
placement of the RLOC_ORIGIN of the registers and the multiplier block. For other desired
multiplier locations, this file must be manually changed to accommodate the new locations. The
first step in changing the file involves finding the specific multiplier block to place to, followed by
placing the RLOC_ORIGIN on the lowest slice position on the column to the left of the
multiplier. To view the layouts of the multiplier and registers, open a new FPGA editor design
and choose the appropriate part and package. Figure 1 shows a sample of the
MULT16X16S_PLUS.

http://www.xilinx.com

4 www.xilinx.com XAPP636 (v1.2) June 11, 2003
1-800-255-7778

Full 16-bit by 16-bit Multiplier Overview
R

Using the MAXDELAY attribute, each net between register to multiplier of the design is
constrained to be 500 ps or faster. The value of the delay is independent of the device speed
grade, and not all the nets will meet this constraint. However, this constraint allows the PAR
tool to select the fastest route between the registers and the multiplier.

Table 3 shows the improvement of net delays to and from the multiplier.

Figure 1: 16 X 16 Multiplier Floorplan

x636_01_071002

Port A of Multiplier (input operand)

Port B of Multiplier (input operand)

Port P of Multiplier (output operand)

Location of RLOC_ORIGIN

Unusable Slices
*

*

B
L
O
C
K

R
A
M

M
U
L
T
I
P
L
I
E
R

http://www.xilinx.com

Full 18-bit by 18-bit Multiplier Overview

XAPP636 (v1.2) June 11, 2003 www.xilinx.com 5
1-800-255-7778

R

Full 18-bit by
18-bit Multiplier
Overview

Using the full 18-bit by 18-bit multiplier without constraints leads to a non-optimized
performance as illustrated on Table 4 and Table 5.

Table 3: Typical Performance Improvement in Net Delays of a 16 x 16 Bit Pipeline Multiplier Using an XC2V1000
(Unconstrained vs. Constrained)

Port
-4 Speed Grade -5 Speed Grade -6 Speed Grade

Units
Unconstrained Constrained Unconstrained Constrained Unconstrained Constrained

Input 4.932 0.761 4.355 0.662 3.824 0.602 ns

Output 3.869 0.689 3.277 0.599 2.980 0.544 ns

Notes:
1. All values are fastest net delays of unconstrained vs. slowest net delays of constrained in a 16 x 16 multiplier.
2. Net values are independent of stepping and multiplier type.

Table 4: Non-Pipelined 18 x 18 Bit Multiplier Performance Improvement
(Unconstrained vs. Constrained)5

Device
Speed
Grade

Unconstrained Constrained Units

Standard Design -4 51 76 MHz

-5 60 92 MHz

-6 83 147 MHz

Enhanced Design -4 65 116 MHz

-5 74 133 MHz

-6 83 147 MHz

Notes:
1. Measurements taken using speed files from ISE 4.2i Service Pack 3. The standard design with

-6 speed grade devices uses the speed file of stepping 1.
2. The XC2V40, XC2V1000, XC2V3000, XC2V4000, and XC2V6000 devices have both standard

and enhanced multipliers. Enhanced multipliers require speed files stepping 1.
3. The XC2V80, XC2V250, XC2V1500, XC2V2000, and XC2V8000 devices have only enhanced

multipliers. Enhanced multipliers require speed files stepping 1.
4. 18 x 18 Bit non-pipelined multiplier is instantiated using MULT18X18.
5. The unconstrained design uses timing constraints but no location constraints. The constrained

design uses timing constraints and location constraints.

http://www.xilinx.com

6 www.xilinx.com XAPP636 (v1.2) June 11, 2003
1-800-255-7778

Full 18-bit by 18-bit Multiplier Overview
R

MULT18X18S_PLUS

The MULT18X18S_PLUS module contains an instantiated and pipelined I/O MULT18X18S
design using both the input and output of a basic Xilinx register primitive (FDR). Each register
uses RLOC and BEL attributes.

The input pattern has all of the input to port A of the multiplier on a slice column to the left of the
multiplier, while the input to port B of the multiplier is on a slice column to the right of the
multiplier. The design minimizes the distance of the register to the input ports to ensure high-
speed results. In addition, timing constraints are used in the UCF file on the nets of the design
to guarantee the fastest register to multiplier net delay.

Two MSBs of both A and B are placed slightly to the left of the top of the left column because
the two MSBs will not fit in the same column without interfering with the next adjacent multiplier
block. However, the two MSBs are also placed very close to the MSB input ports of the
multiplier switch matrix.

For the best results, target the net delays across the multiplier input port to be as short and as
fast as possible. If some input nets are longer than others, it is best to place the longer nets on
the MSBs of the input port. The net delays across the inputs should be relatively equal.

The output port pattern simply places all the outputs two slice columns to the left and right of the
multiplier. This is similar to the input ports. A UCF file is used to guarantee the fastest net delay
between register to multiplier.

Output bits 0, 8,16, and 24 are placed to the left of the left-most column. This was also done
because fitting all 36 registers in the same columns without interfering with the adjacent
multiplier block is impossible. These bits are placed close to the appropriate switch matrices
that are closest to the corresponding bits.

The net delays across the multiplier output port should be short and as fast as possible. If some
output nets are longer than others, place the longer nets on the LSBs of the output port.

Table 5: Pipelined 18 x 18 Bit Multiplier Performance Improvement
(Unconstrained vs. Constrained)5

Device
Speed
Grade

Unconstrained Constrained Units

Standard Design -4 83 109 MHz

-5 97 127 MHz

-6 133 232 MHz

Enhanced Design -4 103 180 MHz

-5 116 205 MHz

-6 133 232 MHz

Notes:
1. Measurements taken using speed files from ISE 4.2i Service Pack 3. The standard design with

-6 speed grade devices uses the speed file of stepping 1.
2. The XC2V40, XC2V1000, XC2V3000, XC2V4000, and XC2V6000 devices have both standard

and enhanced multipliers. Enhanced multipliers require speed files stepping 1.
3. The XC2V80, XC2V250, XC2V1500, XC2V2000, and XC2V8000 devices have only enhanced

multipliers. Enhanced multipliers require speed files stepping 1.
4. 18 x 18 bit pipelined multiplier is instantiated using MULT18X18S.
5. The unconstrained design uses timing constraints but no location constraints. The constrained

design uses timing constraints and location constraints.

http://www.xilinx.com

Full 18-bit by 18-bit Multiplier Overview

XAPP636 (v1.2) June 11, 2003 www.xilinx.com 7
1-800-255-7778

R

SAMPLE_WRAPPER_MULT18X18S_PLUS

The sample_wrapper_mult18X18S_plus design file illustrates how to call the
MULT18 X 18S_PLUS in a module.

SAMPLE_WRAPPER_MULT18X18S_PLUS.UCF

The example .ucf file, sample_wrapper_mult18X18S_plus.ucf, is used to control the
placement of the multiplier block and registers for MULT18X18S_PLUS. It shows the
placement of the RLOC_ORIGIN of the registers and the multiplier block. For other desired
multiplier locations, this file must be manually changed to accommodate the new locations. The
first step in changing the file involves finding the specific multiplier block to place to, followed by
placing the RLOC_ORIGIN on the lowest slice position on the column to the left of the
multiplier. To view the layouts of the multiplier and registers, open a new FPGA editor design
and choose the appropriate part and package. Figure 2 shows a sample of the
MULT18X18S_PLUS.

When using RLOC_ORIGIN and RLOC on the 18 x 18 bit multiplier, about 10 slices will be
unusable for every multiplier used. This is because these slices are reserved for the RPM set.
The RPM set is bordered by the X and Y, minimum and maximum location of the RLOC.

Using the MAXDELAY attribute, each net between register to multiplier of the design is
constrained to be 500 ps or faster. The value of the delay is independent of the device speed
grade, and not all the nets will meet this constraint. However, this constraint allows the PAR
tool to select the fastest route between the registers and the multiplier.

Figure 2: 18 X 18 Multiplier Floorplan

x636_02_062702

Port A of Multiplier (input operand)

Port B of Multiplier (input operand)

Port P of Multiplier (output operand)

Location of RLOC_ORIGIN

B
L
O
C
K

R
A
M

M
U
L
T
I
P
L
I
E
R

*

*

http://www.xilinx.com

8 www.xilinx.com XAPP636 (v1.2) June 11, 2003
1-800-255-7778

Smaller than 16-bit by 16-bit Pipeline Multipliers
R

Unlike the unusable 10 slices, the BRAM is still usable. However due to the heavy usage of the
shorter nets into the multiplier, there is a possibility of a non-optimal BRAM performance.

Table 6 shows the typical performance improvement in net delays to and from the multiplier.

Smaller than
16-bit by 16-bit
Pipeline
Multipliers

Using the current methodology of placing the I/O registers into the multiplier will not result in a
performance gain as significant as changing the bit width from 18 bits to 16 bits. There are
important factors to consider when designing multipliers with less than an 18-bit by 18-bit input.
Since the LSB is critical for fast computation, the LSBs of the input should be placed close to
the switch matrices that are close to the input port of the multipliers. Similarly, the MSBs of the
output should be placed close to the output of the multipliers since the MSB of the result is the
slowest to be computed.

Non-Pipelined

For the best performance, use the constraints given in the 16 x 16 multiplier example utilizing
the inputs and outputs. Both input and output net delays need to be as short as possible for the
highest clock rate.

Pipelined

For the best performance, use the constraints given in the 16 x 16 multiplier example utilizing
the inputs and outputs. In the small pipelined multipliers, the input net delays are more
important than the output net delays because the setup and hold time of the multiplier will be
greater than the clock to out timing. Lab simulations show multiplier speed improvement when
shifting the inputs to make them centered around input bit 12. These improvements are not
reflected in the timing analysis because the setup and hold of the multiplier is the same
regardless of the input chosen or how many inputs are used.

Multiplier
Performance
Comparisons

A suitable Virtex-II device is chosen based upon targeted design performance expectations.
Table 7 shows typical net delay performances available from a multiplier listed by device speed
grade and multiplier width.

Table 6: Typical Performance Improvement in Net Delays of an 18 x 18 Pipeline Multiplier Using an XC2V1000
(Unconstrained vs. Constrained)

Port

-4 Speed Grade -5 Speed Grade -6 Speed Grade
Unit

sUnconstraine
d

Constrained
Unconstraine

d
Constrained

Unconstraine
d

Constrained

Input 4.932 1.062 4.355 0.925 3.824 0.840 ns

Output 3.869 0.96 3.277 0.836 2.980 0.759 ns

Notes:
1. All values are fastest net delays of unconstrained vs. slowest net delays of constrained in a 18 x 18 multiplier.
2. Net values are independent of stepping and multiplier type.

Table 7: Optimal Net Delays of Pipeline Multiplier

Multiplier
Configuration and

Port Location

-4 Speed
Grade

-5 Speed
Grade

-6 Speed
Grade Units

Min/Max Min/Max Min/Max

16 x 16 at Input Ports 456/761 397/662 361/602 ps

16 x 16 at Output Ports 639/695 556/605 505/550 ps

http://www.xilinx.com

Multiplier Performance Comparisons

XAPP636 (v1.2) June 11, 2003 www.xilinx.com 9
1-800-255-7778

R

The enhanced multiplier uses a slightly different architecture that allows the multiplier block to
have a shorter logic delay. The data for these tables were derived using the Xilinx Integrated
Software Environment (ISE) 4.2I SP2 software. Comparisons between the original and
enhanced multipliers in a Virtex-II device are summarized in Table 8 and Table 9. These tables
also illustrate the performance difference between non-pipelined and pipelined 18 x 18
multiplier primitives.

18 x 18 at Input Ports 456/1062 397/925 361/836 ps

18 x 18 at Output Ports 638/960 556/836 505/759 ps

Notes:
1. All values apply to all devices with margin of error of ±5 ps

Table 8: Detailed Performance of Non-Pipelined Multipliers1

Device and
Configuration2,

3

Speed
Grade

TMULT
(ns)6

TCKO + NET + TMULT +
NET + TDICK (ns)7

Maximum
Frequency

(MHz)

16 x 16
Standard
Design

-4 9.527 11.915 84

-5 7.82 9.896 101

-6 4.272 6.160 162

16 x 16
Enhanced
Design

-4 5.412 7.842 127

-5 4.708 6.822 146

-6 4.272 6.193 162

18 x 18
Standard
Design

-4 10.36 13.049 76

-5 8.5 10.839 92

-6 4.660 6.786 147

18 x 18
Enhanced
Design

-4 5.904 8.599 116

-5 5.135 7.48 133

-6 4.66 6.791 147

Notes:
1. Measurements taken using speed files from ISE 4.2i Service Pack 3. The standard design with -6 speed

grade devices uses the speeds file of stepping 1.
2. The XC2V40, XC2V1000, XC2V3000, XC2V4000, and XC2V6000 devices have both standard and

enhanced multipliers. Enhanced multipliers require speed files stepping 1.
3. The XC2V80, XC2V250, XC2V1500, XC2V2000, and XC2V8000 devices have only enhanced multipliers.

Enhanced multipliers require speed files stepping 1.
4. A 16 x 16 bit non-pipelined multiplier is instantiated using MULT18X18 with the two input MSBs tied to 0.
5. A 18 x 18 bit non-pipelined multiplier is instantiated using MULT18X18.
6. Delay across multiplier block.
7. Register to multiplier to register delay.

Table 7: Optimal Net Delays of Pipeline Multiplier (Continued)

Multiplier
Configuration and

Port Location

-4 Speed
Grade

-5 Speed
Grade

-6 Speed
Grade Units

Min/Max Min/Max Min/Max

http://www.xilinx.com

10 www.xilinx.com XAPP636 (v1.2) June 11, 2003
1-800-255-7778

Virtex-II Pipeline Accumulator
R

Virtex-II
Pipeline
Accumulator

The carry-chain circuitry in Virtex-II slices is optimized for high-speed computation and DSP
applications. However, when the circuitry is used inappropriately, a designer might not be able
to maximize its performance. This accumulator provides ways, using location and timing
constraints, to prevent such a scenario.

Using the guidelines and example design attached, it is possible to create an optimized
accumulator. With this design, it is also possible to create a multiply-accumulate unit.

Overview of the Accumulator Unit

The accumulator structure is designed with a carry-chain adder function in mind. The circuitry
consists of basic logic gates implemented in LUT and MUXCY functions. The adder is
structured in such a way that its output is fed back into the one data input of the adder. Thus,
the adder needs only one data input and control signal from the user. In addition, the adder is
pipelined to ensure that the implementation has a high clock frequency.

The accumulator also has the capability to insert a specific value by supplying new data at the
input and asserting the LOAD signal.

Using the carry-chain implementation, performance of the accumulator increases linearly with
input/output width. Without proper placement and timing constraints, the accumulator is less

Table 9: Detailed Performance of Pipelined Multipliers 1

Device and
Configuration2

,3

Speed
Grade

TMULTCK
(ns)6

TCKO + NET
+ TMULIDCK

(ns)7

TMULTCK
+NET +TDICK

(ns)8

Maximum
Frequency

(MHz)

16 x 16
Standard
Design

-4 7.368 5.218 8.427 118

-5 6.27 4.604 7.191 139

-6 2.655 4.051 3.492 246

16 x 16
Enhanced
Design

-4 3.364 5.254 4.429 190

-5 2.926 4.636 3.853 215

-6 2.655 4.079 3.497 246

18 x 18
Standard
Design

-4 8.112 5.519 9.171 109

-5 6.91 4.867 7.831 127

-6 3.043 4.289 3.880 232

18 x 18,
Enhanced
Design

-4 3.856 5.53 4.921 180

-5 3.354 4.876 4.281 205

-6 3.043 4.298 3.895 232

Notes:
1. Measurements taken using speed files from ISE 4.2i Service Pack 3. The standard design with -6 speed

grade devices uses the speeds file of stepping 1.
2. The XC2V40, XC2V1000, XC2V3000, XC2V4000, and XC2V6000 devices have both standard and

enhanced multipliers. Enhanced multipliers require speed files stepping 1.
3. The XC2V80, XC2V250, XC2V1500, XC2V2000, and XC2V8000 devices have only enhanced multipliers.

Enhanced multipliers require speed files stepping 1.
4. A 16 x 16 bit pipelined multiplier is instantiated using MULT18X18S with the two input MSBs tied to 0.
5. A 18 x 18 bit pipelined multiplier is instantiated using MULT18X18S.
6. Clock-to-Out delay across multiplier block.
7. Register to multiplier to register delay.
8. Output of multiplier to register delay.

http://www.xilinx.com

Virtex-II Pipeline Accumulator

XAPP636 (v1.2) June 11, 2003 www.xilinx.com 11
1-800-255-7778

R

likely to reach peak performance. The attached HDL files provide an example of a speed-
optimized design implementation.

ACCUM.V

In the zip file there are multiple accum.v files using different input/output bit widths (for
example, 32, 36, 40, and 48 bits). A variety of files were made for performance testing
purposes, and they can be used as an example on how to expand and contract the bit widths
of the accumulator in a verilog implementation. These files contain designs in which the
accumulator is implemented using basic Xilinx primitives. Note that for any given accumulator,
the input bit width is always equal to the output bit width.

Each component for the accumulator uses RLOC and BEL attributes. This helps achieve
optimal routing and performance. The structural pattern of the accumulator is always two
columns of slices, with its height depending on the input/output bit width. In the design
provided, the left column is for input data, while the right column is for output data. See Figure 3
for a layout sample.

Expanding or contracting the accumulator size requires minor modifications. The bulk of the
change is to add or subtract components that have L0 or L1 in their prefix. Other modifications
include setting the RLOC value for component U5, and setting the load_r index for components
with an L1_U0 prefix. Directions for computing the values are given in the comments of the
verilog file. Since the accumulator size is a linear function of the input/output bit width, the
number of slices required is easily calculated, as follows: TOTAL_SLICE = BIT_WIDTH + 3.

When implementing the accumulator in the FPGA, the user should provide an RLOC_ORIGIN
value and a period constraint.

Figure 3: Accumulator Column

x636_03_061003

Data input column

Data output column

Location of RLOC_ORIGIN

http://www.xilinx.com

12 www.xilinx.com XAPP636 (v1.2) June 11, 2003
1-800-255-7778

Virtex-II Pipeline Accumulator
R

An RLOC_ORIGIN constraint allows the user to put the accumulator in a desired location within
the FPGA. The designer might have to find this value manually. Doing so involves finding the
area in the FPGA where the accumulator is to be placed, followed by placing RLOC_ORIGIN
on the lowest slice position in the left column of the two slice columns. To view the layout slices,
open a new FPGA editor design and choose the appropriate part and package. Note that due
to the relative location placement, one slice becomes unusable.

The period constraint allows the user to obtain an optimized clock frequency. This constraint
forces Place-and-Route tools to use the most efficient routing resources for the accumulator.
The value of the period constraint varies with the bit width of the accumulator. Fortunately, the
period constraint value is also a linear function of the input/output bit width. The function for a
part with a -5 speed grade is 4.75 + 0.25(BIT_WIDTH - 32)/4. Note that this equation is for bit
widths that are a multiple of 4. The margin of error for this equation is +/-0.25 ns.

MAC.V

As mentioned, the accumulator can be attached to a pipelined multiplier (see XAPP636) to
create a MAC. There are multiple MAC designs for testing purposes (36, 40, and 48-bit). They
are located in directories with a _mac suffix. The verilog files show sample code to create a
MAC. Other than connecting the ports, it is worth noting that for an accumulator with a bit width
larger than the multiplier output bit width, the MSB of the multiplier output must be connected to
the remaining MSBs of the accumulator.

In addition to the constraints needed for the accumulator (described in the previous section),
the user should also provide the same constraints listed in XAPP636. After following the rules
of placing the embedded multiplier, it is suggested that the user place the RLOC_ORIGIN of
the accumulator four slices to the right of the bottom right corner of the multiplier. Placing the
accumulator in this fashion makes the design more compact and places the accumulator right
next to the multiplier. See Figure 4 for a layout sample.

For the timing constraint, use the equation described in the previous section to optimize routing
for the accumulator. Most likely, the accumulator is much faster than the embedded multiplier.

http://www.xilinx.com

Virtex-II Pipeline Accumulator

XAPP636 (v1.2) June 11, 2003 www.xilinx.com 13
1-800-255-7778

R

MULTI_MAC.V

For multiple MACs, see this sample file located in the multiple_48bit_mac directory. The
rule for constraints is the same as for a single MAC, with the exception of accumulator
placement.

A common arrangement for placing multiple multipliers is to place them in one column of
multipliers. If this is done, the rule of placing an accumulator next to the multiplier for a MAC is
not applicable for accumulator bit widths greater than 8. This is because the accumulators
overlap each other. To avoid this, the following must be done:

1. Place the multiplier accumulator four slices away from the bottom of the multiplier column.

2. Place the second accumulator six slices away from the bottom.

3. Place the next accumulator eight slices away from the bottom, and so on.

This allows a more compact placement of MACs without hurting performance (since it is
assumed that the delay across the multiplier is greater than net delay and accumulator
combined). See Figure 5 for a layout sample.

Figure 4: Multiplier and Accumulator

x636_04_061003

B
L
O
C
K

R
A
M

M
U
L
T
I
P
L
I
E
R

*

Port A of Multiplier (input operand)

Port B of Multiplier (input operand)

Port P of Multiplier (output operand)

Location of RLOC_ORIGIN for Multiplier*

Data Input Column of Accumulator

Data Output Column of Accumulator

Location of RLOC_ORIGIN for
Accumulator

http://www.xilinx.com

14 www.xilinx.com XAPP636 (v1.2) June 11, 2003
1-800-255-7778

Virtex-II Pipeline Accumulator
R

Figure 5: Multiple MAC Units

x636_05_061003

B
L
O
C
K

R
A
M

M
U
L
T
I
P
L
I
E
R

*

Port A of Multiplier (input operand)

Port B of Multiplier (input operand)

Port P of Multiplier (output operand)

Location of RLOC_ORIGIN for Multiplier*

Data Input Column of Accumulator 1

Data Output Column of Accumulator 1

Location of RLOC_ORIGIN for
Accumulator1

B
L
O
C
K

R
A
M

M
U
L
T
I
P
L
I
E
R

*

#1
#1

#2
#2

Data Input Column of Accumulator 2

Data Output Column of Accumulator 2

Location of RLOC_ORIGIN for
Accumulator12

http://www.xilinx.com

Accumulator Reference Design

XAPP636 (v1.2) June 11, 2003 www.xilinx.com 15
1-800-255-7778

R

Accumulator
Reference
Design

The VHDL version of the accumulator is much easier to work with. To create different bit
widths, the user needs simply to change the value of the width variable to obtained desired bit
widths. All constraint rules from the verilog version are applicable to the VHDL version. In
addition to the design source code, an rloc_package.vhd file is provided to allow easier
usage of some placement constraints.

Accumulator
Performance
Summary

Timing Issues

Data must arrive at the input port of the accumulator before the next positive clock edge. All
new output always appears at the next positive clock edge. For the accumulator to add the
input, ENABLE must be asserted HIGH. Asserting the ENABLE before a positive edge occurs
is recommended. Whenever ENABLE is deasserted, the accumulator does not add the value at
the input. To override the output with a new input, the user must assert both ENABLE and
LOAD to HIGH. If ENABLE is deasserted, the accumulator does not load the new value.

Table 10: Performance of Accumulator in Virtex-II Devices at Various Bit Widths and
Speed Grades

Stand Alone Accumulator Frequency Total Slices

32-bit Accumulator -4 186MHz 35

32-bit Accumulator -5 214MHz 35

32-bit Accumulator -6 235MHz 35

36-bit Accumulator -4 176MHz 39

36-bit Accumulator -5 202MHz 39

36-bit Accumulator -6 223MHz 39

40-bit Accumulator -4 167MHz 43

40-bit Accumulator -5 192MHz 43

40-bit Accumulator -6 212MHz 43

48-bit Accumulator -4 160MHz 51

48-bit Accumulator -5 184MHz 51

48-bit Accumulator -5 204MHz 51

Table 11: Performance of MAC in Virtex-II Devices at Various Bit Widths and Speed
Grades

Design Frequency Total Slices

16x16 MULT, 36-bit Accumulator -4 176MHz 72

16x16 MULT, 36-bit Accumulator -5 202MHz 72

16x16 MULT, 36-bit Accumulator -6 223MHz 72

18x18 MULT, 40-bit Accumulator -4 166MHz 82

18x18 MULT, 40-bit Accumulator -5 191MHz 82

18x18 MULT, 40-bit Accumulator -6 210MHz 82

18x18 MULT, 48-bit Accumulator -4 159MHz 90

18x18 MULT, 48-bit Accumulator -5 183MHz 90

18x18 MULT, 48-bit Accumulator -6 202MHz 90

http://www.xilinx.com

16 www.xilinx.com XAPP636 (v1.2) June 11, 2003
1-800-255-7778

Conclusion
R

Conclusion Optimized pipeline multiplier and accumulator is achieved when using the guidelines and
example design found on the Xilinx FTP site at xapp636.zip.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

07/30/02 1.0 Initial Xilinx release.

11/04/02 1.1 Updates to almost all the tables.

06/11/03 1.2 Added “Virtex-II Pipeline Accumulator,” “Accumulator Reference
Design,” and “Accumulator Performance Summary.”

ftp://ftp.xilinx.com/pub/applications/xapp/xapp636.zip
http://www.xilinx.com

	Optimal Pipelining of I/O Ports of the Virtex-II Multiplier
	Summary
	Full 16-bit by 16-bit Multiplier Overview
	MULT16X16S_PLUS
	SAMPLE_WRAPPER_MULT16X16S_PLUS
	SAMPLE_WRAPPER_MULT16X16S_PLUS.UCF

	Full 18-bit by 18-bit Multiplier Overview
	MULT18X18S_PLUS
	SAMPLE_WRAPPER_MULT18X18S_PLUS
	SAMPLE_WRAPPER_MULT18X18S_PLUS.UCF

	Smaller than 16-bit by 16-bit Pipeline Multipliers
	Non-Pipelined
	Pipelined

	Multiplier Performance Comparisons
	Virtex�II Pipeline Accumulator
	Overview of the Accumulator Unit
	ACCUM.V
	MAC.V
	MULTI_MAC.V

	Accumulator Reference Design
	Accumulator Performance Summary
	Timing Issues

	Conclusion

