
XAPP464 (v1.0) July 8, 2003 www.xilinx.com 1
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary Each Spartan™-3 Configurable Logic Block (CLB) contains up to 64 bits of single-port RAM or
32 bits of dual-port RAM. This RAM is distributed throughout the FPGA and is commonly called
“distributed RAM” to distinguish it from block RAM. Distributed RAM is fast, localized, and ideal
for small data buffers, FIFOs, or register files. This application note describes the features and
capabilities of distributed RAM and illustrates how to specify the various options using the Xilinx
CORE Generator™ system or via VHDL or Verilog instantiation.

Introduction In addition to the embedded 18Kbit block RAMs, Spartan-3 FPGAs feature distributed RAM
within each Configurable Logic Block (CLB). Each SLICEM function generator or LUT within a
CLB resource optionally implements a 16-deep x 1-bit synchronous RAM. The LUTs within a
SLICEL slice do not have distributed RAM.

Distributed RAM writes synchronously and reads asynchronously. However, if required by the
application, use the register associated with each LUT to implement a synchronous read
function. Each 16 x 1-bit RAM is cascadable for deeper and/or wider memory applications, with
a minimal timing penalty incurred through specialized logic resources.

Spartan-3 CLBs support various RAM primitives up to 64-deep by 1-bit-wide. Two LUTs within
a SLICEM slice combine to create a dual-port 16x1 RAM—one LUT with a read/write port, and
a second LUT with a read-only port. One port writes into both 16x1 LUT RAMs simultaneously,
but the second port reads independently.

Distributed RAM is crucial to many high-performance applications that require relatively small
embedded RAM blocks, such as FIFOs or small register files. The Xilinx CORE Generator™
software automatically generates optimized distributed RAMs for the Spartan-3 architecture.
Similarly, CORE Generator creates Asynchronous and Synchronous FIFOs using distributed
RAMs.

Single-Port and Dual-Port RAMs

Data Flow

Distributed RAM supports the following memory types:

• Single-port RAM with synchronous write and asynchronous read. Synchronous reads are
possible using the flip-flop associated with distributed RAM.

• Dual-port RAM with one synchronous write and two asynchronous read ports. As above,
synchronous reads are possible.

As illustrated in Figure 1, dual-port distributed RAM has one read/write port and an
independent read port.

Application Note: Spartan-3 FPGA Family

XAPP464 (v1.0) July 8, 2003

Using Look-Up Tables as Distributed RAM
in Spartan-3 FPGAs

R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

2 www.xilinx.com XAPP464 (v1.0) July 8, 2003
1-800-255-7778

Introduction
R

Any write operation on the D input and any read operation on the SPO output can occur
simultaneously with and independently from a read operation on the second read-only port,
DPO.

Write Operations

The write operation is a single clock-edge operation, controlled by the write-enable input, WE.
By default, WE is active High, although it can be inverted within the distributed RAM. When the
write enable is High, the clock edge latches the write address and writes the data on the D input
into the selected RAM location.

When the write enable is Low, no data is written into the RAM.

Read Operation

A read operation is purely combinatorial. The address port—either for single- or dual-port
modes—is asynchronous with an access time equivalent to a LUT logic delay.

Read During Write

When synchronously writing new data, the output reflects the data being written to the
addressed memory cell, which is similar to the WRITE_MODE=WRITE_FIRST mode on the
Spartan-3 block RAMs. The timing diagram in Figure 2 illustrates a write operation with the
previous data read on the output port, before the clock edge, followed by the new data.

Figure 1: Single-Port and Dual-Port Distributed RAM

Figure 2: Write Timing Diagram

D

WCLK

Single-Port RAM

O
D

WCLK

Dual-Port RAM

SPO

DPO

x464_01_062503

R/W Port

Write Read

Address Address

Address

R/W Port

Read Port

Write Read

Read

tread
twrite

Previous
Data

d

d

aa

MEM(aa)

New
Data

tread

WCLK

DATA_IN

ADDRESS

WRITE_EN

DATA_OUT

x464_02_070303

http://www.xilinx.com

Characteristics

XAPP464 (v1.0) July 8, 2003 www.xilinx.com 3
1-800-255-7778

R

Characteristics • A write operation requires only one clock edge.

• A read operation requires only the logic access time.

• Outputs are asynchronous and dependent only on the LUT logic delay.

• Data and address inputs are latched with the write clock and have a setup-to-clock timing
specification. There is no hold time requirement.

• For dual-port RAM, the A[#:0] port is the write and read address, and the DPRA[#:0] port
is an independent read-only address.

Compatibility
with Other
Xilinx FPGA
Families

Each Spartan-3 distributed RAM operates identically to the distributed RAM found in Virtex™,
Virtex-E, Spartan-II, Spartan-IIE, Virtex-II, and Virtex-II Pro FPGAs.

Table 1 shows the basic memory capabilities embedded within the CLBs on various Xilinx
FPGA families. Like Virtex-II/Pro FPGAs, Spartan-3 CLBs have eight LUTs and implement 128
bits of ROM memory. Like the Virtex/E and Spartan-II/IIE FPGAs, Spartan-3 CLBs have 64 bits
of distributed RAM. Although the Spartan-3 and Virtex-II/Pro CLBs are identical for logic
functions, the Spartan-3 CLBs have half the amount of distributed RAM within each CLB.

Table 2 lists the various single- and dual-port distributed RAM primitives supported by the
different Xilinx FPGA families. For each type of RAM, the table indicates how many instances of
a particular primitive fit within a single CLB. For example, two 32x1 single-port RAM primitives
fit in a single Spartan-3 CLB. Similarly, two 16x1 dual-port RAM primitives fit in a Spartan-3
CLB but a single 32x1 dual-port RAM primitive does not.

Table 1: Distributed Memory Features by FPGA Family

Feature
Spartan-3

Family

Virtex/Virtex-E,
Spartan-II/Spartan-IIE

Families

Virtex-II,
Virtex-II Pro

Families

LUTs per CLB 8 4 8

ROM bits per CLB 128 64 128

Single-port RAM bits per CLB 64 64 128

Dual-port RAM bits per CLB 32 32 64

Table 2: Single- and Dual-port RAM Primitives Supported in a CLB by Family

Family
Single-Port RAM Dual-Port RAM

16x1 32x1 64x1 128x1 16x1 32x1 64x1

Spartan-3 4 2 1 2

Spartan-II/IIE

Virtex/E

4 2 1 2

Virtex-II/Pro 8 4 2 1 4 2 1

http://www.xilinx.com

4 www.xilinx.com XAPP464 (v1.0) July 8, 2003
1-800-255-7778

Library Primitives
R

Library
Primitives

There are four library primitives that support Spartan-3 distributed RAM, ranging from 16 bits
deep to 64 bits deep. All the primitives are one bit wide. Three primitives are single-port RAMs
and one primitive is dual-port RAM, as shown in Table 3.

The input and output data are one bit wide. However, several distributed RAMs, connected in
parallel, easily implement wider memory functions.

Figure 3 shows generic single-port and dual-port distributed RAM primitives. The A[#:0] and
DPRA[#:0] signals are address buses.

As shown in Table 4, wider library primitives are available for 2-bit and 4-bit RAMs.

Table 3: Single-Port and Dual-Port Distributed RAMs

Primitive
RAM Size

(Depth x Width)
Type Address Inputs

RAM16X1S 16 x 1 Single-port A3, A2, A1, A0

RAM32X1S 32 x 1 Single-port A4, A3, A2, A1, A0

RAM64X1S 64 x 1 Single-port A5, A4, A3, A2, A1, A0

RAM16X1D 16 x 1 Dual-port A3, A2, A1, A0

Figure 3: Single-Port and Dual-Port Distributed RAM Primitives

Table 4: Wider Library Primitives

Primitive
RAM Size

(Depth x Width)
Data Inputs Address Inputs Data Outputs

RAM16x2S 16 x 2 D1, D0 A3, A2, A1, A0 O1, O0

RAM32X2S 32 x 2 D1, D0 A4, A3, A2, A1, A0 O1, O0

RAM16X4S 16 x 4 D3, D2, D1, D0 A3, A2, A1, A0 O3, O2, O1, O0

DPRA[#:0]

A[#:0]

D

WE

WCLK

RAMyX1D

SPO

DPO

X464_03_062503

R/W Port

Read Port

RAMyX1S

O

A[#:0]

D

WE

WCLK

http://www.xilinx.com

Signal Ports

XAPP464 (v1.0) July 8, 2003 www.xilinx.com 5
1-800-255-7778

R

Signal Ports Each distributed RAM port operates independently of the other while reading the same set of
memory cells.

Clock — WCLK

The clock is used for synchronous writes. The data and the address input pins have setup times
referenced to the WCLK pin.

Enable — WE

The enable pin affects the write functionality of the port. An inactive Write Enable prevents any
writing to memory cells. An active Write Enable causes the clock edge to write the data input
signal to the memory location pointed to by the address inputs.

Address — A0, A1, A2, A3 (A4, A5)

The address inputs select the memory cells for read or write. The width of the port determines
the required address inputs.

Note: The address inputs are not a bus in VHDL or Verilog instantiations.

Data In — D

The data input provides the new data value to be written into the RAM.

Data Out — O, SPO, and DPO

The data output O on single-port RAM or the SPO and DPO outputs on dual-port RAM reflects
the contents of the memory cells referenced by the address inputs. Following an active write
clock edge, the data out (O or SPO) reflects the newly written data.

Inverting Control Pins

The two control pins, WCLK and WE, each have an individual inversion option. Any control
signal, including the clock, can be active at logic level 0 (negative edge for the clock) or at logic
level 1 (positive edge for the clock) without requiring other logic resources.

Global Set/Reset — GSR

The global set/reset (GSR) signal does not affect distributed RAM modules.

Global Write Enable — GWE

The global write enable signal, GWE, is asserted automatically at the end of device
configuration to enable all writable elements. The GWE signal guarantees that the initialized
distributed-RAM contents are not disturbed during the configuration process.

Because GWE is a global signal and automatically connected throughout the device, the
distributed RAM primitive does not have a GWE input pin.

http://www.xilinx.com

6 www.xilinx.com XAPP464 (v1.0) July 8, 2003
1-800-255-7778

Attributes
R

Attributes Content Initialization — INIT

By default, distributed RAM is initialized with all zeros during the device configuration
sequence. To specify [non-zero] initial memory contents after configuration, use the INIT
attributes. Each INIT is a hexadecimal-encoded bit vector, arranged from most-significant to
least-significant bit. In other words, the right-most hexadecimal character represents RAM
locations 3, 2, 1, and 0. Table 5 shows the length of the INIT attribute for each primitive.

Placement Location — LOC

Each Spartan-3 CLB contains four slices, each with its own location coordinate, as shown in
Figure 4. Distributed RAM fits only in SLICEMs slices. The ‘M’ in SLICEM indicates that the
slice supports memory-related functions and distinguishes SLICEMs from SLICELs. The ‘L’
indicates that the slice supports logic only.

When a LOC property is assigned to a distributed RAM instance, the Xilinx ISE software places
the instance in the specified location. Figure 4 shows the X,Y coordinates for the slices in a
Spartan-3 CLB. Again, only SLICEM slices support memory.

Distributed RAM placement locations use the slice location naming convention, allowing LOC
properties to transfer easily from array to array.

Table 5: INIT Attributes Length

Primitive Template INIT Attribute Length

RAM16X1S RAM_16S 4 digits

RAM32X1S RAM_32S 8 digits

RAM64X1S RAM_64S 16 digits

RAM16X1D RAM_16D 4 digits

Figure 4: SLICEM slices within Spartan-3 CLB

X1Y0

X1Y1

Reg

Reg

Reg Reg

RegReg

Logic/ROM
Distributed RAM

Shift Register

Logic/ROM only

X0Y1

X0Y0

SLICEM

LUT

LUT

x464_04_070803

LUT

LUT

Configurable Logic Block (CLB)

SLICEL

Reg

RegLUT

LUT

LUT

LUT

http://www.xilinx.com

Attributes

XAPP464 (v1.0) July 8, 2003 www.xilinx.com 7
1-800-255-7778

R

For example, the single-port RAM16X1S primitive fits in any LUT within any SLICEM. To place
the instance U_RAM16 in slice X0Y0, use the following LOC assignment:

INST "U_RAM16" LOC = "SLICE_X0Y0";

The 16x1 dual-port RAM16X1D primitive requires both 16x1 LUT RAMs within a single
SLICEM slice, as shown in Figure 5. The first 16x1 LUT RAM, with output SPO, implements the
read/write port controlled by address A[3:0] for read and write. The second LUT RAM
implements the independent read-only port controlled by address DPRA[3:0]. Data is
presented simultaneously to both LUT RAMs, again controlled by address A[3:0], WE, and
WCLK.

A 32x1 single-port RAM32X1S primitive fits in one slice, as shown in Figure 6. The 32 bits of
RAM are split between two 16x1 LUT RAMs within the SLICEM slice. The A4 address line
selects the active LUT RAM via the F5MUX multiplexer within the slice.

Figure 5: RAM16X1D Placement

D

A[3:0]

WE

WCLK

SPO

DPO

DPRA[3:0]

16x1
LUT
RAM
(Read/
Write)

16x1
LUT
RAM
(Read
Only)

Optional
Register

Optional
Register

SLICEM

x464_05_062603

http://www.xilinx.com

8 www.xilinx.com XAPP464 (v1.0) July 8, 2003
1-800-255-7778

Distributed RAM Design Entry
R

The 64x1 single-port RAM64X1S primitive occupies both SLICEM slices in the CLB. The read
path uses both F5MUX and F6MUX multiplexers within the CLB.

Distributed
RAM Design
Entry

To specify distributed RAM in an application, use one of the various design entry tools,
including the Xilinx CORE Generator software or VHDL or Verilog.

Xilinx CORE Generator System

The Xilinx CORE Generator system creates distributed memory designs for both single-port
and dual-port RAMs, ROMs, and even SRL16 shift-register functions.

The Distributed Memory module is parameterizable. To create a module, specify the
component name and choose to include or exclude control inputs, then choose the active
polarity for the control inputs.

Optionally, specify the initial memory contents. Unless otherwise specified, each memory
location initializes to zero. Enter user-specified initial values via a Memory Initialization File,
consisting of one line of binary data for every memory location. A default file is generated by the
CORE Generator system. Alternatively, create a coefficients file (.coe) as shown in Figure 7,
which not only defines the initial contents in a radix of 2, 10, or 16, but also defines all the other
control parameters for the CORE Generator system.

The output from the CORE Generator system includes a report on the options selected and the
device resources required. If a very deep memory is generated, then some external
multiplexing may be required; these resources are reported as the number of logic slices
required. For simulation purposes, the CORE Generator system creates VHDL or Verilog
behavioral models.

Figure 6: RAM32X1S Placement

D

A[3:0]

WE

WCLK

SLICEM

A4

O

F
5M

U
X

16x1
LUT
RAM

16x1
LUT
RAM

Optional
Register

Optional
Register

x464_06_062603

Figure 7: A Simple Coefficients File (.coe) Example for a Byte-Wide Memory

memory_initialization_radix=16;
memory_initialization_vector= 80, 0F, 00, 0B, 00, 0C, …, 81;

http://www.xilinx.com

Distributed RAM Design Entry

XAPP464 (v1.0) July 8, 2003 www.xilinx.com 9
1-800-255-7778

R

The CORE Generator synchronous and asynchronous FIFO modules support both distributed
and block RAMs.

• CORE Generator: Distributed Memory module
http://www.xilinx.com/ipcenter/catalog/logicore/docs/dist_mem.pdf

• CORE Generator: Synchronous FIFO module
http://www.xilinx.com/ipcenter/catalog/logicore/docs/sync_fifo.pdf

• CORE Generator: Asynchronous FIFO module
http://www.xilinx.com/ipcenter/catalog/logicore/docs/async_fifo.pdf

VHDL and Verilog

VHDL and Verilog synthesis-based designs can either infer or directly instantiate block RAM,
depending on the specific logic synthesis tool used to create the design.

Inferring Block RAM

Some VHDL and Verilog logic synthesis tools, such as the Xilinx Synthesis Tool (XST) and
Synplicity Synplify, infer block RAM based on the hardware described. The Xilinx ISE Project
Navigator includes templates for inferring block RAM in your design. To use the templates
within Project Navigator, select Edit ! Language Templates from the menu, and then select
VHDL or Verilog, followed by Synthesis Templates ! RAM from the selection tree. Finally,
select the preferred distributed RAM template. Cut and paste the template into the source code
for the application and modify it as appropriate.

It is still possible to directly instantiate distributed RAM, even if portions of the design infer
distributed RAM.

Instantiation Templates

For VHDL- and Verilog-based designs, various instantiation templates are available to speed
development. Within the Xilinx ISE Project Navigator, select Edit ! Language Templates
from the menu, and then select VHDL or Verilog, followed by Component Instantiation !
Distributed RAM from the selection tree. Cut and paste the template into the source code for
the application and modify it as appropriate.

There are also downloadable VHDL and Verilog templates available for all single-port and dual-
port primitives. The RAM_xS templates (where x = 16, 32, or 64) are single-port modules and
instantiate the corresponding RAMxX1S primitive. The ‘S’ indicates single-port RAM. The
RAM_16D template is a dual-port module and instantiates the corresponding RAM16X1D
primitive. The ‘D’ indicates dual-port RAM.

• VHDL Distributed RAM Templates
ftp://ftp.xilinx.com/pub/applications/xapp/xapp464_vhdl.zip

• Verilog Distributed RAM Templates
ftp://ftp.xilinx.com/pub/applications/xapp/xapp464_verilog.zip

The following are single-port templates:

• RAM_16S

• RAM_32S

• RAM_64S

The following is a dual-port template:

• RAM_16D

In VHDL, each template has a component declaration section and an architecture section.
Insert both sections of the template within the VHDL design file. The port map of the
architecture section must include the design signal names.

http://www.xilinx.com
http://www.xilinx.com/ipcenter/catalog/logicore/docs/dist_mem.pdf
http://www.xilinx.com/ipcenter/catalog/logicore/docs/sync_fifo.pdf
http://www.xilinx.com/ipcenter/catalog/logicore/docs/async_fifo.pdf
ftp://ftp.xilinx.com/pub/applications/xapp/xapp464_vhdl.zip
ftp://ftp.xilinx.com/pub/applications/xapp/xapp464_verilog.zip

10 www.xilinx.com XAPP464 (v1.0) July 8, 2003
1-800-255-7778

Distributed RAM Design Entry
R

Templates for the RAM_16S module are provided below as examples in both VHDL and Verilog
code.

VHDL Template Example

--
-- Module: RAM_16S
--
-- Description: VHDL instantiation template
-- Distributed RAM
-- Single Port 16 x 1
-- Can also be used for RAM16X1S_1
--
-- Device: Spartan-3 Family
--

--
-- Components Declarations:
--
component RAM16X1S
-- pragma translate_off
generic (
-- RAM initialization (“0” by default) for functional simulation:
INIT : bit_vector := X"0000"
);
-- pragma translate_on
port (
 D : in std_logic;
 WE : in std_logic;
 WCLK : in std_logic;
 A0 : in std_logic;
 A1 : in std_logic;
 A2 : in std_logic;
 A3 : in std_logic;
 O : out std_logic
);
end component;
--

--
-- Architecture section:
--
-- Attributes for RAM initialization ("0" by default):
attribute INIT: string;
--
attribute INIT of U_RAM16X1S: label is "0000";
--
-- Distributed RAM Instantiation
U_RAM16X1S: RAM16X1S
port map (
 D => , -- insert Data input signal
 WE => , -- insert Write Enable signal
 WCLK => , -- insert Write Clock signal
 A0 => , -- insert Address 0 signal
 A1 => , -- insert Address 1 signal
 A2 => , -- insert Address 2 signal
 A3 => , -- insert Address 3 signal
 O => -- insert Data output signal
);
--

http://www.xilinx.com

Distributed RAM Design Entry

XAPP464 (v1.0) July 8, 2003 www.xilinx.com 11
1-800-255-7778

R

Verilog Template Example

//
// Module: RAM_16S
//
// Description: Verilog instantiation template
// Distributed RAM
// Single Port 16 x 1
// Can also be used for RAM16X1S_1
//
// Device: Spartan-3 Family
//
//---
//
// Syntax for Synopsys FPGA Express
// synopsys translate_off
defparam
//RAM initialization (“0” by default) for functional simulation:
U_RAM16X1S.INIT = 16'h0000;
// synopsys translate_on
//Distributed RAM Instantiation
RAM16X1S U_RAM16X1S (
 .D(), // insert input signal
 .WE(), // insert Write Enable signal
 .WCLK(), // insert Write Clock signal
 .A0(), // insert Address 0 signal
 .A1(), // insert Address 1 signal
 .A2(), // insert Address 2 signal
 .A3(), // insert Address 3 signal
 .O() // insert output signal
);
// synthesis attribute declarations
/* synopsys attribute
INIT "0000"
*/

Wider Distributed RAM Modules

Table 6 shows the VHDL and Verilog distributed RAM examples that implement n-bit-wide
memories.

Initialization in VHDL or Verilog Codes

Distributed RAM structures can be initialized in VHDL or Verilog code for both synthesis and
simulation. For synthesis, the attributes are attached to the distributed RAM instantiation and
are copied in the EDIF output file to be compiled by Xilinx ISE Series tools. The VHDL code
simulation uses a generic parameter to pass the attributes. The Verilog code simulation uses
a defparam parameter to pass the attributes.

Table 6: VHDL and Verilog Submodules

Submodules Primitive Size Type

XC3S_RAM16XN_S_SUBM RAM16X1S 16 words x n-bit Single-port

XC3S_RAM32XN_S_SUBM RAM32X1S 32 words x n-bit Single-port

XC3S_RAM64XN_S_SUBM RAM64X1S 64 words x n-bit Single-port

XC3S_RAM16XN_D_SUBM RAM16X1D 16 words x n-bit Dual-port

http://www.xilinx.com

12 www.xilinx.com XAPP464 (v1.0) July 8, 2003
1-800-255-7778

Related Materials and References
R

Related
Materials and
References

Refer to the following documents for additional information:

• “Elements within a Slice” and “Function Generator” sections, Spartan-3 Data Sheet
(Module 2). Describes the CLB slice structure and distributed RAM function.
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf

• Libraries Guide, for ISE 5.2i by Xilinx, Inc. Distributed RAM primitives. Pages 1491-1571.
http://toolbox.xilinx.com/docsan/xilinx5/pdf/docs/lib/lib.pdf

Revision
History

The following table shows the revision history for this document.

Date Version Revision

07/08/03 1.0 Initial Xilinx release.

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf
http://toolbox.xilinx.com/docsan/xilinx5/pdf/docs/lib/lib.pdf

	Summary
	Introduction
	Single-Port and Dual-Port RAMs
	Data Flow

	Write Operations
	Read Operation
	Read During Write

	Characteristics
	Compatibility with Other Xilinx FPGA Families
	Library Primitives
	Signal Ports
	Clock — WCLK
	Enable — WE
	Address — A0, A1, A2, A3 (A4, A5)
	Data In — D
	Data Out — O, SPO, and DPO
	Inverting Control Pins
	Global Set/Reset — GSR
	Global Write Enable — GWE

	Attributes
	Content Initialization — INIT
	Placement Location — LOC

	Distributed RAM Design Entry
	Xilinx CORE Generator System
	VHDL and Verilog
	Inferring Block RAM
	Instantiation Templates
	VHDL Template Example
	Verilog Template Example
	Wider Distributed RAM Modules
	Initialization in VHDL or Verilog Codes

	Related Materials and References
	Revision History

