
WCHNET Protocol Stack Library Application Note 1 http://wch.cn

WCHNET Protocol Stack Library Application Note
Version: 1C

http://wch.cn

1. Overview
With the popularity of the Internet of Things, more and more MCU systems require network
communication.

The WCHNET devices with on-chip Ethernet MAC and PHY support 10M Ethernet, full-duplex,
half-duplex, auto-negotiation, automatic line conversion and other functions, and can directly
interact with network terminals such as PCs and embedded devices.

libwchnet.a provides a TCP/IP subroutine library that integrates Ethernet protocol stacks such as
TCP, UDP, ICMP, ARP, RARP, ICMP, and IGMP. It can support TCP, UDP and IPRAW modes.

2. Parameter description

2.1 Configuration

Call WCHNET_ConfigLIB for library configuration. Parameters are as follows:

Name Macro definition
Bit

definition
Description

TxBufSize Reserved 0-31 Size of MAC transmit buffer

TCPMss WCHNET_TCP_MSS 0-31 Size of TCP MSS

HeapSize WCHNET _MEM_HEAP_SIZE 0-31 Size of heap memory

ARPTableNum WCHNET_NUM_ARP_TABLE 0-31 Number of ARP tables

MiscConfig0

CFG0_TCP_SEND_COPY 0
TCP transmit buffer copy

1: Copy. 0: Non-copy.

CFG0_TCP_RECV_COPY 1
TCP receive copy optimization, for
internal debug

CFG0_TCP_OLD_DELETE 2
Delete old TCP connection

1: Enabled. 0: Disabled.

CFG0_IP_REASS_PBUFS 3-7 Number of reassembled IP PBUFs

Reserved 8-31 -

MiscConfig1 WCHNET_MAX_SOCKET_NUM 0-7 Number of sockets

http://wch.cn
http://wch.cn

WCHNET Protocol Stack Library Application Note 2 http://wch.cn

Reserved 8-12 -

WCHNET_PING_ENABLE 13
PING enable

1: Enabled. 0: Disabled.

TCP_RETRY_COUNT 14-18 TCP retry count

TCP_RETRY_PERIOD 19-23
TCP retry period

The unit is 50 milliseconds.

Reserved 24 -

SOCKET_SEND_RETRY 25 Failure and retry sending

1: Enabled. 0: Disabled.

Reserved 26-31 -

led_link led_callback - PHY Link status indicator

led_data led_callback - Ethernet communication indicator

net_send eth_tx_set Ethernet Tx configuration

net_send eth_rx_set Ethernet Rx configuration

CheckValid WCHNET_CFG_VALID 0-31
Configuration value valid flag. A fixed
value.

2.2 SocketInf
SocketInf is a socket information list, defined as follows:

SOCK_INF SocketInf[WCHNET_MAX_SOCKET_NUM]

The address is aligned with 4 bytes. WCHNET_MAX_SOCKET_NUM is the number of sockets.
SocketInf stores the information of each socket. Please refer to the definition of SOCK_INF for its
information members. This variable is read and written inside the library. If it is not necessary,
please do not write to it in the application program (refers to the user program that calls the library
function, which is called the application program in this manual, the same below).

2.3 Memp_Memory
The pool allocated memory used internally by WCHNET is mainly used for data reception buffer.
For calculation of its size, please refer to the macro definition of WCHNET_MEMP_SIZE in
WCHNET.h.

http://wch.cn

WCHNET Protocol Stack Library Application Note 3 http://wch.cn

2.4 Mem_Heap_Memory
The heap-allocated memory used internally by WCHNET is mainly used for data transmission
buffer. For calculation of its size, please refer to the macro definition of
WCHNET_RAM_HEAP_SIZE in WCHNET.h.

2.5 Mem_ArpTable
ARP buffer table is used to record the correspondence between IP addresses and MAC addresses.
The size of the ARP buffer table can be configured.

2.6 MemNum, MemSize
MemNum and MemSize are arrays generated according to user configuration. WCHNET uses
these two arrays to manage memory allocation, and they cannot be modified.

3. Subroutines

3.1 General table of library subroutines

Classification Function name General description

Basic
functions

WCHNET_Init Library initialization

WCHNET_GetVer Get library version

WCHNET_NetInput Ethernet data input

WCHNET_PeriodicHandle Handle periodic tasks

WCHNET_ETHIsr Ethernet interrupt service function

WCHNET_GetPHYStatus Get PHY status

WCHNET_QueryGlobalInt Query global interrupt

WCHNET_GetGlobalInt Read and clear global interrupt

WCHNET_Aton ASCII address to network address

WCHNET_Ntoa Network address to ASCII address

WCHNET_ConfigLIB Library parameter configuration

WCH_GetMacAddr Get MAC address

socket
functions

WCHNET_GetSocketInt Get socket interrupt and clear

WCHNET_SocketCreat Create socket

http://wch.cn

WCHNET Protocol Stack Library Application Note 4 http://wch.cn

WCHNET_SocketClose Close socket

WCHNET_SocketRecvLen Get socket reception length

WCHNET_SocketRecv socket receive data

WCHNET_SocketSend socket send data

WCHNET_SocketListen TCP listen

WCHNET_SocketConnect TCP connect

WCHNET_ModifyRecvBuf Modify reception buffer

WCHNET_SocketUdpSendTo UDP send, specify the target IP and target port

WCHNET_QueryUnack Query unsuccessfully sent packets

WCHNET_SetSocketTTL Set TTL of socket

WCHNET_RetrySendUnack Start TCP retry sending immediately

DHCP
functions

WCHNET_DHCPStart DHCP start

WCHNET_DHCPStop DHCP stop

WCHNET_DHCPSetHostname Configure DHCP host name

DNS
functions

WCHNET_InitDNS Initialize DNS

WCHNET_DNSStop DNS stop

WCHNET_HostNameGetIp Get IP address base on host name

KEEPLIVE

functions

WCHNET_ConfigKeepLive Configure library KEEP LIVE parameter

WCHNET_SocketSetKeepLive Configure socketKEEPLIVE enable

Interrupt:
The global interrupt and socket interrupt of the library are actually just a sign of the variable, not
the hardware interrupt generated by the WCHNET devices.

3.2 WCHNET_Init

Prototype
uint8_t WCHNET_Init(const uint8_t *ip, const uint8_t *gwip, const uint8_t *mask,
 const uint8_t *macaddr)

Input Ip - IP address pointer

http://wch.cn

WCHNET Protocol Stack Library Application Note 5 http://wch.cn

Gwip - Gateway address pointer

Mask - Subnet mask pointer

Macaddr – MAC address pointer

Output None

Return 0 – Success. Others – Error. Please refer to WCHNET.h for specific error codes.

Function Library initialization.

Subnet mask pointer can be set to NULL. If it is set to NULL, the library selects 255.255.255.0 as
subnet mask.

3.3 WCHNET_GetVer

Prototype uint8_t WCHNET_GetVer(void)

Input None

Output None

Return Library version

Function To get library version.

3.4 WCHNET_NetInput

Prototype void WCHNET_NetInput(void)

Input None

Output None

Return None

Function
Ethernet data input. Always called in the main program, or called after the
reception interrupt is detected.

3.5 WCHNET_PeriodicHandle

Prototype void WCHNET_PeriodicHandle(void)

Input None

Output None

http://wch.cn

WCHNET Protocol Stack Library Application Note 6 http://wch.cn

Return None

Function Handle periodic tasks in the protocol stack.

3.6 WCHNET_ETHIsr

Prototype void WCHNET_ETHIsr(void)

Input None

Output None

Return None

Function Ethernet interrupt service function. Called after Ethernet interrupt is generated.

3.7 WCHNET_GetPHYStatus

Prototype uint8_t WCHNET_GetPHYStatus(void)

Input None

Output None

Return PHY status

Function

Get current status of PHY. Main status:

0x09 – PHY disconnects

0x2D – PHY establishes connection and negotiation is completed.

3.8 WCHNET_QueryGlobalInt

Prototype uint8_t WCHNET_QueryGlobalInt(void)

Input None

Output None

Return Global interrupt status

Function
Query global interrupt status. For specific status codes, please refer to
WCHNET.h.

http://wch.cn

WCHNET Protocol Stack Library Application Note 7 http://wch.cn

3.9 WCHNET_GetGlobalInt

Prototype uint8_t WCHNET_GetGlobalInt(void)

Input None

Output None

Return Global interrupt status

Function
Read global interrupt and clear it. For specific status codes, please refer to
WCHNET.h.

3.10 WCHNET_Aton

Prototype uint8_t WCHNET_Aton(const char *cp, uint8_t *addr)

Input
*cp - ASCII address to be converted, such as “192.168.1.2”

*addr - First address of the memory stored in the converted network address

Output *addr – Converted network address, such as 0xC0A80102

Return 0 – Success. Others – Failure.

Function Convert ASCII address to network address.

3.11 WCHNET_Ntoa

Prototype uint8_t *WCHNET_Ntoa(uint8_t *ipaddr)

Input *ipaddr – socketID value

Output None

Return Converted ASCII address

Function Convert network address to ASCII address.

3.12 WCHNET_ConfigLIB

Prototype uint8_t WCHNET_ConfigLIB(struct _WCH_CFG *cfg)

Input cfg –Configuration parameter

Output None

http://wch.cn

WCHNET Protocol Stack Library Application Note 8 http://wch.cn

Return 0 – Success. Others – Failure.

Function Library parameter configuration.

3.13 WCHNET_GetMacAddr

Prototype void WCH_GetMac(uint8_t *macaddr)

Input *macaddr – Memory address

Output mac address

Return None

Function Get MAC address.

3.14 WCHNET_GetSocketInt

Prototype uint8_t WCHNET_GetSocketInt(uint8_t socketid)

Input socketid – socketID value

Output None

Return Return socket interrupt. For specific status codes, please refer to WCHNET.h.

Function Get socket interrupt, and clear socket interrupt.

3.15 WCHNET_SocketCreat

Prototype uint8_t WCHNET_SocketCreat(uint8_t *socketid,SOCK_INF *socinf)

Input
*socketid – Memory address

socinf – Create socket configuration parameter

Output *socketid – socketID value

Return Execution status. For specific status codes, please refer to WCHNET.h.

Function Create socket.

socketinf is only passed as a variable. WCHNET_SocketCreat analyzes the list information. If the
information is valid, it will find a free list (n) from SocketInf[WCHNET_MAX_SOCKET_NUM],
copy socketinf into SocketInf[n], lock SocketInf[n] and create corresponding UDP/TCP/IPRAW
connection. If the creation is successful, write n to socketed, and a success code is returned.

When creating UDP, TCP client or IPRAW, the receive buffer and the size of it should be allocated

http://wch.cn

WCHNET Protocol Stack Library Application Note 9 http://wch.cn

before creation. The allocation method of the TCP server is different. The
WCHNET_ModifyRecvBuf function should be called to allocate the receive buffer after receiving
the successful connection interrupt.

For details, please refer to the related routines.

3.16 WCHNET_SocketClose

Prototype uint8_t WCHNET_SocketClose(uint8_t socketid, uint8_t mode)

Input
socketid – socketID value

mode – socket is a TCP connection, and the parameter is closed.

Output None

Return Execution status. For specific status codes, please refer to WCHNET.h.

Function Close socket.

In UDP and IPRAW modes, “mode” is invalid. Call this function to close socket immediately.

In TCP mode, “mode” can be:
TCP_CLOSE_NORMAL: Normal. Close after 4 handshakes. The closing speed is slower.
TCP_CLOSE_RST: Reset connection. WCHNET sends RST to the target for reset. The closing
speed is faster.
TCP_CLOSE_ABANDON: Abandon directly. No information is sent to the target. Close socket.
The closing speed is the fastest.

Call this function, and it may generally take a certain period of time to close. This is mainly
because the library needs a certain period of time to terminate the TCP connection. As long as the
SINT_STAT_TIM_OUT or SINT_STAT_DISCONNECT interrupt is generated, the socket must
be in the closed state.

3.17 WCHNET_SocketRecvLen

Prototype uint32_t WCHNET_SocketRecvLen(uint8_t socketid, uint32_t *bufaddr)

Input
socketid – socketID value

*bufaddr – Memory address

Output *bufaddr – First address of socket data

Return Length of the received data

Function Get the length of the data received by socket.

This function is mainly used to get the length of the data received by socket and the address of the
receive buffer. The application program can directly use the address output by this function, and

http://wch.cn

WCHNET Protocol Stack Library Application Note 10 http://wch.cn

can use the data in the internal receive buffer without copying. This can save RAM to a certain
extent. If bufaddr is set to NULL, this function only returns the length of the data received by
socket.

3.18 WCHNET_SocketRecv

Prototype uint8_t WCHNET_SocketRecv(uint8_t socketid, uint8_t *buf, uint32_t *len)

Input

socketid – socketID value

*buf – First address of the received data

*len - Memory address and length of data expected to be read

Output
*buf - The read data content that is written

*len - The actual read length of read

Return Execution status. For specific status codes, please refer to WCHNET.h.

Function Socket receives data.

This function copies the data in the socket receive buffer into buf, and the actual length of the
copied data will be written into len.

WCHNET supports two modes to receive data. One is the interrupt mode, and the other is the
callback mode.

Interrupt mode: After WCHNET receives data, an interrupt is generated. User can read the
received data through the WCHNET_SocketRecvLen and WCHNET_SocketRecv functions.
IPRAW, UDP and TCP all can receive data in interrupt mode. If buf is not NULL,
WCHNET_SocketRecv copies the data of the internal buffer to buf. If buf is NULL, the
application layer reads the data in a non-copying way. The function is called only for the pointer
offset, and *len is equal to the length of remaining data.

Callback mode: Only valid in UDP mode. WCHNET notifies the application layer to receive data
by calling back the AppCallBack function in the SocketInf structure after receiving the data.
AppCallBack is implemented by the application layer, and the application layer must read all data
in this function. Otherwise WCHNET will forcibly clear it. If the callback mode is not needed,
AppCallBack must be cleared to 0 when creating socket. The prototype of the callback function is
as follows:

Prototype
void(*AppCallBack)(structSCOK_INF*socinf,uint32_tipaddr,uint16_tport,uint
8_t *buf,uint32_t len)

Input

Socinf – Through this parameter, WCHNET transfers the socket information list
to the application layer, and the application layer can know the socket
information.

ipaddr - Source IP address of the message

http://wch.cn

WCHNET Protocol Stack Library Application Note 11 http://wch.cn

port - Source port of the message

buf - Buffer address

len - Data length

Output None

Return None

Function Receive callback function in UDP mode.

3.19 WCHNET_SocketSend

Prototype uint8_t WCHNET_SocketSend(uint8_t socketid, uint8_t *buf, uint32_t *len)

Input

socketid – socketID value

*buf – First address of the sent data

*len - Memory address and length of data expected to be sent

Output *len – Length of the data that is sent actually

Return Execution status. For specific status codes, please refer to WCHNET.h.

Function Socket sends data.

This function copies the data in buf to the transmit buffer of the internal protocol stack. The data is
sent, and the length of the data sent actually is output through len. The application layer needs to
check len during actual processing, to determine the length of the data sent actually. If too much
data is sent, this function will automatically retry to send multiple times. If it returns 0 (success) in
this case, this does not mean that all data has been sent.

3.20 WCHNET_SocketUdpSendTo

Prototype
uint8_t WCHNET_SocketUdpSendTo(uint8_t socketid, uint8_t *buf, uint32_t *sle
n, uint8_t *sip, uint16_t port)

Input

socketid – socketID value

*buf – Address of the sent data

*slen – Address of the sent length

*sip – Target IP address

port – Target port number

Output *slen – Length sent actually

http://wch.cn

WCHNET Protocol Stack Library Application Note 12 http://wch.cn

Return Execution status. For specific status codes, please refer to WCHNET.h.

Function UDP send, specify the target IP and target port

In UDP mode, the difference between WCHNET_SocketSend and WCHNET_SocketUdpSendTo
is that the former can only send data to the target IP and port specified when the socket is created,
while the latter can send data to any IP and port. WCHNET_SocketUdpSendTo is generally used
in UDP server mode.

3.21 WCHNET_SocketListen

Prototype uint8_t WCHNET_SocketListen(uint8_t socketid)

Input socketid – socketID value

Output None

Return Execution status. For specific status codes, please refer to WCHNET.h.

Function TCP listen. Used in TCP SERVER mode.

If the application layer needs to establish a TCP SERVER, first use WCHNET_SocketCreat to
create a TCP, and then call this function to make TCP enter the Listen mode. TCP in Listen mode
does not receive or send data, but only listens for TCP connections. Once a client connects to this
server, the library will automatically allocate a socket and generate the SINT_STAT_CONNECT
connection interrupt. So the listened TCP does not need to allocate receive buffer.

3.22 WCHNET_SocketConnect

Prototype uint8_t WCHNET_SocketConnect(uint8_t socketid)

Input socketid – socketID value

Output None

Return Execution status. For specific status codes, please refer to WCHNET.h.

Function TCP connect. Used in TCP Client mode.

If the application layer needs to establish a TCP Client, first use WCHNET_SocketCreat to create
a TCP, and then call this function to connect. After successful connection, the
SINT_STAT_CONNECT connection interrupt is generated. If the remote end is not online or the
port is not open, the library will automatically retry a certain number of times, and if it is still
unsuccessful, the SINT_STAT_TIM_OUT timeout interrupt will be generated.

http://wch.cn

WCHNET Protocol Stack Library Application Note 13 http://wch.cn

3.23 WCHNET_ModifyRecvBuf

Prototype
void WCHNET_ModifyRecvBuf(uint8_t socketid, uint32_t bufaddr, uint32_t bufsi
ze)

Input

socketid – socketID value

bufaddr – Address of the receive buffer

bufsize – Size of the receive buffer

Output None

Return None

Function Modify socket receive buffer.

In order to make the application layer process data conveniently and flexibly, the library allows to
dynamically modify the address and size of the socket receive buffer. Before the receive buffer is
modified, it is better to call WCHNET_SocketRecvLen to check whether there is any remaining
data in the buffer. Once WCHNET_ModifyRecvBuf is called, the original buffer data will be
cleared. In TCP mode, if the connection has been established, call WCHNET_ModifyRecvBuf,
and the library will notify the current window size to the remote end.

3.24 WCHNET_SetSocketTTL

Prototype uint8_t WCHNET_SetSocketTTL(uint8_t socketid, uint8_t ttl)

Input
socketid – socketID value

ttl – TTL value

Output None

Return Execution status. For specific status codes, please refer to WCHNET.h.

Function Set socket TTL.

Note: TTL cannot be 0, and it default to 128.

3.25 WCHNET_QueryUnack

Prototype
uint8_t WCHNET_QueryUnack(uint8_t socketid, uint32_t *addrlist, uint16_t lisl
en)

Input

socketid – socketID value

*addrlist – First address of the stored memory

lislen – Length of the stored memory

http://wch.cn

WCHNET Protocol Stack Library Application Note 14 http://wch.cn

Output *addrlist – Address list of the data packets that are not sent successfully

Return Number of unsent and unacknowledged segments

Function Query the packets that are not sent successfully.

Unack Segment: TCP message that is not sent successfully.

WCHNET_QueryUnack is used to query for the number of messages that are not sent successfully
by socket and the address of the messages. Two methods:
(1) Query for the number of “Unack Segment”. The addrlist is NULL. WCHNET_QueryUnack
returns the number of “socket Unack Segment”.
(2) Query for the Unack Segment information. WCHNET_QueryUnack writes the address of
these data messages to addrlist.

The application layer can also query whether there is an Unack Segment by looping
WCHNET_QueryUnack(sockinf,NULL,0). If it queries for an Unack Segment, call
WCHNET_QueryUnack again to get the information:

While(1)
{

If(WCHNET_QueryUnack(sockinf,NULL,0))
 {

WCHNET_QueryUnack(sockinf, addrlist,sizeof(addrlist));
}
/*Other tasks*/

}

3.26 WCHNET_RetrySendUnack

Prototype void WCHNET_RetrySendUnack(uint8_t socketid)

Input socketid – socketID value

Output None

Return None

Function Start TCP retry sending immediately.

WCHNET_RetrySendUnack is valid only in TCP mode, used to retry sending the messages that
are not sent successfully. The application program can check whether the socket data has been
successfully sent through WCHNET_QueryUnack. If necessary, call WCHNET_RetrySendUnack
to retry sending the data messages immediately. Normally, the application layer is not required to
re-send, and WCHNET will retry automatically.

http://wch.cn

WCHNET Protocol Stack Library Application Note 15 http://wch.cn

3.27 WCHNET_DHCPStart

Prototype uint8_t WCHNET_DHCPStart(dhcp_callback dhcp)

Input dhcp – Application layer callback function

Output None

Return 0 – Success. Others – Failure.

Function Start DHCP.

When DHCP succeeds or fails, the library calls the dhcp_callback function, to notify the
application layer of the DHCP status. WCHNET passes two parameters to this function, the one is
DHCP status (0-Suceed. Others-Fail). When DHCP succeeds, user can get a pointer through the
other parameter, and the address pointed to by the pointer stores the IP address, gateway address,
subnet mask, primary DNS and secondary DNS in turn, a total of 20 bytes. Note that the pointer is
invalid after returned as the dhcp_callback temporary variable.

If there is no DHCP server in the current network, a timeout of about 10 seconds will occur. After
the timeout, call the dhcp_callback function to notify the application layer. In this case, DHCP will
not stop and will always search for the DHCP Server. User can call WCHNET_DHCPStop to stop
DHCP.

Note:
(1) Start DHCP after WCHNET_Init succeeds (necessary).
(2) Create socket after DHCP succeeds (recommended).
(3) DHCP function occupies a UDP socket.

If DHCP fails, communicate via the IP address used in WCHNET_Init.

3.28 WCHNET_DHCPStop

Prototype uint8_t WCHNET_DHCPStop(void)

Input None

Output None

Return 0 – Success. Others – Failure.

Function Stop DHCP.

3.29 WCHNET_DHCPSetHostname

Prototype uint8_t WCHNET_DHCPSetHostname(char *name)

Input *name – First address of DHCP host name

http://wch.cn

WCHNET Protocol Stack Library Application Note 16 http://wch.cn

Output None

Return 0 – Success. Others – Failure.

Function Configure DHCP host name.

3.30 WCHNET_InitDNS

Prototype void WCHNET_InitDNS(uint8_t *dnsip, uint16_t port)

Input
*dnsip – dns server IP address

port – dns server port number

Output None

Return None

Function Initialize DNS.

If DNS is used, a UDP socket is occupied. Call this function after WCHNET_Init, to start DNS.

3.31 WCHNET_DNSStop

Prototype void WCHNET_DNSStop (void)

Input None

Output None

Return None

Function Stop DNS.

After this function is executed, the occupancy of the UDP socket will be released. If it is required
to use DNS, call WCHNET_InitDNS again.

3.32 WCHNET_HostNameGetIp

Prototype
uint8_t WCHNET_HostNameGetIp(const char *hostname, uint8_t *addr, dns_ca
llback found, void *arg)

Input

hostname - Host domain name

*addr - First address of the memory that stores the parsed ip

found - Callback function

arg - found parameter

http://wch.cn

WCHNET Protocol Stack Library Application Note 17 http://wch.cn

Output
addr: Output the host IP address. Only valid when the function returns 0. Must be
4-byte aligned.

Return Execution status. For specific status codes, please refer to WCHNET.h.

Function Get host IP address.

found: Function pointer of the application layer. Its basic prototype is as follows:
typedef void (*dns_callback)(const char *name, uint8_t *ipaddr, void*callback_arg); This
function is used to get the IP address of the host. “hostname” represents host name. “addr”
represents IP address pointer. If the IP address corresponding to hostname is already in DNS buffer,
it returns a success code directly, and outputs the IP address corresponding to the host to addr. If
the IP address is not in the buffer, the DNS module initiates the DNS transaction, and asks the
DNS server. After failure or success, it calls the found function, and the arg failure parameter is
NULL.

arg is a parameter required by found, and it can be NULL. But found cannot be NULL.

Note:

(1) addr must be 4-byte aligned.
(2) The maximum length of the hostname string cannot be greater than 63.

3.33 WCHNET_ConfigKeepLive

Prototype void WCHNET_ConfigKeepLive(struct _KEEP_CFG *cfg)

Input *cfg – KEEPLIVE configuration parameter

Output None

Return None

Function Configure library KEEP LIVE parameter.

This function is used to configure the KEEPLIVE parameter in WCHNET. The
struct_KEEP_CFG structure is defined in WCHNET.h.

struct _KEEP_CFG
{
 uint32_t KLIdle;
 uint32_t KLIntvl;
 uint32_t KLCount;
};

KLIdle: Idle time. The KEEPLIVE detection is started after the TCP connection is idle for a
certain period of time. The unit is milliseconds. The default value is 20000. The time
precision is the TCP retry interval.

KLIntvl: Interval. KEEPLIVE detection timeout interval. The unit is milliseconds. The default

http://wch.cn

WCHNET Protocol Stack Library Application Note 18 http://wch.cn

value is 15000.

KLCount: Count. KEEPLIVE detection count. The default value is 9.

This setting is a global setting for the library, and is valid for TCP connections that enable
KEEPLIVE. When there is no data transfer between the two parties within the KLIdle time,
KEEPLIVE is started. If the other party has no response after KEEPLIVE sends KLCount times,
the connection is considered invalid and it will be disconnected. This function should be called
after the library is initialized. The time precision is the TCP retry period.

3.34 WCHNET_SocketSetKeepLive

Prototype uint8_t WCHNET_SocketSetKeepLive(uint8_t socketid, uint8_t enable)

Input
socketid – socketID value

enable – 1: Enabled. 0: Disabled.

Output None

Return 0 – Success. Others – Failure.

Function Configure socket KEEP LIVE enable.

This function is used to enable or disable socket KEEPLIVE. If “enable” is 1, KEEPLIVE is
enabled. If “enable” is 0, KEEPLIVE is disabled. After socket is created, KEEPLIVE defaults to
be disabled. After the TCP client enables socket, call this function to enabled KEEPLIVE. For the
TCP server, call this function to enable KEEPLIVE after SINT_STAT_CONNECT is generated.
When KEEPLIVE is enabled, the parameter of KEEPLIVE is read. After that, the KEEPLIVE
parameter change does not affect the KEEPLIVE parameter of the started socket.

4. Guidance

4.1 Initilization
WCHNET_Init is the library initialization function. For the usage of WCHNET_Init, please refer
to Section 3.2. After WCHNET is initialized, the application layer needs to enable the Ethernet
interrupt, and call the WCHNET_ETHIsr interrupt service function in the corresponding interrupt
function. In addition, an external clock needs to be provided for the library function for periodic
tasks such as refreshing the ARP list, TCP timeout, etc. Call the WCHNET_TimeIsr function to
update time. The parameter passed by this function is the time difference of the last call, in
milliseconds.

To sum up, after calling WCHNET_Init to initialize the library, the application layer needs to call
NET_Init to initialize the Ethernet physical layer.

4.2 Configuration
The configuration information is passed to the library through WCHNET_ConfigLIB. For detailed
configuration information, please refer to Section 2.1. It must be called before WCHNET_Init.

http://wch.cn

WCHNET Protocol Stack Library Application Note 19 http://wch.cn

This section mainly introduces the meaning and method of configuration such as IPRAW, UDP,
TCP, and memory allocation.

(1) WCHNET_NUM_IPRAW
Used to configure the number of IPRAW (IP raw sockets) connections. The minimum value is
1. For IPRAW communication.

(2) WCHNET_NUM_UDP
Used to configure the number of UDP connections. The minimum value is 1. For UDP
communication.

(3) WCHNET_NUM_TCP
Used to configure the number of TCP connections. The minimum value is 1. For TCP
communication.

(4) WCHNET_NUM_TCP_LISTEN
Used to configure the number of TCP listeners. The minimum value is 1. The socket for TCP
listening is only used for listening. Once a TCP connection is listened, a TCP connection will
be allocated immediately, occupying the number of WCHNET_NUM_TCP.

(5) WCHNET_MAX_SOCKET_NUM
Used to configure the number of sockets, equal to the sum of WCHNET_NUM_IPRAW,
WCHNET_NUM_UDP, WCHNET_NUM_TCP and WCHNET_NUM_TCP_LISTEN.

(6) WCHNET_NUM_PBUF
Used to configure the number of PBUF structures. The PBUF structure is mainly used to
manage memory allocation, including applying for UDP, TCP, IPRAW memory and
reception/transmission memory. If the application requires more socket connections and there
is a large amount of data to send and receive, this value must be set larger.

(7) WCHNET_NUM_POOL_BUF
Number of POOL BUF. POOL BUF is mainly used for data reception. If a large amount of
data needs to be received, this value should be set larger.

(8) WCHNET_NUM_TCP_SEG
Number of TCP Segments. Every time WCHNET sends a TCP packet, it must first apply for a
TCP Segment. If the number of TCP connections is large and the amount of data to be sent and
received is large, this value should be set larger. For example, there are currently 4 TCP
connections, and each receive buffer is set to 2 TCP_MSS, assuming that an ACK is
performed every time a packet of data is received, the WCHNET_NUM_TCP_SEG should be
configured to be greater than (4*2), which is only the most serious case. In fact, every time an
ACK (or sent data) is received, the Segments of this data will be released.

(9) WCHNET_NUM_IP_REASSDATA
Number of reassembled IP packets. The size of each packet is WCHNET_SIZE_POOL_BUF,
and the minimum value can be set to 1.

(10) WCHNET_TCP_MSS
Length of the maximum TCP segment. The maximum value is 1460 and the minimum is 60.
Considering transfer and resources, it is recommended that this value should not be less than
536 bytes.

http://wch.cn

WCHNET Protocol Stack Library Application Note 20 http://wch.cn

(11) WCHNET_MEM_HEAP_SIZE
Heap allocation memory size, mainly used for some memory allocation of indeterminate
length, such as sending data. If TCP has a large batch of data to send and receive, this value
should be set larger. If the application layer memory needs to be used when sending data,
please refer to CFG0_TCP_SEND_COPY in this section.

(12) WCHNET_NUM_ARP_TABLE
ARP buffer. Used to store IP and MAC. The minimum value can be set to 1 and the maximum
value is 0x7F. If WCHNET needs to communicate with 4 PCs, two of which send and receive
data in bulk, it is recommended to set it to 4. If it is less than 2, it will seriously affect the
communication efficiency.

(13) CFG0_TCP_SEND_COPY
Valid only for TCP communication.
When CFG0_TCP_SEND_COPY is 1, the send copy function is enabled. WCHNET copies
the data in application layer to the internal heap memory, and then packs and sends it.
When CFG0_TCP_SEND_COPY is 0, the send copy function is disabled. For details, please
refer to Section 3.25.

(14) CFG0_TCP_RECV_COPY
For debug. Enabled by default. If this value is 1, the speed is faster.

(15) CFG0_TCP_OLD_EDLETE
When CFG0_TCP_OLD_EDLETE is 1 and WCHNET applies for no TCP connection, older
TCP connections will be deleted. Disabled by default.

4.3 Interrupt
The interrupts are divided to global interrupts and socket interrupts. The states of the global
interrupts are defined in the following table:

Bit Name Description

[5:7] - Reserved

4 GINT_STAT_SOCKET socket interrupt

3 - Reserved

2
GINT_STAT_PHY_CHAN

GE
PHY status change

interrupt

1 - Reserved

0 GINT_STAT_UNREACH Unreachable interrupt

① GINT_STAT_UNREACH: Unreachable interrupt. When the library receives the ICMP
unreachable interrupt packet, it saves the IP address, port, and protocol type of the unreachable
IP packet into the unreachable information list, and then this interrupt is generated. The
application program can query the UnreachCode, UnreachProto and UnreachPort in the

http://wch.cn

WCHNET Protocol Stack Library Application Note 21 http://wch.cn

_NET_SYS structure to get unreachable information.

② GINT_STAT_PHY_CHANGE: PHY change interrupt. It is generated when the PHY
connection of WCHNET changes, for example, the PHY state changes from a connected state
to a disconnected state or from a disconnected state to a connected state. The application can
get the current PHY status through WCHNET_GetPHYStatus.

③ GINT_STAT_SOCK: Socket interrupt. When the socket has an interrupt event, the library
generates this interrupt, and the application can get the interrupt status of the socket through
WCHNET_GetSocketInt.

The states of socket interrupts are defined in the following table:

Bit Name Description

7 - Reserved

6 SINT_STAT_TIM_OUT Timeout

5 - Reserved

4 SINT_STAT_DISCONNECT TCP disconnect

3 SINT_STAT_CONNECT TCP connect

2 SINT_STAT_RECV
Receive buffer not

empty

[0:1] - Reserved

① SINT_STAT_RECV: Receive buffer not empty interrupt. It is generated after socket receives
data. After the application layer receives this interrupt, WCHNET_SocketRecvLen can be used
to get the length of the received data, and WCHNET_SocketRecv can be used to read the data
in the receive buffer according to the length.

② SINT_STAT_CONNECT: TCP connect interrupt. Only valid in TCP mode. It is generated
after TCP connects successfully. The application layer can only transfer data after that.

③ SINT_STAT_DISCONNECT: TCP disconnect interrupt. Only valid in TCP mode. It is
generated after TCP disconnects. The application layer must no longer transfer data after that.

④ SINT_STAT_TIM_OUT: In TCP mode, this interrupt is generated when a timeout occurs in
the process of TCP connection, disconnection, sending data, etc. It is also generated when the
connection is closed internally by the library if some exception occurs. In TCP mode, the
socket is disabled once this interrupt is generated, and the related configuration of the socket is
cleared. So if the application layer needs to use the socket again, it must re-initialize and
connect or listen.

Note: The interrupts described in this section are flags of the variable. For the convenience of
expression and easy understanding, they are described as interrupts in the library and this

http://wch.cn

WCHNET Protocol Stack Library Application Note 22 http://wch.cn

document, actually not the hardware interrupts of the MCU.

4.4 Socket

Socket types supported by the library: IPRAW, UDP, TCP client and TCP server.

4.5 IPRAW
Procedures to create an IPRAW socket:
① Set the protocol field, that is SourPort in IPRAW mode.
② Set the target IP address.
③ Set the start address and the length of the receive buffer.
④ Set the protocol type to PROTO_TYPE_IP_RAW.
⑤ Call the WCHNET_SocketCreat function, and pass the above settings to this function.

WCHNET_SocketCreat will find a free information list in the socket information list, and copy
the above configuration to it. If no free list is found, it returns error after the creation is successful,
and the free information table will be output to the application layer.

IP message structure:

Target MAC Source MAC Type IP header IPRAW data CRC32

6 Bytes 6 Bytes 2 Bytes 20 Bytes Max 1480 bytes 4 Bytes

The application layer can call WCHNET_SocketSend to send data. There is no limit to the length
of the data to be sent. The library loops internally and sends data automatically in turn. The
maximum length of a packet that can be sent by IPRAW is 1480 bytes. If the length of the data
stream written by the application layer is greater than 1480 bytes, the library will package the data
stream into several IP packets for sending. An error code will be returned immediately if it fails.

When the library receives the IP data packet, it first checks whether the protocol field and the
protocol field set by the socket are the same. If they are the same, the IPRAW data packet is
copied to the receive buffer and a SINT_STAT_RECV interrupt is generated. After the application
layer receives this interrupt, call WCHNET_SocketRecvLen to get the effective length of the
current socket buffer. According to the length, the application layer calls WCHNET_SocketRecv
to read the data in the socket receive buffer. The application can read all the data at one time, or
read it in multiple times. Since flow control cannot be performed in IPRAW mode, it is
recommended that the application layer read all data immediately after querying the receive data
interrupt, to avoid being overwritten by subsequent data.

Notes on protocol field settings:
The priority of the library processing IPRAW is higher than that of UDP and TCP. If the IP
protocol field is set to 17 (UDP) or 6 (TCP), there may be a possibility of conflict with other
sockets, which should be avoided. Two cases are listed below:

① Socket0 is in IPRAW mode, the IP protocol field is 17, and socket1 is in UDP mode. In UDP
mode, the protocol field of the IP packet is also 17, and this causes the data for socket1
communication to be intercepted by socket0 and the data cannot be received.

http://wch.cn

WCHNET Protocol Stack Library Application Note 23 http://wch.cn

② Socket0 is in IPRAW mode, the IP protocol field is 6, and socket1 is in TCP mode. In TCP
mode, the protocol field of the IP packet is also 6, and this causes the data for socket1
communication to be intercepted by socket0 and the data cannot be received.

The library supports the reassembled IP, but the length of the maximum reassembled packet
cannot be greater than the length of the receive buffer.

4.6 UDP client
Procedures to create a UDP socket:
① Set the source port.
② Set the target port.
③ Set the target IP address.
④ Set the start address and the length of the receive buffer.
⑤ Set the protocol type to PROTO_TYPE_UDP.
⑥ Call the WCHNET_SocketCreat function, and pass the above settings to it.

WCHNET_SocketCreat will find a free information list in the socket information list, and copy
the above configuration to it. If no free list is found, an error will be returned. If it is created
successfully, a success will be returned, and the free information table will be output to the
application layer.

UDP message structure:

Target
MAC

Source
MAC

Type IP header
UDP

header
UDP data CRC32

6 Bytes 6 Bytes 2 Bytes 20 Bytes 8 Bytes Max 1472 Bytes 4 Bytes

UDP is a simple and unreliable transport layer protocol for data messages. The transfer speed is
fast, but the data cannot be guaranteed to reach the target. The application layer must ensure the
reliability and stability of the transfer.

The application layer can call WCHNET_SocketSend to send data. There is no limit to the length
of the data to be sent. The library loops internally and send the data automatically in turn. The
maximum length of a packet that can be sent by UDP is 1472 bytes. If the length of the data
stream written by the application layer is greater than 1472 bytes, the library will package the data
stream into several UDP packets for sending. An error code will be returned immediately if it fails.

When the library receives the UDP data packet, the UDP data packet is copied to the receive
buffer and a SINT_STAT_RECV interrupt is generated. After the application layer receives this
interrupt, call WCHNET_SocketRecvLen to get the effective length of the current socket buffer.
According to the length, the application layer calls WCHNET_SocketRecv to read the data in the
socket receive buffer. The application can read all the data at one time, or read it in multiple times.
Since flow control cannot be performed in UDP mode, it is recommended that the application
layer read all data immediately after querying the receive data interrupt, to avoid being
overwritten by subsequent data.

http://wch.cn

WCHNET Protocol Stack Library Application Note 24 http://wch.cn

4.7 UDP server
UDP server can receive the local port address sent by any IP address.

Procedures to create a UDP socket:

① Set the source port.
② Set the target IP address. The target address is 255.255.255.255.
③ Set the start address and the length of the receive buffer.
④ Set the protocol type to PROTO_TYPE_UDP.
⑤ Set the entry address of the receive callback function.
⑥ Call the WCHNET_SocketCreat function, and pass the above settings to it.

In UDP server mode, WCHNET adds the AppCallBack pointer in SocketInf, to distinguish the
source IP and source port of the data packet. After UDP receives the data, it notifies the
application layer of the source IP and source port of the data packet through AppCallBack. In the
AppCallBack function, the application layer should read all the data, and WCHNET initializes all
related variables of the receive buffer after calling back the AppCallBack.

If data is not received through callback, please be sure to initialize AppCallBack in SocketInf to 0.

4.8 TCP client
Procedures to create a TCP client socket:
① Set the source port.
② Set the target port.
③ Set the target IP address.
④ Set the start address and the length of the receive buffer.
⑤ Set the protocol type to PROTO_TYPE_TCP.
⑥ Call the WCHNET_SocketCreat function, and pass the above settings to it.
⑦ Call the WCHNET_SocketConnect function, and TCP initiates connection.

WCHNET_SocketCreat will find a free information list in the socket information list, and copy
the above configuration to it. If no free list is found, an error will be returned. If it is created
successfully, a success will be returned, and the free information table will be output to the
application layer.

After calling WCHNET_SocketConnect, the library actively initiates a connection request to the
remote end. After connected successfully, a SINT_STAT_CONNECT connection interrupt is
generated. If the remote end is not online or other exceptions occur, the library automatically
retries. Both the number of retries and the retry period can be set in the application layer. If it is
still unsuccessful, the library automatically closes the socket, and a SINT_STAT_TIM_OUT
timeout interrupt is generated. Only after the connection interrupt is generated, the application
layer can use this socket to send/receive data.

http://wch.cn

WCHNET Protocol Stack Library Application Note 25 http://wch.cn

TCP message structure:

Target
MAC

Source
MAC

Type IP header
TCP

header
TCP data CRC32

6 Bytes 6 Bytes 2 Bytes 20 Bytes 20 Bytes Max. 1460Bytes 4 Bytes

TCP provides reliable byte stream service for connection.

Unack Segment: TCP messages that are not sent successfully.

Two sending methods in WCHNET TCP mode:
1: Copy. Copy the user's data to Mem_Heap_Memory for sending. The total length of the data is
not limited. If the length is greater than WCHNET_TCP_MSS, WCHNET divides the data into
several TCP packets with the size of WCHNET_TCP_MSS for sending. It is generally used when
the number of sockets is small and the amount of data to be sent is relatively small. The
application layer only needs to call the WCHNET_SocketSend function.
2: Non-copy. Send directly using the user buffer. The maximum length of data is
WCHNET_TCP_MSS. It is generally used in the case of a large number of sockets, a large
amount of data to be sent, and strict requirements on RAM.

Note when using the non-copy method:
Call WCHNET_SocketSend(sockeid,tcpdata,&len) to send, len must not be greater than
TCP_MSS, tcpdata cannot be a buffer allocated locally or in the stack, and the application layer
can no longer use the tcpdata buffer after calling WCHNET_SocketSend until WCHNET notifies
the application layer that the data segment of this buffer is successfully sent.

WCHNET notifies the application layer that the data segment is successfully sent through
AppCallBack. The prototype of AppCallBack is as follows:

void (*pSockRecv)(struct _SCOK_INF *, uint32_t, uint16_t, uint8_t *, uint32_t);

In TCP mode, AppCallBack is used to notify the application layer of the number of socket Unack
Segments, socinf is the socket information, and len is the number of Unack Segments. After the
application layer gets the number, call WCHNET_QueryUnack to get the information of these
messages. If tcpdata is not sent successfully, WCHNET writes tcpdata (buffer address) into
addrlist. For details about WCHNET_QueryUnack, please refer to Section 3.25. For the
configuration of the sending method, please refer to Section 4.2.

In TCP mode, if the data transmission fails, a SINT_STAT_TIM_OUT interrupt will be generated,
and the application layer should close the socket.

When the library receives the TCP data packet, the TCP data packet is copied to the receive buffer
and a SINT_STAT_RECV interrupt is generated. After the application layer receives this interrupt,
call WCHNET_SocketRecvLen to get the effective length of the current socket buffer. According
to the length, the application layer calls WCHNET_SocketRecv to read the data in the socket
receive buffer. The application can read all the data at one time, or read it in multiple times. In
TCP mode, every time the application layer calls WCHNET_SocketRecv, the library will copy the
received data to the receive buffer of the application layer, and then notify the remote end of the
current window size. For details about WCHNET_SocketRecv, please refer to Section 3.18.

http://wch.cn

WCHNET Protocol Stack Library Application Note 26 http://wch.cn

4.9 TCP server
Procedures to create a TCP server socket:
① Set the source port.
② Set the protocol type to PROTO_TYPE_TCP.
③ Call the WCHNET_SocketCreat function, and pass the above settings to it.
④ Call the WCHNET_SocketListen function, and TCP starts listening.

Through the above procedures, a listening socket can be established. This socket only listens for
client connections and itself does not send/receive data, so there is no need to set a receive buffer.

If a client connects successfully, the listening socket will find a free list from the socket
information list. If no free list is found, it disconnects. If a free list is found, it initializes this list
and write the information such as target IP, source port and target port into this list, and generate a
SINT_STAT_CONNECT connection interrupt. After the application layer software receives this
interrupt, it should immediately call WCHNET_ModifyRecvBuf to allocate a receive buffer for
this connection. If the application software establishes multiple servers, it can determine which
server is connected by querying the source port in the socket information list.

For the data structure, the process of sending data and receiving data, please refer to the TCP
client mode.

http://wch.cn

	1. Overview
	2. Parameter description
	2.1 Configuration
	2.2 SocketInf
	2.3 Memp_Memory
	2.4 Mem_Heap_Memory
	2.5 Mem_ArpTable
	2.6 MemNum, MemSize

	3. Subroutines
	3.1 General table of library subroutines
	3.2 WCHNET_Init
	3.3 WCHNET_GetVer
	3.4 WCHNET_NetInput
	3.5 WCHNET_PeriodicHandle
	3.6 WCHNET_ETHIsr
	3.7 WCHNET_GetPHYStatus
	3.8 WCHNET_QueryGlobalInt
	3.9 WCHNET_GetGlobalInt
	3.10 WCHNET_Aton
	3.11 WCHNET_Ntoa
	3.12 WCHNET_ConfigLIB
	3.13 WCHNET_GetMacAddr
	3.14 WCHNET_GetSocketInt
	3.15 WCHNET_SocketCreat
	3.16 WCHNET_SocketClose
	3.17 WCHNET_SocketRecvLen
	3.18 WCHNET_SocketRecv
	3.19 WCHNET_SocketSend
	3.20 WCHNET_SocketUdpSendTo
	3.21 WCHNET_SocketListen
	3.22 WCHNET_SocketConnect
	3.23 WCHNET_ModifyRecvBuf
	3.24 WCHNET_SetSocketTTL
	3.25 WCHNET_QueryUnack
	3.26 WCHNET_RetrySendUnack
	3.27 WCHNET_DHCPStart
	3.28 WCHNET_DHCPStop
	3.29 WCHNET_DHCPSetHostname
	3.30 WCHNET_InitDNS
	3.31 WCHNET_DNSStop
	3.32 WCHNET_HostNameGetIp
	3.33 WCHNET_ConfigKeepLive
	3.34 WCHNET_SocketSetKeepLive

	4. Guidance
	4.1 Initilization
	4.2 Configuration
	4.3 Interrupt
	4.4 Socket
	4.5 IPRAW
	4.6 UDP client
	4.7 UDP server
	4.8 TCP client
	4.9 TCP server

