
VLSI
Solution y

VS10xx Standalone Player

VSMPG “VLSI Solution Audio Decoder”

Project Code:
Project Name: VSMPG

Revision History

Rev. Date Author Description
1.18 2009-08-14 PO Open file by name, loop mode fixes, I2S for VS1053.
1.17 2009-01-15 PO Fix for VS1053.
1.16 2008-12-22 PO Faster file open with lot of directories. Shuffle play.
1.15 2008-02-25 PO SCI-Controlled Recorder, SCI+UART control,

VS1103b and VS1053b player versions.
1.14 2007-07-09 PO High-Capacity SD support added (not to recorder).
1.13 2007-01-23 PO Drivers kept inactive until MMC found. SCI-

version fixes. VS1033c version added.
1.12 2006-07-13 PO Recorder updates. MMC communication changed.
1.11 2006-05-08 PO More fragments allowed. SCI-version fixes.
1.10 2006-03-10 PO Recorder bug fix, samplerate changed to 8000 Hz.
1.10pre 2006-01-13 PO First Recorder Implementation.
1.02 2005-11-17 PO File type detection from filename suffix.

Pulldown resistor recommended for GPIO3.
1.01 2005-11-07 PO Minor changes, see section 8 for details.
1.00 2005-09-30 PO SCHEMATICS CHANGED!

See also chapter 2 and section 2.1
0.95 2005-09-16 PO SCI-version fixes, transfer routine fixes, skips non-

audio files, startup delay
0.94 2005-08-24 PO 8.3-char filename in SCI version, loudness defaults,

subdirectory support, partial FAT12 support
fix for MMC-related powerup problem (chapter 2)

0.92 2005-07-13 PO Version for VS1011E added, schematics fixed
0.5 2005-05-09 PO Initial version

Rev. 1.18 2009-08-14 Page 1(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

1. VS10XX STANDALONE PLAYER

1 VS10xx Standalone Player

All information in this document is provided as-is without warranty. Features
are subject to change without notice.

The SPI bootloader that is available in VS1011E, VS1002D, VS1003B, VS1033C, VS1053B,
and VS1103B can be used to add new features to the system. Patch codes and new codecs
can be automatically loaded from SPI EEPROM at startup. One interesting application
is a single-chip standalone player.

The standalone player application uses MMC/SD directly connected to VS10xx using the
same GPIO pins that are used to download the player software from the boot EEPROM.

The instruction RAM of 1280 words (5 kilobytes) is used for MMC communication rou-
tines, read-only handling of the FAT and FAT32 filesystems and a simple three-button
user interface.

Standalone Features:
• No microcontroller is required, boots from SPI EEPROM (25LC640).

• Low-power operation

• Uses MMC/SD/SDHC for storage. Hot-removal and insertion of card is supported.

• Supports FAT and FAT32 filesystems, including subdirectories (upto 16 levels).
FAT12 is partially supported: subdirectories or fragmented files are not allowed.

• Automatically starts playing from the first file after power-on.

• Power-on defaults are configurable.

• VS1011E/VS1002D transfer speed 4.1 Mbit/s (24.576 or 2×12.288 MHz clock1).

• VS1003B/VS1033C/VS1053B transfer speed 4.8 Mbit/s (3.5×12.288 MHz clock).

• High transfer speed supports even 48 kHz 16-bit stereo WAV files.

• Optional three-button interface allows pause/play, shuffle play and loudness
toggle, song selection, and volume control.

• Optional LED for user interface feedback

1 Because MMC communication takes some CPU time, 320 kbit/sec MP3 files need higher than
12.288 MHz clock in VS1011E/VS1002D if both bass enhancer and treble control are active.

With Optional Microcontroller:
• External microcontroller can control the player through SCI or UART.

• Bypass mode allows MMC to be accessed also directly by the microcontroller.

• Code can be loaded through SCI by a microcontroller to eliminate SPI EEPROM.

Rev. 1.18 2009-08-14 Page 2(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

2. BOOT EEPROM AND MMC

2 Boot EEPROM and MMC

CLK

SO
SI
SCK

CS

CS

GPIO0

GPIO1

GPIO2

GPIO3

DREQ

25LC640

RX

XRESET

swMISO
swMOSI

swCLK

Note: MMC’s /CS and CLK has been swapped from previous version

swCS

swCS2

CMD/DI

DATA/DO

VS10XX

MMC/SD

Figure 2.1: SPI-Boot and MMC connection

The standalone player software is loaded from SPI eeprom at power-up or reset when
GPIO0 is tied high with a pull-up resistor. The memory has to be an SPI Bus Serial
EEPROM with 16-bit addresses. The player code currently requires almost 5 kB, thus
at least 8 kB SPI EEPROM is recommended.

SPI boot and MMC/SD usage redefines the following pins:

Pin SPI Boot Other
GPIO0 swCS (EEPROM XCS) 100 kΩ pull-up resistor
GPIO1 swCS2 (MMC XCS) Also used as SPI clock during boot
DREQ swMOSI
GPIO2 swMISO 100 kΩ between xSPI & swMISO, 680 kΩ to GND
GPIO3 swCLK (MMC CLK) Data clock for MMC, 10MΩ to GND

Pull-down resistors on GPIO2 and GPIO3 keep the MMC CLK and DATA in valid states
on powerup.

The SPI EEPROM boot is used for the button-controlled standalone player. The code
for the SCI-controlled player can be uploaded through the SCI instead of using an SPI
EEPROM.

Rev. 1.18 2009-08-14 Page 3(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

2. BOOT EEPROM AND MMC

Defective or partially defective MMC cards can drive the CMD (DI) pin until they get
the first clock. This interferes with the SPI boot if MMC’s drive capability is higher
than VS10xx’s. So, if you have powerup problems when MMC is inserted, you
need something like a 330 Ω resistor between swMOSI (DREQ) and MMC’s
CMD/DI pin. Normally this resistor is not required.

Because the SPI EEPROM and MMC share pins, it is crucial that MMC does not drive
the pins while VS10xx is booting. MMC boots up in mmc-mode, which does not care
about the chip select input, but listens to the CMD/DI pin. Mmc-mode commands
are protected with cyclic redundancy check codes (CRC’s). Previously it was assumed
that when no valid command appears in the CMD pin, the MMC does not do anything.
However, it seems that some MMC’s react even to commands with invalid CRC’s, which
messes up the SPI boot.

The only way to cure this problem was to change how the MMC is connected. The
minimum changes were achieved by swapping MMC’s chip select and clock inputs. This
way MMC does not get clocked during the SPI boot and the system should work with
all MMC’s. Because the swap only occurred on the MMC pins, the SPI EEPROM
connection is unchanged!

2.1 Fixing Old VS10xx Prototyping Board 1.5

Since the 1.00 version of the standalone player MMC’s /CS and CLK have been swapped.
This change has no effect elsewhere in the design. However, to be able to use 1.00 or
later player version, you need to use the new pin assignments.

Fixing the VS10xx Prototyping Board 1.5 is easy (if it has not been done for you already).
Remove the CS and CK jumpers from JP15 / JP17 (pins 1 and 3). Then connect pin 1
of JP15 to pin 3 of JP17, and pin 1 of JP17 to pin3 of JP15. And that’s all.

CS

DI

CK

DO

JP15 JP17

pin 1

pin 3

Figure 2.2: VS10xx Prototyping Board 1.5 Fix

Rev. 1.18 2009-08-14 Page 4(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

3. PLAYER WITH THREE-BUTTON UI

3 Player with Three-Button UI

DREQ

xDCS
SI
SCLK

xCS

sw1 sw2sw3

1 kOhm
minimum

optional LEDGPIO0

swMOSI

swCS

VS10XX

Figure 3.1: Three-button interface connection

A three-button interface is implemented with two diodes and two resistors. Only one
button is detected simultaneously. If both SW1 and SW2 are pressed, only the other one
(SW2) is detected. SW3 is only read if neither SW1 nor SW2 are pressed.

The three-button interface provides the most needed controls.

Button Short Keypress Long Keypress
SW1 Next song Volume up
SW2 Previous song Volume down
SW3 Pause/Play Play mode: Toggle loudness

Pause mode: Toggle shuffle play

Very little changes to the user interface are possible, because of the very restricted in-
struction RAM availability.

An optional LED can be used for indicating system activity. In play mode a long blink
of the LED indicates loudness ON, in pause mode a long blink indicates shuffle play ON.
Otherwise the LED shows MMC activity. In pause mode the LED lights up dimly.

Notice that SCI and SDI can not be used simultaneously with the three-button interface.

Rev. 1.18 2009-08-14 Page 5(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

3. PLAYER WITH THREE-BUTTON UI

3.1 Boot Images

The SPI EEPROM boot images can be found from the code/ subdirectory. Note that
this application is highly chip-specific. It only works on the exact firmware
versions mentioned. Note that to be able to use 1.00 or later player version, you need
to use the new MMC pin assignments (see chapter 2 and section 2.1).

For VS1003B you can also select a version that does not play WMA files. If you use that
version in your product, a WMA license should not be required.

Chip File Features
VS1011E player1011ebut.bin Three-button interface
VS1002D player1002but.bin Three-button interface, watchdog
VS1003B player1003but.bin Three-button interface, watchdog
VS1003B player1003nwbut.bin Three-button interface, watchdog, No WMA
VS1033C player1033cbut.bin Three-button interface, watchdog
VS1053B player1053bbut.bin Three-button interface, watchdog
VS1103B player1103bbut.bin Three-button interface, watchdog

3.2 Power-on Defaults

Default values are loaded from SPI EEPROM at power-on reset. Before the MMC/SD
card is first accessed after power-on, approximately 22ms delay is executed. The startup
delay time can be changed from the boot image. The middle bytes in the string 0x00
0x12 0x34 0x0e contain the default value 0x1234 (22 ms). This value can be changed
between 0x0000 (0ms) and 0x3fff (80 ms). Do not change the 0x00 and 0x0e bytes.

The input clock is assumed to be 12.288 MHz. If you want to use a different crystal, the
SCI CLOCKF value can be found from byte offsets 10 and 11 in the boot image. The
default values are 0x9800 (2× 12.288 MHz) for VS1011e and VS1002d, and 0xa000 (3.5×
12.288MHz) for VS1003b, VS1033c, and VS1103b, and 0x8000 (3.5× 12.288MHz) for
VS1053b. You can reduce the power consumption a bit by lowering the default clock and
allowing the clock add (see chip datasheet for details).

Volume (SCI VOL) default value is in byte offsets 26 and 27. Loudness default is in byte
offsets 32 and 33 (treble and bass controls, respectively). The bass control value should
be odd to make the loudness indicator LED blink work. SCI BASS default value is in
byte offsets 8 and 9.

If you want the loudness ON by default, replace bytes 8 and 9 in the image with the
same values you use as the loudness default in offsets 32 and 33.

Rev. 1.18 2009-08-14 Page 6(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

3. PLAYER WITH THREE-BUTTON UI

Offset Register Default Meaning
8, 9 SCI BASS 0x0000 Bass enhancer control at power-up
10, 11 SCI CLOCKF 0x9800 Clock control (for VS1003B/33C 0xa000)
26, 27 SCI VOL 0x2020 Power-up volume, left and right channel
28, 29 SCI AICTRL0 0 Song number to play at power-up
32, 33 SCI AICTRL2 0x33d9 Treble and bass control for loudness
34, 35 SCI AICTRL3 0 Play mode & Miscellaneous configuration

In VS1103b SCI AICTRL2 is used for the number of songs, so loudness setting is not
available.

Rev. 1.18 2009-08-14 Page 7(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

4. STANDALONE RECORDER

4 Standalone Recorder

Note: Standalone Recorder is work-in-progress. Features are subject to
change without notice.

The Standalone Recorder makes use of the VS1002D, VS1003B and VS1033C microphone
input. In addition to playing files from MMC, sound from the microphone can be IMA-
ADPCM-encoded and written to MMC. By default the sample rate is 8000 Hz.

The recording always writes to the same file (VSRECORD.WAV) and the file must
be initially provided by the user with a specific 512-byte header (see mkrecord). The
samplerate of the VSRECORD.WAV file must match the samplerate used by the recorder,
so remember this if you change the samplerate in the recorder boot image. (For code
space reasons the sample rate can not be read from the WAV file.) The file size determines
the maximum recording time.

Button Short Keypress Long Keypress
SW1 Next song Volume up
SW2 Previous song Volume down
SW3 Pause/Play (not in VS1002) Start recording

Recording will only start if VSRECORD.WAV exists. Recording stops when the record-
ing file is full or when any of the buttons are pressed shortly. Do not turn off power
when recording is active or you risk corrupting the MMC. Return to play
mode first.

Because of the instruction memory constraints, the user interface in the Standalone
Recorder is simplified and some other features have been removed.

• no SDHC support

• no extra startup delay

• no Pause/Play in VS1002 version

• no shuffle play

• no loudness selection (preset value is available)

• previous song selected also when more than 5 secs played

• only root directory supported, no subdirectory support

• no filename suffix check and no timeout if file is not playable

• LED does not indicate operating mode

VS1003B gives better recording quality than VS1002D, because it has higher microphone
gain, but it has a longer delay in recorded sound monitoring. VS1033C tries to keep the
loopback delay shorter.

Rev. 1.18 2009-08-14 Page 8(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

4. STANDALONE RECORDER

The SPI EEPROM boot images can be found from the code/ subdirectory. Note that
this application is highly chip-specific. It only works on the exact firmware
versions mentioned. Note that to be able to use 1.00 or later player version, you need
to use the new MMC pin assignments (see chapter 2 and section 2.1).

Chip File Features
VS1002D recorder1002.bin Player/recorder
VS1003B recorder1003.bin Player/recorder
VS1033C recorder1033c.bin Player/recorder

Power-on Defaults

Almost the same power-on defaults that the standalone player uses are available in
the standalone recorder. Loudness can not be toggled, thus the loudness default in
SCI AICTRL2 is not used, but instead, the maximum gain of the recording mode can
be set using bytes in file offsets 18 and 19.

This value can be used to limit the automatic gain control of the IMA ADPCM recording.
Reducing the maximum gain limits the audible noise when there is no sound.

Offset Register Default Meaning
8, 9 SCI BASS 0x0000 Bass enhancer control at power-up
10, 11 SCI CLOCKF 0x9800 Clock control (for VS1003B/33C 0x9000)
16, 17 - 0 Record gain, 0=AGC, 512=0.5×, 1536=1.5×, etc.
18, 19 - 0xffff Max gain, 65535=64×, 16384=16×, etc.
26, 27 SCI VOL 0x2020 Power-up volume, left and right channel
28, 29 SCI AICTRL0 0 Song number to play at power-up
32, 33 SCI AICTRL2 - Not used
34, 35 SCI AICTRL3 0 Play mode & Miscellaneous configuration
56, 57 0x0300 Default rate 8000 Hz (0x0480 for VS1003)
63 0x04 Recording mode: see below

Recording Mode
0x04 Mic selected, no high-pass
0x0c Mic selected, high-pass (use for 8000 Hz only)
0x14 Line input selected, no high-pass
0x1c Line input selected, high-pass (use for 8000Hz only)

The recording sample rate can also be changed from the boot image. Note that you have
to have the same sample rate in VSRECORD.WAV.

Recording Sample Rate Selection
Rate /Hz VS1002 VS1003
8000 0x0300 0x0480
11076 - 0x0340
12000 - 0x0300
16000 - 0x0240
24000 - 0x0180

Rev. 1.18 2009-08-14 Page 9(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

4. STANDALONE RECORDER

mkrecord

The mkrecord program generates a VSRECORD.WAV file that can be used with the stan-
dalone recorder. The default size is two megabytes, i.e. 517 seconds. You can set the file
size in either bytes or in seconds.

For example the following commands create a twelve-minute VSRECORD.WAV into H: .
C:\ > H:
H:\ > mkrecord -t 12:00
720 seconds
Rate: 8000 Hz, Size: 2919936, Byte rate: 2027
Number of samples 5759020, Duration 719.88 seconds
Created VSRECORD.WAV

The source code and windows executable are available as code/mkrecord.c and
code/mkrecord.exe, respectively.

mkrecord.c:
—————–

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

unsigned char header[512] = { /* RIFF WAV header */

0x52,0x49,0x46,0x46,0xF8,0x8F,0x06,0x00,0x57,0x41,0x56,0x45,

0x66,0x6D,0x74,0x20,0x14,0x00,0x00,0x00,0x11,0x00,0x01,0x00,

0x80,0x3E,0x00,0x00,0xD7,0x0F,0x00,0x00,0x00,0x01,0x04,0x00,

0x02,0x00,0xF9,0x01,0x66,0x61,0x63,0x74,0xC8,0x01,0x00,0x00,

0x1E,0xEE,0x0C,0x00 /* the rest are zeros */

};

long GetSeconds(char *s, char **sc) {

long secs = 0;

while (1) {

secs += strtol(s, sc, 10);

if (**sc != ’:’)

return secs;

/* if it was minutes (or hours even..) */

secs *= 60;

s = *sc + 1;

}

}

void FixVal(unsigned char *s, unsigned long val) {

s[0] = (unsigned char)val;

s[1] = (unsigned char)(val>>8);

s[2] = (unsigned char)(val>>16);

s[3] = (unsigned char)(val>>24);

}

Rev. 1.18 2009-08-14 Page 10(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

4. STANDALONE RECORDER

int main(int argc, char *argv[]) {

unsigned long fs = 8000, size = 2048*1024, dataSize, numOfSamples, tim = 0;

int n;

FILE *fp;

for (n = 1; n < argc; n++) {

char *err = NULL;

if (!strcmp(argv[n], "-f")) {

fs = strtol(argv[++n], &err, 0);

} else if (!strcmp(argv[n], "-s")) {

size = strtoul(argv[++n], &err, 0) & ~511L;

} else if (!strcmp(argv[n], "-t")) {

tim = GetSeconds(argv[++n], &err);

} else {

fprintf(stderr, "Usage: %s [-f <rate>] [-s <size>] [-t <time>]\n",

argv[0]);

fprintf(stderr, "Example: %s -t 5:30\n", argv[0]);

return EXIT_FAILURE;

}

if (err && *err)

fprintf(stderr, "Invalid number ’%s’\n", argv[n]);

}

if (tim) {

fprintf(stderr, "%ld seconds\n", tim);

size = ((unsigned long)(tim * (fs * 256/505.0)) + 511) & ~511L;

}

dataSize = size - 512;

numOfSamples = dataSize / 256 * 505;

fprintf(stderr, "Rate: %ld Hz, Size: %lu, Byte rate: %ld\n",

fs, size, fs*128/505);

fprintf(stderr, "Number of samples %lu, Duration %6.2f seconds\n",

numOfSamples, (double)numOfSamples/fs);

FixVal(header+4, size-8); /* chunk size = file size - 8 */

FixVal(header+24, fs); /* sample rate */

FixVal(header+28, fs*256/505); /* byte rate */

FixVal(header+48, numOfSamples); /* number of samples */

FixVal(header+504, 0x61746164); /* "data" in little-endian format */

FixVal(header+508, dataSize); /* data size = file size - 512 */

if ((fp = fopen("VSRECORD.WAV", "wb"))) {

unsigned char zero[512] = {0};

fwrite(header, 512, 1, fp);

if (fseek(fp, dataSize, SEEK_SET) == 0) {

fwrite(zero, 512, 1, fp); /* Seek successful, write last block */

} else {

while ((size -= 512) > 0) /* Failed, write as much as possible */

fwrite(zero, 512, 1, fp);

}

fclose(fp);

fprintf(stderr, "Created VSRECORD.WAV\n");

return EXIT_SUCCESS;

}

fprintf(stderr, "Could not open VSRECORD.WAV for writing!\n");

return EXIT_FAILURE;

}

Rev. 1.18 2009-08-14 Page 11(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

5. SCI-CONTROLLED PLAYER

5 SCI-Controlled Player

swMOSI
DREQxDCS

SI
SCLK

xCS
1 kOhm
minimum

optional LED

SO

to controller

VS10XX

Figure 5.1: SCI connection

If the button interface is not used, the player can be controlled through the serial control
interface (SCI). In this mode xCS, SI, SO, and SCLK are connected to the host controller’s
SPI bus. xDCS should have a pull-up resistor. The connection from SCLK to DREQ
is not used, that connection is only used for reading the buttons in the 3-button user
interface.

Normally the code is loaded through SCI by the microcontroller. In this case the boot
EEPROM can be eliminated, and the pull-up resistor in GPIO0 can be changed into a
pull-down resistor. Because the SCI/SDI connection is available, the VS10XX chip can
be used also normally in slave mode. When standalone playing from MMC/SD is wanted,
the code is loaded and started through SCI. Software or hardware reset returns the chip
to slave mode.

The application loading tables for the microcontroller are available in the code/ sub-
directory. To start the application after uploading the code, write 0x30 (0x50 for
VS1053b) to SCI AIADDR (SCI register 10). Before starting the code, you should ini-
tialize SCI CLOCKF and SCI VOL.

Chip File Features
VS1011E player1011esci.c SCI control
VS1002D player1002sci.c SCI+UART control, watchdog
VS1003B player1003sci.c SCI+UART control, watchdog
VS1003B player1003nwsci.c SCI+UART control, watchdog, No WMA
VS1033C player1033csci.c SCI+UART control, watchdog
VS1053B player1053bsci.c SCI+UART control, watchdog
VS1103B player1103bsci.c SCI+UART control, watchdog

Rev. 1.18 2009-08-14 Page 12(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

5. SCI-CONTROLLED PLAYER

All non-application SCI registers can be used normally, except that SM SDINEW must
be kept at ’1’ to enable GPIO2 and GPIO3 (default for other chips than VS1011e).
SCI CLOCKF must be set by the user, preferably before starting the code.

SCI AIADDR, SCI AICTRL0, SCI AICTRL1, SCI AICTRL2, and SCI AICTRL3 are
used by the player.

SCI registers
Reg Abbrev Description
0x0 MODE Mode control, SM SDINEW=1
0x1 STATUS Status of VS10xx
0x2 BASS Built-in bass/treble control
0x3 CLOCKF Clock freq + multiplier
0x4 DECODE TIME Decode time in seconds
0x5 AUDATA Misc. audio data
0x6 WRAM RAM write/read
0x7 WRAMADDR Base address for RAM write/read
0x8 HDAT0 Stream header data 0
0x9 HDAT1 Stream header data 1

0xA AIADDR Player private, do not change
0xB VOL Volume control
0xC AICTRL0 Current song number / Song change
0xD AICTRL1 Number of songs on MMC
0xE AICTRL2 Number of songs on MMC (VS1103b)
0xF AICTRL3 Play mode

The currently playing song can be read from SCI AICTRL0. In normal play mode the
value is incremented when a file ends, and the next file is played. When the last file has
been played, SCI AICTRL0 becomes zero and playing restarts from the first file.

Write 0x8000 + song number to SCI AICTRL0 to jump to another song. The high bit
will be cleared when the song change is detected. The pause mode (CTRL3 PAUSE ON),
file ready (CTRL3 FILE READY), and paused at end (CTRL3 AT END) bits are au-
tomatically cleared. If the song number is too large, playing restarts from the first file.
If you write to SCI AICTRL0 before starting the code, you can directly write the song
number of the first song to play.

SCI AICTRL1 (SCI AICTRL2 for VS1103b) contains the number of songs (files) found
from the MMC card. You can disable this feature (CTRL3 NO NUMFILES) to speed
up the start of playback. In this case AICTRL1 will contain 0x7fff after MMC/SD has
been successfully initialized.

In other chips than VS1002d you can use SCI WRAMADDR and SCI WRAM to both
write and read memory. With VS1002d you can use SCI WRAMADDR and SCI WRAM
to write memory and SCI AICTRL2 to read memory.

Write the address you want to read (0..0x3fff for X memory, 0x4000..0x7fff for Y memory)
to SCI WRAMADDR, then read from SCI AICTRL2. The first read will return carbage,
the second one returns the value from the address you specified. Each read increments
the internal address so you can get data from consequtive addresses with consequtive
reads from SCI AICTRL2.

Rev. 1.18 2009-08-14 Page 13(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

5. SCI-CONTROLLED PLAYER

SCI AICTRL3 bits
Name Bit Description
CTRL3 UPDATE VOL 15 ’1’ = update volume (for UART control)
CTRL3 I2S ENABLE 9 Enable I2S output, VS1053 only
CTRL3 BY NAME 8 ’1’ = locate file by name
CTLR3 AT END 6 if PLAY MODE=3, 1=paused at end of file
CTLR3 NO NUMFILES 5 0=normal, 1=do not count the number of files
CTLR3 PAUSE ON 4 0=normal, 1=pause ON
CTLR3 FILE READY 3 1=file found
CTLR3 PLAY MODE MASK 2:1 0=normal, 1=loop song, 2=pause before play,

3=pause after play
CTLR3 RANDOM PLAY 0 0=normal, 1=shuffle play

AICTRL3 should be set to the desired play mode by the user before starting the code.
If it is changed during play, care must be taken.

If the lowest bit of SCI AICTRL3 is 1, a random song is selected each time a new song
starts. The shuffle play goes through all files in random order, then plays them in a
different order. It can play a file twice in a row when a new random order is initiated.

The play mode mask bits can be used to change the default play behaviour. In normal
mode the files are played one after another. In loop song mode the playing file is repeated
until a new file is selected. CTRL3 FILE READY will be set to indicate a file was found
and playing has started, but it will not be automatically cleared.

Pause before play mode will first locate the file, then go to pause mode. CTRL3 PAUSE ON
will get set to indicate pause mode, CTRL3 FILE READY will be set to indicate a file
was found. When the user has read the file ready indicator, he should reset the file ready
bit. The user must also reset the CTRL3 PAUSE ON bit to start playing.

One use for the pause before play mode is scanning the file names.

Pause after play mode will play files normally, but will go to pause mode and set the
CTRL3 AT END bit right after finishing a file. AICTRL0 will be increased to point
to the next file (or the number of files if the song played was the last file), but this
file is not yet ready to play. CTRL3 PAUSE ON will get set to indicate pause mode,
The user must reset the CTRL3 PAUSE ON bit to move on to locate the next file, or
select a new file by writing 0x8000 + song number to AICTRL0. CTRL3 PAUSE ON,
CTRL3 FILE READY, and CTRL3 AT END bits are automatically cleared when new
file is selected through AICTRL0.

Pause after play and loop mode are only checked when the file has been fully read. Pause
before play is checked after the file has been located, but before the actual playing starts.
Take this into account if you want to change playing mode while files are playing.

You can speed up the start of playback by setting CTRL3 NO NUMFILES. In this case
the number of files on the card is not calculated. In this mode AICTRL1 (SCI AICTRL2
for VS1103b) will contain 0x7fff after MMC/SD has been successfully initialized. This
affects the working of the shuffle mode, but the bit is useful if you implement random or
shuffle play on the microcontroller. You probably want to determine the number of files
on the card once to make it possible to jump from the first file to the last.

Rev. 1.18 2009-08-14 Page 14(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

5. SCI-CONTROLLED PLAYER

Since the 1.18 version, you can open specific files by using the CTRL3 BY NAME bit.
First write the 8.3-character file name into memory, then set CTRL3 BY NAME, then
write 0xffff to SCI AICTRL0. After a file has been located you can check the file name
to see if the file was located or not. You can also check SCI AICTRL0: if it is non-zero,
the file has been located, otherwise you have to check the file name to be certain.

To write the file name, first write 0x4780 (0x5800 for VS1003B/VS1033C/VS1053B) to
SCI WRAMADDR, then the 6 words of the file name to SCI WRAM.

Open by name is not available in the SCI-controlled recorder.

With VS1053 you can use CTRL3 I2S ENABLE to activate the I2S output. GPIO4 to
7 are then configured as I2S output pins, MCLK output is enabled, and 48 kHz output
rate is selected (with 12.288 MHz XTALI).

SCI-Controller Player with SPI Boot

If your microcontroller does not have enough memory for the code loading tables, the
SCI-controlled version can also be loaded from SPI-EEPROM. Then the SCI register
default values are also loaded from EEPROM. You can change the power-on defaults in
the same way by editing the boot image than in the standalone player version.

Chip File Features
VS1011E player1011esci.bin SCI control
VS1002D player1002sci.bin SCI+UART control, watchdog
VS1003B player1003sci.bin SCI+UART control, watchdog
VS1003B player1003nwsci.bin SCI+UART control, watchdog, No WMA
VS1033C player1033csci.bin SCI+UART control, watchdog
VS1053B player1053bsci.bin SCI+UART control, watchdog
VS1103B player1103bsci.bin SCI+UART control, watchdog

If you want to use the chip in normal slave mode also with the SPI EEPROM, change
the GPIO0 pull-up resistor into a pull-down resistor. This prevents automatic boot after
reset, and the chip stays in normal slave mode.

To start the SCI-controlled standalone player, write 0xC017 to SCI WRAMADDR, then
0x0001, 0x0000, and 0x0001 to SCI WRAM. This sets GPIO0 to output a ’1’. Then
give a software reset. The chip now detects GPIO0 high, and performs boot from SPI
EEPROM.

To return to slave mode either give a hardware reset, or write 0xC017 to SCI WRAMADDR,
then 0x0000 to SCI WRAM, and give a software reset.

Rev. 1.18 2009-08-14 Page 15(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

5. SCI-CONTROLLED PLAYER

5.1 UART Control

The SCI-Controlled Player (and recorder) also supports limited control through UART
at 9600bps data rate (8 data bits, no parity, 1 stop bit). You should use SCI control if
you can, the UART control is not very stable and you can’t read values from VS10xx.
When UART control is used, the code is loaded from SPI EEPROM and SCI connection
is not needed. Loading the code through UART is possible, but complicated, so that will
not be available unless there is serious demand.

There are short periods during MMC/SD initialization when VS10xx does not receive
UART bytes. The received bytes are echoed to TX so you can resend bytes if needed.

UART is just an alternative way to write SCI registers. You send 4-byte commands to
write to SCI registers, or any register in the range of 0xc000..0xc07f. The first three bytes
send 2, 7, and 7 bits of a 16-bit data value and have the most significant bit cleared. The
last byte has the most significant bit set, and the register number is in the low 7 bits.

/* putch() sends a 8-bit value through UART */
void WriteRegThroughUart(unsigned short value, unsigned short reg) {

putch((value>>14) & 127);
putch((value>>7) & 127);
putch(value & 127);
putch(reg | 0x80);

}

Example: to select song #10, use WriteRegThroughUart(0x800a, 0x0c) i.e. send bytes
0x02, 0x00, 0x0a, 0x8c. The value to write is (0x02<<14) | (0x00<<7) | 0x0a = 0x800a,
and it will be written to 0xc00c, i.e. to SCI AICTRL0. As can be seen from the SCI
control documentation, this will prompt the player to end the playing of current song
and start playing song #10.

To set volume: send 0x00, 0x30, 0x10, 0x8b to set SCI VOL to 0x1010. This sets the
volume register to the new value, but does not yet calculate new volume in all VS10xx
chips because the write did not cause an SCI interrupt (this is also why writing to
SCI WRAMADDR and SCI WRAM with UART control does not write to memory).
However, VS1053B uses the new SCI VOL value automatically.

To force volume calculation in chips that need it, send 0x02, 0x00, 0x00, 0x8f to set the
volume update flag (CTRL3 UPDATE VOL) in SCI AICTRL3. If you are using some
other play mode than normal play mode, or pause mode is on, you have to adapt the
writes accordingly.

Byte/TX Status
0x65 ’e’ song/recording ended
0x70 ’p’ song paused
0x63 ’c’ play continued
0x6c ’l’ song looped
0x72 ’r’ recording started

Some status information is also returned. ’e’ is returned after a song or recording ends.
Loop mode sends ’l’ for every restart of the song. ’p’ is sent when pause mode is entered,
and ’c’ when playing continues. This information is sent also when you use SCI control.

Rev. 1.18 2009-08-14 Page 16(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

5. SCI-CONTROLLED PLAYER

5.2 Reading the 8.3-character Filename

When a file has been selected, the MSDOS short filename (8+3 characters) can be read
from VS10xx memory. The filename is in Y memory at addresses 0x780..0x785 (VS1011B,
VS1011E, VS1002D) or 0x1800..0x1805 (VS1003B, VS1033C). The first character is in
the most-significant bits of the first word.

The following pseudocode tries to locate a file named “SONG.MP3”. If it is found, it is
played continuously in a loop.

#define MKWORD(a,b) (((int)(unsigned char)(a)<<8)|(unsigned char)(b))
int song = 0;
WriteMp3Reg(SCI_AICTRL3, (2<<1)); /* pause before play mode */
WriteMp3Reg(SCI_AICTRL0, 0x8000+song); /* select song */
while (1) {

if (ReadMp3Reg(SCI_AICTRL3) & (1<<3)) { /* file ready */
unsigned short ch[6], name[6] = {
MKWORD(’S’,’O’), MKWORD(’N’,’G’), MKWORD(’ ’,’ ’),
MKWORD(’ ’,’ ’), MKWORD(’M’,’P’), MKWORD(’3’,’\0’)};

int i;

WriteMp3Reg(SCI_WRAMADDR, 0x4780); /* 0x5800 for VS1003B/VS1033C */
ReadMp3Reg(SCI_AICTRL2); /* dummy read - required for VS1002 only */
for (i=0; i < 6; i++) { /* read filename */
ch[i] = ReadMp3Reg(SCI_WRAM); /* first 2 chars, AICTRL2 for VS1002 */
printf("%c%c", ch[i]>>8, ch[i]);

}
ch[5] &= 0xff00; /* mask away unused bits */
printf("\n");
if (!memcmp(ch, name)) { /* compare filenames */
break; /* filename matched, leave loop */

} else {
/* the right file not found!! */
if (++song == ReadMp3Reg(SCI_AICTRL1)) {
/* The requested file was not on the card! */

} else {
/* clear file ready, keep pause on, pause before play mode */
WriteMp3Reg(SCI_AICTRL3, (1<<4)|(2<<1));
WriteMp3Reg(SCI_AICTRL0, 0x8000+song); /* select next song */

}
}

}
}
/* SONG.MP3 file number is now in the variable ’song’ */
/* clear file ready and pause, select loop song mode */
WriteMp3Reg(SCI_AICTRL3, (1<<1));

Rev. 1.18 2009-08-14 Page 17(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

5. SCI-CONTROLLED PLAYER

5.3 Bypass Mode

VS10xx can be disconnected from MMC to allow direct microcontroller access. A good
way to disconnect VS10xx from MMC is keeping GPIO0 low when reset is deasserted
(software reset can also be used). This bypasses the SPI-boot, leaving GPIO pins as
inputs. SM SDINEW must be ’1’, this is the default in VS1002/VS1003/VS1033. DREQ
rises when normal firmware is ready. In this case an open-collector driver is used to
connect DREQ and the controller’s I/O pin to MMC’s DI-pin.

Because this bypass mode is actually the normal firmware operation mode, the controller
can use VS10xx through SCI and SDI normally, for example for audio cues while accessing
the MMC. The controller can upload the SCI-controlled standalone player through SCI
and start it whenever it wants.

Because the MMC can not be returned to MMC mode without power cycling, the con-
troller needs a way to power off the MMC.

DI
CLK
DO
CS

GPIO0

GPIO1
GPIO2
GPIO3
DREQ MMC

XRESET

Controller

VS10xx

power

SCK
SI
SO

XCS

open−
collector

power must be cycled to
reset MMC to MMC mode

SO, SI, SCK, and XCS can be multiplexed
with DO, DI, CLK, and CS with external mux
to reduce controller I/O pin count

To access MMC from controller:
1) hardware (XRESET) or software−reset (through SCI) VS10xx
2) DREQ rises when boot complete, GPIO’s remain high−impedance
3) Cycle MMC power to reset it to default state
4) Access MMC with controller in either MMC or SPI mode

To start playing:
1) Cycle MMC power to reset it to default state
2) Reset VS10xx − DREQ will rise when boot complete
3) Upload the code from controller to VS10xx through SCI
4) Start the code, VS10xx accesses the MMC
5) The player can be controlled though SCI commands
Note: controller pins connected to MMC must be high−impedance state

Concept connection diagram for SCI−controlled standalone player
when code is loaded through SCI.

RX

XDCS

Figure 5.2: Example of shared access

Rev. 1.18 2009-08-14 Page 18(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

6. SCI-CONTROLLED RECORDER

6 SCI-Controlled Recorder

If the button interface is not used, the recorder can be controlled through the serial
control interface (SCI). See chapter 5.

The SCI-Controlled Recorder is still experimental and user feedback is appreciated.

Code Loaded through SCI

The application loading tables for the microcontroller are available in the code/ subdi-
rectory. To start the application after uploading the code, write 0x30 to SCI AIADDR
(SCI register 10). Other registers are initialized by the loading tables. You can change
the defaults by modifying the loading tables.

Chip File Features
VS1003B recorder1003sci.c SCI control, watchdog
VS1033C recorder1033csci.c SCI control, watchdog

SPI EEPROM

If your microcontroller does not have enough memory for the code loading tables, the
SCI-controlled recorder can also be loaded from SPI-EEPROM. You can change the
power-on defaults in the same way than in the standalone recorder version.

Chip File Features
VS1003B recorder1003sci.bin SCI control, watchdog
VS1033C recorder1033csci.bin SCI control, watchdog

Rev. 1.18 2009-08-14 Page 19(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

6. SCI-CONTROLLED RECORDER

SCI Control

SCI registers are used in the same way as with the SCI-controlled Player. SCI AICTRL3
has one extra bit to start recording mode. Do not set CTRL3 NO NUMFILES, or the
VSRECORD.WAV is not located and recording will not be possible.

SCI AICTRL3 bits
Name Bit Description
CTRL3 UPDATE VOL 15 ’1’ = update volume (for UART control)
CTRL3 RECORD ON 7 ’1’ = start recording, ’0’ = end recording
CTLR3 AT END 6 if PLAY MODE=3, 1=paused at end of file
CTLR3 NO NUMFILES 5 0=normal, 1=do not count the number of files
CTLR3 PAUSE ON 4 0=normal, 1=pause ON
CTLR3 FILE READY 3 1=file found
CTLR3 PLAY MODE MASK 2:1 0=normal, 1=loop song, 2=pause before play,

3=pause after play
CTLR3 RANDOM PLAY 0 0=normal, 1=shuffle play

AICTRL3 should be set to the desired play mode by the user before starting the code.
If it is changed during play, care must be taken.

See the documentation of the common bits from the SCI-Controlled Player chapter.

When CTRL3 RECORD ON is set to ’1’ and VSRECORD.WAV has been located on
the card, the recording is started. Recording will end when the end of VSRECORD.WAV
has been reached. You can also end recording by clearing CTRL3 RECORD ON. After
recording playback will start from the first song.

UART Control

The SCI-Controlled Recorder also supports UART control. See section 5.1 on how to use
it.

In the recorder new song can be selected when pause mode is active, but not while
recording is active.

Also note that the recorder does not have shuffle play mode.

Rev. 1.18 2009-08-14 Page 20(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

7. EXAMPLE IMPLEMENTATION

7 Example Implementation

The standalone player was implemented using the VS10xx prototyping board.

Figure 7.1: Standalone Player in Prototyping Board

The following example schematics contains a simple implementation for VS1003B. Power
generation and player logic are separated. Note: the schematics is a stripped-down
version of the Prototyping Board. Use the attached schematics only as a
basis for your own designs and refer to the Prototyping Board schematics
when you work with the Prototyping Board.

VS1002D version differs by having no separate IOVDD and CVDD, and no line input.
VS1011E has no microphone input either.

Rev. 1.18 2009-08-14 Page 21(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

7. EXAMPLE IMPLEMENTATION

Note: MMC’s /CS and CLK swapped. Optional resistor fixes problems with some
MMC’s (chapter2). See also Figure 3.1.

Rev. 1.18 2009-08-14 Page 22(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

7. EXAMPLE IMPLEMENTATION

Battery life was tested with the prototyping board:

Test conditions:

• VS1002D

• Kingston 128 MB MultiMediaCard

• Beyerdynamic DT 131 headphones connected all of the time

• a single 2300 mAh AA-sized NiMH 1.2V Rechargeable Battery

• 128 kbps MP3 song (utopia-free-sample.mp3) on autorepeat

• default volume (-16dB)

• no LED

Test result: 25 hours 27 minutes of play time.

Rev. 1.18 2009-08-14 Page 23(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

8. DOCUMENT VERSION CHANGES

8 Document Version Changes

8.1 Version 1.18, 2009-08-14

• Filename read example uses SCI WRAM (SCI AICTRL2 with VS1002 only).

• UART control echoes the received characters. Also more robust when song change
happens in the middle of a UART command.

• Open file by name possible in SCI-controller player.

• Fixes to loop mode in SCI-controlled player.

• SDHC support was not enabled with VS1053.

• CTRL3 I2S ENABLE bit added to AICTRL3 (VS1053 only).

8.2 Version 1.17, 2009-01-15

• VS1053: IROM switching did not restore the default state after playing midi.

8.3 Version 1.16, 2008-12-22

• Going through all files was slow with lot of directories and a large cluster size. The
new version detects end of directory immediately instead of at the end of a cluster.

• Random play changed to shuffle play (not in VS1002).

8.4 Version 1.15, 2008-02-25

• SCI-controlled version:

– pause after play mode was added.
– file ready flag is set regardless of play mode when file is found.
– no number of files flag (bit 5) disables the file count, AICTRL1 will have 0x7fff

after MMC/SD has been initialized correctly. This speeds up the play of a
file.

– When new file has been selected by writing 0x8000+song to AICTRL0, pause
on and file ready bits are automatically cleared.

– UART control added.

• Clarifications to the SCI-controlled version. A picture added.

Rev. 1.18 2009-08-14 Page 24(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

8. DOCUMENT VERSION CHANGES

• SCI-controlled recorder added. It has also UART control.

• VS1053b and VS1103b player versions added. Recorder not available yet.

• Matched suffixes for VS1103b: .MID .WAV

• Matched suffixes for VS1053b: .MP3 .WAV .MID .WMA .WMV .ASF .AAC .MP4
.M4A .3GP .3G2 .OGG

8.5 Version 1.14, 2007-07-09

• High-Capacity SD card support added to 3-button and SCI-controlled standalone
players, but NOT in the standalone recorder!

• SCI-controlled version: jumps to next track immediately when AICTRL0 selects a
new track.

8.6 Version 1.13, 2007-01-23

• Analog drivers are kept inactive until a MMC/SD card is found.

• SCI-controlled version now skips ID3V2 tags.

• SCI-controlled version increments decode time between repeats when in looped play
mode. Thus the decode time increases even for short (less than one second) WAV
files.

• VS1033c version added.

8.7 Version 1.12, 2006-07-13

• MMC communication changed. Now supports some problem MMC’s.

• mkrecord.c changed to handle large WAV’s better (unsigned size calculation).

• Sample rate and mic/line selection can now be configured from the boot image for
the Standalone Recorder.

• Standalone Recorder now has pause in VS1003B version.

• The maximum playable/recordable filesize increased from around 544MB to over
1GB. (Filesize was limited in 1.11 when more fragments were supported.)

8.8 Version 1.11, 2006-05-08

• Standalone Recorder auto gain maximum set to 64× (0xffff). It can be changed
from the EEPROM image.

• SCI-controlled VS1002D version song change fixed (bug introduced in 1.02).

• SCI AICTRL1 is zero while the directory is being processed.

Rev. 1.18 2009-08-14 Page 25(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

8. DOCUMENT VERSION CHANGES

• Large FAT32 directories tend to be very fragmented. Now handles maximum of 35
fragments (was 16).

• Pull-down resistors added to GPIO2 and GPIO3.

8.9 Version 1.10, 2006-03-10

• Standalone Recorder has less player features to make recording possible.

• Standalone Recorder sample rate set to 8000 Hz.

• VS1011B and VS1023 versions removed

• Added SPI-EEPROM boot images for SCI-controlled version.

• A bug that could trash the directory fixed in Standalone Recorder.

8.10 Version 1.02, 2005-11-17

• Now detects the file type from 8.3-character filename suffix. Only matching files
are processed.

– VS1011E and VS1002D: .MP3 .WAV
– VS1003B: .MP3 .WAV .MID .WMA .WMV .ASF
– VS1033C: .MP3 .WAV .MID .WMA .WMV .ASF .AAC .MP4 .M4A

If the file name suffix matches but still nothing decodable is found from the first
400 kB, the file is skipped.

8.11 Version 1.01, 2005-11-07

• Song numbering with IMA-ADPCM playback fixed - only VS1002D was affected.

• Watchdog was not activated in the SCI-controlled version 1.00. Note that for SCI-
controlled version you need to reactivate the player after watchdog reset.

• Added chapter 9 to explain the playing order of files.

8.12 Version 1.00, 2005-09-30

• SCHEMATICS CHANGED!
– MMC’s CLK and /CS have been swapped. Everything else is the same.
– MMC no longer interferes with SPI boot on powerup.
– The swap can be done in existing boards with two wires in JP15 and JP17.

See section 2.1.

• VS1011E/VS1002D transfer speed increased to 4.1Mbit/s

• Support for FAT12/FAT16 and FAT32 disks that have no partition block.

• Random play can now select all of the supported 32768 files.

Rev. 1.18 2009-08-14 Page 26(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

8. DOCUMENT VERSION CHANGES

8.13 Version 0.95, 2005-09-16

• Power-on startup delay (default 22ms) added to reduce power consumption spike.

• If nothing playable is found in the first 300 kB of a file, the rest is skipped.
This takes approximately 3 seconds per file.

• SCI-controlled version fixes:

– Initialization of SCI registers left to user (BASS,CLOCKF,VOL)
– SCI control fixed: SCI interrupts were only enabled in vs1011 version

• Transfer routine fixes:

– Internal timing changed to support more MMC/SD cards
– Transfer speed reduced to 4.78 Mbit/s in VS1003B/VS1033 versions

8.14 Version 0.94, 2005-08-24

• FAT 8.3-character filename readable in SCI-controlled version (see section 5.2)

• Subdirectories are now supported for FAT32 and FAT16 filesystems

– Upto 16 levels of subdirectories can be used
– Files and subdirectories are played in the order they appear in the filesystem

structures

• Partial FAT12 support:

– Unfragmented files in FAT12 root directory are supported

Rev. 1.18 2009-08-14 Page 27(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

9. PLAYING ORDER

9 Playing Order

The playing order of files is not the same order as how they appear in Windows’ file
browser. The file browser sorts the entries by name and puts directories before files. It
can also sort the entries by type, size or date. The standalone player does not have the
resources to do that. Instead, the player handles the files and directories in the order
they appear in the card’s filesystem structures.

Since the 1.02 version, if the filename suffix does not match any of the valid ones for the
specific chip, the file is ignored.

Normally the order of files and directories in a FAT filesystem is the order they were
created. If files are deleted and new files added, this is no longer true. Also, if you copy
multiple files at once, the order of those files can be anything. So, if you want a specific
play order: 1) only copy files into an empty card, 2) copy files one at a time in the order
you like them played.

There are also programs like LFNSORT that can reorder FAT16/FAT32 entries by dif-
ferent criteria. See ”http://www8.pair.com/dmurdoch/programs/lfnsort.htm” .

The following picture shows the order in which the player processes files. First DIR1 and
then DIR2 has been created into an empty card, then third.jpg is copied, DIR3 is created
and the rest of the files have been copied. song.mid was copied before start.wav, and
example.mp3 was copied before song.mp3 because they appear in their directories first.

Root

third.jpg

fourth.wma

song.mid
start.wav

example.mp3
song.mp3

jump.wma

1
2

3
4

5

6

DIR1/

DIR2/

DIR3/

Figure 9.1: Play Order with subdirectories

Because DIR1 appears first, all files in it are processed first, in the order they are located
inside DIR1, then files in DIR2. Because third.jpg appears in the root directory before
DIR3, it is next but ignored because the suffix does not match a supported file type, then
files in DIR3, and finally the last root directory file fourth.wma.

Rev. 1.18 2009-08-14 Page 28(29)

VLSI
Solution y

PO

VS10xx Standalone Player VSMPG

9. PLAYING ORDER

If DIR2 is now moved inside DIR3, the playing order changes as follows.

Root

third.jpg

fourth.wma

song.mid
start.wav

example.mp3
song.mp3

jump.wma

1
2

3
4
5

6

DIR1/

DIR3/
DIR2/

Figure 9.2: Play Order with nested subdirectories

Rev. 1.18 2009-08-14 Page 29(29)

