
PUBLIC DOCUMENT

VS10XX APPNOTE: CONNECTING SPI BUSES

VS1011, VS1003, VS1033, VS1053, VS8053, VS1063

All information in this document is provided as-is without warranty. Features are
subject to change without notice.

Revision History
Rev. Date Author Description

1.01 2012-12-11 HH Corrected DREQ-less documentation.
1.00 2012-11-21 HH Initial version.

Rev. 1.01 2012-12-11 Page 1(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

Contents

VS10xx AppNote: Connecting SPI Buses Front Page 1

Table of Contents 2

1 Introduction to VS10xx SPI Buses 4
1.1 DREQ Address DREQ_ADDR . 4

2 Seven Different Ways of Connecting SPI Buses SCI and SDI 5
2.1 VS10xx as Only Device, 7 Pins . 6

2.1.1 Microcontroller SCI Operations: VS10xx as Only Device, 7 Pins . 7
2.1.2 Microcontroller SDI Operations: VS10xx as Only Device, 7 Pins . 7
2.1.3 SCI Write Waveform: VS10xx as Only Device, 7 Pins 8
2.1.4 SCI Read Waveform: VS10xx as Only Device, 7 Pins 8
2.1.5 SDI Write Waveform: VS10xx as Only Device, 7 Pins 9

2.2 VS10xx as Only Device, 6 Pins without xDCS 10
2.2.1 Microcontroller SCI Operations: VS10xx as Only Device, 6 Pins . 11
2.2.2 Microcontroller SDI Operations: VS10xx as Only Device, 6 Pins . 11
2.2.3 SCI Write Waveform: VS10xx as Only Device, 6 Pins 12
2.2.4 SCI Read Waveform: VS10xx as Only Device, 6 Pins 12
2.2.5 SDI Write Waveform: VS10xx as Only Device, 6 Pins 12

2.3 VS10xx as Only Device, 5 Pins . 13
2.3.1 Microcontroller SCI Operations: VS10xx as Only Device, 5 Pins . 14
2.3.2 Microcontroller SDI Operations: VS10xx as Only Device, 5 Pins . 14
2.3.3 SCI Write Waveform: VS10xx as Only Device, 5 Pins 15
2.3.4 SCI Read Waveform: VS10xx as Only Device, 5 Pins 15
2.3.5 SDI Write Waveform: VS10xx as Only Device, 5 Pins 15

2.4 VS10xx as One SPI Device of Many, 7 Pins 16
2.4.1 Microcontroller SCI and SDI Operations and Waveforms: VS10xx

as One SPI Device, 7 Pins . 16
2.5 VS10xx as One SPI Device of Many, 6 Pins without xDCS 17

2.5.1 Microcontroller SCI Operations: VS10xx as One SPI Device, 6
Pins without xDCS . 18

2.5.2 Microcontroller SDI Operations: VS10xx as One SPI Device, 6
Pins without xDCS . 18

2.5.3 SCI Write Waveform: VS10xx as One SPI Device, 6 Pins without
xDCS . 19

2.5.4 SCI Read Waveform: VS10xx as One SPI Device, 6 Pins without
xDCS . 19

2.5.5 SDI Write Waveform: VS10xx as One SPI Device, 6 Pins without
xDCS . 19

2.6 VS10xx as One SPI Device of Many, 6 Pins without DREQ 20
2.6.1 Microcontroller SCI Operations: VS10xx as One SPI Device, 6

Pins without DREQ . 21
2.6.2 Microcontroller SDI Operations: VS10xx as One SPI Device, 6

Pins without DREQ . 21

Rev. 1.01 2012-12-11 Page 2(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.6.3 SCI Write Waveform: VS10xx as One SPI Device, 6 Pins without
DREQ . 22

2.6.4 SCI Read Waveform: VS10xx as One SPI Device, 6 Pins without
DREQ . 22

2.6.5 SDI Write Waveform: VS10xx as One SPI Device, 6 Pins without
DREQ . 22

2.7 VS10xx as One SPI Device of Many, 5 Pins 23
2.7.1 Microcontroller SCI Operations: VS10xx as One SPI Device, 5 Pins 24
2.7.2 Microcontroller SDI Operations: VS10xx as One SPI Device, 5 Pins 24
2.7.3 SCI Write Waveform: VS10xx as One SPI Device, 5 Pins 25
2.7.4 SCI Read Waveform: VS10xx as One SPI Device, 5 Pins 25
2.7.5 SDI Write Waveform: VS10xx as One SPI Device, 5 Pins 25

3 Latest Version Changes 26

4 Contact Information 27

List of Figures

1 VS10xx as only device, 7-pin connection. 6
2 WriteSci(SCI_WRAMADDR, 0xC012) . 8
3 ReadSci(SCI_WRAMADDR) (result 0xC012) 8
4 WriteSdi(data, 2): VS10xx as only device, 7 Pins 9
5 VS10xx as only device, 6-pin connection without xDCS. 10
6 WriteSdi(data, 2): VS10xx as only device, 6 Pins 12
7 VS10xx as only device, 5-pin connection. 13
8 Transfer loop of WriteSdi(data, 2): VS10xx as only device, 5 pins 15
9 VS10xx as one SPI device of many, 7-pin connection. 16
10 VS10xx as one SPI device of many, 6-pin connection without xDCS. . . . 17
11 VS10xx as one SPI device of many, 6-pin connection without DREQ. . . . 20
12 VS10xx as one SPI device of many, 5-pin connection. 23

Rev. 1.01 2012-12-11 Page 3(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

1 Introduction to VS10xx SPI Buses

VLSI Solution’s slave VS10xx ICs are typically connected to a microcontroller using two
SPI buses. These buses, which share clock and data pins, are called SCI (Serial Con-
trol Interface) and SDI (Serial Data Interface). This document presents seven different
ways to connect VS10xx to a host microcontroller with SPI, with example code and SPI
waveform examples for each way.

This document is applicable to VS1011 (see note below), VS1003, VS1033, VS1053,
VS8053, and VS1063.

Before reading this document, read the datasheet of the IC you are using, and particu-
larly chapters SPI Buses, Serial Data Interface (SDI), Serial Control Interface (SCI), and
SCI Registers.

In the examples of this document SCI_MODE register bits SM_DACT (clock polarity) and
SM_SDIORD (bit order in SDI bus) are both at their default value 0, and SM_SDINEW
is set to 1 in all examples.

Note: In VS1011 the default value for SCI_MODE register bit SM_SDINEW is 0. Set it
to 1! (Example codes do this for you.)

1.1 DREQ Address DREQ_ADDR

Some of the examples in this document (Chapters 2.3, 2.6, and 2.7) don’t connect the
DREQ pin. Instead they read the DREQ status through the SCI bus. Those examples
must define DREQ_ADDR, which depends on the IC that is being used. The definitions
for DREQ_ADDR are shown in the table below.

Values for DREQ_ADDR for different VS10XX ICs
IC Definition
VS1011e #define DREQ_ADDR 0x40c4
VS1003b #define DREQ_ADDR 0x595e
VS1033d #define DREQ_ADDR 0x5a53
VS1053b #define DREQ_ADDR 0x5b17
VS8053b #define DREQ_ADDR 0x5b17
VS1063a #define DREQ_ADDR 0x5b23

Rev. 1.01 2012-12-11 Page 4(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2 Seven Different Ways of Connecting SPI Buses SCI and SDI

This Chapter presents seven different ways for connecting the two VS10xx SPI buses,
SCI and SDI. Each of the ways have their own pros and cons, which are listed, along
with example pseudocode of how to implement data transfers that are compatible with
the hardware. Also waveforms are presented for each case.

All of the following functions assume there the following datatypes and SPI support
functions exist on the microcontroller, and that the following initializations have been
done:

// Microcontroller definitions and initialization

typedef unsigned char u_int8;

typedef unsigned short u_int16;

void WriteSpiByte(u_int8 data); // You need to provide this

u_int8 ReadSpiByte(void); // You need to provide this

void SetGpioLow(int registerName); // You need to provide this

void SetGpioHigh(int registerName); // You need to provide this

void WaitMicroseconds(int microseconds); // You need to provide this

void WriteSci(u_int8 addr, u_int16 data); // Examples in this document

u_int16 ReadSci(u_int8 addr); // Examples in this document

int WriteSdi(const u_int8 *data, u_int16 bytes); // Examples in this document

/* Some SCI registers */

#define SCI_MODE 0

#define SCI_WRAM 6

#define SCI_WRAMADDR 7

/* Some SCI_MODE bits */

#define SM_SDISHARE_B 10

#define SM_SDINEW_B 11

#define SM_SDISHARE (1<<SM_SDISHARE_B)

#define SM_SDINEW (1<<SM_SDINEW_B)

void InitVS10xx(void) {

SetGpioLow(GPIO1); // Reset VS10xx

SetGpioHigh(GPIO3); // VS10xx xCS high

SetGpioHigh(GPIO4); // VS10xx xDCS high (only needed if xDCS used)

SetGpioHigh(GPIO5); // Other SPI device xCS high

SetGpioHigh(GPIO1); // VS10xx out of reset

// SCI_MODE_INIT_VAL separately defined for every case

WriteSci(SCI_MODE, SCI_MODE_INIT_VAL);

// If DREQ pin is not used, add a delay that is long enough.

// See Datasheet Chapter Switching "Characteristics - Boot Initialization"

// for how long to wait.

}

Rev. 1.01 2012-12-11 Page 5(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.1 VS10xx as Only Device, 7 Pins

Microcontroller
(master)

MISO
MOSI
SCK

GPIO1
GPIO2
GPIO3
GPIO4
GPIO5

SO
SI
SCLK
xRESET
DREQ
xCS
xDCS

(slave)
VS10xx

Figure 1: VS10xx as only device, 7-pin connection.

Figure 1 presents how to connect VS10xx to a microcontroller using 7 pins when it is
the only device on the bus.

#define SCI_MODE_INIT_VAL SM_SDINEW

Pros:

• Straightforward implementation.

Cons:

• Requires 7 pins.

Rev. 1.01 2012-12-11 Page 6(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.1.1 Microcontroller SCI Operations: VS10xx as Only Device, 7 Pins

void WriteSci(u_int8 addr, u_int16 data) {

while (GetGpio(GPIO2) == 0)

; // Wait until DREQ is high

SetGpioLow(GPIO3); // Activate xCS

WriteSpiByte(2); // Write command code

WriteSpiByte(addr); // SCI register number

WriteSpiByte((u_int8)(data >> 8));

WriteSpiByte((u_int8)(data & 0xFF));

SetGpioHigh(GPIO3); // Deactivate xCS

}

u_int16 ReadSci(u_int8 addr) {

u_int16 res;

while (GetGpio(GPIO2) == 0)

; // Wait until DREQ is high

SetGpioLow(GPIO3); // Activate xCS

WriteSpiByte(3); // Read command code

WriteSpiByte(addr); // SCI register number

res = (u_int16)ReadSpiByte() << 8;

res |= ReadSpiByte();

SetGpioHigh(GPIO3); // Deactivate xCS

return res;

}

2.1.2 Microcontroller SDI Operations: VS10xx as Only Device, 7 Pins

int WriteSdi(const u_int8 *data, u_int8 bytes) {

u_int8 i;

if (bytes > 32)

return -1; // Error: Too many bytes to transfer!

while (GetGpio(GPIO2) == 0)

; // Wait until DREQ is high

SetGpioLow(GPIO4); // Activate xDCS

for (i=0; i<bytes; i++) {

WriteSpiByte(*data++);

}

SetGpioHigh(GPIO4); // Dectivate xDCS

return 0; // Ok

}

Rev. 1.01 2012-12-11 Page 7(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.1.3 SCI Write Waveform: VS10xx as Only Device, 7 Pins

SCI_MODE register bits SM_DACT and SM_SDIORD are both at their default value 0.

SO

SI

DREQ

xCS

SCLK

xDCS

0x120x02 0x07 0xC0

Figure 2: WriteSci(SCI_WRAMADDR, 0xC012)

Figure 2 presents an SCI write operation where we write 0xC012 to SCI_WRAMADDR.

First, we must wait until DREQ is high (or, take care that we don’t send commands faster
than VS10xx can process). We turn xCS low. Then we send the write command byte
0x02, followed by address SCI_WRAMADDR, which is 0x07. Then the 16-bit data value
0xC012 is sent. After all 32 bits have been clocked out, we turn xCS high. VS10xx will
turn DREQ low for the time it takes to process the write command. When DREQ is again
high, VS10xx is again capable of receiving data and/or commands.

2.1.4 SCI Read Waveform: VS10xx as Only Device, 7 Pins

SO

SI

DREQ

xCS

SCLK

xDCS

0x120x07 0xC00x03

Figure 3: ReadSci(SCI_WRAMADDR) (result 0xC012)

In Figure 3 we read from the same register SCI_WRAMADDR we just wrote to. The
operation is otherwise similar to the write command, except that the data is provided by
VS10xx to SO. We should now get the same value we just write to the same register, in
this case 0xC012.

Rev. 1.01 2012-12-11 Page 8(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.1.5 SDI Write Waveform: VS10xx as Only Device, 7 Pins

0xA5 0x12

SO

SI

DREQ

xDCS

xCS

SCLK

Figure 4: WriteSdi(data, 2): VS10xx as only device, 7 Pins

Figure 4 presents a 2-byte SDI write operation with data = 0xA5, 0x12. The SDI opera-
tion starts by turning xDCS low. Then the two bytes are sent. DREQ may go low while
the transfer is going on, but as long as there are not more than 32 bytes in one transfer,
this is normal. After the operation, xDCS is turned high.

Rev. 1.01 2012-12-11 Page 9(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.2 VS10xx as Only Device, 6 Pins without xDCS

Microcontroller
(master)

MISO
MOSI
SCK

GPIO1
GPIO2
GPIO3
GPIO4
GPIO5

SO
SI
SCLK
xRESET
DREQ
xCS
xDCS

VCC

VS10xx
(slave)

Figure 5: VS10xx as only device, 6-pin connection without xDCS.

In Figure 5 xDCS has been omitted. To be able to send data to SDI, register SCI_MODE
bit SM_SDISHARED must be set. Then VS10xx’s SDI bus will be active whenever xCS
is high.

#define SCI_MODE_INIT_VAL (SM_SDINEW | SM_SDISHARED)

Pros:

• One pin less than worst case.

Cons:

• It is not possible to run “empty” SPI cycles: all SPI operations go either to the SCI
or SDI bus (unless you temporarily deactivate SM_SDISHARED).

• Any SPI clock glitches while not doing SPI operations will go to the SDI bus (unless
you temporarily deactivate SM_SDISHARED).

Rev. 1.01 2012-12-11 Page 10(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.2.1 Microcontroller SCI Operations: VS10xx as Only Device, 6 Pins

void WriteSci(u_int8 addr, u_int16 data) {

while (GetGpio(GPIO2) == 0)

; // Wait until DREQ is high

SetGpioLow(GPIO3); // Activate xCS

WriteSpiByte(2); // Write command code

WriteSpiByte(addr); // SCI register number

WriteSpiByte((u_int8)(data >> 8));

WriteSpiByte((u_int8)(data & 0xFF));

SetGpioHigh(GPIO3); // Deactivate xCS

}

u_int16 ReadSci(u_int8 addr) {

u_int16 res;

while (GetGpio(GPIO2) == 0)

; // Wait until DREQ is high

SetGpioLow(GPIO3); // Activate xCS

WriteSpiByte(3); // Read command code

WriteSpiByte(addr); // SCI register number

res = (u_int16)ReadSpiByte() << 8;

res |= ReadSpiByte();

SetGpioHigh(GPIO3); // Deactivate xCS

return res;

}

2.2.2 Microcontroller SDI Operations: VS10xx as Only Device, 6 Pins

int WriteSdi(const u_int8 *data, u_int8 bytes) {

u_int8 i;

if (bytes > 32)

return -1; // Error: Too many bytes to transfer!

while (GetGpio(GPIO2) == 0)

; // Wait until DREQ is high

SetGpioHigh(GPIO3); // Deactivate xCS = activate SDI

for (i=0; i<bytes; i++) {

WriteSpiByte(*data++);

}

// xCS left deactivated

return 0; // Ok

}

Rev. 1.01 2012-12-11 Page 11(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.2.3 SCI Write Waveform: VS10xx as Only Device, 6 Pins

The waveform is the same as in Chapter 2.1.3.

2.2.4 SCI Read Waveform: VS10xx as Only Device, 6 Pins

The waveform is the same as in Chapter 2.1.4.

2.2.5 SDI Write Waveform: VS10xx as Only Device, 6 Pins

0xA5 0x12

SO

SI

DREQ

xCS

SCLK

xDCS

Figure 6: WriteSdi(data, 2): VS10xx as only device, 6 Pins

Figure 6 presents a 2-byte SDI write operation with data = 0xA5, 0x12. The SDI opera-
tion starts by making sure xCS is high. Then the two bytes are sent. DREQ may go low
while the transfer is going on, but as long as there are not more than 32 bytes in one
transfer, this is normal. Nothing needs to be done after the operation.

Rev. 1.01 2012-12-11 Page 12(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.3 VS10xx as Only Device, 5 Pins

Microcontroller
(master)

MISO
MOSI
SCK

GPIO1
GPIO2
GPIO3
GPIO4
GPIO5

SO
SI
SCLK
xRESET
DREQ
xCS
xDCS

VCC

NC

(slave)
VS10xx

Figure 7: VS10xx as only device, 5-pin connection.

In Figure 7 both xDCS and DREQ been omitted. To be able to send data to SDI, register
SCI_MODE bit SM_SDISHARED must be set. Then VS10xx’s SDI bus will be active
whenever xCS is high. DREQ status needs to be read through the SCI bus.

#define SCI_MODE_INIT_VAL (SM_SDINEW | SM_SDISHARED)

Pros:

• Minimum number of pins used.

Cons:

• Checking DREQ through SCI forces the user to add a delay after each of the
potentially slow SCI register write (SCI_CLOCKF, SCI_AUDATA, SCI_AIADDR)
operations. Otherwise some SCI write may be missed by VS10xx. Check Chapter
SCI Registers, table SCI registers, field Write Time in the datasheet for your IC for
exact number of clock cycles.

• Requires at least 8 bytes of extra data to be transferred for each SDI operation
(one WriteSci() and one ReadSci()), creating an overhead of at least 25 %.

• Cannot be interrupt driven with rising edge of DREQ.

• It is not possible to run “empty” SPI cycles: all SPI operations go either to the SCI
or SDI bus (unless you temporarily deactivate SM_SDISHARED).

• Any SPI clock glitches while not doing SPI operations will go to the SDI bus (unless
you temporarily deactivate SM_SDISHARED).

Rev. 1.01 2012-12-11 Page 13(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.3.1 Microcontroller SCI Operations: VS10xx as Only Device, 5 Pins

void WriteSci(u_int8 addr, u_int16 data) {

// Can't check DREQ, hopefully VS10xx is ready

SetGpioLow(GPIO3); // Activate xCS

WriteSpiByte(2); // Write command code

WriteSpiByte(addr); // SCI register number

WriteSpiByte((u_int8)(data >> 8));

WriteSpiByte((u_int8)(data & 0xFF));

SetGpioHigh(GPIO3); // Deactivate xCS

}

u_int16 ReadSci(u_int8 addr) {

u_int16 res;

// Can't check DREQ, hopefully VS10xx is ready

SetGpioLow(GPIO3); // Activate xCS

WriteSpiByte(3); // Read command code

WriteSpiByte(addr); // SCI register number

res = (u_int16)ReadSpiByte() << 8;

res |= ReadSpiByte();

SetGpioHigh(GPIO3); // Deactivate xCS

return res;

}

2.3.2 Microcontroller SDI Operations: VS10xx as Only Device, 5 Pins

int WriteSdi(const u_int8 *data, u_int8 bytes) {

u_int8 i;

u_int16 dreq;

if (bytes > 32)

return -1; // Error: Too many bytes to transfer!

do { // Wait until DREQ is high

WriteSci(SCI_WRAMADDR, DREQ_ADDR); // DREQ_ADDR depends on the IC

dreq = ReadSci(SCI_WRAM);

if (!dreq) { // If DREQ low, wait 1 millisecond

WaitMicroseconds(1000); // before next read so that SCI

} // registers aren't read all the time

} while (!dreq);

// ReadSci left xCS deactivated = SDI active

for (i=0; i<bytes; i++) {

WriteSpiByte(*data++);

}

// xCS left deactivated

return 0; // Ok

}

Rev. 1.01 2012-12-11 Page 14(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.3.3 SCI Write Waveform: VS10xx as Only Device, 5 Pins

The waveform is the same as in Chapter 2.1.3.

2.3.4 SCI Read Waveform: VS10xx as Only Device, 5 Pins

The waveform is the same as in Chapter 2.1.4.

2.3.5 SDI Write Waveform: VS10xx as Only Device, 5 Pins

0xA5 0x12

SO

SI

DREQ

xCS

SCLK

xDCS

Figure 8: Transfer loop of WriteSdi(data, 2): VS10xx as only device, 5 pins

Figure 8 presents the for() transfer loop of a short, 2-byte SDI write operation with
data = 0xA5, 0x12. The DREQ checking part of the function has already turned xCS
high. So the only thing that happens is that the two bytes are sent. Although uncon-
nected to the microcontroller, DREQ may go low while the transfer is going on, but as
long as there are not more than 32 bytes in one transfer, this is normal. Nothing needs
to be done after the operation.

Rev. 1.01 2012-12-11 Page 15(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.4 VS10xx as One SPI Device of Many, 7 Pins

Microcontroller
(master)

MISO
MOSI

SCK
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5

SO
SI
SCLK
xRESET
DREQ
xCS
xDCS

Other SPI

slave device

SO
SI
SCLK
xRESET
xCS

(slave)
VS10xx

Figure 9: VS10xx as one SPI device of many, 7-pin connection.

Figure 9 presents how to connect VS10xx to a microcontroller using 7 pins when it there
are more than one device on the bus. From the point of view of VS10xx, this is similar
to the 7-pin connection in Chapter 2.1.

#define SCI_MODE_INIT_VAL SM_SDINEW

Pros:

• Straightforward implementation.

Cons:

• Requires 7 pins.

2.4.1 Microcontroller SCI and SDI Operations and Waveforms: VS10xx as One
SPI Device, 7 Pins

SCI and SDI operations, as well as SCI and SDI waveforms, are exactly the same as in
Chapter 2.1.

Rev. 1.01 2012-12-11 Page 16(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.5 VS10xx as One SPI Device of Many, 6 Pins without xDCS

Microcontroller
(master)

MISO
MOSI

SCK
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5

SO
SI
SCLK
xRESET
DREQ
xCS
xDCS

Other SPI

slave device

SO
SI
SCLK
xRESET
xCS

VCC

(slave)
VS10xx

Figure 10: VS10xx as one SPI device of many, 6-pin connection without xDCS.

In Figure 10 xDCS has been omitted. To be able to send data to SDI, bit SM_SDISHARED
must be switched on and off in register SCI_MODE. VS10xx’s SDI will be active when
SM_SDISHARED is high and xCS is high.

#define SCI_MODE_INIT_VAL SM_SDINEW

Pros:

• One pin less than worst case.

Cons:

• Requires twiddling with SM_SDISHARED.

• Each SDI write operation requires 8 extra bytes of data to be transferred (two addi-
tional SciWrite() operations to modify register SCI_MODE), creating an overhead
of at least 25 %.

Rev. 1.01 2012-12-11 Page 17(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.5.1 Microcontroller SCI Operations: VS10xx as One SPI Device, 6 Pins without
xDCS

void WriteSci(u_int8 addr, u_int16 data) {

while (GetGpio(GPIO2) == 0)

; // Wait until DREQ is high

SetGpioLow(GPIO3); // Activate xCS

WriteSpiByte(2); // Write command code

WriteSpiByte(addr); // SCI register number

WriteSpiByte((u_int8)(data >> 8));

WriteSpiByte((u_int8)(data & 0xFF));

SetGpioHigh(GPIO3); // Deactivate xCS

}

u_int16 ReadSci(u_int8 addr) {

u_int16 res;

while (GetGpio(GPIO2) == 0)

; // Wait until DREQ is high

SetGpioLow(GPIO3); // Activate xCS

WriteSpiByte(3); // Read command code

WriteSpiByte(addr); // SCI register number

res = (u_int16)ReadSpiByte() << 8;

res |= ReadSpiByte();

SetGpioHigh(GPIO3); // Deactivate xCS

return res;

}

2.5.2 Microcontroller SDI Operations: VS10xx as One SPI Device, 6 Pins without
xDCS

int WriteSdi(const u_int8 *data, u_int8 bytes) {

u_int8 i;

if (bytes > 32)

return -1; // Error: Too many bytes to transfer!

while (GetGpio(GPIO2) == 0)

; // Wait until DREQ is high

// Set shared chip select mode. Activates SDI.

WriteSci(SCI_MODE, SCI_MODE_INIT_VAL | SM_SDISHARED);

for (i=0; i<bytes; i++) {

WriteSpiByte(*data++);

}

// Clear shared chip select mode. Deactivates SDI.

WriteSci(SCI_MODE, SCI_MODE_INIT_VAL);

return 0; // Ok

}

Rev. 1.01 2012-12-11 Page 18(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.5.3 SCI Write Waveform: VS10xx as One SPI Device, 6 Pins without xDCS

The waveform is the same as in Chapter 2.1.3.

2.5.4 SCI Read Waveform: VS10xx as One SPI Device, 6 Pins without xDCS

The waveform is the same as in Chapter 2.1.4.

2.5.5 SDI Write Waveform: VS10xx as One SPI Device, 6 Pins without xDCS

The waveform is the same as in Chapter 2.2.5.

Rev. 1.01 2012-12-11 Page 19(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.6 VS10xx as One SPI Device of Many, 6 Pins without DREQ

Microcontroller
(master)

MISO
MOSI

SCK
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5

SO
SI
SCLK
xRESET
DREQ
xCS
xDCS

Other SPI

slave device

SO
SI
SCLK
xRESET
xCS

NC

(slave)
VS10xx

Figure 11: VS10xx as one SPI device of many, 6-pin connection without DREQ.

Figure 11 presents one way how to connect VS10xx to a microcontroller using 6 pins
when it there are more than one device on the bus. The difference with the 7-pin con-
nection is the removal of the DREQ signal.

#define SCI_MODE_INIT_VAL SM_SDINEW

Pros:

• One pin less than worst case.

Cons:

• Checking DREQ through SCI forces the user to add a delay after each of the
potentially slow SCI register write (SCI_CLOCKF, SCI_AUDATA, SCI_AIADDR)
operations. Otherwise some SCI write may be missed by VS10xx. Check Chapter
SCI Registers, table SCI registers, field Write Time in the datasheet for your IC for
exact number of clock cycles.

• Requires at least 8 bytes of extra data to be transferred for each SDI operation
(one WriteSci() and one ReadSci()), creating an overhead of at least 25 %.

• Cannot be interrupt driven with rising edge of DREQ.

Rev. 1.01 2012-12-11 Page 20(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.6.1 Microcontroller SCI Operations: VS10xx as One SPI Device, 6 Pins without
DREQ

void WriteSci(u_int8 addr, u_int16 data) {

// Can't check DREQ, hopefully VS10xx is ready

SetGpioLow(GPIO3); // Activate xCS

WriteSpiByte(2); // Write command code

WriteSpiByte(addr); // SCI register number

WriteSpiByte((u_int8)(data >> 8));

WriteSpiByte((u_int8)(data & 0xFF));

SetGpioHigh(GPIO3); // Deactivate xCS

}

u_int16 ReadSci(u_int8 addr) {

u_int16 res;

// Can't check DREQ, hopefully VS10xx is ready

SetGpioLow(GPIO3); // Activate xCS

WriteSpiByte(3); // Read command code

WriteSpiByte(addr); // SCI register number

res = (u_int16)ReadSpiByte() << 8;

res |= ReadSpiByte();

SetGpioHigh(GPIO3); // Deactivate xCS

return res;

}

2.6.2 Microcontroller SDI Operations: VS10xx as One SPI Device, 6 Pins without
DREQ

int WriteSdi(const u_int8 *data, u_int8 bytes) {

u_int8 i;

u_int16 dreq;

if (bytes > 32)

return -1; // Error: Too many bytes to transfer!

do { // Wait until DREQ is high

WriteSci(SCI_WRAMADDR, DREQ_ADDR); // DREQ_ADDR depends on the IC

dreq = ReadSci(SCI_WRAM);

if (!dreq) { // If DREQ low, wait 1 millisecond

WaitMicroseconds(1000); // before next read so that SCI

} // registers aren't read all the time

} while (!dreq);

SetGpioLow(GPIO4); // Activate xDCS

for (i=0; i<bytes; i++) {

WriteSpiByte(*data++);

}

SetGpioHigh(GPIO4); // Deactivate xDCS

return 0; // Ok

}

Rev. 1.01 2012-12-11 Page 21(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.6.3 SCI Write Waveform: VS10xx as One SPI Device, 6 Pins without DREQ

The waveform is the same as in Chapter 2.1.3.

2.6.4 SCI Read Waveform: VS10xx as One SPI Device, 6 Pins without DREQ

The waveform is the same as in Chapter 2.1.4.

2.6.5 SDI Write Waveform: VS10xx as One SPI Device, 6 Pins without DREQ

Figure 4 on Page 9 presents the for() transfer loop for a 2-byte SDI write operation
with data = 0xA5, 0x12. The DREQ checking part has been omitted from the figure.
The SDI operation starts by turning xDCS low. Then the two bytes are sent. Although
unconnected to the microcontroller, DREQ may go low while the transfer is going on,
but as long as there are not more than 32 bytes in one transfer, this is normal. After the
operation, xDCS is turned high.

Rev. 1.01 2012-12-11 Page 22(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.7 VS10xx as One SPI Device of Many, 5 Pins

Microcontroller
(master)

MISO
MOSI

SCK
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5

SO
SI
SCLK
xRESET
DREQ
xCS
xDCS

Other SPI

slave device

SO
SI
SCLK
xRESET
xCS

VCC

NC

(slave)
VS10xx

Figure 12: VS10xx as one SPI device of many, 5-pin connection.

In Figure 12 both xDCS and DREQ been omitted. To be able to send data to SDI, bit
SM_SDISHARED must be activated in register SCI_MODE, and DREQ status needs to
be read through the SCI bus. Now VS10xx’s SDI bus will be active when xCS is high.

#define SCI_MODE_INIT_VAL SM_SDINEW

Pros:
• Minimum number of pins used.

Cons:
• Checking DREQ through SCI forces the user to add a delay after each of the

potentially slow SCI register write (SCI_CLOCKF, SCI_AUDATA, SCI_AIADDR)
operations. Otherwise some SCI write may be missed by VS10xx. Check Chapter
SCI Registers, table SCI registers, field Write Time in the datasheet for your IC for
exact number of clock cycles.

• Requires at least 16 bytes of extra data to be transferred for each SDI operation
(at least one WriteSci() and one ReadSci() to check DREQ, then two WriteSci()’s
to change SCI_MODE), creating an overhead of at least 50 %.

• Requires twiddling with SM_SDISHARED.
• Cannot be interrupt driven with rising edge of DREQ.

Rev. 1.01 2012-12-11 Page 23(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.7.1 Microcontroller SCI Operations: VS10xx as One SPI Device, 5 Pins

void WriteSci(u_int8 addr, u_int16 data) {

// Can't check DREQ, hopefully VS10xx is ready

SetGpioLow(GPIO3); // Activate xCS

WriteSpiByte(2); // Write command code

WriteSpiByte(addr); // SCI register number

WriteSpiByte((u_int8)(data >> 8));

WriteSpiByte((u_int8)(data & 0xFF));

SetGpioHigh(GPIO3); // Deactivate xCS

}

u_int16 ReadSci(u_int8 addr) {

u_int16 res;

// Can't check DREQ, hopefully VS10xx is ready

SetGpioLow(GPIO3); // Activate xCS

WriteSpiByte(3); // Read command code

WriteSpiByte(addr); // SCI register number

res = (u_int16)ReadSpiByte() << 8;

res |= ReadSpiByte();

SetGpioHigh(GPIO3); // Deactivate xCS

return res;

}

2.7.2 Microcontroller SDI Operations: VS10xx as One SPI Device, 5 Pins

int WriteSdi(const u_int8 *data, u_int8 bytes) {

u_int8 i;

u_int16 dreq;

if (bytes > 32)

return -1; // Error: Too many bytes to transfer!

do { // Wait until DREQ is high

WriteSci(SCI_WRAMADDR, DREQ_ADDR); // DREQ_ADDR depends on the IC

dreq = ReadSci(SCI_WRAM);

if (!dreq) { // If DREQ low, wait 1 millisecond

WaitMicroseconds(1000); // before next read so that SCI

} // registers aren't read all the time

} while (!dreq);

// Set shared chip select mode. Activates SDI.

WriteSci(SCI_MODE, SCI_MODE_INIT_VAL | SM_SDISHARED);

for (i=0; i<bytes; i++) {

WriteSpiByte(*data++);

}

// Clear shared chip select mode. Deactivates SDI.

WriteSci(SCI_MODE, SCI_MODE_INIT_VAL);

return 0; // Ok

}

Rev. 1.01 2012-12-11 Page 24(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

2.7.3 SCI Write Waveform: VS10xx as One SPI Device, 5 Pins

The waveform is the same as in Chapter 2.1.3.

2.7.4 SCI Read Waveform: VS10xx as One SPI Device, 5 Pins

The waveform is the same as in Chapter 2.1.4.

2.7.5 SDI Write Waveform: VS10xx as One SPI Device, 5 Pins

The waveform is the same as in Chapter 2.3.5.

Rev. 1.01 2012-12-11 Page 25(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

3 Latest Version Changes

Version 1.01, 2012-12-01

• The DREQ read address was incorrect. It has been replaced with a chip-specific
address which is presented in a new Chapter 1.1, DREQ Address DREQ_ADDR.

• Some prototypes for ReadSci() were u_int16 ReadSci(u_int16 addr) instead of
u_int16 ReadSci(u_int8 addr). Corrected.

Version 1.00, 2012-11-21

Initial version.

Rev. 1.01 2012-12-11 Page 26(27)

HH

VS10XX APPNOTE: CONNECTING SPI BUSES

4 Contact Information

VLSI Solution Oy
Entrance G, 2nd floor

Hermiankatu 8
FI-33720 Tampere

FINLAND

Fax: +358-3-3140-8288
Phone: +358-3-3140-8200

Email: sales@vlsi.fi
URL: http://www.vlsi.fi/

For technical questions or suggestions regarding this document, please participate at
http://www.vsdsp-forum.com/

or contact
support@vlsi.fi.

Rev. 1.01 2012-12-11 Page 27(27)

	VS10xx AppNote: Connecting SPI Buses Front Page
	Table of Contents
	Introduction to VS10xx SPI Buses
	DREQ Address DREQ_ADDR

	Seven Different Ways of Connecting SPI Buses SCI and SDI
	VS10xx as Only Device, 7 Pins
	Microcontroller SCI Operations: VS10xx as Only Device, 7 Pins
	Microcontroller SDI Operations: VS10xx as Only Device, 7 Pins
	SCI Write Waveform: VS10xx as Only Device, 7 Pins
	SCI Read Waveform: VS10xx as Only Device, 7 Pins
	SDI Write Waveform: VS10xx as Only Device, 7 Pins

	VS10xx as Only Device, 6 Pins without xDCS
	Microcontroller SCI Operations: VS10xx as Only Device, 6 Pins
	Microcontroller SDI Operations: VS10xx as Only Device, 6 Pins
	SCI Write Waveform: VS10xx as Only Device, 6 Pins
	SCI Read Waveform: VS10xx as Only Device, 6 Pins
	SDI Write Waveform: VS10xx as Only Device, 6 Pins

	VS10xx as Only Device, 5 Pins
	Microcontroller SCI Operations: VS10xx as Only Device, 5 Pins
	Microcontroller SDI Operations: VS10xx as Only Device, 5 Pins
	SCI Write Waveform: VS10xx as Only Device, 5 Pins
	SCI Read Waveform: VS10xx as Only Device, 5 Pins
	SDI Write Waveform: VS10xx as Only Device, 5 Pins

	VS10xx as One SPI Device of Many, 7 Pins
	Microcontroller SCI and SDI Operations and Waveforms: VS10xx as One SPI Device, 7 Pins

	VS10xx as One SPI Device of Many, 6 Pins without xDCS
	Microcontroller SCI Operations: VS10xx as One SPI Device, 6 Pins without xDCS
	Microcontroller SDI Operations: VS10xx as One SPI Device, 6 Pins without xDCS
	SCI Write Waveform: VS10xx as One SPI Device, 6 Pins without xDCS
	SCI Read Waveform: VS10xx as One SPI Device, 6 Pins without xDCS
	SDI Write Waveform: VS10xx as One SPI Device, 6 Pins without xDCS

	VS10xx as One SPI Device of Many, 6 Pins without DREQ
	Microcontroller SCI Operations: VS10xx as One SPI Device, 6 Pins without DREQ
	Microcontroller SDI Operations: VS10xx as One SPI Device, 6 Pins without DREQ
	SCI Write Waveform: VS10xx as One SPI Device, 6 Pins without DREQ
	SCI Read Waveform: VS10xx as One SPI Device, 6 Pins without DREQ
	SDI Write Waveform: VS10xx as One SPI Device, 6 Pins without DREQ

	VS10xx as One SPI Device of Many, 5 Pins
	Microcontroller SCI Operations: VS10xx as One SPI Device, 5 Pins
	Microcontroller SDI Operations: VS10xx as One SPI Device, 5 Pins
	SCI Write Waveform: VS10xx as One SPI Device, 5 Pins
	SCI Read Waveform: VS10xx as One SPI Device, 5 Pins
	SDI Write Waveform: VS10xx as One SPI Device, 5 Pins

	Latest Version Changes
	Contact Information

