

Development environment
with GNU Tool Chain
32-BIT MICROCONTROLLER
FM3 Family Application note

APPLICATION NOTE

 Publication Number MB9BFD18T-AN706-00061 Revision 1.1 Issue Date January 31, 2014

ARM and Cortex are the trademarks of ARM Limited in the EU and other countries.

 A P P L I C A T I O N N O T E

 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 3

Table of Contents

Table of Contents .. 3

Target products ... 5

1 Introduction .. 9

1.1 Description ... 9

1.2 JTAG Interface .. 10

1.3 J-Link .. 11

1.4 ARM-USB-TINY ... 12

2 Compiler .. 13

2.1 Yet another GNU ARM Tool Chain (YAGARTO) ... 13

2.2 Downloading Yagarto Tools .. 13

2.3 Installing YAGARTO tools ... 14

3 Driver ... 17

3.1 LibUSB ... 17

3.2 Installing LibUSB .. 17

4 Debugger ... 20

4.1 Open On-Chip Debugger (OpenOCD) .. 20

4.2 Using LibUSB driver ... 20

4.2.1 Installing OpenOCD which supported LibUSB .. 20

4.2.2 Run OpenOCD .. 21

5 Java Runtime Environment (JRE) ... 25

5.1 Checking for JRE.. 25

5.2 Installing Java JRE ... 25

6 Eclipse platform ... 26

6.1 Eclipse platform .. 26

6.2 Start Eclipse IDE ... 30

7 C/C++ Development Tooling CDT ... 31

7.1 Installation of new software on Eclipse ... 31

7.2 Eclipse Network Configuration.. 33

7.3 Eclipse CDT Plug-In ... 34

8 Working with the Eclipse IDE ... 38

8.1 C/C++ perspective .. 38

8.2 Creating a C or C++ project with Eclipse .. 40

8.3 Cleaning the selected project ... 44

 A P P L I C A T I O N N O T E

4 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

8.4 Building the selected project ... 47

8.5 Create make target ... 49

9 Example Eclipse Project Template ... 52

9.1 Add other Files to the Template Folder ... 53

9.2 Add other Libraries to the “Includes” Directory ... 56

9.3 Make File .. 59

10 Programing the Flash memory ... 69

10.1 OpenOCD and Flash Programming.. 69

11 Set up Eclipse External Tools ... 72

11.1 Further External Tools .. 72

11.2 OpenOCD as an Eclipse external tool .. 72

12 Eclipse CDT Debug Perspective .. 78

12.1 Using the OpenOCD Server to debug a Flash Application 79

12.2 Debug on the RAM ... 86

13 Eclipse Embedded Systems Register View Plug-In ... 93

13.1 Plug-In installation .. 93

13.2 Using the Eclipse Register View ... 96

14 Eclipse Features .. 101

14.1 Overview .. 101

14.2 Disassembly View .. 101

14.3 CPU Register View ... 103

14.4 Memory View .. 104

14.5 Using Breakpoints on Eclipse Debug Perspective .. 105

15 Appendix .. 107

15.1 Glossary ... 107

15.2 Links ... 108

15.2.1 Software .. 108

15.2.2 Hardware ... 108

16 Additional Information .. 109

Revision History .. 110

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 5

Target products

This application note is described about below products;

(TYPE0)

Series Product Number (not included Package suffix）

MB9A100A MB9AF102NA,MB9AF104NA,MB9AF105NA

MB9AF102RA,MB9AF104RA,MB9AF105RA

MB9B100A MB9BF102NA,MB9BF104NA,MB9BF105NA,MB9BF106NA

MB9BF102RA,MB9BF104RA,MB9BF105RA,MB9BF106RA

MB9B300B MB9BF304NB,MB9BF305NB,MB9BF306NB

MB9BF304RB,MB9BF305RB,MB9BF306RB

MB9B400A MB9BF404NA,MB9BF405NA,MB9BF406NA

MB9BF404RA,MB9BF405RA,MB9BF406RA

MB9B500B MB9BF504NB,MB9BF505NB,MB9BF506NB

MB9BF504RB,MB9BF505RB,MB9BF506RB

(TYPE1)

Series Product Number (not included Package suffix）

MB9A110A MB9AF111LA,MB9AF112LA,MB9AF114LA

MB9AF111MA,MB9AF112MA,MB9AF114MA,MB9AF115MA,MB9AF116MA

MB9AF111NA,MB9AF112NA,MB9AF114NA,MB9AF115NA,MB9AF116NA

MB9A310A MB9AF311LA,MB9AF312LA,MB9AF314LA

MB9AF311MA,MB9AF312MA,MB9AF314MA,MB9AF315MA,MB9AF316MA

MB9AF311NA,MB9AF312NA,MB9AF314NA,MB9AF315NA,MB9AF316NA

 A P P L I C A T I O N N O T E

6 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

(TYPE2)

Series Product Number (not included Package suffix）

MB9B110T MB9BF116S,MB9BF117S,MB9BF118S

MB9BF116T,MB9BF117T,MB9BF118T

MB9B210T MB9BF216S,MB9BF217S,MB9BF218S

MB9BF216T,MB9BF217T,MB9BF218T

MB9B310T MB9BF316S,MB9BF317S,MB9BF318S

MB9BF316T,MB9BF317T,MB9BF318T

MB9B410T MB9BF416S,MB9BF417S,MB9BF418S

MB9BF416T,MB9BF417T,MB9BF418T

MB9B510T MB9BF516S,MB9BF517S,MB9BF518S

MB9BF516T,MB9BF517T,MB9BF518T

MB9B610T MB9BF616S,MB9BF617S,MB9BF618S

MB9BF616T,MB9BF617T,MB9BF618T

MB9BD10T MB9BFD16S,MB9BFD17S,MB9BFD18S

MB9BFD16T,MB9BFD17T,MB9BFD18T

(TYPE3)

Series Product Number (not included Package suffix）

MB9A130LA MB9AF131KA,MB9AF132KA

MB9AF131LA,MB9AF132LA

(TYPE4)

Series Product Number (not included Package suffix）

MB9B110R MB9BF112N,MB9BF114N,MB9BF115N,MB9BF116N

MB9BF112R,MB9BF114R,MB9BF115R,MB9BF116R

MB9B310R MB9BF312N,MB9BF314N,MB9BF315N,MB9BF316N

MB9BF312R,MB9BF314R,MB9BF315R,MB9BF316R

MB9B410R MB9BF412N,MB9BF414N,MB9BF415N,MB9BF416N

MB9BF412R,MB9BF414R,MB9BF415R,MB9BF416R

MB9B510R MB9BF512N,MB9BF514N,MB9BF515N,MB9BF516N

MB9BF512R,MB9BF514R,MB9BF515R,MB9BF516R

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 7

(TYPE5)

Series Product Number (not included Package suffix）

MB9A110K MB9AF111K,MB9AF112K

MB9A310K MB9AF311K,MB9AF312K

(TYPE6)

Series Product Number (not included Package suffix）

MB9A140NA MB9AF141LA,MB9AF142LA,MB9AF144LA

MB9AF141MA,MB9AF142MA,MB9AF144MA

MB9AF141NA,MB9AF142NA,MB9AF144NA

MB9A340NA MB9AF341LA,MB9AF342LA,MB9AF344LA

MB9AF341MA,MB9AF342MA,MB9AF344MA

MB9AF341NA,MB9AF342NA,MB9AF344NA

MB9AA40NA MB9AFA41LA,MB9AFA42LA,MB9AFA44LA

MB9AFA41MA,MB9AFA42MA,MB9AFA44MA

MB9AFA41NA,MB9AFA42NA,MB9AFA44NA

MB9AB40NA MB9AFB41LA,MB9AFB42LA,MB9AFB44LA

MB9AFB41MA,MB9AFB42MA,MB9AFB44MA

MB9AFB41NA,MB9AFB42NA,MB9AFB44NA

(TYPE7)

Series Product Number (not included Package suffix）

MB9A130N MB9AF131M,MB9AF132M

MB9AF131N,MB9AF132N

MB9AA30N MB9AFA31L,MB9AFA32L

MB9AFA31M,MB9AFA32M

MB9AFA31N,MB9AFA32N

(TYPE8)

Series Product Number (not included Package suffix）

MB9A150R MB9AF154M,MB9AF155M,MB9AF156M

MB9AF154N,MB9AF155N,MB9AF156N

MB9AF154R,MB9AF155R,MB9AF156R

 A P P L I C A T I O N N O T E

8 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

(TYPE9)

Series Product Number (not included Package suffix）

MB9B120M MB9BF121K,MB9BF122K,MB9BF124K

MB9BF121L,MB9BF122L,MB9BF124L

MB9BF121M,MB9BF122M,MB9BF124M

MB9B320M MB9BF321K,MB9BF322K,MB9BF324K

MB9BF321L,MB9BF322L,MB9BF324L

MB9BF321M,MB9BF322M,MB9BF324M

MB9B520M MB9BF521K,MB9BF522K,MB9BF524K

MB9BF521L,MB9BF522L,MB9BF524L

MB9BF521M,MB9BF522M,MB9BF524M

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 9

1 Introduction

1.1 Description

This documentation describes the implementation of GNU tool chain on the Eclipse platform

for the FM3 family. The hardware of a host and the target are following.

This documentation describes the method to use J-Link or ARM-USB-TINY in ICE.

Host OS Windows7(32bit)

ICE J-Link / ARM-USB-TINY

Target board SK-FM3-176PMC-ETHERNET V1.1

Target MCU MB9BFD18T

Figure 1 Spansion starterkit SK-FM3-176PMC-ETHERNET

The following programs are used to implement development environment in this

documentation.

Compiler YAGARTO

Driver LibUSB

Debugger OpenOCD

IDE Eclipse + C/C++ development tooling(CDT)

Other Java Runtime Environment

 A P P L I C A T I O N N O T E

10 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

1.2 JTAG Interface

For flashing and debugging software on the MCU, the JTAG port of the board is used,

and thus a JTAG interface is also needed.

GNU GDB Source Code Debbuger
arm-none-eabi-gdb.exe

Eclipse

OpenOCD

Client Server

HOST

TCP
JTAG interface

Target

ARM JTAG

Figure 2 Relations of the host and the target with JTAG interface

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 11

1.3 J-Link

JTAG interface is the “J-Link”. This interface is product of the company IAR Systems.

Figure 3 J-Link from IAR Systems

The IAR Systems “J-Link” has the following features. For more information about the J-Link:

http://www.iar.com/Global/Products/Hardware-Debug-probes/DS-J-Link-ARM-09.pdf

 USB powered JTAG emulator for Cortex-M devices

 License for J-Link GDB server

 Support download in RAM and Flash

 License for the flash breakpoints

 SWD / SWV

 Voltage range: 1.2V-5V

http://www.iar.com/Global/Products/Hardware-Debug-probes/DS-J-Link-ARM-09.pdf

 A P P L I C A T I O N N O T E

12 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

1.4 ARM-USB-TINY

Another JTAG interface is the “ARM-USB-TINY”. This interface is product of the company

olimex.

Figure 4 ARM-USB-TINY from olimex

The olimex “ARM-USB-TINY” has the following features. For more information about the

ARM-USB-TINY: https://www.olimex.com/Products/ARM/JTAG/ARM-USB-TINY/

 Debug all ARM microcontrollers supported by OpenOCD

 Fast speed USB 2.0 JTAG dongle interface

 Uses ARM’s standard 2*10 pin JTAG connector

 Voltage range: 2V-5V

 Software supported by OpenOCD

https://www.olimex.com/Products/ARM/JTAG/ARM-USB-TINY/

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 13

2 Compiler

2.1 Yet another GNU ARM Tool Chain (YAGARTO)

There are a number of pre-built GNU ARM compiler toolsets available on the web. This

application note uses the YAGARTO pre-built ARM compiler tool suite developed by Michael

Fischer. This version of the GNU compiler toolset for ARM has been natively compiled for

the Intel/Windows platform.

Except the ARM compiler toolset the Yagarto project provides also other tools needed to

build a make file project on Eclipse CDT e.g. make utility.

2.2 Downloading Yagarto Tools

The Yagarto components can be downloading from the Yagarto Website:

http://www.yagarto.de/

Use the “Download” link on the left menu pane.

http://www.yagarto.de/

 A P P L I C A T I O N N O T E

14 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

It is recommended to use the latest versions provided on the website.

Only the first two packages are recommended at this moment, because the installation

description of the third package “Eclipse IDE” and “Eclipse CDT” will be separately

explained in detail in chapter 7.

2.3 Installing YAGARTO tools

After saving the package, e.g. in the temporary folder “Yagarto-Downloads”, the installation

procedure of these tools can be started.

After downloading, start the installation of the make utility tools “yagarto-tools-20100703-

setup” or newer.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 15

 A P P L I C A T I O N N O T E

16 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

Next, start the following installation of the ARM compiler toolset

“yagarto-bu-2.21_gcc-4.5.2-c-c++_nl-1.19.0_gdb-7.2_eabi_20101223” or newer.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 17

3 Driver

3.1 LibUSB

Note, this chapter describes the method which set a driver with J-Link.

But this method is common for ARM-USB-TINY.

J-Link must be set a driver to use OpenOCD. In this documentation, use "LibUSB" driver.

Because ordinary J-Link driver doesn't support OpenOCD, it must be replaced in LibUSB.

When replace it, using "Zadig" which is free tool (LGPL). Because LibUSB is included in

Zadig beforehand, it doesn't need to download LibUSB in individual. Zadig can available

from the following website.

http://sourceforge.net/projects/libwdi/files/zadig/

3.2 Installing LibUSB

Please connect J-Link and your PC. If ordinary driver is set in J-Link, it doesn't need deleting.

When Zadig starts, the next window below will be displayed.

http://sourceforge.net/projects/libwdi/files/zadig/

 A P P L I C A T I O N N O T E

18 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

Please Click on Option→List All Devices.

Chose J-Link driver from pull-down menu, please set libusb-win32 (v1.2.6.0) in Driver.

If click on Replace Driver, replacing of driver will start.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 19

Please confirm that J-Link driver is included in libusb-win32 devices from the device

manager window.

 A P P L I C A T I O N N O T E

20 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

4 Debugger

4.1 Open On-Chip Debugger (OpenOCD)

The Open On-Chip debugger is an open source software solution for accessing embedded

ARM cores via JTAG hardware interface “JTAG dongle”.

OpenOCD support many of JTAG dongles. The most of this dongles are based of the FTDI

USB device chip FT2232D from Future Technology Devices International Ltd.

This chapter describes the method to use OpenOCD.

4.2 Using LibUSB driver

4.2.1 Installing OpenOCD which supported LibUSB

The Windows installer program for the version of OpenOCD that support LibUSB driver can

be downloaded from the website: (Please use OpenOCD 0.5.0 or later for FM3 family)

http://openocd.sourceforge.net/

For the next steps it is needed to recall the location of the folder, where OpenOCD was

installed, e.g. C:¥OpenOCD_LibUSB.

http://openocd.sourceforge.net/

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 21

4.2.2 Run OpenOCD

A configuration script file openocd.cfg for OpenOCD is also needed (This file is included in

the software package of this application note). The OpenOCD configuration file openocd.cfg

for the MB9BFD18T example is shown below

#interface jlink

#interface ft2232

#ft2232_device_desc "Olimex OpenOCD JTAG TINY"

#ft2232_layout olimex-jtag

#ft2232_vid_pid 0x15ba 0x0004

Fujitsu Cortex-M3 with 1MB Flash and 64*2 kB RAM

if { [info exists CHIPNAME] } {

 set _CHIPNAME $CHIPNAME

} else {

 set _CHIPNAME mb9bfxx6

}

if { [info exists ENDIAN] } {

 set _ENDIAN $ENDIAN

} else {

 set _ENDIAN little

}

if { [info exists CPUTAPID] } {

 set _CPUTAPID $CPUTAPID

} else {

 set _CPUTAPID 0x4ba00477

}

#delays on reset lines

jtag_nsrst_delay 100

jtag_ntrst_delay 100

Fujitsu cortex-M3 reset configuration

reset_config trst_only

reset_config trst_and_srst

jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id

$_CPUTAPID

set _TARGETNAME $_CHIPNAME.cpu

target create $_TARGETNAME cortex_m3 -endian $_ENDIAN -chain-position

$_TARGETNAME

MB9BFD18 has 64*2kB of RAM on its main system bus

$_TARGETNAME configure -work-area-phys 0x1FFF0008 -work-area-size 0x8000

-work-area-backup 0

If using J-Link, please set this line enable.

If using ARM-USB-TINY,

please set these lines enable.

 A P P L I C A T I O N N O T E

22 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

MB9BFD18 has 1MB of user-available FLASH

flash bank mb9bf500 <base> <size> 0 0 <target#> <variant> <cclk>

[calc_checksum]

set _FLASHNAME $_CHIPNAME.flash

flash bank $_FLASHNAME fm3 0 0 0 0 $_TARGETNAME mb9bfxx6

4MHz / 6 = 666kHz, so use 500

jtag_khz 500

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 23

To run the OpenOCD server, start the windows prompt and go to the folder, where the

OpenOCD executable file was generated, and run this program with the –f argument with

the path to the configuration file above. For example:

If using J-Link, please confirm that the following window is displayed.

>Openocd-0.5.0 -f <Your path to the Eclipse workspace project>/openocd.cfg

 A P P L I C A T I O N N O T E

24 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

If using ARM-USB-TINY, please confirm that the following window is displayed.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 25

5 Java Runtime Environment (JRE)

5.1 Checking for JRE

The installation of Eclipse requires the availability of Java as a virtual machine on system.

To check, that Java already exists on the system, type the command Java –version on

DOS console.

If windows cannot recognize this command, Java Runtime Environment (JRE) is

needed to be installed.

5.2 Installing Java JRE

Download JRE from following URL:

http://java.com/

Java installation can be done online or offline. Download one of the installation programs

and start the installation procedure to install JRE.

http://java.com/

 A P P L I C A T I O N N O T E

26 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

6 Eclipse platform

6.1 Eclipse platform

The latest release of eclipse is available to download from the web site:

http://download.eclipse.org/eclipse/downloads/

The Helios release 3.6.1 (or later) consists of various packages. These packages are

available on the left menu of the download website of the Eclipse project.

For our system it is required a minimum eclipse platform to be realized. The package

needed for this can be found by the menu section “Platform Runtime Binary”.

http://download.eclipse.org/eclipse/downloads/

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 27

The Eclipse platform binary package is available for many operating systems.

For Windows systems with 32 bit CPU use the first “http” location of this list to download the

adequate Eclipse package for this system.

 A P P L I C A T I O N N O T E

28 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

The Eclipse platform binary is available from many http mirrors. After choosing one of these

mirrors the software can be downloaded.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 29

After downloading and saving the zip file eclipse-platform-SDK-3.6.1-win32.zip, decompress

this file, to e.g. C:¥

With the installation of Eclipse platform runtime binary, this installation of Eclipse is finished.

 A P P L I C A T I O N N O T E

30 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

6.2 Start Eclipse IDE

The Eclipse IDE is now ready to start; for this start eclipse.exe from the folder C:¥eclipse.

At first the workspace, where Eclipse should store the project files, has to be specified.

After the selection of the workspace, Eclipse starts.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 31

7 C/C++ Development Tooling CDT

7.1 Installation of new software on Eclipse

After the installation of Eclipse, it is necessary to import the CDT package to Eclipse for

developing C or C++ applications. The CDT package is available as a plug-in.

To install new software on Eclipse, start Eclipse and follow the installation instruction via the

Help→Install New Software menu.

The installation of CDT plug-in or any another package to the Eclipse platform depends on

the procedure, which the user selects to add this software to the platform. After clicking of

the add button the Add Repository window appears.

 A P P L I C A T I O N N O T E

32 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

Eclipse supports two different methods to implement new plug-ins to the platform:

When the plug-in is available locally on the system as JAR or ZIP file, the installation can be

done offline.

When the plug-in is available from an http project website, a new installation or update of

this software is done online.

The online method is recommended. For this procedure first adapt the Eclipse network

settings to the network configuration before initiate the installation procedure.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 33

7.2 Eclipse Network Configuration

From the Eclipse sub menu Preferences on the category Window, configure the settings for

your network.

The configuration of the network can be realized from the Network connections field. From

this field, edit the network setting entry and do the necessary changes to enable for Eclipse

the communication to the internet.

After this change click the Apply button to save the new network configuration. Now the

online installation of the CDT plug-in can be done.

 A P P L I C A T I O N N O T E

34 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

7.3 Eclipse CDT Plug-In

The CDT plug-in exists in a Standard and a Zylin version, but only the installation of one

version is required.

For the integration of new CDT plug-ins on eclipse-platform, the demonstration of this

installation follows below.

Under Help menu, click on Install New Software... .

On the next window, click on Available Software Sites to look for a CDT downloading mirror,

if existing. The mirror is: http://download.eclipse.org/tools/cdt/releases/helios/.

http://download.eclipse.org/tools/cdt/releases/helios/

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 35

Otherwise click on Add to set the required mirror. Enter CDT for the name and

http://download.eclipse.org/tools/cdt/releases/helios/ for the web location.

Click on OK and the next window below will be displayed. Select both CDT MAIN Features

and the CDT Optional Features listed below only.

http://download.eclipse.org/tools/cdt/releases/helios/

 A P P L I C A T I O N N O T E

36 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

Follow the next steps to start the plug-in installation.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 37

Eclipse starts then the installation of CDT plug-in.

When the plug-in installation has finished, restart Eclipse IDE.

 A P P L I C A T I O N N O T E

38 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

8 Working with the Eclipse IDE

8.1 C/C++ perspective

Start the Eclipse IDE.

At this point, Eclipse will present a “Workspace Launcher” dialog, shown below. This is

where you specify the location of the “workspace” that will hold your Eclipse/CDT projects

(see also the previous chapter 6.2)

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 39

Now Eclipse will officially start and show the “Welcome” page shown below.

For project developing on C/C++, switch to the C/C++ perspective.

Choose Window→Open Perspective, then click on C/C++ to open Eclipse in the C/C++

perspective.

 A P P L I C A T I O N N O T E

40 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

8.2 Creating a C or C++ project with Eclipse

In the Eclipse C/C++ perspective a new project for your target can be created, here:

Spansion Cortex M3. For this choose File→New→C Project.

In the “New Project wizard” shown below-left, expand the Makefile project branch by clicking

on it’s “+” sign and then select Empty Project. Enter the sample project name e.g.

“mb9bfxxx_ioport_counter”. Then click on Next to continue.

On the below-right window just close the wizard with Finish.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 41

Now the C/C++ perspective shows a valid project, as shown below in the C/C++ Projects

view on the left, but there are no source files in that project. Normally you would select

File→New→Source File and enter a file name and start typing. This time, however, we will

import already existing source files.

In the Eclipse screen below click on File→Import… . This will bring up the file import dialog.

In the “Import” screen below, click on File System and then click Next to continue.

 A P P L I C A T I O N N O T E

42 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

In the Import→File System screen below, use the Browse button associated with the From

directory text box to search for the sample project to be imported.

The project template io-port used in this application note, which is included in the note’s

software package archive. The sample project io-port should be then saved, in a directory

folder e. g. C:¥downloads¥io-port.

Check the box for the folder of the io-port example and then click the Select All button

below because we want to import each of its files. Click Finish to start the file import

operation.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 43

Expanding the mb9bfxxx_ioport_counter project in the C/C++ Projects view seen below,

shows that all the source files, which have been imported into the project. By clicking on the

“+” sign on the project name in the C/C++ Projects panel on the left, the imported files are

expanded in a tree view.

In the Eclipse window below, the main.c file has been selected by clicking on it and it thus be

displayed in the source file editor view in the center. In the project explorer window the

main.c module is expanded to reveal its variables and functions. By clicking e. g. on the

variable count, the source window jumps to the definition of that variable.

 A P P L I C A T I O N N O T E

44 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

8.3 Cleaning the selected project

For compiling a project, first disable the automatically build. Select the project and from the

category Project on the IDE menu uncheck Build Automatically.

Now clean the project. In the same way select the project mb9bfxxx_ioport_counter from the

project explorer window the category Project, and on the IDE menu choose Clean... .

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 45

On the clean window deselect the option Clean all projects and select our project. Deselect

also the option Start a build immediately.

Finish the configuration by clicking on the OK button and the clean process will start.

 A P P L I C A T I O N N O T E

46 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

To show the results of the clean process, look at the “Console” panel located below.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 47

8.4 Building the selected project

Important note: If you use the makefile of the software package of this application

note, check all paths (e.g. to OpenOCD) and modify them to your individual

installation paths!

The project mb9bfxxx_ioport_counter can be compiled with the preinstalled Yagarto tool

chain. To start this procedure, select the project mb9bfxxx_ioport_counter on the “Project

Explorer” view. With a click on the right mouse button on the selected project start the build

process with Build project.

 A P P L I C A T I O N N O T E

48 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

The result will be than show on the IDE “Console” like below.

On the “Project Explorer” view, it can be seen that the project output files (*.bin, *.elf ...) are

generated.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 49

8.5 Create make target

The make targets are pre-defined in the example project mb9bfxxx_ioport_counter. This

paragraph shows the creation process, if a new project is set-up or the targets were deleted

accidentally.

The make file for the project mb9bfxxx_ioport_counter manages the project build process.

This file generates output files for debugging in RAM and ROM. The make file generates

also the final output file for programming the Flash with an external tool like the Spansion

Flash Programmer.

It is needed to create a make target to separate the build processes for RAM and ROM

(Flash). Also add the clean process to “Make Target”.

To create a make target, select the project mb9bfxxx_ioport_counter on the “Project

Explorer” view. Click with the right mouse button on the selected project and select Make

Targets.

 A P P L I C A T I O N N O T E

50 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

Enter “Make (RAM)” for the target name, uncheck Same as the target name and write

“RAM” in the text box “Make target”. Click on OK to create a “Make (RAM)” build target.

On the same way, create a make target for “Make (ROM)”, “Program-Flash” and “Clean”.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 51

On the next figure the “Make Target” view can be seen. To start the build process for “Make

(RAM)”, “Make (ROM)” or “Clean”, simply double click on the respective target.

On the IDE “Console” view, the output shows that the clean process was successfully done.

 A P P L I C A T I O N N O T E

52 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

9 Example Eclipse Project Template

The project template used in this application note has the following structure:

The inc folder consists of the FM3 I/O header file used with all projects. Also the CMSIS

header files and system start-up header are included here. The prj folder contains the linker

script files and in src are located the source files.

The makefile is also included to the template.

The Includes directory contains the Yagarto libraries (e.g. stdint.h) needed during the build

process. To add other sources file use the folder src.

New header files can be added to the folder inc or to the Includes directory.

Important note: Check all paths (e.g. to OpenOCD) in the makefile(s) and modify them

to your individual installation paths!

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 53

9.1 Add other Files to the Template Folder

Open the selected project folder, where new files should be added. Click with the right

mouse key on the selected folder and use Import.

 A P P L I C A T I O N N O T E

54 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

Select File System and click on the Next button.

Click on the Browse button to locate the new files.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 55

After selecting the folder, check the files which should be imported inthe list.

With a click to Finish, the selected header files are added to the folder inc.

 A P P L I C A T I O N N O T E

56 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

9.2 Add other Libraries to the “Includes” Directory

Some library headers (e.g. “stdint.h”) must be included explicitly from the Yagarto installation

directory. To set the Includes directory in your template or to add new libraries in this

directory, select the project and click with the right mouse key to Proprieties. Here changes

to the configuration options for the selected project can be done.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 57

1. Select C/C++ General

2. Double click on Paths and Symbols

3. Click on Add

4. Enable the box Add to all languages

5. Select File system to locate the include directory

6. Select the include directory

7. Click on OK in the “browser” child window

8. Click on OK in the “Add directory path” child window

 A P P L I C A T I O N N O T E

58 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

The new libraries folder is newly added to the Includes directory.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 59

9.3 Make File

The make file is composed of many instructions to the GNU make tool. These instructions

are used to set the information needed by the make builder and to initiate the project build

process. It can be found in the application note’s software package archive.

The make file instructions are described below in detail. The make file is divided here into

many parts to get a better overview about the meaning of these instructions.

 In the first part of the make file the GNU tools needed to compile (arm-none-eabi-gcc.exe),

assemble (arm-none-eabi-as.exe) and link (arm-none-eabi-ld.exe) the project are set. The

files created by compiling and assembling are so-called object files (*.o). In addition to the

GNU compiler and assembler, it is needed to set the GNU tool (arm-none-eabi-objcopy.exe)

to create out of the output file (*.elf), generated by the linker, another formats, e.g. hex file

(*.hex) or binary file (*.bin).

It is here considered that all needed GNU tools are installed and added to Windows path by

the Yagarto installation procedure described in the chapter2. These tools can be found on

the folder bin of the Yagarto GNU ARM tool chain installation directory.

 Next statements on the make file are the options needed for the GNU Objcopy tool to

create other format from the GNU linker generated output file (*.elf).

The first line is to create the Intel-format hex file (*.hex). The second one is to generate the

binary file (*.bin) and the last one for the Motorola S-record hex format (*.mhx).

TRGT = arm-none-eabi-

CC = $(TRGT)gcc

AS = $(TRGT)as

LD = $(TRGT)ld –v

CP = $(TRGT)objcopy

HEX = $(CP) -O ihex

BIN = $(CP) -I elf32-little -O binary

SREC = $(CP) -O srec

 A P P L I C A T I O N N O T E

60 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

The next lines define the over-all project name. This name will then be used to the for the

output file generated by the GNU linker and copied to other format by the GNU Objcopy tool.

The example Eclipse project template consists of the following project folder:

 inc: includes all the header files

 prj: includes all the linker script files

 src: includes all source files (*.c and *.s)

Define project name here

PROJECT = io-port

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 61

 This folder structure is defined as follows:

Define linker script file here

LDSCRIPT_RAM = ./prj/MB9BFD18_ram.ld

LDSCRIPT_ROM = ./prj/MB9BFD18_rom.ld

List C source files here

SRC = ./src/main.c ¥

 ./src/core_cm3.c ¥

 ./src/system_mb9bfd1x.c

List ASM source files here

ASRC = ./src/ startup_mb9bfd1x.s

List all user directories here

UINCDIR = ./inc

 A P P L I C A T I O N N O T E

62 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

The next part isn’t used. If the user has the intention to add some defines or library modules,

this makefile part can be used.

Start of default and user defines

List all default C defines here, like -D_DEBUG=1

DDEFS =

List all default ASM defines here, like -D_DEBUG=1

DADEFS =

List all default directories to look for include files here

DINCDIR =

List the default directory to look for the libraries here

DLIBDIR =

List all default libraries here

DLIBS =

List all user C define here, like -D_DEBUG=1

UDEFS =

Define all user ASM defines here

UADEFS =

List the user directory to look for the libraries here

ULIBDIR =

List all user libraries here

ULIBS =

End of default and user defines

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 63

The added defines and locations, where the included header files and the used library

modules are located, are provided in the next makefile part to the compiler, assembler and

linker as options used by building the project.

 INCDIR: Compiler directories options, e.g. the C-headers are in “UINCDIR=./inc”

 LIBDIR: Linker libraries directories options

 DEFS: Compiler defines options

 ADEFS: Assembler defines options

 LIBS: Linker libraries options

 This part does not need to be changed. All definitions are set in the previously makefile part

(default and user defines).

The next lines determine the object files, which will be created by compiling and assembling

the project; from all C and assembler (*.s) files located in “src” folder are object files (*.o)

generated.

 Next the compiler optimization level option is set.

The following instructions specify the name of the target ARM processor (cortex-m3). The

compiler and assembler uses this option to determine what instruction set to be used, when

generating the assembly code.

INCDIR = $(patsubst %,-I%,$(DINCDIR) $(UINCDIR))

LIBDIR = $(patsubst %,-L%,$(DLIBDIR) $(ULIBDIR))

DEFS = $(DDEFS) $(UDEFS)

ADEFS = $(DADEFS) $(UADEFS)

LIBS = $(DLIBS) $(ULIBS)

OBJS = $(SRC:.c=.o) $(ASRC:.s=.o)

Define optimization level here

OPT = -O0

MCU = cortex-m3

MCFLAGS = -mcpu=$(MCU)

 A P P L I C A T I O N N O T E

64 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

 All options used by the GNU Compiler are started in the next part.

 To generate dependency information between the C sources files and the header files

included in this source files, a compiler flag to generate these information is enabled. The

generating information will then be deleted by cleaning the project with make clean.

 The following lines are the GNU assembler flags.

 The next part determines the general linker flags.

CPFLAGS = $(MCFLAGS)

CPFLAGS += $(OPT)

CPFLAGS += -gdwarf-2

CPFLAGS += -mthumb

CPFLAGS += -mapcs-frame

CPFLAGS += -msoft-float

CPFLAGS += -mno-sched-prolog

CPFLAGS += -fno-hosted

CPFLAGS += -mtune=cortex-m3

CPFLAGS += -mfix-cortex-m3-ldrd

CPFLAGS += -ffunction-sections

CPFLAGS += -fdata-sections

CPFLAGS += -fomit-frame-pointer

CPFLAGS += -Wall

CPFLAGS += -Wstrict-prototypes

CPFLAGS += -fverbose-asm

CPFLAGS += -Wa,-ahlms=$(<:.c=.lst)

CPFLAGS += $(DEFS)

Generate dependency information

CPFLAGS += -MD -MP -MF .dep/$(@F).d

ASFLAGS = $(MCFLAGS)

ASFLAGS += -g

ASFLAGS += -gdwarf-2

ASFLAGS += -mthumb

ASFLAGS += -amhls=$(<:.s=.lst)

ASFLAGS += $(ADEFS)

LK = -static -mcpu=cortex-m3 -mthumb -mthumb-interwork

LK += -nostartfiles

LK += -Wl,--start-group

LK += -lc -lg -lstdc++ -lsupc++

LK += -lgcc -lm

LK += -Wl,--end-group

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 65

Because this makefile manages the building process to generate output files (*.elf) for RAM

and ROM debugging, a linker script file for each debugging configuration must be set

individually.

1. Set the RAM linker script file Fujitsu_cortex-M3_ram_V21.ld located in prj

folder and provided with the makefile instruction LDSCRIPT_RAM

2. Generate a map file (*.map)

3. Provide the library directories, if they are set in the defines part

The next instructions set ROM linker flags:

1. Set the ROM linker script file Fujitsu_cortex-M3_rom_V10.ld located in prj

folder and provided with the makefile instruction LDSCRIPT_ROM

2. Generate a map file (*.map)

3. Provide the library directories, if they are set in the defines part

In the next part follow the make rules to create a RAM target. By building the RAM target, all

object files (*.o) and output files (*.elf, *.bin, *.hex, *.mhx) will be created.

1. The first definition flag is dedicated to the assembler to set the variable

Debug_RAM to 1. This variable is implemented in the “if case” at the

startup_mb9bfd1x.s file to differentiate between the RAM and ROM

initialization routine.

2. A target clean is made before starting building the object files ($(OBJS))

3. Starting building the output file (*.elf)

4. Starting building the output file (*.hex)

5. Starting building the output file (*.bin)

6. Starting building the output file (*.mhx)

LDFLAGS_RAM = -T$(LDSCRIPT_RAM)

LDFLAGS_RAM += -Wl,-Map=$(PROJECT)_ram.map,--cref,--no-warn-mismatch

LDFLAGS_RAM += $(LIBDIR)

LDFLAGS_ROM = -T$(LDSCRIPT_ROM)

LDFLAGS_ROM += -Wl,-Map=$(PROJECT)_rom.map,--cref,--no-warn-mismatch

LDFLAGS_ROM += $(LIBDIR)

RAM: ASFLAGS += --defsym Debug_RAM=1

RAM: clean $(OBJS) $(PROJECT)_ram.elf $(PROJECT)_ram.hex

RAM: $(PROJECT)_ram.bin

RAM: $(PROJECT)_ram.mhx

 A P P L I C A T I O N N O T E

66 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

Here the ROM target definition is described. The ROM target is defined as default make

target. By giving make all the building process for ROM target will be started.

 To the Debug_RAM variable is now set to 0. Other instruction lines are similar to the RAM

target, only the output files are ROM based (*_rom.elf, *_rom.hex, etc.).

By starting the building process the object files (*.o) will be generated from all source files

(*.c and *.s).

 By compiling the (*.c) files, the GNU compiler (CC=arm-none-eabi-gcc.exe) is called.

The flags (CPFLAGS) are provided to the compiler and the directory, where the header files

are located, is also provided.

Next lines are the assembling procedure.

The GNU assembler (AS=arm-none-eabi-as.exe) will be started to create the object

files. The ASFLAGS are the flags which were defined for ROM or RAM building configuration

before.

For the linking procedure the GNU compiler (CC=arm-none-eabi-gcc.exe) combines all

object files ($(OBJS)=*.o) generated by compiling and assembling to an output file (*.elf).

 For the ROM target build, the GNU linker uses the options $(LDFLAGS_ROM)

(LDFLAGS_ROM = -T$(LDSCRIPT_ROM)) to identify the ROM linker script file.

all: ROM

ROM: ASFLAGS += --defsym Debug_RAM=0

ROM: clean $(OBJS) $(PROJECT)_rom.elf $(PROJECT)_rom.hex

ROM: $(PROJECT)_rom.bin

ROM: $(PROJECT)_rom.mhx

%o : %c

 @ echo "--compiling--"

 $(CC) -c $(CPFLAGS) -I . $(INCDIR) $< -o $@

%o : %s

 @ echo "--assembling--"

 $(AS) $(ASFLAGS) $< -o $@

%rom.elf: $(OBJS)

 @ echo "--linking--"

 $(CC) $(OBJS) $(LK) $(LDFLAGS_ROM) $(LIBS) -o $@

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 67

For the RAM target build, the GNU linker uses the options $(LDFLAGS_RAM)

(LDFLAGS_RAM = -T$(LDSCRIPT_RAM)) to identify the RAM linker script file

LDSCRIPT_RAM = ./prj/MB9BFD18_ram.ld

In the next part, the output file (*.elf) will be converted to other formats (*.hex, *.bin, *.mhx).

The GNU utility (CP=arm-none-eabi-objcopy.exe) can be used by the building process

to generate the respective format.

The GNU Objcopy tool is called with the macros HEX, BIN and SREC on begin of this

makefile. The Objcopy options are also set with these macros.

The clean target is managed with the rule clean. Assuming the command make clean will

delete all object files (*.o), the related file (*.lst) and the output files (*.elf, *.hex, *.bin and

*.mhx) generated by building the project. The clean rule is also called every time, when a

RAM or ROM target will be build.

%ram.elf: $(OBJS)

 @ echo "--linking--"

 $(CC) $(OBJS) $(LK) $(LDFLAGS_RAM) $(LIBS) -o $@

%hex: %elf

 $(HEX) $< $@

%bin: %elf

 $(BIN) $< $@

%mhx: %elf

 $(SREC) $< $@

clean:

 -rm -f $(OBJS)

 -rm -f $(PROJECT)_ram.elf

 -rm -f $(PROJECT)_ram.map

 -rm -f $(PROJECT)_ram.hex

 -rm -f $(PROJECT)_ram.bin

 -rm -f $(PROJECT)_ram.mhx

 -rm -f $(PROJECT)_rom.elf

 -rm -f $(PROJECT)_rom.map

 -rm -f $(PROJECT)_rom.hex

 -rm -f $(PROJECT)_rom.bin

 -rm -f $(PROJECT)_rom.mhx

 -rm -f $(SRC:.c=.c.bak)

 -rm -f $(SRC:.c=.lst)

 -rm -f $(ASRC:.s=.s.bak)

 -rm -f $(ASRC:.s=.lst)

 A P P L I C A T I O N N O T E

68 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

The next part of the makefile is used to program the internal flash with OpenOCD. This part

is also not needed, when the user prefers to download and debug the output file (*.elf) with

J-Link GDB Server.

With the first macro the location where the OpenOCD executable will be found is set.

The second macro will set the OpenOCD server (openocd.exe). Because this server needs

mandatorily a script configuration, the configuration script (openocd.cfg) in the project

directory (./) may be used.

 In the next part follows the OpenOCD commands used to program the flash on the FM3

The second to last part implements the target rule program.

First the server will be started with the assigned configuration script (openocd.cfg). After this

the server will execute the giving commands. When the programming achieved the server

will be shutdown and eclipse console will display the message:

"Flash Programming Finished."

specify the directory where openocd executable and configuration files reside

OPENOCD_DIR = <HERE YOUR PATH TO OPENOCD>/openocd-0.5.0/src

specify OpenOCD executable

OPENOCD = $(OPENOCD_DIR)openocd-0.5.0.exe

specify OpenOCD configuration file (pick the one for your device)

OPENOCD_CFG = -f ./openocd.cfg

specify OpenOCD flash programing commandos for FM3

OPENOCD_C += -c init

OPENOCD_C += -c jtag_khz 500

OPENOCD_C += -c reset init

OPENOCD_C += -c verify_ircapture disable

OPENOCD_C += -c halt

OPENOCD_C += -c poll

OPENOCD_C += -c 'FM3 mass_erase 0'

OPENOCD_C += -c 'flash write_image $(PROJECT)_rom.bin 0x0 bin'

OPENOCD_C += -c reset run

OPENOCD_C += -c shutdown

program the FM3 internal flash memory

program:

 @echo "Flash Programming with OpenOCD..."

 $(OPENOCD) $(OPENOCD_CFG) $(OPENOCD_C)

 @echo "Flash Programming Finished."

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 69

10 Programing the Flash memory

10.1 OpenOCD and Flash Programming

To use OpenOCD for programming the internal Flash memory, a target Program-Flash was

already created. See chapter 8.5 for usage.

In chapter 9.3 a description of all section used in the makefile was given. The last section

implemented in this makefile manages the make target Program-Flash used on Eclipse

“C/C++ perspective” to program the internal Flash.

Connect the SK-FM3-176PMC-ETHERNET board via JTAG interface to the USB interface

of your computer.

To program the internal Flash, first it is needed to build the target Make (ROM). The binary

file io-port_rom.bin will be then generated. See chapter 8.5 for usage.

Click on the target Make (ROM).

 A P P L I C A T I O N N O T E

70 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

After building the project, the target Program-Flash now can be build. Click on it, start the

Flash programming with OpenOCD.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 71

The next figure shows the messages displayed on the Eclipse console during the Flash

programming realized via OpenOCD.

 A P P L I C A T I O N N O T E

72 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

11 Set up Eclipse External Tools

11.1 Further External Tools

Note, that all configurations described below use the paths from the chapter 4. Use

your individual installation paths instead, when setting up the configurations!

The tools installed by External Tools Configurations... menu can be conveniently started

from the Run pull-down menu or via a toolbar button.

11.2 OpenOCD as an Eclipse external tool

If using J-Link in JTAG interface, OpenOCD must be set as external tool for using J-Link

with it.

Beforehand, please copy configuration file openocd.cfg in the directory ¥OpneOCD_LibUSB

(C:¥OpenOCD_LibUSB).

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 73

Click on Run→External Tools→External Tools Configurations... .

The “External Tools” window will appear. Click on Program and then New button to establish

a new external tool.

 A P P L I C A T I O N N O T E

74 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

Double click Program.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 75

Fill out the “External Tools” form exactly as described below.

In the “Name” text box call this external tool “OpenOCD”

In the "Location:" pane, use the Browse File System... button to search for the OpenOCD

executable. It is located in the following folder:

C:¥OpenOCD_LibUSB¥bin¥openocd-0.5.0.exe

In the "Working Directory" pane, use the Browse File System... button to specify

C:¥OpenOCD_LibUSB as the working directory.

In the "Arguments" pane, enter the argument "-f <your project path>¥openocd.cfg" to specify

the OpenOCD configuration file.

 A P P L I C A T I O N N O T E

76 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

In the Build tab uncheck Build before launch.

No changes are required to the other tabs in the other forms (Refresh, Environment, and

Common).

Click on Apply and Close to register OpenOCD as an external tool.

To check this setup, choose Run→External Tools→External Tools Configurations... then

select OpenOCD.

Now organize all external tools needed for debugging.

From the bar menu select the following configuration window:

Click on Organize Favourites......

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 77

Click on Add and select all tools.

Click on Ok to save the configuration. The external tools are added as favorites. They can

be then started from the bar menu as shown below.

 A P P L I C A T I O N N O T E

78 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

12 Eclipse CDT Debug Perspective

In chapter 8 a sample FM3 project was created and the build process to create all

application output files (*.bin, *.mhx or *.hex) needed to program the Flash was explained.

These output files include also debug information files (*.elf) needed for debugging program

code in Flash or RAM.

To start the debug process, first change from Eclipse CDT “C/C++ Perspective” to “Debug

Perspective”.

Select from Eclipse menu Windows and go to Open perspective. Click on Debug. The

debug Perspective can be also found under Other… .

After this the following window will be displayed.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 79

12.1 Using the OpenOCD Server to debug a Flash Application

Connect the SK-FM3-176PMC-ETHERNET board via JTAG interface to the USB interface

of your computer. As the interface tool for this connection use e.g. the JTAG dongle “J-Link”

and “ARM-USB-TINY”.

If using J-Link or ARM-USB-TINY in ICE, the following explanation are common for them.

After this start the “OpenOCD”. OpenOCD runs as a daemon, which means, that a program

runs in the background waiting for commands to be submitted to it.

Click on OpenOCD and the external tool will be started as shown below.

 A P P L I C A T I O N N O T E

80 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

In the console view at the bottom, check that the daemon server has been started.

Then, the MCU must be changed to halt state. Because if it is run state, an error may occur

between GDB server and OpenOCD.

Please connect to OpenOCD with the terminal emulator(using Tera Term in this

documentation).

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 81

If displayed with “Open On-Chip Debugger”, connection is success.

By halt command, confirm that the target is halt state.

Now create a new “Debug Configuration”. For this, click on the Debug Configurations... as

shown below.

 A P P L I C A T I O N N O T E

82 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

The first debug configuration with “J-Link GDB Server” was saved, but also a special

configuration for debugging with OpenOCD is needed.

To create a new debug configuration select “GDB Hardware Debugging” and click on New.

Rename the debug configuration. To avoid confusion with other debug configurations (using

J-Link GDB Server), it is recommended that the selected name a reference to the project

name (io-port) and to the used external tool (OpenOCD).

In the “Project” text box, use the Browse button to find the project ioport_sk-fm3-****.

In the “C/C++ Application” text box, use the Search Project… button to locate the application

debugger file io-port_rom.elf.

Set the “Build configuration” text box to “Use Active”.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 83

Click on Select other.... by “Using GDB (DSF) Hardware Debugging launcher” as shown

below and select “Standard GDB Hardware Debugging launcher”. Click on OK.

Now select the “Debugger” tab as shown below. In the dialog labeled “Debugger Options”,

use the Browse button to locate the GDB Debugger arm-none-eabi-gdb.exe file. It can be

found e.g. in: C:¥yagarto¥yagarto-toolchain¥bin.

Uncheck Use remote target.

 A P P L I C A T I O N N O T E

84 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

Now select the “Startup” tab as shown below.

On the “Initialization Commands” panel copy or type the following lines:

 On the “Run Commands” panel add the following lines:

connect to the OpenOCD gdb server
target remote localhost:3333

monitor reset init

monitor soft_reset_halt

load

monitor gdb_breakpoint_override soft
break main
Continue

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 85

The rest of the configuration window can be left in its default setting. Click on Debug button

to start the debug process.

The following figure shows a successful debug start. To resume, simply click on the Resume

button.

After starting the debug procedure, the debug process can be terminated at any time by

clicking on the “Suspend” button.

 A P P L I C A T I O N N O T E

86 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

12.2 Debug on the RAM

In the paragraph before the Flash debug was explained from the chapter 12.1. It is also

possible to link and download an application for and to the RAM memory of the device. For

this the needed RAM application must be created first. To do this, return to the “C/C++

Perspective”.

Double click on C/C++ and the IDE will change be to C/C++ development perspective. Click

on Make (RAM) to build the RAM make target. The RAM debug application will be

generated then (Note, that the application code and the data must not exceed the RAM

memory size).

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 87

Now switch back to the Debug perspective to initiate the RAM debug process.

Reconnect the SK-FM3-176PMC-ETHERNET board via the JTAG interface to the USB

interface of your computer.

After reconnecting, please start OpenOCD. As follows, click on OpenOCD to start the

external tool.

 A P P L I C A T I O N N O T E

88 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

In the console view at the bottom, confirm that the server was started

To create e new debug configuration, choose Debug Configurations... as shown below.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 89

Then select “GDB Hardware Debugging” and click on New.

Rename the debug configuration. For differencing the RAM debug from the Flash debug,

give the name also a suffix “_RAM” to avoid confusions with the configurations already

saved.

In the “Project” text box, use the Browse button to find the project mb9bfxxx_ioport_counter.

In the “C/C++ Application” text box, use the Search Project… button to find the application

file io-port_ram.elf.

Set the “Build configuration” text box to “Use Active”, and check the box “disable auto build”.

Click on Select other.... by “Using GDB (DSF) Hardware Debugging launcher” as shown

below and select “Standart GDB Hardware Debugging launcher”. Click on OK.

 A P P L I C A T I O N N O T E

90 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

Click on Select other, please change "GDB(DSF) Hardware Debugging launcher" to

"Standard GDB Hardware Debugging launcher". After changing, click on OK.

The “Debugger” configuration tab is the same by all configurations.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 91

In the “Startup” tab copy into the “Initialization Commands” panel the following command

lines:

In the “Startup” tab copy into the “Run Commands” panel the following command lines:

The rest of the configuration window can be left in its default settings. Click on Debug button

to start the debug process.

connect to the OpenOCD gdb server
target remote localhost:3333

monitor reset init
monitor reset halt
monitor soft_reset_halt

Vector table placed in RAM
monitor mww 0xE000ED08 0x1fff0000

load

Use RAM start (Vector
table start) for address!

break main
set $r13 = *(int*)0x1fffE000
set $pc = *(int*)0x1fff0004
continue

Use RAM start (Vector
table start) + 4 Bytes for
address!

Stack pointer for
address!

 A P P L I C A T I O N N O T E

92 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

The screenshot below shows a successful RAM debug process start. To resume, simply

click on the Resume button.

On the “Disassembly” view, the current instruction can be observed for example. This view

can be selected from the eclipse menu Window under Show View.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 93

13 Eclipse Embedded Systems Register View Plug-In

The Eclipse plug-in “EmbSysRegView” is useful to get an adequate Eclipse I/O register view

allowing a structured display and modification ability of the peripheral register values of all

FM3 MCU resources.

13.1 Plug-In installation

To install the Eclipse Embedded Systems Register View plug-in “EmbSysRegView”, open

the Eclipse menu help and select Install New Software.

Click on the Add button. Enter, e.g. “EmbSysRegView” as name and in the location text box

the following link: http://embsysregview.sourceforge.net/update

Confirm the repository with OK.

http://embsysregview.sourceforge.net/update

 A P P L I C A T I O N N O T E

94 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

After the confirmation select all plug-in feature and click on Next.

Click on Next to confirm the installation detail.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 95

Read the license text thoroughly, check the radio button for “I accept the terms of the license

agreement” (or skip the usage in terms of doubts) and close with Finish.

Eclipse will ask for IDE restart. Click on Restart Now.

The Eclipse software is now up-to-date and the “EmbSysRegView” is also installed.

 A P P L I C A T I O N N O T E

96 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

13.2 Using the Eclipse Register View

The plug-in “EmbSysRegView” is now installed. To support the peripherals Register viewing

for the FM3 MCU, it is needed to use the two FM3 xml description files from Spansion, which

comes along with the application note’s software package archive, and copy these files to

Eclipse plug-ins directory.

The Eclipse installation directory should have the following structure:

Open the directory ¥plugins and look for the installation directory for the installed plug-in

“EmbSysRegView”.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 97

Open the selected directory and create a new folder with the name e.g. Fujitsu to directory:

¥data¥cortex-m3

When the folder Fujitsu is created, add both description files embsysregview.dtd and

MB9BF506N.xml to it.

 A P P L I C A T I O N N O T E

98 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

Now go back to Eclipse IDE and use the installed Register view.

For this, open Preferences in the Eclipse's Window pull-down menu.

Select the correct device as shown in the figure below.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 99

After Confirming the Register view configuration, the tool can be now used.

To open a register viewer in the CDT debug perspective (see chapter 12 for detailed

information), select Show View→Other… in the Eclipse's Window pull-down menu.

Then expand the “Debug” node and select “EmbSys Registers”. Confirm with OK.

 A P P L I C A T I O N N O T E

100 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

During debugging on the RAM or ROM (Flash), the debug process must be stopped in a

breakpoint to get content (and refresh) of a certain register. Double click on this register to

start viewing its content. Registers which are selected get a green font. Changes in register

contents are shown with red values. When hovering over a register's description column you

see a short description for that register.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 101

14 Eclipse Features

14.1 Overview

The Eclipse CDT provides many tools and features, which can help the user for the

embedded software development for a FM3 MCU.

In the next paragraphs some of these features of the debug perspective are discussed.

14.2 Disassembly View

To display the “Disassembly” view in the CDT debug perspective (see chapter12 for details),

select Show View→Disassembly in Eclipse's Window pull-down menu.

 A P P L I C A T I O N N O T E

102 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

The view will be then displayed as shown below.

 On this view a pointer to the current instruction will be set, so that the user can break the

debugging process any time by clicking on the button Suspend. Do not mix it up with

Terminate, which will end the debug session!

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 103

14.3 CPU Register View

The Eclipse CDT provides a register view that enables read and write access to the core

registers.

To get this view, select Show View→Register in Eclipse's Window pull-down menu.

The selected view displays all core registers and their contents. Open the tree “Main” to get

a CPU registers overview.

To edit the content of a register, select the register and double click on it.

 A P P L I C A T I O N N O T E

104 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

14.4 Memory View

Eclipse's memory monitor view is a default part of the debug view.

Select Show View→Memory in Eclipse's “Window” pull-down menu.

To add a new memory monitor, click to the green plus sign in the Monitor pane.

The figure below shows the active memory monitors at address 0x20000000.

The content of a selected memory address (RAM and some I/O resources) can be edited

and changed by double clicking on the respective address.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 105

14.5 Using Breakpoints on Eclipse Debug Perspective

After starting a debug session, the debugger will set a breakpoint at the main function.

Other breakpoints can be set by double clicking in the left pane in the source code tab

beside the line numbers.

 A P P L I C A T I O N N O T E

106 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

Now Resume the debug session.

The next figure demonstrates debug process, if a breakpoint was hit.

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 107

15 Appendix

15.1 Glossary

Used abbreviations in this document

Abbr. Meaning Short Explanation

*.bin
(file extension)

Binary Format File A file that contains program data in raw
binary form without any additional
information

*.elf
(file extension)

Executable and Linkable
Format

Object code containing debug
information (symbols, addresses,
modules, etc.)

*.hex
(file extension)

Hexadecimal format file
(Intel)

A file that contains program data and
address information (Intel format)

*.mhx
(file extension)

Motorola Hexadecimal
Format File

A file that contains program data and
address information (Motorola
S-Records format)

CDT C/C++ Development Tooling Tool Chain with is used by Eclipse in this
configuration

EABI Embedded-Application
Binary Interface

Standard format convention interface for
embedded applications (used in Linux
systems → cf. None-EABI)

FTDI Future Technology Devices
International Ltd.

Company, which provides the
JTAG-to-USB interface chips et al.

JTAG Joint Test Action Group IEEE Standard 1149.1 for testing and
debugging hardware (here: MCUs)

JRE Java Runtime Environment Environment software for a virtual
machine, which allows to run JAVA
applets (e.g. Eclipse) on the PC

GDB GNU Debugger Debugger software for the GNU Tool
Chain

GNU “GNU’s not Unix” Development Tool Chain

LibUSB Library for USB Open source library for USB drivers,
here the Windows compilation is used

None-EABI None-Embedded-Application
Binary Interface

Embedded application layer interface for
non-Linux systems, here: Windows OS
(→ cf. EABI

OCD On-Chip
Debugger/Debugging

Debugger software for on-chip
debugging, here using the JTAG protocol

OpenOCD Open Source On-Chip
Debugger

Open Source Code Debugger Software

YAGARTO “Yet another GNU ARM tool
chain”

GNU tool chain ported and precompiled
for Windows OS

 A P P L I C A T I O N N O T E

108 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

15.2 Links

15.2.1 Software

Eclipse IDE:
http://download.eclipse.org/eclipse/downloads/

Yagarto Tool Chain:
www.yagarto.de

OpenOCD:
http://openocd.sourceforge.net/

LibUSB:
http://sourceforge.net/projects/libusb-win32/files/

Embedded System Register View Plug-In for Eclipse:
http://sourceforge.net/projects/embsysregview/

JRE:
http://java.com/

15.2.2 Hardware

J-Link from IAR

http://www.iar.com/Global/Products/Hardware-Debug-probes/DS-J-Link-ARM-09.pdf

ARM-USB-TINY from olimex

https://www.olimex.com/Products/ARM/JTAG/ARM-USB-TINY/

SK-FM3-176PMC-ETHERNET V1.1 from Spansion Semiconductor

http://www.spansion.com/products/microcontrollers/pages/tool-detail-sk-fm3-176pmc-et
hernet.aspx

NOTE : These URLs are subject to change without notice.

http://download.eclipse.org/eclipse/downloads/
http://www.yagarto.de/
http://openocd.sourceforge.net/
http://sourceforge.net/projects/libusb-win32/files/
http://sourceforge.net/projects/embsysregview/
http://java.com/
http://www.iar.com/Global/Products/Hardware-Debug-probes/DS-J-Link-ARM-09.pdf
https://www.olimex.com/Products/ARM/JTAG/ARM-USB-TINY/
http://www.spansion.com/products/microcontrollers/pages/tool-detail-sk-fm3-176pmc-ethernet.aspx
http://www.spansion.com/products/microcontrollers/pages/tool-detail-sk-fm3-176pmc-ethernet.aspx

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 109

16 Additional Information

Information about Spansion’s Microcontroller can be found on the following Internet page:

http://www.spansion.com/

 A P P L I C A T I O N N O T E

110 MB9BFD18T-AN706-00061-1v1-E, January 31, 2014

Revision History

Rev Date Remark

1.0 Jan. 07, 2013 First Edition

1.1 Jan. 31, 2014 Company name and layout design change

A P P L I C A T I O N N O T E

January 31, 2014, MB9BFD18T-AN706-00061-1v1-E 111

1.

Colophon

The products described in this document are designed, developed and manufactured as contemplated for general

use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but

are not designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers

that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to

death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility,

aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control

in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and

artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or

damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an

inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating

safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of

over-current levels and other abnormal operating conditions. If any products described in this document represent

goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law

of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior

authorization by the respective government entity will be required for export of those products.

Trademarks and Notice

The contents of this document are subject to change without notice. This document may contain information on a

Spansion product under development by Spansion. Spansion reserves the right to change or discontinue work on

any product without notice. The information in this document is provided as is without warranty or guarantee of

any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability,

non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no

liability for any damages of any kind arising out of the use of the information in this document.

Copyright © 2013-2014 Spansion Inc. All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit®

EclipseTM, ORNANDTM and combinations thereof, are trademarks and registered trademarks of Spansion LLC in

the United States and other countries. Other names used are for informational purposes only and may be

trademarks of their respective owners.

	Table of Contents
	Target products
	1 Introduction
	1.1 Description
	1.2 JTAG Interface
	1.3 J-Link
	1.4 ARM-USB-TINY

	2 Compiler
	2.1 Yet another GNU ARM Tool Chain (YAGARTO)
	2.2 Downloading Yagarto Tools
	2.3 Installing YAGARTO tools

	3 Driver
	3.1 LibUSB
	3.2 Installing LibUSB

	4 Debugger
	4.1 Open On-Chip Debugger (OpenOCD)
	4.2 Using LibUSB driver
	4.2.1 Installing OpenOCD which supported LibUSB
	4.2.2 Run OpenOCD

	5 Java Runtime Environment (JRE)
	5.1 Checking for JRE
	5.2 Installing Java JRE

	6 Eclipse platform
	6.1 Eclipse platform
	6.2 Start Eclipse IDE

	7 C/C++ Development Tooling CDT
	7.1 Installation of new software on Eclipse
	7.2 Eclipse Network Configuration
	7.3 Eclipse CDT Plug-In

	8 Working with the Eclipse IDE
	8.1 C/C++ perspective
	8.2 Creating a C or C++ project with Eclipse
	8.3 Cleaning the selected project
	8.4 Building the selected project
	8.5 Create make target

	9 Example Eclipse Project Template
	9.1 Add other Files to the Template Folder
	9.2 Add other Libraries to the “Includes” Directory
	9.3 Make File

	10 Programing the Flash memory
	10.1 OpenOCD and Flash Programming

	11 Set up Eclipse External Tools
	11.1 Further External Tools
	11.2 OpenOCD as an Eclipse external tool

	12 Eclipse CDT Debug Perspective
	12.1 Using the OpenOCD Server to debug a Flash Application
	12.2 Debug on the RAM

	13 Eclipse Embedded Systems Register View Plug-In
	13.1 Plug-In installation
	13.2 Using the Eclipse Register View

	14 Eclipse Features
	14.1 Overview
	14.2 Disassembly View
	14.3 CPU Register View
	14.4 Memory View
	14.5 Using Breakpoints on Eclipse Debug Perspective

	15 Appendix
	15.1 Glossary
	15.2 Links
	15.2.1 Software
	15.2.2 Hardware

	16 Additional Information
	Revision History

