
Spansion® Analog and Microcontroller  
Products 
 
 
 
 
The following document contains information on Spansion analog and microcontroller products. Although the 
document is marked with the name “Fujitsu”, the company that originally developed the specification, Spansion 
will continue to offer these products to new and existing customers. 
 
Continuity of Specifications 
There is no change to this document as a result of offering the device as a Spansion product. Any changes that 
have been made are the result of normal document improvements and are noted in the document revision 
summary, where supported. Future routine revisions will occur when appropriate, and changes will be noted in a 
revision summary. 
 
Continuity of Ordering Part Numbers 
Spansion continues to support existing part numbers beginning with “MB”. To order these products, please use 
only the Ordering Part Numbers listed in this document. 
 
For More Information 
Please contact your local sales office for additional information about Spansion memory, analog, and 
microcontroller products and solutions. 



 

 

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Colophon 

The products described in this document are designed, developed and manufactured as contemplated for general use, 

including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not 

designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless 

extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, 

severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, 

mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where 

chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable 

to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. 

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such 

failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and 

prevention of over-current levels and other abnormal operating conditions. If any products described in this document 

represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law 

of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the 

respective government entity will be required for export of those products. 

Trademarks and Notice 

The contents of this document are subject to change without notice. This document may contain information on a Spansion 

product under development by Spansion. Spansion reserves the right to change or discontinue work on any product without 

notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy, 

completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other 

warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out of the use of 

the information in this document.  

Copyright © 2013 Spansion Inc. All rights reserved. Spansion
®
, the Spansion logo, MirrorBit

®
, MirrorBit

®
 Eclipse

TM
, 

ORNAND
TM

 and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and 

other countries. Other names used are for informational purposes only and may be trademarks of their respective owners. 



Fujitsu Semiconductor Europe 
Application Note 

 

MCU-AN-300401-E-V12 

FM3 FAMILY 
32-BIT MICROCONTROLLER 

MB9A/BFXXX 
 

FLASH PROGRAMMING 
 

APPLICATION NOTE 



FM3 Flash Programming 
Chapter  0 Revision History 

MCU-AN-300401-E-V12 - 2 - © Fujitsu Semiconductor Europe GmbH 

Revision History 

Date Issue 
2011-02-28 V1.0; MWi; 1st version 
2011-12-13 V1.1; MWi; Device type differences added 
2012-03-16 V1.2; MWi; Work Flash added 

This document contains 28 pages. 

 



FM3 Flash Programming 
Chapter  0 Warranty and Disclaimer 

© Fujitsu Semiconductor Europe GmbH - 3 -  MCU-AN-300401-E-V12 

Warranty and Disclaimer 
 
The use of the deliverables (e.g. software, application examples, target boards, evaluation boards, 
starter kits, schematics, engineering samples of IC’s etc.) is subject to the conditions of Fujitsu 
Semiconductor Europe GmbH (“FSEU”) as set out in (i) the terms of the License Agreement and/or 
the Sale and Purchase Agreement under which agreements the Product has been delivered, (ii) the 
technical descriptions and (iii) all accompanying written materials. 

Please note that the deliverables are intended for and must only be used for reference in an 
evaluation laboratory environment. 

The software deliverables are provided on an as-is basis without charge and are subject to 
alterations. It is the user’s obligation to fully test the software in its environment and to ensure proper 
functionality, qualification and compliance with component specifications. 

Regarding hardware deliverables, FSEU warrants that they will be free from defects in material and 
workmanship under use and service as specified in the accompanying written materials for a duration 
of 1 year from the date of receipt by the customer. 

Should a hardware deliverable turn out to be defect, FSEU’s entire liability and the customer’s 
exclusive remedy shall be, at FSEU’s sole discretion, either return of the purchase price and the 
license fee, or replacement of the hardware deliverable or parts thereof, if the deliverable is returned 
to FSEU in original packing and without further defects resulting from the customer’s use or the 
transport. However, this warranty is excluded if the defect has resulted from an accident not 
attributable to FSEU, or abuse or misapplication attributable to the customer or any other third party 
not relating to FSEU or to unauthorised decompiling and/or reverse engineering and/or 
disassembling. 

FSEU does not warrant that the deliverables do not infringe any third party intellectual property right 
(IPR). In the event that the deliverables infringe a third party IPR it is the sole responsibility of the 
customer to obtain necessary licenses to continue the usage of the deliverable. 

In the event the software deliverables include the use of open source components, the provisions of 
the governing open source license agreement shall apply with respect to such software deliverables.  

To the maximum extent permitted by applicable law FSEU disclaims all other warranties, whether 
express or implied, in particular, but not limited to, warranties of merchantability and fitness for a 
particular purpose for which the deliverables are not designated. 

To the maximum extent permitted by applicable law, FSEU’s liability is restricted to intention and 
gross negligence. FSEU is not liable for consequential damages. 

Should one of the above stipulations be or become invalid and/or unenforceable, the remaining 
stipulations shall stay in full effect. 

The contents of this document are subject to change without a prior notice, thus contact FSEU about 
the latest one. 



FM3 Flash Programming 
Chapter  0 Contents 

MCU-AN-300401-E-V12 - 4 - © Fujitsu Semiconductor Europe GmbH 

Contents 

REVISION HISTORY.............................................................................................................. 2 

WARRANTY AND DISCLAIMER........................................................................................... 3 

CONTENTS ............................................................................................................................ 4 

1 INTRODUCTION................................................................................................................ 6 

2 PROGRAMMING PRINCIPLE ........................................................................................... 7 
2.1 Programming via RAM code (Main Flash) ................................................................ 7 
2.2 Programming the Work Flash ................................................................................... 8 
2.3 Main Flash Memory Organization ............................................................................. 9 
2.4 Work Flash Memory Organization........................................................................... 10 

3 FLASH PROGRAMMING SEQUENCES AND REGISTERS .......................................... 11 
3.1 Flash Interface ........................................................................................................ 11 

3.1.1 Main Flash (Chip) Erase Command Sequence......................................... 11 
3.1.2 Main Flash Sector Erase Command Sequence ........................................ 11 
3.1.3 Main Flash 16-/32-Bit Word Write Command Sequence .......................... 12 
3.1.4 Work Flash Erase Command Sequence................................................... 12 
3.1.5 Work Flash Sector Erase Command Sequence ....................................... 13 
3.1.6 Main Flash 16-/32-Bit Word Write Command Sequence .......................... 13 
3.1.7 Read/Reset ............................................................................................... 13 
3.1.8 Sector Erase Suspend and Restart........................................................... 13 
3.1.9 Automatic Programming Algorithm Run States......................................... 14 

3.2 Main Flash Access Size.......................................................................................... 14 
3.3 Work  Flash Access Size ........................................................................................ 14 

4 FLASH PROGRAMMING SOFTWARE EXAMPLE ........................................................ 16 
4.1 Main Flash Sector Erase – Type 0 and 2 Devices .................................................. 16 
4.2 Main Flash Programming – Type 0 Devices ........................................................... 18 
4.3 Type 1 Devices ....................................................................................................... 20 
4.4 Main Flash Programming – Type 2 Devices ........................................................... 20 
4.5 Project Adjustments for generating RAM Code and automatically Copying at Start-

Up Phase ................................................................................................................ 22 
4.5.1 IAR project settings ................................................................................... 22 
4.5.2 KEIL project settings ................................................................................. 23 

4.6 Intercompatibility for different Compilers................................................................. 25 

5 ADDITIONAL INFORMATION......................................................................................... 26 



FM3 Flash Programming 
Chapter  0 Contents 

© Fujitsu Semiconductor Europe GmbH - 5 -  MCU-AN-300401-E-V12 

LIST OF FIGURES ............................................................................................................... 27 

LIST OF TABLES................................................................................................................. 28 



FM3 Flash Programming 
Chapter  1 Introduction 

MCU-AN-300401-E-V12 - 6 - © Fujitsu Semiconductor Europe GmbH 

1 Introduction 
This application note describes how to program the embedded Flash memory while the 
application is running. It also shows how to adjust the IAR and KEIL compilers for generating 
RAM code. 



FM3 Flash Programming 
Chapter  2 Programming Principle 

© Fujitsu Semiconductor Europe GmbH - 7 -  MCU-AN-300401-E-V12 

2 Programming Principle 

THIS CHAPTER SHOWS THE PRINCIPLE OF FLASH PROGRAMMING 

2.1 Programming via RAM code (Main Flash) 
Because for Flash programming the Flash interface has to be set to the command 
sequencer mode, it cannot be used for reading. This means that the CPU is not able to fetch 
any instruction from it in this mode. 

Therefore for any usage of the automatic programming algorithm with its command 
sequences the code execution must be done outside the Flash memory. This can be done in 
external memory, but more useful in the Instruction-RAM area of the FM3 starting from 
address 0x2000.0000. 

The user has to take care, that the programming code itself has to be copied from (constant) 
ROM area to the I-RAM area before executing it (Step1). Normally this can be done by 
compiler and linker settings in the used project builder IDE, which is explained later. 

The following graphic illustrates the mechanism and principle. 

 

Figure  2-1: (Main) Flash programming principle 
 

Step 3 

I-RAM 

D-RAM 

Flash 

Certain
sector 

Pro- 
gramming 
code

Step 1 

C
op

y
C

od
e

Step 2 
Er

as
e

/P
ro

gr
am

se
ct

or

Code execution area 

C
od

e
ex

ec
ut

io
n

ba
ck

in
Fl

as
h



FM3 Flash Programming 
Chapter  2 Programming Principle 

MCU-AN-300401-E-V12 - 8 - © Fujitsu Semiconductor Europe GmbH 

After copying the code in Step 1, the application has to jump to the copied RAM code. Here 
it is allowed to set the Flash memory to erase/programming mode. In the step 2 in illustration 
above a certain sector is erased and programmed. After successful Flash content change 
the application can jump back to the Flash area for normal code execution (Step 3). 

2.2 Programming the Work Flash 
If a device supports Work Flash no RAM code is needed for programming. The Work Flash 
is a second independent Flash memory, which can be erased and programmed from the 
Main Flash. This is also possible vice versa. 

The following graphic illustrates this: 

 

Figure  2-2: Work Flash programming principle 
 

Main
Flash 

Work
Flash 

Code Execution in Work Flash 

I-RAM 

D-RAM 

Er
as

e
Se

ct
or

/C
op

y
C

od
e

Code Execution in Main Flash 

Er
as

e
Se

ct
or

/C
op

y
C

od
e

Code execution area Programming code 



FM3 Flash Programming 
Chapter  2 Programming Principle 

© Fujitsu Semiconductor Europe GmbH - 9 -  MCU-AN-300401-E-V12 

2.3 Main Flash Memory Organization 
Note that the topology of the Flash sectors is organized by lower- and upper-32-bit word 
sectors, which results in a 64-bit-wide Flash memory. The following graphic shows this 
topology: 

 

Figure  2-3: Main Flash Sector Topology 

 
This sector topology results in the following sector/memory address organization within two 
upper- and lower-32-bit-word sectors (SAn and SAn+1): 

 

Figure  2-4: Main Flash Memory Organization 
 

63                  32 31   0
+7    +6     +5     +4  +3     +2     +1     0 

SAn+1 SAn 

SAn-1 SAn-2 

SAn+3 SAn+2 
0xXXXX.XFFF
0xXXXX.X000 
0xXXXX.XFFF
0xXXXX.X000 
0xXXXX.XFFF
0xXXXX.X000 

Bit
Byte 

Address Memory Sector Number 
. . .

0xXXXX.XX1C SAn + 1 
0xXXXX.XX1B
0xXXXX.XX1A
0xXXXX.XX19
0xXXXX.XX18

SAn 

0xXXXX.XX17
0xXXXX.XX16
0xXXXX.XX15
0xXXXX.XX14

SAn + 1 

0xXXXX.XX13
0xXXXX.XX12
0xXXXX.XX11
0xXXXX.XX10

SAn 

0xXXXX.XX0F SAn + 1



FM3 Flash Programming 
Chapter  2 Programming Principle 

MCU-AN-300401-E-V12 - 10 - © Fujitsu Semiconductor Europe GmbH 

2.4 Work Flash Memory Organization 
The Work Flash is organized in consecutive 32-Bit Words without interlace: 

 

Figure  2-5: Work Flash Sector Topology 
 

31   0
+3     +2     +1     0 

SAn 

SAn-1 

SAn+1 
0xXXXX.XFFF
0xXXXX.X000 
0xXXXX.XFFF
0xXXXX.X000 
0xXXXX.XFFF
0xXXXX.X000 

Bit
Byte 



FM3 Flash Programming 
Chapter  3 Flash Programming Sequences and Registers 

© Fujitsu Semiconductor Europe GmbH - 11 -  MCU-AN-300401-E-V12 

3 Flash Programming Sequences and Registers 

THIS CHAPTER SHOWS THE FLASH SEQUENCES AND RELEVANT REGISTERS 

3.1 Flash Interface 
The FM3 embedded Flash memory provides a Flash interface with an automatic 
programming algorithm. For unlocking this algorithm certain address/16-bit-data sequences 
have to be written to the Flash area (where the upper 8 data bits are “don’t care”). 

Any write access to the Flash memory area triggers the sequencer, but only certain 
addresses with certain data unlock a Flash memory command. 

3.1.1 Main Flash (Chip) Erase Command Sequence 
The Main Flash (chip) erase command sequence consist of the following address/data write 
accesses: 

Address Device 
Type 0 and 2 

Address Device 
Type 1 

Data Comment 

0x00001.1550 0x00001.0AA8 0xXXAA 1st sequence write 
0x00001.0AA8 0x00001.0554 0xXX55 2nd sequence write 
0x00001.1550 0x00001.0AA8 0xXX80 3rd sequence write 
0x00001.1550 0x00001.0AA8 0xXXAA 4th sequence write 
0x00001.0AA8 0x00001.0554 0xXX55 5th sequence write 
0x00001.1550 0x00001.0AA8 0xXX10 6th sequence write 

Table  3-1: Main Flash (Chip) Erase Command Sequence 
 

Note that this sequence only erases the whole Flash, if the device does not support a Work 
Flash area. If Work Flash is provided, it has to be erased separately (see below). 

3.1.2 Main Flash Sector Erase Command Sequence 
The Main Flash sector erase command sequence consist of the following address/data write 
accesses: 

Address Device 
Type 0 and 2 

Address Device 
Type 1 

Data Comment 

0x00001.1550 0x00001.0AA8 0xXXAA 1st sequence write 
0x00001.0AA8 0x00001.0554 0xXX55 2nd sequence write 
0x00001.1550 0x00001.0AA8 0xXX80 3rd sequence write 
0x00001.1550 0x00001.0AA8 0xXXAA 4th sequence write 
0x00001.0AA8 0x00001.0554 0xXX55 5th sequence write 

SAn SAn 0xXX30 6th sequence write with SAn address 
within sector to be erased 

Table  3-2: Main Flash Sector Erase Command Sequence 
 

1 Note that the sequence addresses for the unlock of the erase command can be any address 
within the (Main) Flash area. Because the (Main) Flash memory starts from address 
0x0000.0000 in the FM3 architecture, the upper 16-bit can be left as 0x0000.



FM3 Flash Programming 
Chapter  3 Flash Programming Sequences and Registers 

MCU-AN-300401-E-V12 - 12 - © Fujitsu Semiconductor Europe GmbH 

3.1.3 Main Flash 16-/32-Bit Word Write Command Sequence 
For writing a 16-bit word to an erased Flash cell, the following command sequence has to be 
used: 

Address Device 
Type 0 and 2 

Address Device 
Type 1 

Data Comment 

0x00001.1550 0x00001.0AA8 0xXXAA 1st sequence write 
0x00001.0AA8 0x00001.0554 0xXX55 2nd sequence write 
0x00001.1550 0x00001.0AA8 0xXXA0 3rd sequence write 

PAddr PAddr PData 
4th actual write access to PAddr and 
PData. The address at PAddr will 
contain PData after successful 
programming. 

Table  3-3: Main Flash Write Data Command Sequence 
 

For writing a 32-Bit word including automatic ECC calculation (Type 2 devices) program the 
1st lower 16-Bit word to the desired Flash address and the 2nd upper 16-Bit word the Flash 
address + 2 afterwards. The second programming step programs also the ECC cells. 

3.1.4 Work Flash Erase Command Sequence 
The Work Flash erase command sequence consist of the following address/data write 
accesses: 

Address  Data Comment 
0x200C2.0AA8 0xXXAA 1st sequence write 
0x200C2.0554 0xXX55 2nd sequence write 
0x200C2.0AA8 0xXX80 3rd sequence write 
0x200C2.0AA8 0xXXAA 4th sequence write 
0x200C2.0554 0xXX55 5th sequence write 
0x200C2.0AA8 0xXX10 6th sequence write 

Table  3-4: Work Flash Erase Command Sequence 
 

2 Note that the sequence addresses for the unlock of the Work Flash erase command can be any 
address within the Work Flash area. Assume the Work Flash memory starts from address 
0x200C.0000, the upper 16-bit then have to be 0x200C.

1 Note that the sequence addresses for the unlock of the erase command can be any address 
within the (Main) Flash area. Because the (Main) Flash memory starts from address 
0x0000.0000 in the FM3 architecture, the upper 16-bit can be left as 0x0000.



FM3 Flash Programming 
Chapter  3 Flash Programming Sequences and Registers 

© Fujitsu Semiconductor Europe GmbH - 13 -  MCU-AN-300401-E-V12 

3.1.5 Work Flash Sector Erase Command Sequence 
The Work Flash sector erase command sequence consist of the following address/data write 
accesses: 

Address  Data Comment 
0x200C2.0AA8 0xXXAA 1st sequence write 
0x200C2.0554 0xXX55 2nd sequence write 
0x200C2.0AA8 0xXX80 3rd sequence write 
0x200C2.0AA8 0xXXAA 4th sequence write 
0x200C2.0554 0xXX55 5th sequence write 

SAn 0xXX30 6th sequence write with SAn address 
within sector to be erased 

Table  3-5: Work Flash Sector Erase Command Sequence 
 

3.1.6 Main Flash 16-/32-Bit Word Write Command Sequence 
For writing a 16-bit word to an erased Flash cell, the following command sequence has to be 
used: 

Address  Data Comment 
0x200C2.0AA8 0xXXAA 1st sequence write 
0x200C2.0554 0xXX55 2nd sequence write 
0x200C2.0AA8 0xXXA0 3rd sequence write 

PAddr PData 
4th actual write access to PAddr and 
PData. The address at PAddr will 
contain PData after successful 
programming. 

Table  3-6: Work Flash Write Data Command Sequence 
 

3.1.7 Read/Reset 
This command can be used to abort any Flash command and reset it to the default read 
state. Be careful when using it together with chip or sector erase. Incomplete erase states 
may result. 

The read/reset command is issued when writing a 0xXXF0 to any of the Flash memory 
addresses.  

3.1.8 Sector Erase Suspend and Restart 
When starting a sector erase by its command sequence, it can be halted by the suspend 
command. To issue a suspend command, write 0xXXB0 to any of the sector’s addresses. 

When the sector erase is suspended and in the halt state, it is allowed to write new data to 
another sector. This is useful, if urgent data have to be written to a non-volatile memory 
area, but a sector erase was started. 

After any write command to another sector, the erase can be resumed by writing 0xXX30 to 
any on the sector’s addresses. 

2 Note that the sequence addresses for the unlock of the Work Flash commands can be any 
address within the Work Flash area. Assume the Work Flash memory starts from address 
0x200C.0000, the upper 16-bit then have to be 0x200C.



FM3 Flash Programming 
Chapter  3 Flash Programming Sequences and Registers 

MCU-AN-300401-E-V12 - 14 - © Fujitsu Semiconductor Europe GmbH 

3.1.9 Automatic Programming Algorithm Run States 
By reading any Flash address after issuing a command sequence, the lower 8 bits 
correspond to certain state flags of the Flash interface. 

Bit Number DQ7 DQ6 DQ5 DQ4 DQ3 DQ2 DQ1 DQ0 
Name DPOL TOGG TLOV - SETI TOGG2 - -

Table  3-7: Flags of Automatic Programming Algorithm State 
 

After any command a small user code should check these bits by polling to determine if the 
command was finished successful or a time-out has occurred. 

There a two different ways for this: Data polling and data toggle algorithm. 

The most important bits are DPOL, TLOV and SETI, if the data polling algorithm is used. This 
method is described in this application note. Refer to the Flash programming manual for 
details of the data toggle algorithm. 

 

Another method is to use the Flash Status Register FSTR.

Bit Number 7 6 5 4 3 2 1 0
Name - - - - - EER1 HNG RDY 

The RDY bit shows the current state of erase or program. RDY == 1 shows a command 
finished state. 

3.2 Main Flash Access Size 
Special attention has to be paid to the Flash Access Size Register (FASZR). For normal code 
and data fetch the Flash interface is 32-bit wide, but for accessing the Flash interface by 
write sequence and flag polling it has to be set to 16-bit data width. 

The following table shows the two different allowed settings. 

Bit Number 7 6 5 4 3 2 1 0
Name reserved ASZ 
Not allowed 0 0 0 0 0 0 0 0
16-Bit read/write (Erase/Program) 0 0 0 0 0 0 0 1
32-Bit read (ROM mode) 0 0 0 0 0 0 1 0
Not allowed 0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0
. . .Not allowed 

1 1 1 1 1 1 1 1
Table  3-8: ASZ Bit Configuration of Main Flash Access Size Register (FASZR)

Note: This register shall only be written, when code is not executed in the Flash area! 

3.3 Work  Flash Access Size 
Special attention has to be paid to the Work Flash Access Size Register (WFASZR), if Work 
Flash is provided. For normal code and data fetch the Flash interface is 32-bit wide, but for 
accessing the Flash interface by write sequence and flag polling it has to be set to 16-bit 
data width. 

 
1Only available at ECC Flash support. 



FM3 Flash Programming 
Chapter  3 Flash Programming Sequences and Registers 

© Fujitsu Semiconductor Europe GmbH - 15 -  MCU-AN-300401-E-V12 

The following table shows the two different allowed settings. 

Bit Number 7 6 5 4 3 2 1 0
Name reserved ASZ 
16-Bit read/write (Erase/Program) 0 0 0 0 0 0 0 0
32-Bit read (ROM mode) 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0

. . .Not allowed 

1 1 1 1 1 1 1 1
Table  3-9: ASZ Bit Configuration of Work Flash Access Size Register (WFASZR)

Note: This register shall only be written, when code is not executed in the Flash area! 
 



FM3 Flash Programming 
Chapter  4 Flash Programming Software Example 

MCU-AN-300401-E-V12 - 16 - © Fujitsu Semiconductor Europe GmbH 

4 Flash Programming Software Example 

HOW TO PERFORM A SECTOR ERASE AND HOW TO PROGRAM NEW DATA 

4.1 Main Flash Sector Erase – Type 0 and 2 Devices 
The following flowchart shows how to program a RAM code section for performing a Flash 
sector erase. 

 

Figure  4-1: Flash Sector Erase Type 0 and 2 Devices Flow Chart 
 
Note, with Work Flash sequence addresses this flow diagram is also valid for Work Flash 
except that its execution does not need to be in RAM area. 

Code in RAM

Write 0x0000.0001 to FASZR, 
Dummy read of FASZR 

Write 0x00AA to 0xXXXX.1150 
Write 0x0055 to 0xXXXX.0AA8 
Write 0x0080 to 0xXXXX.1150 
Write 0x00AA to 0xXXXX.1150 
Write 0x0055 to 0xXXXX.0AA8 
Write 0x0030 to sector address

SETI bit (#3) of sector 
address == 1?

Set variable Flag := 0

Flag != 0? 

TLOV bit (#5) of sector 
address == 1? 

Flag := TIMEOUT

DPOL bit (#7) of sector 
address == 1? Flag := DATA_OK

Write 0x0000.0010 to FASZR,
Dummy read of FASZR 

Return to Flash mem. with Flag

N

Y

Y

N

Y

Y

N

N



FM3 Flash Programming 
Chapter  4 Flash Programming Software Example 

© Fujitsu Semiconductor Europe GmbH - 17 -  MCU-AN-300401-E-V12 

The program code of the sector erase RAM function may look like the following example: 

 

Figure  4-2: Flash Sector Erase Type 0 and 2 Devices Software Example 

#include "mb9bfxxx.h"

#define FLASH_SEQ_1550 ((volatile uint16_t*) 0x00001550) // sequence address 1 
#define FLASH_SEQ_0AA8 ((volatile uint16_t*) 0x00000AA8) // sequence address 2 
 
#define FLASH_SECTOR_ERASE_1 0x00AA // sector erase commands 
#define FLASH_SECTOR_ERASE_2 0x0055 
#define FLASH_SECTOR_ERASE_3 0x0080 
#define FLASH_SECTOR_ERASE_4 0x00AA 
#define FLASH_SECTOR_ERASE_5 0x0055 
#define FLASH_SECTOR_ERASE_6 0x0030 
 
#define FLASH_DQ7 0x0080 // data polling flag bit (DPOL) position 
#define FLASH_DQ5 0x0020 // time limit exceeding flag bit (TLOV) position 
#define FLASH_DQ3 0x0008 // sector erase timer flag bit (SETI) position 

#define FLASH_TIMEOUT_ERROR  -1
#define FLASH_OK             1

#ifdef __ICCARM__ 
 #pragma section = ".flash_ram_code" 
#endif 
 
#ifdef __ICCARM__ 
 __ramfunc 
#elif  __CC_ARM 
 __attribute__ ((section (".ramfunc"))) 
#else 
 #error Please check compiler and linker settings for RAM code 
#endif 
int32_t FlashRomEraseSector(uint32_t u32SectorEraseAddress) 
{
volatile int32_t i32FlashFlag = 0;
volatile uint32_t u32DummyRead; 

 
FM3_FLASH_IF->FASZR &= 0xFFFD; // ASZ[1:0] = 2'b01 

 FM3_FLASH_IF->FASZR |= 1;
u32DummyRead = FM3_FLASH_IF->FASZR; // dummy read of FASZR 

 
*(FLASH_SEQ_1550) = FLASH_SECTOR_ERASE_1; 

 *(FLASH_SEQ_0AA8) = FLASH_SECTOR_ERASE_2; 
 *(FLASH_SEQ_1550) = FLASH_SECTOR_ERASE_3; 
 *(FLASH_SEQ_1550) = FLASH_SECTOR_ERASE_4; 
 *(FLASH_SEQ_0AA8) = FLASH_SECTOR_ERASE_5; 
 *(volatile uint32_t*)u32SectorEraseAddress = FLASH_SECTOR_ERASE_6; 
 
// sector erase timer ready? 

 while ((*(volatile uint16_t *)u32SectorEraseAddress & FLASH_DQ3) != FLASH_DQ3);   
 
while (0 == i32FlashFlag) 

 {
// Flash timeout? 

 if((*(volatile uint16_t *)u32SectorEraseAddress & FLASH_DQ5) == FLASH_DQ5)  
 {

i32FlashFlag = FLASH_TIMEOUT_ERROR; 
 }

// Data correct? 
 if((*(volatile uint16_t *)u32SectorEraseAddress & FLASH_DQ7) == FLASH_DQ7) 
 {

i32FlashFlag = FLASH_OK; 
 }
}

FM3_FLASH_IF->FASZR &= 0xFFFE; // ASZ[1:0] = 2'b10 
 FM3_FLASH_IF->FASZR |= 0x2;
u32DummyRead = FM3_FLASH_IF->FASZR; // dummy read of FASZR 

return (i32FlashFlag);   
}



FM3 Flash Programming 
Chapter  4 Flash Programming Software Example 

MCU-AN-300401-E-V12 - 18 - © Fujitsu Semiconductor Europe GmbH 

4.2 Main Flash Programming – Type 0 Devices 
The following flowchart shows how to program a RAM code section for performing Flash 16-
bit word programming. 

 

Figure  4-3: Flash Sector Erase Type 0 Devices Flow Chart 
 

Note, with Work Flash sequence addresses this flow diagram is also valid for Work Flash 
except that its execution does not need to be in RAM area. 

Code in RAM

Write 0x0000.0001 to FASZR, 
Dummy read of FASZR 

Write 0x00AA to 0xXXXX.1150 
Write 0x0055 to 0xXXXX.0AA8 
Write 0x00A0 to 0xXXXX.1150 
Write 16-bit data to Flash address 

Set variable Flag := 0

Flag != 0? 

TLOV bit (#5) of Flash 
address == 1? 

Flag := TIMEOUT

DPOL bit (#7) of Flash 
address == 1? Flag := DATA_OK

Write 0x0000.0010 to FASZR,
Dummy read of FASZR 

Y

N

Y

Y

N

N

Return to Flash mem. with Flag



FM3 Flash Programming 
Chapter  4 Flash Programming Software Example 

© Fujitsu Semiconductor Europe GmbH - 19 -  MCU-AN-300401-E-V12 

The program code of the Flash programming RAM function may look like the following 
example: 

 

Figure  4-4: Flash Sector Erase Type 0 Devices Software Example 
 

Note that the #pragma section directive is only needed once in a module for the IAR 
compiler. 

#include "mb9bfxxx.h"

#define FLASH_SEQ_1550 ((volatile uint16_t*) 0x00001550) // sequence address 1 
#define FLASH_SEQ_0AA8 ((volatile uint16_t*) 0x00000AA8) // sequence address 2 
 
#define FLASH_WRITE_1 0x00AA // flash write commands 
#define FLASH_WRITE_2 0x0055 
#define FLASH_WRITE_3 0x00A0 

#define FLASH_DQ7 0x0080 // data polling flag bit (DPOL) position 
#define FLASH_DQ5 0x0020 // time limit exceeding flag bit (TLOV) position 

#define FLASH_TIMEOUT_ERROR -1
#define FLASH_OK            1

#ifdef __ICCARM__ 
 #pragma section = ".flash_ram_code" 
#endif 
 
#ifdef __ICCARM__ 
 __ramfunc 
#elif  __CC_ARM 
 __attribute__ ((section (".ramfunc"))) 
#else 
 #error Please check compiler and linker settings for RAM code 
#endif 
int32_t FlashRomProgram(uint32_t u32ProgramAddress, uint16_t u16ProgamData) 
{
volatile int32_t i32FlashFlag = 0;
volatile uint32_t u32DummyRead; 

 
FM3_FLASH_IF->FASZR &= 0xFFFD; // ASZ[1:0] = 2'b01 

 FM3_FLASH_IF->FASZR |= 1;
u32DummyRead = FM3_FLASH_IF->FASZR; // dummy read of FASZR 

 
*(FLASH_SEQ_1550) = FLASH_WRITE_1; 

 *(FLASH_SEQ_0AA8) = FLASH_WRITE_2; 
 *(FLASH_SEQ_1550) = FLASH_WRITE_3; 
 *(volatile uint16_t*)u32ProgramAddress = u16ProgamData;   
 
while (0 == i32FlashFlag) 

 {
// Flash timeout? 

 if((*(volatile uint16_t *)u32ProgramAddress & FLASH_DQ5) == FLASH_DQ5)  
 {

i32FlashFlag = FLASH_TIMEOUT_ERROR; 
 }

// Data correct? 
 if((*(volatile uint16_t *)u32ProgramAddress & FLASH_DQ7) == FLASH_DQ7) 
 {

i32FlashFlag = FLASH_OK; 
 }
}

FM3_FLASH_IF->FASZR &= 0xFFFE; // ASZ[1:0] = 2'b10 
FM3_FLASH_IF->FASZR |= 0x2;
u32DummyRead = FM3_FLASH_IF->FASZR; // dummy read of FASZR 

return (i32FlashFlag);   
}



FM3 Flash Programming 
Chapter  4 Flash Programming Software Example 

MCU-AN-300401-E-V12 - 20 - © Fujitsu Semiconductor Europe GmbH 

4.3 Type 1 Devices 
For Type 1 devices the same algorithms can be used. The user only has to modify the 
sequence addresses according the tables shown in chapter  3.1. 

4.4 Main Flash Programming – Type 2 Devices 
The following flowchart shows how to program a RAM code section for performing Flash 32-
bit word programming. 

Figure  4-5: Flash Programming Type 2 Device Flow Chart 

Code in RAM

Write 0x0000.0001 to FASZR, 
Dummy read of FASZR 

Set variable Flag := 0 
Write 0x00AA to 0xXXXX.1150 
Write 0x0055 to 0xXXXX.0AA8 
Write 0x00A0 to 0xXXXX.1150 
Write lower 16-bit data to Flash address 

Flag != 0? 

TLOV bit of Flash 
address == 1? 

Flag := TIMEOUT

DPOL bit of Flash 
address == 1? Flag := DATA_OK

Y

N

Y

Y

N

N

Return to Flash 
mem. with Flag 

Write 
0x0000.0010 to 

FASZR,
Dummy read of 

FASZR 

Set variable Flag := 0 
Write 0x00AA to 0xXXXX.1150 
Write 0x0055 to 0xXXXX.0AA8 
Write 0x00A0 to 0xXXXX.1150 
Write upper 16-bit data to Flash address + 2

Flag != 0? 

TLOV bit of Flash 
address+ 2 == 1? Flag := TIMEOUT

DPOL bit of Flash  
address + 2 == 1? Flag := DATA_OK

Y

N

Y

Y

N

N

Flag? == 
DATA_OK 

N

Y



FM3 Flash Programming 
Chapter  4 Flash Programming Software Example 

© Fujitsu Semiconductor Europe GmbH - 21 -  MCU-AN-300401-E-V12 

The program code of the Flash programming RAM function may look like the following 
example: 

 

#include "mb9bfxxx.h"

#define FLASH_SEQ_1550 ((volatile uint16_t*) 0x00001550) // sequence address 1 
#define FLASH_SEQ_0AA8 ((volatile uint16_t*) 0x00000AA8) // sequence address 2 
 
#define FLASH_WRITE_1 0x00AA // flash write commands 
#define FLASH_WRITE_2 0x0055 
#define FLASH_WRITE_3 0x00A0 

#define FLASH_DQ7 0x0080 // data polling flag bit (DPOL) position 
#define FLASH_DQ5 0x0020 // time limit exceeding flag bit (TLOV) position 

#define FLASH_TIMEOUT_ERROR -1
#define FLASH_OK            1

#ifdef __ICCARM__ 
 #pragma section = ".flash_ram_code" 
#endif 
 
#ifdef __ICCARM__ 
 __ramfunc 
#elif  __CC_ARM 
 __attribute__ ((section (".ramfunc"))) 
#else 
 #error Please check compiler and linker settings for RAM code 
#endif 
int32_t FlashDataPolling (uint32_t u32PollAddress, uint16_t u16PollData) 
{
volatile int32_t i32FlashFlag = 0;
volatile uint16_t u16DummyRead; 

 
u16DummyRead = *(volatile uint16_t *)u32PollAddress; 

 while(0 == i32FlashFlag) 
 {

// Flash timeout? 
 if((*(volatile uint16_t *)u32PollAddress & FLASH_DQ5) == FLASH_DQ5)  
 {

i32FlashFlag = FLASH_TIMEOUT_ERROR; 
 }

// Data correct? 
 if((*(volatile uint16_t *)u32PollAddress & FLASH_DQ7) == (u16PollData & FLASH_DQ7)) 
 {

i32FlashFlag = FLASH_OK; 
 }
}

return i32FlashFlag; 
}

#ifdef __ICCARM__ 
 __ramfunc 
#elif  __CC_ARM 
 __attribute__ ((section (".ramfunc"))) 
#else 
 #error Please check compiler and linker settings for RAM code 
#endif 
int32_t FlashRomProgram(uint32_t u32ProgramAddress, uint32_t u32ProgamData) 
{
volatile int32_t i32FlashFlag = 0;
volatile uint32_t u32DummyRead; 

 volatile uint16_t u16HalfData; 
 
FM3_FLASH_IF->FASZR &= 0xFFFD; // ASZ[1:0] = 2'b01 

 FM3_FLASH_IF->FASZR |= 1;
u32DummyRead = FM3_FLASH_IF->FASZR; // dummy read of FASZR 
 

▼



FM3 Flash Programming 
Chapter  4 Flash Programming Software Example 

MCU-AN-300401-E-V12 - 22 - © Fujitsu Semiconductor Europe GmbH 

#ifdef __ICCARM__
#pragma section = ".flash_ram_code" 

#endif

#ifdef __ICCARM__
__ramfunc 

#endif 
(Function declaration) 

 

Figure  4-6: Flash Programming Type 2 Devices Software Example 
 

Note that because the same data polling algorithm has to be used for the 1st lower 16-Bit 
word and the 2nd upper 16-Bit word, it was rolled out to an own C function 
(FlashDataPolling). 

4.5 Project Adjustments for generating RAM Code and automatically Copying 
at Start-Up Phase 

The following paragraphs will explain how to set up RAM code (for Main Flash only devices), 
which is copied from ROM to RAM at start-up phase, for the IAR and KEIL compilers. 

4.5.1 IAR project settings 
For compiling a RAM code section the user has to state a #pragma section directive with 
a section name, like .flash_ram_code. If different compilers should be able to compile the 
code, this #pragama directive has to be set in a #ifdef __ICCARM__/#endif pre-
processor condition, which uses the predefined macro __ICCRAM__ of the IAR compiler. 

 

Additionally the RAM functions itself shall get a special qualifier called __ramfunc. Also 
here place it in a pre-processor condition to avoid conflicts with other compilers. 

 

▲
// Data [0:15] 

 u16HalfData = (uint16_t) (u32ProgamData & 0x0000FFFF); 
 *(FLASH_SEQ_1550) = FLASH_WRITE_1; 
 *(FLASH_SEQ_0AA8) = FLASH_WRITE_2; 
 *(FLASH_SEQ_1550) = FLASH_WRITE_3; 
 *(volatile uint16_t*)u32ProgramAddress = u16HalfData;   
 i32FlashFlag = FlashDataPolling(u32ProgramAddress, u16HalfData); 
 
if (FLASH_OK == i32FlashFlag) 

 {
// Data [16:31] (Set ECC Flash cells) 

 u16HalfData = (uint16_t) ((u32ProgamData >> 16) & 0x0000FFFF); 
 *(FLASH_SEQ_1550) = FLASH_WRITE_1; 
 *(FLASH_SEQ_0AA8) = FLASH_WRITE_2; 
 *(FLASH_SEQ_1550) = FLASH_WRITE_3; 
 *(volatile uint16_t*)(u32ProgramAddress + 2) = u16HalfData;   
 i32FlashFlag = FlashDataPolling((u32ProgramAddress + 2), u16HalfData); 
 }

FM3_FLASH_IF->FASZR &= 0xFFFE; // ASZ[1:0] = 2'b10 
 FM3_FLASH_IF->FASZR |= 0x2;
u32DummyRead = FM3_FLASH_IF->FASZR; // dummy read of FASZR 

 
return (i32FlashFlag);   

}



FM3 Flash Programming 
Chapter  4 Flash Programming Software Example 

© Fujitsu Semiconductor Europe GmbH - 23 -  MCU-AN-300401-E-V12 

#ifdef __CC_ARM
__attribute__ ((section (".ramfunc"))) 

#endif

The last step is to adjust the linker file (<name>.icf). The following example shows in bold 
the additional lines for the RAM code linkage and automatically copying at start-up: 

 

Figure  4-7: IAR Linker File 
 

Note that the blue highlighted name for the RAM code section must be the same stated in 
the #pragma section directive name attribute above. 

With these settings the RAM code is placed in ROM, but copied automatically to RAM at 
start-up phase. 

4.5.2 KEIL project settings 
For compiling a RAM code function it should get the attribute __attribute__ ((section 
(".ramfunc"))) before its declaration. The KEIL compiler of the uVision IDE uses the 
predefined macro __CC_ARM for identification. The attribute shall be put within #ifdef 
__CC_ARM/#endif pre-processor condition to stay compatible with other compilers. 

 

The linker settings can be done via the workspace tree. Please move the mouse cursor to 
the module which contain the RAM code functions, click on the right mouse button and 
choose “Options for File”. 

/*###ICF### Section handled by ICF editor, don't touch! ****/ 
/*-Editor annotation file-*/ 
/* IcfEditorFile="$TOOLKIT_DIR$\config\ide\IcfEditor\cortex_v1_0.xml" */ 
/*-Specials-*/ 
define symbol __ICFEDIT_intvec_start__ = 0x00000000; 
/*-Memory Regions-*/ 
define symbol __ICFEDIT_region_ROM_start__ = 0x00000000; 
define symbol __ICFEDIT_region_ROM_end__   = 0x0007FFFF; 
define symbol __ICFEDIT_region_RAM_start__ = 0x1FFF8000; 
define symbol __ICFEDIT_region_RAM_end__   = 0x20007FFF; 
/*-Sizes-*/ 
define symbol __ICFEDIT_size_cstack__ = 0x400; 
define symbol __ICFEDIT_size_heap__   = 0x800; 
/**** End of ICF editor section. ###ICF###*/ 
 
define memory mem with size = 4G; 
define region ROM_region   = mem:[from __ICFEDIT_region_ROM_start__   to 
 __ICFEDIT_region_ROM_end__]; 
define region RAM_region   = mem:[from __ICFEDIT_region_RAM_start__   to 
 __ICFEDIT_region_RAM_end__]; 
 
define symbol __RAM_func_start__   = 0x20000000; 
define symbol __RAM_func_end__     = 0x20007FFF; 
define region RAM_func_region =   mem:[from __RAM_func_start__ to __RAM_func_end__]; 
 
define block CSTACK    with alignment = 8, size = __ICFEDIT_size_cstack__   { }; 
define block HEAP      with alignment = 8, size = __ICFEDIT_size_heap__     { }; 
 
initialize by copy { readwrite }; 
do not initialize  { section .noinit }; 
 
place at address mem:__ICFEDIT_intvec_start__ { readonly section .intvec }; 
define block RamCode { section .flash_ram_code }; 
place in RAM_func_region  { block RamCode }; 
 
place in ROM_region   { readonly }; 
place in RAM_region   { readwrite, 
 block CSTACK, block HEAP }; 



FM3 Flash Programming 
Chapter  4 Flash Programming Software Example 

MCU-AN-300401-E-V12 - 24 - © Fujitsu Semiconductor Europe GmbH 

Figure  4-8: KEIL uVision File Options Drop Down Menu 
 

In the options dialog, which follows, choose the tab “Properties” and adjust the Memory 
Assignment for Code / Const to an IRAM section. 

 

Figure  4-9: uVision File Properties Dialog 
 

Finally click on “OK”. 

With this adjustment, the RAM code is compiled for RAM but linked to ROM automatically. It 
is copied at start-up phase from this ROM section to the IRAM section. 

 



FM3 Flash Programming 
Chapter  4 Flash Programming Software Example 

© Fujitsu Semiconductor Europe GmbH - 25 -  MCU-AN-300401-E-V12 

4.6 Intercompatibility for different Compilers 
For writing RAM code which should be able to be compiled by different compiler the 
following example can be used. Assume that compiler 1 identifies itself by __ICC_ARM__ 
macro, compiler 2 by __CC_ARM, compiler 3 by __YAC_ARM__, and compiler 4 by 
__XYZ_ARM__.

Figure  4-10: Intercompatible Code Example 
 

The #error directive is executed, if a compiler is used, which is not identified by the recent 
compilation process. This shows the user, that he has to take care for compiler-individual 
RAM code settings. 

The linker settings must be done individually in any case by using different linker tools. 

#ifdef __ICCARM__ 
 // individual setting, qualifier, directive, etc. for compiler 1 
#elif __CC_ARM 
 // individual setting, qualifier, directive, etc. for compiler 2 
#elif __YAC_ARM__ 
 // individual setting, qualifier, directive, etc. for compiler 3 
#elif __XYZ_ARM__ 
 // individual setting, qualifier, directive, etc. for compiler 4 
#else 
 #error Please check compiler and linker settings for RAM code 
#endif 



FM3 Flash Programming 
Chapter  5 Additional Information 

MCU-AN-300401-E-V12 - 26 - © Fujitsu Semiconductor Europe GmbH 

5 Additional Information 
Information about FUJITSU Semiconductor’s Microcontroller can be found on the following 
Internet page: 

http://mcu.emea.fujitsu.com/

The software examples related to this application note are: 

mb9bfxxx_flash 
mb9af13x_flash 
mb9bfd1x_flash 
mb9af31x_flash_main_work 
 

It can be found on the following Internet page: 

http://mcu.emea.fujitsu.com/mcu_product/mcu_all_software.htm



FM3 Flash Programming 
Chapter  0 List of Figures 

© Fujitsu Semiconductor Europe GmbH - 27 -  MCU-AN-300401-E-V12 

List of Figures 
Figure  2-1: (Main) Flash programming principle ...................................................................... 7 
Figure  2-2: Work Flash programming principle........................................................................ 8 
Figure  2-3: Main Flash Sector Topology.................................................................................. 9 
Figure  2-4: Main Flash Memory Organization.......................................................................... 9 
Figure  2-5: Work Flash Sector Topology ............................................................................... 10 
Figure  4-1: Flash Sector Erase Type 0 and 2 Devices Flow Chart ........................................ 16 
Figure  4-2: Flash Sector Erase Type 0 and 2 Devices Software Example ............................ 17 
Figure  4-3: Flash Sector Erase Type 0 Devices Flow Chart .................................................. 18 
Figure  4-4: Flash Sector Erase Type 0 Devices Software Example ...................................... 19 
Figure  4-5: Flash Programming Type 2 Device Flow Chart ................................................... 20 
Figure  4-6: Flash Programming Type 2 Devices Software Example ..................................... 22 
Figure  4-7: IAR Linker File ..................................................................................................... 23 
Figure  4-8: KEIL uVision File Options Drop Down Menu....................................................... 24 
Figure  4-9: uVision File Properties Dialog ............................................................................. 24 
Figure  4-10: Intercompatible Code Example ......................................................................... 25 



FM3 Flash Programming 
Chapter  0 List of Tables 

MCU-AN-300401-E-V12 - 28 - © Fujitsu Semiconductor Europe GmbH 

List of Tables 
Table  3-1: Main Flash (Chip) Erase Command Sequence .................................................... 11 
Table  3-2: Main Flash Sector Erase Command Sequence.................................................... 11 
Table  3-3: Main Flash Write Data Command Sequence ....................................................... 12 
Table  3-4: Work Flash Erase Command Sequence .............................................................. 12 
Table  3-5: Work Flash Sector Erase Command Sequence ................................................... 13 
Table  3-6: Work Flash Write Data Command Sequence....................................................... 13 
Table  3-4: Flags of Automatic Programming Algorithm State................................................ 14 
Table  3-5: ASZ Bit Configuration of Main Flash Access Size Register (FASZR).................... 14 
Table  3-9: ASZ Bit Configuration of Work Flash Access Size Register (WFASZR)................ 15 


	Revision History
	Warranty and Disclaimer
	Contents
	Introduction
	Programming Principle
	Programming via RAM code (Main Flash)
	Programming the Work Flash
	Main Flash Memory Organization
	Work Flash Memory Organization

	Flash Programming Sequences and Registers
	Flash Interface
	Main Flash (Chip) Erase Command Sequence
	Main Flash Sector Erase Command Sequence
	Main Flash 16-/32-Bit Word Write Command Sequence
	Work Flash Erase Command Sequence
	Work Flash Sector Erase Command Sequence
	Main Flash 16-/32-Bit Word Write Command Sequence
	Read/Reset
	Sector Erase Suspend and Restart
	Automatic Programming Algorithm Run States

	Main Flash Access Size
	Work  Flash Access Size

	Flash Programming Software Example
	Main Flash Sector Erase – Type 0 and 2 Devices
	Main Flash Programming – Type 0 Devices
	Type 1 Devices
	Main Flash Programming – Type 2 Devices
	Project Adjustments for generating RAM Code and automatically Copying at Start-Up Phase
	IAR project settings
	KEIL project settings

	Intercompatibility for different Compilers

	Additional Information
	List of Figures
	List of Tables

