

SANYO Semiconductors DATA SHEET

Monolithic Digital IC – Single-Phase Full-Wave Fan Motor Driver

Overview

The LB11964T is a single-phase bipolar drive fan motor driver.

Features

- Single-phase full-wave drive
- Built-in regeneration circuit allows the use of reverse connection prevention diodes
- Built-in thermal shutdown circuit

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum output voltage	V _{CC} max		15	V
Maximum output current	I _{OUT} max		0.5	А
Maximum output voltage	V _{OUT} max		15	V
FG pin maximum output voltage	VR max		15	V
FG maximum output current	IR max		5	mA
Allowable power dissipation	Pd max	When mounted on a circuit board *	400	mW
Operating temperature range	Topr		-30 to +85	°C
Storage temperature range	Tstg		-55 to +150	°C

* Specified circuit board : $20.0 \times 10.0 \times 0.8 \text{mm}^3$, paper phenol, wiring density: 20%.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

LB11964T

Allowable Operating Ranges at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		3.5 to 13.8	V
Hall sensor input common-mode	VICM		0.2 to V _{CC} – 1.5	V
input voltage range				

Electrical Characteristics Unless otherwise specified $Ta = 25^{\circ}C$, $V_{CC} = 5V$

Deremeter	Sumbol	Conditions	Ratings			l la k	
Parameter	Symbol	Conditions	min	typ	max	Unit	
Circuit current	ICC	Drive mode (CT = L)		9.0	14	mA	
		Lock protection mode (CT = H)		3.0	5.0	mA	
Lock detection capacitor charge current	ICT1	VCT = 0.2V	1.1	1.8	2.6	μΑ	
Capacitor discharge current	ICT2	VCT = 3.2V	0.15	0.25	0.40	μΑ	
Capacitor charge/discharge current ratio	RCT	RCD = ICT1/ICT2	5.0	7.0	9.0	-	
CT charge current	VC1		2.6	2.9	3.2	V	
CT discharge current	VC2		1.5	1.8	2.1	V	
Output low-level voltage	V _{OL}	I _O = 200mA		0.2	0.3	V	
Output high-level voltage	VOH	I _O = 200mA	3.9	4.1		V	
Hall sensor input sensitivity	VHN	Zero peak value (including offset and hysteresis)		7	15	mV	
FG output pin low-level voltage	VRD	IRD = 5mA		0.1	0.3	V	
FG output pin leakage current	IRDL	VRD = 7V			30	μΑ	
Thermal shutdown operating temperature	TSD	Design target value*	150	180	210	°C	

* The design specification items are design guarantees and are not measured.

Package Dimensions

unit : mm (typ)

3245B

Truth Table

IN+	IN-	СТ	OUT1	OUT2	FG	Mode	
High	Low	Low	Low	High	Off	When the motor is turning (*1)	
Low	High	Low	High	Low	Low	when the motor is turning (1)	
-	-	High	Off	Off	Off	During lock protection operation (*2)	
-	-	-	Off	Off	-	During thermal protection circuit operation	

*1: An FG signal at a frequency corresponding to the phase switching operation is output. This IC is pin compatible with the LB11963T, which provides a built-in function for dividing the FG output frequency by 2 to handle 8-pole motors.

*2: In restart mode (output on) when a rotor constrained state was detected, the FG output operates in the same way as during normal operation, and differs depending on the rotor position.

Pin Assignment

Application Circuit Example

*1: The diode Di prevents destruction of the IC if the power supply is connected with reverse polarity. Since this IC includes a regeneration circuit, this IC recovers the coil current in the low side pnp output transistors and suppresses kickback, even when the diode Di is used.

This diode may be omitted if there is no chance of reverse connection problems occurring, for example, if a power supply connector is used.

- *2: This capacitor is required for rectification if power supply PWM is used for speed control.
- *3: This pin must be left open if unused.
- *4: Although chattering prevention measures, such as adopting a non-interfering pin assignment and providing hysteresis in the Hall sensor amplifier, these lines must be made as short as possible to make the circuit more resistant to noise.

Block Diagram

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of May, 2007. Specifications and information herein are subject to change without notice.