C_ UM0144
’I User Manual

ST Assembler-Linker

Introduction

This manual describes using the ST Assembler-Linker to develop applications for the ST7
and STM8 microcontrollers. The assembly tools described in this book form a development
system that assembles, links and formats your source code.

Purpose and scope

This manual provides information about producing an application executable for the ST7
and STM8 microcontrollers from your application source code in assembler language. It
includes:

e An overview of assembly language for the ST7 and STM8 microcontrollers
e Instructions for running the ST Assembler-Linker
e Descriptions of the assembler output

For information on related subjects refer to the following documentation:

e ST7xxxx Datasheet — full description of the ST7 xxxxmicrocontroller

e STMB8xxxx Datasheet — full description of the STM8xxxx microcontroller

e ST7 Programming Manual — a complete reference to the ST7 assembly language

e STM8 Programming Manual — a complete reference to the STM8 assembly language

Figure 1. Schematic overview of the assembler toolset

| Stored object
/ LIB ' files (*.lib)
o~

Objects (*.ob)}

\1\77//7
Listings (*.Isr) with relative addresses

* map
Listings (*.Ist) with \ * cod
absolute addresses r//:/M
— Obsend
/47

Programmable binary
file (*.s19 or *.hex)

November 2009 Doc ID 11392 Rev 4 1/89

Www.st.com

http://www.st.com

Contents ST Assembler-Linker

Contents
1 INtrodUucCtion 8
1.1 ST7 and STM8 incompatibilities 8
1.2 TO0IS .« . 9
1.3 Host PC system requirements i 9
14 Getting assistance 9
1.5 CoNVeNtioNS 10
2 Getting started 11
3 ST7 and STM8 addressingmodes 12
3.1 Overview of ST7 and STM8 addressingmodes 12
3.2 General iNStruction SyNtaxoi i 13
3.3 Short and long addressingmodes 13
3.4 Inherent addressingmode 14
3.5 Immediate operands 14
3.6 Directand indirect modes e 14
3.7 Indexed modes 16
3.8 Relative mode 16
3.9 High, low addressingmodes 16
4 STassembler 18
4.1 OVBIVIBW . . 18
4.2 Sourcefiles. 18
4.3 Assembler sourcecodeformat.............. 18
43.1 Label structure 19
4.3.2 Label Size 19
4.3.3 Labelrelativity 20
434 Label SCope . ..o 21
4.3.5 OPCOUES ..t 22
4.3.6 OperaNnds . ..ot 22
4.3.7 COMMENES . . oo 25
4.3.8 Asourcecodeexample 25

2/89 Doc ID 11392 Rev 4 KYI

ST Assembler-Linker Contents

4.4 Segmentation e 26
441 Segments explained 26

4.4.2 Parameters 27

4.5 MaCIOS . o 30
45.1 Defining macros 30

45.2 Parameter substitution 31

4.6 Conditional assembly #IF, #ELSE and #ENDIF directives 32
4.7 Running the assembler 33
4.7.1 Command liNe 33

4.7.2 OPlIONS . 33
LiNKer . 38
51 What the linkerdoes 38
5.2 Invoking the linker e 38
5.3 Command line 38
53.1 ArgUMENTES 38

53.2 Responsefiles 39

5.4 Linkingindetail 40
54.1 PUBLICS and EXTERNS e 40

5.4.2 Segmentsinthelinker 40

5.4.3 Symbolfiles 41

55 Thelinkerinmoredetail 42
55.1 The composition of the .OBJfiles 42

5.5.2 The composition of the .CODfiles 42

5.5.3 Readinga mapfilelisting 42
OBSEND ... 44
6.1 What OBSEND doesforyou 44
6.2 Invoking OBSEND e 44
6.2.1 Destination typeo oo 44

6.2.2 Destination argumentst 44

6.2.3 Format definitions 44

6.2.4 Straight binary format 45

6.2.5 Intel hex format 45

6.2.6 Motorola S-record format 46

6.2.7 ST2and ST 4 S-recordformats a7

Doc ID 11392 Rev 4 3/89

Contents ST Assembler-Linker

6.2.8 GP binary 47

7 ABSLIST 48
7.1 OVBIVIBW . . 48

7.2 Invoking the list file post processor 49

7.3 Limitationso 50

8 Librarian 51
8.1 OVBIVIBW . . 51

8.2 Invoking the librarian 51

8.3 Adding modulestoalibrary 52

8.4 Deleting modules from alibrary 52

8.5 Copying modules fromalibrary 53

8.6 Getting detailsinyour library 53

9 DefiNitioNS 54
Appendix A Assembler directives. 55
Al INtroduCtiono oo 55

A2 DIMECHVES. . . . 56
AppendiX B ErrOr MESSAQES . . v v ittt ettt ettt e 78
B.1 Format of error messages.t 78

B.2 FileCBE.ERR 78

B.3 AsSSembIer errors. 79

B.4 LiNKING BITOrS. . . ot e 83

ReVISION NiStOrY 84

4/89 Doc ID 11392 Rev 4 KYI

ST Assembler-Linker

List of tables

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.

574

Description of installed files
ST7 and STM8 addressingmodes..
ST7 only addressingmodes
STM8 addressingmodest
Numeric constants and radix formats.
Level 1operatorsooiin e
Level 2 0peratorscoiiin i
Level 3operatorst
Level 40peratorsciiinn e
Alignment types
CombiNE tyPES . .o oo e
Some useful directives
Summary of conditional assembly directives
Other special #IF directives.
Commandlineoptions,
Outputformats e
Library fileoptions.
Acronyms and terms used in this document.
Listof directives

EQU oot

Doc ID 11392 Rev 4

5/89

List of tables ST Assembler-Linker

Table 49. #INCLUDE 66
Table 50. INTEL . ..o e e 66
Table 51. INTERRUPT e e e e e 67
Table 52, LALL . .. 67
Table 53. L ST . o 67
Table 54. HLOAD . . .o 67
Table 55. LOCAL . .. 68
Table 56. LONGot e e 68
Table 57. LONGS . . . ot 69
Table 58. MACRO 69
Table 59. MEND 69
Table 60. MOTOROLA 70
Table 61. NEAR 70
Table 62. .NOCHANGE e e e e e 70
Table 63. INOLIST .. o 71
Table 64, Jo0UTot 71
Table 65. PAGE. 71
Table 66. PUBLIC. e 71
Table 67. REPEAT . .. 72
Table 68. . SALL . ..o 72
Table 69. SEGMENT . . . 72
Table 70. LSETDP. . . o 73
Table 71, SKIP .. 73
Table 72. STRING 74
Table 73, SUBTTL ..ottt e e e e e e e 74
Table 74, TAB .. 74
Table 75. TEXAS . . 74
Table 76. TITLE e 75
Table 77. UNTIL . e e e e 75
Table 78. WORD . .. 75
Table 79. WORDS 76
Table 80. XALL . ..o 76
Table 81. ZILOGo 76
Table 82, ASSEMbIEr EITOIS . . . o 79
Table 83. LinKiNg €ITOrs 83
Table 84. Document revision hiStory e 84

6/89 Doc ID 11392 Rev 4 K‘YI

ST Assembler-Linker List of figures

List of figures

Figure 1. Schematic overview of the assemblertoolset. i, 1
Figure 2. Assembler source code formatexample i 19
Figure 3. Error message format example e 78

IYI Doc ID 11392 Rev 4 7/89

Introduction

ST Assembler-Linker

1

1.1

8/89

Introduction

ST7 and STM8 incompatibilities

The new ST7/STM8 assembler development toolchain supports both the new STM8 core
and the old ST7 core. By placing a trigger (st7/ or stm8/) in the first line of your code, you
tell the assembler which set of rules to apply.

The STM8 assembler is not compatible with the ST7 assembler.

STM8 assembler (16-bit) features that are not compatible with the ST7 assembler (8-bit):

1.

X and Y are 16 bits wide (ST7 is 8 bits):
14 A, X has been replaced by 14 2, XL
1d X, A has been replaced by 14 XL, A
14 A, Y has been replaced by 14 2, YL
14 Y, A has been replaced by 14 YL, A
Stack pointer (SP) is 16 bits wide (ST7 is 8 bits wide):
14 A,sand 1d s, A instructions have been removed
14 X, s has been replaced by 1dw X, SP
1d s, X has been replaced by 1dw SP, X
14 Y, s has been replaced by 1dw Y, SP
14 s, Y has been replaced by 1dw sSP,Y
more generally
14 is for an 8-bit transfer, for example: 1d 2, $5000
1daw is for 16-bit transfer, for example: 1dw X, $5000 (instead of 1d X, $5000)
RSP instruction has been removed
Some addressing modes have been removed, for example:
- short pointer to short data [pointer.b], for example:
1d A, [$10.Db]
btjf [$11.b],#3,skip
- short pointer to short data X or Y indexed ([pointer.b],X) or ([pointer.b],Y), for example:
1d a, ([$10.b],X)
1d ([$12.b],Y),A
- short pointer to short data relative [pointer.b], for example:
jreq [$13.Db]
callr [$39.Db]
Short bit operations have been replaced by long bit operations, for example:
btjf $1011,#2,jump (instead of btjf $11,#2, jump)
bset $1000,#1 (instead of bset $00, #1)
.hand .1 suffixes are not supported, for example:
1d A, #mem.h can be replaced by 1d A, #{high mem}
1d A, #mem.1 can be replaced by 1d A, #{low mem}

Doc ID 11392 Rev 4 KYI

ST Assembler-Linker Introduction

1.2

Note:

1.3

1.4

Generally, the instruction sets are similar, with the following notable differences:
e The STM8 instruction set supports several new addressing modes.

The Stack Pointer (SP) can be used as an index.

Long pointers have been added.

There is a new 3-byte addressing mode called extended.
Altogether there are 6 new addressing modes:

short offset SP indexed,

extended direct,

extended offset X or Y indexed,

long pointer to long data,

long pointer to long data X indexed,

long pointer to 24-bit data X or Y indexed.

e Several new instructions have been added.

e The STM8 instruction set allows for longer instructions which may span 5 bytes,
instead of 4 for the ST7.

Tools

The ST Assembler-Linker includes the following tools:

e Assembler (ASM): translates your source code (.ASM) written in assembly language,
into object code (.0BJ) specific to the target machine and a listing file with relative
addresses(.LSR).

e Linker (LYN): processes the object files (. 0BJ) produced by the assembler, resolves
all cross-references between object files and locates all the modules in memory. The
resulting code is output in an object code file (. coD).

e Converter (OBSEND): translates the object code file to produce the final executable in
a format that you specify (Motorola S-record, Intel Hex).

e Listfile postprocessor (ABSLIST): patches the list file generated by the assembler to
produce a new list file with absolute addresses (.LST).

e Librarian (LIB): The librarian enables you to store frequently used subroutines in one
location for use with any number of ST microcontroller applications.

The utility file as1i.bat automatically runs ASM, LYN, OBSEND and ABSLIST one after
the other for you. Use this batch file only if you have only one assembly source file .ASM.

Host PC system requirements

Please see the release notes to ensure you have the most up-to-date information.

Getting assistance

For more information, application notes, FAQs and software updates for all the ST
microcontroller development tools, check out the CD-ROM or our web site: www.st.com.

Doc ID 11392 Rev 4 9/89

Introduction

ST Assembler-Linker

1.5

10/89

For assistance on all ST microcontroller subjects, or for help developing applications that
use your microcontroller’s MSCI peripheral, refer to the contact list provided in Product
Support. We'll be glad to help you.

Conventions

The following conventions are used in this document:

Bold text highlights key terms and phrases, and is used when referring to names of
dialog boxes and windows, as well as tabs and entry fields within windows or dialog
boxes.
Bold italic text denotes menu commands (or sequence of commands), options,
buttons or checkboxes which you must click with your mouse to perform an action.
The > symbol is used in a sequence of commands to mean “then”. For example, to
open an application in Windows, we would write: Click Start>Programs>ST Toolset>.
Courier font designates file names, programming commands, path names and any
text or commands you must type.
Italicized type is used for value substitution. Italic type indicates categories of items for
which you must substitute the appropriate values, such as arguments, or hypothetical
filenames. For example, if the text was demonstrating a hypothetical command line to
compile and generate debugging information for any file, it might appear as:
cxst7 +mods +debug file.c
Items enclosed in [brackets] are optional. For example, [options] means that zero
or more options may be specified because options appears in brackets. Conversely, the
line: options means that one or more options must be specified because options is
not enclosed by brackets. As another example, the line:
filel. [o]|st7]
means that one file with the extension .o or . st7 may be specified, and the line:
filel [file2...]

means that additional files may be specified.

Blue italicized text indicates a cross-reference—you can link directly to the reference by
clicking on it while viewing with Acrobat Reader.

Doc ID 11392 Rev 4 KYI

ST Assembler-Linker

Getting started

2

Note:

Getting started

Installing the ST Assembler-Linker

The ST Assembler-Linker is delivered as part of the STVD toolset. A free installation
package is available at www.st.com. To install it:

e either select ST7/STM8>ST toolset from the main menu of the Microcontroller
Development Tools CD-ROM,

e orrun the installation executable that you have downloaded from the internet.
See the release notes for more guidance on installing the software components.

After installation, the installation directory should contain the files listed in Table 1.

Table 1. Description of installed files

ASM.EXE ST assembler

LYN.EXE ST linker

OBSEND . EXE Output file formatter

ABSLIST.EXE List file post processor

LIB.EXE Librarian

ST7.TAB ST7 description file

STM8 . TAB STMB8 description file

ASLI.BAT Batch file ASM+LYN+OBSEND+ABSLIST
ASM_LNK RELEASE NOTES.PDF Release notes

Up-to-date release notes are provided in PDF format. An additional file contains
demonstration examples.

Doc ID 11392 Rev 4

11/89

ST7 and STM8 addressing modes

ST Assembler-Linker

3 ST7 and STM8 addressing modes

3.1 Overview of ST7 and STM8 addressing modes

The ST7/STM8 assembler instruction set incorporates the following addressing modes:

Table 2. ST7 and STM8 addressing modes

Addressing mode Example
Inherent nop
Immediate 1d A, #SF5
Direct (short address) 14 A, S$F5
Direct (long address) 14 A, SF5C2
X orY indexed (no offset) 14 A, (X)

X orY indexed (short offset)

1d A, (8F5,X)

X orY indexed (long offset)

1d A, (sF5C2,X)

Short pointer indirect (long pointed data)

1d A, [$F5.w]

Short pointer indirect (long pointed data) X or Y indexed

1d A, ([$F5.w],X)

Direct relative (short offset) jrt S$F5
Table 3. ST7 only addressing modes

Addressing mode Example
Short pointer indirect (short pointed data) 14 A, [$F5]

Short pointer indirect (short pointed data) X or Y indexed

1d A, ([$F5],X)

Short pointer indirect relative (short pointed data)

jrt [$F5]

Short bit operation

bset $10, #5

Table 4. STM8 addressing modes

Addressing mode

Example

Direct (extended address)

callf $F5C2A0

SP indexed (short offset)

1d A, (SF5,SP)

X or Y indexed (extended offset)

1df A, ($F5C2A0,X)

Long pointer indirect (long pointed data)

1d A, [$F5C2.w]

Long pointer indirect (long pointed data) X indexed

1d A, ([$F5C2.w],X)

Long pointer indirect (extended pointed data) X or Y indexed

1df A, ([$F5C2.e],X)

Long bit operation

bset $1000, #1

All the ST7 and STM8 addressing modes are described in full detail, with specific examples,
in the relevant programming manual, which can be downloaded from the internet at

12/89 Doc ID 11392 Rev 4

574

ST Assembler-Linker ST7 and STM8 addressing modes

www.st.com. This chapter only gives a brief explanation of the main addressing mode
types.

3.2 General instruction syntax

The ST7 and STM8 instruction sets provide a single source-coding model regardless of
which components are operands.

e For the ST7 the operands may be:
— the accumulator (A),
— an 8-bit index register (X or Y)
— an 8-bit stack pointer (S)
— the condition code register (CC), or a memory location.
e For the STM8 the operands may be:
— the accumulator (A),
— al6-bit index register (X or Y)
— XH,XL (where XH is the high byte, and XL is the low byte)
— YH,YL (where YH is the high byte, and YL is the low byte)
— a 16-bit stack pointer (SP)
— the condition code register (CC), or a memory location.

For example, a single instruction, 14, originates register to register transfers as well as
memory to accumulator data movements.

Two-operand instructions are coded with the destination operand in the first position.

For example,
lab0l 1d A,memory ; load accumulator A with memory contents
lab02 1d memory,A ; load memory location with A contents
1d X,A ; load X with accumulator contents (ST7 only)
1d XL, A ; load XL with accumulator contents (STM8 only)
3.3 Short and long addressing modes

The ST7 has two addressing modes that differ in memory address size (one byte for short
mode and two bytes for long mode).

For the STMS, in addition to long and short modes, there is also an extended addressing
mode (three bytes).

Because of these different addressing modes, the target address range of the operands
depends upon the addressing mode chosen:

e 0-3FF for short addressing mode

e 3100-S$FFFF for long addressing mode

e $10000-SFFFFFF extended addressing mode (STM8 only)

Some instructions accept both long and short addressing modes, while others only accept
one or the other. For example:

labl0 add A,memory ; accepts both types of addressing modes
labll inc memory ; ST7 instruction accepts only short

IYI Doc ID 11392 Rev 4 13/89

ST7 and STM8 addressing modes ST Assembler-Linker

3.4

3.5

3.6

14/89

addressing mode, while STM8 instruction
accepts both modes

push memory ; STM8 accepts only long addressing mode, push
memory does not exist for ST7

For ST7 instructions supporting both short and long formats, when external symbols are
referenced, long mode is chosen by the assembiler.

For example:

EXTERN symb3;
symbl equ $10;

1d A,symbl; short mode
1d A,symb3; long mode chosen

STMB8 instructions using the extended addressing mode always have an F suffix. The
following instructions use the extended addressing mode:

callf $10000

ipf $20000

1df A, ($30000,X)

retf ; permits you to return to the previous function in the stack
in subroutines that are called by CALLF

Inherent addressing mode

This concept is hardware-oriented, meaning that instruction operands are coded inside the
operation code. At source code level, operands are written explicitly.

For example:
lab06 push A ; put accumulator A onto the stack
1lab07 mul X,A; multiply X by A

ldw SP,X ; 1load X to the stack pointer

Immediate operands

Immediate operands permit you to input a specific value for use with an instruction. They are
signaled by the use of a sharp sign (#) before the value. The range for an 8-bit immediate
operand is from 0 to 255.

For example:
lab08 1d A, #1 ; load A with immediate wvalue 1
1ab09 bset memory, #3 ; set bit #3 in memory location

btjt memory, #3,label; test bit #3 of memory and jump if
true (set)

Direct and indirect modes

A direct addressing mode means that the data byte(s) required to do the operation is
found by its memory address, which follows the op-code.

Doc ID 11392 Rev 4 KYI

ST Assembler-Linker ST7 and STM8 addressing modes

An indirect addressing mode means that the data byte(s) required to do the operation is
found by its memory address which is located in memory (pointer).

The pointer address follows the op-code. A short pointer is one byte long. A long pointer is
two bytes long.

This last group consists of memory indirect variants:

Short pointer to short data,
for ST7 only [shortpointer .b]

Short pointer to long data [shortpointer .w]

Short pointer to short data X or Y indexed,
for ST7 only ([shortpointer .b],X) ([shortpointer .b],Y)

Short pointer to long data X or Y indexed ([shortpointer .w],X) ([shortpointer .w],Y)

For STM8 devices only:

— long pointer to long data [longpointer .w]

— long pointer to long data X indexed ([longpointer .w], X)

— long pointer to extended data X or Y indexed ([longpointer .e],X)([longpointer .e],Y)
Pointer addresses must always be in:

— page 0 (its address must be less than $100) for the ST7

— section 0 (its address must be less than $10000) for the STM8

Examples:

1d A, [80] short pointer to short (ST7) or long (ST8) data
1d A, [80.b] short pointer to short data (ST7 only)

1d A, [80.w] short pointer to long data

1d A, [$1000.w] long pointer to long data (STM8 only)

1df A, ([$1000.e],X)long pointer to 24-bit data (STM8 only)

labl2 equ 80

1d A, ([labl2],X) short pointer to short (ST7) or long (ST8) data X-indexed
14 A, ([1labl2.b],X) short pointer to short data X-indexed (ST7 only)
1d A, ([labl2.w],Y) short pointer to long data Y-indexed

To distinguish between short and long indirect addressing mode, the suffix.w indicates

that you want to work in long indirect mode (this is also true for indexed addressing
mode).

— Short indirect means that pointed data are short (one byte long)

— Long indirect means pointed data are long (two bytes long)

Implicitly, if nothing is specified,

— for the ST7, short indirect addressing mode is assumed, you can also use .b to

specify short indirect addressing mode (as with the indexed addressing mode).
Use .w to specify long indirect addressing mode.

— for the STMS, long indirect addressing is assumed, you could use .w but it is not
necessary. With the STM8 1d4f instruction, you must use . e to specify extended
indirect addressing mode.

Doc ID 11392 Rev 4 15/89

ST7 and STM8 addressing modes ST Assembler-Linker

3.7

3.8

3.9

16/89

Indexed modes

The ST7 supports the following types of indexed mode:

e indexed without offset,

e indexed with an 8-bit unsigned offset (range [0:255]),
e indexed with a 16-bit offset.

In addition to these modes, the STM8 also supports the following indexed mode:
e indexed with a 24-bit offset.

The source code syntax is:

e (X) or (Y) for no-offset indexing.

. (offset,X) or (offset,Y) for indexed with offset.

Some instructions (such as 1d A or add) support the first three types of indexed mode.
Some ST7 instructions (such as inc) only support the first two types (that is, indexed
without offset and indexed with 8-bit unsigned offset).

The STM8 instructions (such as inc) support the first three types.

Only the STM8 instruction, 1d£, supports the “indexed with 24-bit offset” addressing mode.

Examples:

1d A, (X) ; no-offset mode

1d A, (0,X) ; 8-bit offset mode

1d A, (127,X) ; 8-bit offset mode

1d A, (259, X) ; 16-bit offset mode

1df A, ($FFF00, X) ; 24-bit offset mode (STM8 only)

1d A, ($F5, SP) ; SP indexed mode, 8-bit offset short (STM8 only)

Relative mode

This addressing mode is used to modify the program counter (PC) register value by adding
an 8-bit signed offset to it (in the range -128 to +127). The relative addressing mode is made
up of two sub-modes:

e relative (direct) where the offset follows the op-code. This is used by the instructions
JRxx, CALLR, and BTJx.

e relative (indirect) where the offset is defined in memory, this address follows the op-
code (ST7 only).

The target label is specified at source code level (the assembler computes the
displacement).

High, low addressing modes

In some instances, it may be necessary to access the highest part of an address (8 highest
bits) or the lowest part of an address (8 lowest bits) as well.

For this feature in the ST7, the syntax is the following: <expression>, where
<expression> is symbol .H (highest part), or symbol .L (lowest part). Examples:

labl2 equ $0012

Doc ID 11392 Rev 4 KYI

ST Assembler-Linker ST7 and STM8 addressing modes

nop
1d A,#labl2.h; load A with $00
1d A,#labl2.1; load A with $12

In the STM8, symbols .H and . L are not available. Use low and high primitives instead for
example:

labl equ $112233
1d A,#{low{seg labl}}; load A with $11
1d A,#{high lab1} ; load A with $22
1d A, #{low labl} ; load A with $33

Doc ID 11392 Rev 4 17/89

ST assembler ST Assembler-Linker

4

4.1

4.2

4.3

18/89

ST assembler

Overview

The ST assembler program is a cross-assembler, meaning that it produces code for a target
machine (an ST7 or STM8 microprocessor) which is different from the host machine.

The assembler turns the source code files into re-locatable object modules ready for linking.

During the process, it checks for many different types of errors. These errors are recorded in
an ASCII file called cbe.err (Note that the linker also writes to this file). Error messages are
explained in Appendix B: Error messages on page 78.

To produce code ready for execution, you must run the assembler (ASM), the linker (LYN),
and the object code formatter (OBSEND).

Source files

Source program code is written in the ST7 or STM8 assembler language and is saved in an
ASCII text file named source file. A source file has the extension . asm. It is made up of
lines, each of which is terminated by a new line character.

For a complete reference of the ST7 or STM8 assembler language, refer to the relevant
programming manual.

Assembler source code format

The first line of an assembler source code file is reserved for specifying the *.tab file for the
target processor. You cannot put other instructions or comments in this line.

Use this line to specify the directory location of the *.tab file. If the directory is not specified,
by default the Assembler searches first in the current directory, then in the directory where
the Assembler’s executable is located.

The ".tab' suffix may be left out, as the assembler only looks for this file type.

The first line of your source code might look like:
st7\ or c:\sttools\asm\st7\ (touse the ST7 processor)
stm8\ or c:\sttools\asm\stm8\ (to use the STM8 processor)

If the file st7.tab (or stm8 . tab) cannot be found in the specified or default directories,
then an error is produced and assembly is aborted.

The rest of the source code lines have the following general format:
[label [:]]<space>[opcode] <space> [operand] <space> [; comment]
where <space> refers to either a SPACE ($20) or a TAB ($09) character.

All four fields may be left blank, but the <space> fields are mandatory unless:
e the whole line is blank, or

e theline begins as a comment, or

e the line ends before the remaining fields.

Doc ID 11392 Rev 4 KYI

ST Assembler-Linker ST assembler

431

4.3.2

For example:

Figure 2. Assembler source code format example

examp 1d A,S$Efff ; long addressing mode

| separator | | comments |

| label | | operand |

The next sections describe the main components of a source code file.

Label structure

Labels must start in column one. A label may contain up to 30 of any of the following
characters:

e Upper case letters (A-2Z)

e Lower case letters (a-z)

Digits (0-9)

e Underscore ()

The first letter of a label must be a letter or an underscore. Note that upper and lower case
are treated differently because assembler is case sensitive.

Upon assembly, any label that exceeds 30 characters is truncated and a warning alerts the
user that this has occurred. When truncated, if two of more labels have the same name, a
phase inconsistency error is generated.

When labels are defined, several attributes are defined along with the value. These are:

e Size (Byte, Word or Long)

e Relativity (Linker Relative or Absolute)

e Scope (Internally or Externally defined)

The function of each attribute is explained in the following sections.

Label size

Defining a label’s size allows the assembler to determine what kind of addressing mode to
choose even if the value associated with the label is undefined.

The default size of the memory location for a label is word (2 bytes). Whenever the label has
no suffix, then the default size is assumed.

The directives BYTES, WORDS and LONGS (4 bytes) allow you to change the default.

Regardless of the default size, you can define the size for a specific label by adding a suffix
to it:

e .b for byte,

e .wforword

e .1 forlong.

Doc ID 11392 Rev 4 19/89

ST assembler ST Assembler-Linker

The suffix is not used when the label is referred to. Using of any suffixes other than .b, .w
and .1 results in an error upon assembly.

For example:
lab equ 0 ; word-size label (default)
labell.b equ 5 ; byte-size label
label2.1 equ 123 ; long label

segment byte at: 80 ‘ram’

bytes ; force the size of the label to bytes

count ds.b ; byte-size label
pointer ds.w ; byte-size label with a word-size

; space reserved at this address

4.3.3 Label relativity

There are two sorts of labels: absolute labels and relative labels.

e Absolute labels are usually assigned to constants, such as 10 port addresses, or
common values used within the program.

e Relative labels are defined as (or derived from) an external label or a label derived from
the position of some program code. They are exclusively used for labels defined within
pieces of program or data.

For example:
lab equ 0 ; absolute label ‘count’
ioport equ $8000 ; absolute word label ‘ioport’
segment ‘eprom’
start 1d X, #count
1d A, #*’
loop 1d ioport,A
dec X
jrne loop
stop jp stop ; then loop for ever

Only the linker can sort out the actual address of the code, as the assembler has no idea
how many segments precede this one in the class. At assembly time, labels such as 'start’
or 'loop' are actually allocated 'blank’ values ($0000). These values will be filled later by the
linker. Labels such as ‘count’ or 'ioport’, which were defined absolutely will be filled by the
assembler.

Source code lines that have arguments containing relative labels are marked with an 'R’ on
the listing, showing that they are 'linker relative’. Segments are discussed in Section 4.4 on
page 26.

20/89 Doc ID 11392 Rev 4 KYI

ST Assembler-Linker ST assembler

4.3.4

Label scope

Often, in multi-module programs, a piece of code needs to refer to a label that is actually
defined in another module. To do this, the module that exports the label must declare it
PUBLIC, and the module which imports the label must declare it EXTERN. The two
directives EXTERN and PUBLIC go together as a pair.

Most labels in a program are of no interest for other pieces of the program, these are known
as 'internal’ labels since they are only used in the module where they are defined. Labels
are 'internal’ by default.

Here are two incomplete example modules that pass labels between them:

module 1
EXTERN _sigl.w ; import sigl
EXTERN _sig2.w ; import sig2
PUBLIC _handlers ; export _handlers
segment byte ‘P’

_handlers: ; define handlers
jp _sigl ; refer to sigl
jp _sig2 ; refer to sig2
end

module 2
EXTERN handlers.w ; import handlers (addr. is a word)
PUBLIC _sig2 ; export _sig2
segment byte ‘P’

_sig2: ; define sig2
call handlers ; refer to _handlers
ret
end

As you can see, module 1 refers to the '_sig2' subroutine which is defined in module 2. Note
that when module 1 refers to the '_sig2' label in an EXTERN directive it specifies a WORD
size with the ".w' suffix. Because the assembler cannot look up the definition of'_sig2'it has
to be told its address size explicitly. It doesn't need to be told relativity: all external labels
are assumed to be relative.

Absolute labels declared between modules should be defined in an INCLUDE file that is
called by all modules in the program; this idea of using INCLUDE files is very important
since it can reduce the number of PUBLIC symbols, and therefore the link time, significantly.

Lines in the source code listing which refer to external labels are marked with an X and
given 'empty' values for the linker to fill.

As a short cut, labels may be declared as PUBLIC by preceding them with a'." at their
definition. If this is done the label name need not be given in a PUBLIC directive. For
example, the following code fragment declares the label '1ab4' as PUBLIC automatically:

lab3 1d A,#0
ret
.lab4 nop
ret

Doc ID 11392 Rev 4 21/89

ST assembler ST Assembler-Linker

4.3.5

4.3.6

Caution:

Note:

22/89

Opcodes

The Opcode field may serve three different purposes. It may contain:

e The opcode mnemonic for an assembly instruction.

e The name of a directive.

e The name of a macro to be invoked.

Opcodes must be separated from the preceding field (that is, label, if there is one) by a

space or a tab. A comprehensive Opcode description can be found in the ST programming
manual.

Macros are discussed in Section 4.5 on page 30.

Directives are discussed in Chapter 8: Librarian on page 51.

Operands

Operands may be any of the following:
e Numbers and addresses.

e String and character constants.

e Program counter references.

e Expressions.

The following paragraphs explain how to use these types of operands.

Number and address representation

By default, the representation of numbers and addresses follows the MOTOROLA syntax.
When you want to use hexadecimal number with instructions or labels, they must be
preceded by $. When nothing is specified, the default base is decimal.

For example:

1lab03 equ 10 ; decimal 10

labo04 equ $10 ; hexadecimal 10
1d A,$ffff ; long addressing mode
1d A, #Scb ; immediate addressing mode
1d A, #100 ; decimal representation

You can change the Motorola format representation by using directives (.INTEL, .TEXAS) to
indicate the new setting format.

For more information, refer to Appendix A: Assembler directives on page 55.

Addresses for SEGMENT definition are always given in hexadecimal:
segment byte at: 100-1FF 'test'
The segment 'test' is defined within the 256-511 address range.

Numeric constants and radix

Constants may need special characters to define the radix of the given number.

The assembler supports the MOTOROLA format by default. INTEL, TEXAS, ZILOG formats
are also available if the format is forced by .INTEL .TEXAS or .ZILOG directives. Table 5 on
page 23 shows a summary of these formats.

Decimal constants are always the default, and require no special characters.

Doc ID 11392 Rev 4 KYI

ST Assembler-Linker ST assembler

Table 5. Numeric constants and radix formats

Format Hex Binary Octal Current PC
Motorola $ABCD or &ABCD %100 ~665 *(use MULT for MULTIPLY)
Intel 0OABCDh 100b 6650 or 665q |$
Texas >ABCD 2100 ~665 S
Zilog $ABCD %(2)100 %(8)665 $

String constants

String constants are strings of ASCII characters surrounded by double quotes.
For example:
“This is an ASCII string”

ASCII character constants

The assembler's arithmetic parser also handles ASCII characters in single quotes,
returning the ASCII of the given character(s). For example:

‘A’ 841
‘6’ 306
‘AB’ $4142

Up to 4 characters may be used within a single pair of quotes to give a long constant. The
following special sequences are used to denote special characters:

‘\b’ $7F backspace

“\f’ socC formfeed

‘\n’ $0A linefeed

‘\r’ $0D carriage return
“\t’ $09 tabulation

“\'\’ &s5C slash

“\/ $27 single-quote
“\0’ $00 null

“\"' $22 double-quote

Program counter reference
The current value of the program counter (PC) can be specified by an asterisk "*".

For example: 1ab05 jra *

Expressions and operators

Expressions are numeric values that may be made up from labels, constants, brackets and
operators.

Labels and constants have been discussed in previous paragraphs.

Arithmetic brackets are allowed up to 8 nested levels, the curly braces {} are used
instead of the common “()” because instructions may use a parenthesis to denote indexed
addressing modes.

Operators have 4 levels of precedence. Operators in level #1 (listed in Table 6) take
precedence over operators in level #2 (listed in Table 7), and so on. In each level, operators
have same precedence, they are evaluated from left to right.

Doc ID 11392 Rev 4 23/89

ST assembler

ST Assembler-Linker

24/89

Table 6. Level 1 operators
Operation Result, level #1
-a negated a
aandb logical AND of A and B
aorb logical OR of A and B
axorb logical XOR of A and B
ashrb a shifted right b times
ashlb a shifted left b times
altb 1if a<b, else 0
agth lifa>b, else 0
aeqb lifa=b, else 0
ageb lifa>=b, else 0
aneb 1ifa unequal b, else 0
high a a/256, force arg to BYTE type
low a a MOD 256, force arg to BYTE type
offset a a MOD 65536, force arg to WORD*16 type
seg a a/65536, force arg to WORD*16 type
bnot a invert low 8 bits of a
wnot a invert low 16 bits of a
Inot a invert all 32 bits of a
sexbw a sign extend byte to 16 bits
sexbl a sign extend byte a to 32 bits
sexwl a sign extend word to 32 bhits
Table 7. Level 2 operators
Operation Result, level #2
a/b a divided by b
adivb a divided by b
Table 8. Level 3 operators
Operation Result, level #3
a*b a multiplied by b
amultb as above for motorola (character * is reserved)

Doc ID 11392 Rev 4

ST Assembler-Linker ST assembler

4.3.7

4.3.8

Table 9. Level 4 operators

Operation Result, level #4
a-b aminus b
a+b aplushb

Operator names longer than one character must be followed by a space character. For
example, '1 AND 2'is correct, 'LAND2' is not.

Place curly braces {} around arithmetic expressions.

Always use curly braces at the top-level, when defining a numeric expression. Not doing so
may produce unexpected results.

Wrong syntax:

#define SIZE 128

DS.W SIZE+1 ; Wrong, syntax error
#IF SIZE eq 1 ; Wrong, same as #IF SIZE
#ENDIF

Correct syntax:

#define SIZE 128

DS.W {SIZE+1} ; OK
#IF {SIZE eq 1} ; OK
#ENDIF

Comments

Comments are preceded by a semicolon. Characters following a semicolon are ignored by
the assembler.

A source code example

Below is an example of a short source code.

st7/

; small example module showing source formats

ioport equ $8000 ; 8 bit IO port A

handshake equ $9000 ; write xx here to strobe
segment 'program'

start 1d a,#0 ; zero counter

loop 1d ioport,x ; store into ioport

segment word at: FFFC 'code'
WORD start
end

Do not worry if some directives do not make sense yet; they will be covered soon. Also, take
special notice of the SEGMENT directive.

Doc ID 11392 Rev 4 25/89

ST assembler ST Assembler-Linker

4.4

441

26/89

Segmentation

Segments explained

Segments are very important. You have to understand segments before you can use the
assembler. Take the time to understand them now and you will save yourself a lot of puzzling
later.

Segmentation is a way of 'naming' areas of your code and making sure that the linker
collates areas of the same name together in the same memory area, whatever the order of
the segments in the object files. Up to 128 different segments may be defined in each
module. The segment directive itself has four arguments, separated by spaces:

[<name>] SEGMENT [<align>] [<combine>] '<class>' [cod]
For example:
FILEL:
st7/
BYTES
segment byte at: 80-FF ‘RAMO’
counter.b ds.b ; loop counter
address.b ds.w ; address storage
ds.b 15 ; stack allocation
stack ds.b ; stack grows downward
segment byte at: EO0O00-FFFF ‘eprom’
1d A, #stack
1d s,Aa ; init stack pointer
end
FILEZ2:
st7/

segment ‘RAMO’
serialtemp ds.b
serialcou ds.b

WORDS

segment ‘eprom’
serial in 1d A, #0

end

In the preceding example, FILE1 and FILE2 are two separate modules belonging to the
same program. FILE1 introduces two classes: 'RAMO' and 'eprom'. The class-names
may be any names you choose up to 30 characters.

The first time a class is used, introduced, you have to declare the default alignment, the start
and the end addresses of the class, and of course, the name of the class.

Users generally specify a new class for each 'area’ of their target system.

In the examples above, the user has one class for the 128 bytes of on-chip RAM from 0080
to 00FF ('RAMO ') and another for the 'eprom'.

The code is stored from E000 to FFFF ('eprom'). You have to supply all this information
the very first time you use a new class, otherwise only the class-name is necessary, as in
FILE2.

Doc ID 11392 Rev 4 KYI

ST Assembler-Linker ST assembler

4.4.2

Parameters

Possible arguments are:

e Name

e Align

e Combine

e cod parameter, output file control

The following paragraphs describe each argument in detail, and the final paragraph
describes Copying code.

Name

The <name> argument is optional; it can contain a name of up to 12 characters. If it does,
then all segments with the same name are grouped together within their class, in the order
that new names are defined.

Align

The <align> argument defines the threshold on which each segment must start. The
default is the alignment specified at the introduction of the class (if none is specified in the
class introduction then para alignment is assumed), although the alignment types
described in Table 10 are allowed to be specified overriding the default.

Table 10. Alignment types

Type Description Examples

byte Any address

word Next address on boundary 1001->1002
para Next address on 16-byte boundary 1001->1010
64 Next address on 64-byte boundary 1001->1040
128 Next address on 128-byte boundary 1001->1080
page Next address on 256-byte boundary 1001->1100
long Next address on 4-byte boundary 1001->1004
1k Next address on 1k-byte boundary 1001->1400
4k Next address on 4K-byte boundary 1001->2000

Looking back to our example on page 26, you should now be able to see that the *RAMO
class will allocate 80 t0 counter, 81 t0o address, 92 to stack in FILEL, and when the
linker meets the segment in FILE2 of the same class, serialtemp will be allocated 93, and
serialcou 94. The same processing happens to the two 'eprom' class segments, the
second, in FILE2, will be tacked on to the end of the first in FILEL. If the FILE2 'eprom'
class segment had specified, say, the 1ong align type instead of the default byte, then that
segment would have been put on the next long-word boundary after the end of the FILE1
'eprom' class segment.

Doc ID 11392 Rev 4 27/89

ST assembler ST Assembler-Linker

Note:

28/89

Combine

The <combine> argument tells the assembler and linker how to treat the segment. There
are three types to handle it:

Table 11. Combine types

Type Description

at:X[-Y] Starts a new class from address X [to address Y]

All common segments that have the same class name will start at the

common same address. This address is determined by the linker.

<nones Follows on from end of last segment of this class.

The at-type <combine> must be used at the introduction of a class, only once.

The at-type <combine> must have one argument: the start address of the class, and may
optionally be given the end address (or limit) of the class too. If given, the linker checks that
no items in the class have gone over the limit address; if this does occur, a warning is issued
at link time. The hexadecimal numbers X and Y should not have radix specifiers.

All common-type <combine> segments that have the same class name will start at the
same address. The linker keeps track of the longest segment. common segments can be
used for sharing data across different applications.

For example:

st7/

datl segment byte at: 10 'DATA'
ds.w

coml segment common 'DATA'

.labl ds.w 4

coml segment common 'DATA'

.lab2 ds.w 2

com2 segment common 'DATA'

.1lab3 ds.w

com2 segment common 'DATA'

.lab4 ds.w 2
dat2 segment 'DATA'
.lab5 ds.w 2

end

The values for labels 1ab1l, 1ab2, 1ab3, 1ab4, and lab5 are 12, 12, 1A, 1A and 1E,
respectively.

Since you cannot specify both at and common combines simultaneously, the only way to
specify the exact location of commons is to insert an empty at combine segment before the
first common declaration.

For example:

coml segment byte at: 10 'DATA'
coml segment common 'DATA'

coml segment common 'DATA'

Doc ID 11392 Rev 4 KYI

ST Assembler-Linker ST assembler

cod parameter, output file control

The last field of a SEGMENT directive controls where the linker places the code for a given
class. When introducing a class, if this field is not specified, the code for this class is sent to
the normal, default. cob file by the linker. If the [cod] file is given a number between 0 and
9 then all code generated under the class being introduced will be sent to a different ' . cop'
file by the linker.

If the linker produces a file called 'prog. cod’, for example, then all code produced under
classes with no [cod] field will go into that file, as normal.

If one class is introduced with a [cod] field of 1, though, then all code produced under that
class is sent instead to a file prog_1.cod. The code produced under the other classes is
sent on as usual to prog. cod.

Using this scheme, you can do bank switching schemes quickly and directly, even when
multiple EPROMSs share the same addressing space. Simply allocate each EPROM class of
its own, and introduce each class with a different [cod] field. This will result in the linker
collating EPROM's contents into a different .COD file for you to OBSEND independently.

For example:

segment byte at:8000-BFFF 'eproml' 1
segment byte at:8000-BFFF 'eprom2' 2

Copying code

It sometimes happens that you need to copy a block of code from EPROM to RAM. This
presents some difficulties because all labels in that piece of code must have the RAM
addresses, otherwise any absolute address references in the code will point back to the
EPROM copy.

In this case, it helps to specify a class for execution, and use a different class for storage,
as in the following example:

segment byte at: 0 'code'

segment byte at: 8000 'ram'

segment 'rams>code'
labell:nop

The code starting from 1abel1 will be stored in the code class as usual, but all the labels in
that special segment will be given addresses in the ram class, and memory will also be
reserved in the ram class for the contents of the special segment.

Doc ID 11392 Rev 4 29/89

ST assembler ST Assembler-Linker

4.5

45.1

Note:

30/89

Macros

Macros are assembly-time subroutines.

When you call an execution-time subroutine you have to go through several time-consuming
steps: loading registers with the arguments for the subroutine, having saved and emptied
out the old contents of the registers if necessary, pushing registers used by the subroutine
(with its attendant stack activity) and returning from the subroutine (more stack activity) then
popping off preserved registers and continuing.

Although macros don't get rid of all these problems, they can go a long way toward making
your program execute faster than using subroutines, at a cost. The cost is program size.

Each time you invoke a macro to do a particular job, the whole macro assembly code
is inserted into your source code.

This means there is no stacking for return addresses, your program just runs straight into
the code; but it is obviously not feasible to do this for subroutines above certain size.

The true use of macros is in small snippets of code that you use repeatedly, perhaps with
different arguments, which can be formalized into a 'template’ for the macros' definition.

Defining macros
Macros are defined using three directives: MACRO, MEND and LOCAL.

The format is:

<macro-name>MACRO [parameter-1] [, parameter-2 ...]
[LOCAL] <label-name>[, label-name ...]]
<body-of-macro>
MEND

For example:

addlé MACRO first, second,result
1d A, first
adc A, second
1d result,A
MEND

The piece of code of the example might be called by:
addlé index,offset, index
which would add the following statements to the source code at that point:

1d A, index
adc A,offset
1d index.X,A

The formal parameters given in the definition have been replaced by the actual
parameters given on the calling line.

These new parameters may be expressions or strings as well as label names or constants.
Because they may be complex expressions, they are bracketed when there is any extra
numeric activity; this is to make sure they come out with the precedence correctly parsed.

Macros do not need to have any parameters. You may leave the MACRO argument field blank
(and, in this case, give no parameters on the calling line).

Doc ID 11392 Rev 4 KYI

ST Assembler-Linker ST assembler

45.2

There is one further problem: because a macro may be called several times in the same
module, any labels defined in the macro will be duplicated. The LOCAL directive gets around
this problem:

For example:

getio MACRO
LOCAL loop

loop 1d A,s$C000
jra loop
MEND

This macro creates the code for a loop to await 10O port at $c000 to go low. Without the
LOCAL directive, the label '1loop' would be defined as many times as the macro is called,
producing syntax errors at assembly time.

Because it's been declared LOCAL at the start of the MACRO definition, the assembler takes
care of it. Wherever it sees the label 'loop' inside the macro, it changes the name 'Loop' to
'LOCXXXX' where XXXX is a hex number from 0000 to FFFF.

Each time a local label is used, XXXX is incremented. So, the first time the getio macro is
called, '1oop' is actually defined as 'Loco’, the second time as 'LoC1' and so on, each of
these being a unique reference name. The reference to '1loop' in the 'if' statement is also
detected and changed to the appropriate new local variable.

The directives in Table 12 are very useful, in conjunction with macros:

Table 12. Some useful directives

Directive Usage
#IFB To implement macro optional parameters.
#IFDEF To test if a parameter is defined.
#IFLAB To test if a parameter is a label.
#IFIDN To compare a parameter to a given string.

Parameter substitution

The assembler looks for macro parameters after every space character. If you want to
embed a parameter, for example, in the middle of a label, you must precede the parameter
name with an ampersand '&' character, to make the parameter visible to the preprocessor.
For example, if we have a parameter called 'param'’.,

dc.w param
It works as expected, but the ampersand is necessary on:

label¶m:nop
label¶mé&_ ¶m:nop

Otherwise '1abelparam’ would be left as a valid label name; If the macro parameter
'‘param’ had the value '5', then '1abel5' and 'label5 5" would be created.

Doc ID 11392 Rev 4 31/89

ST assembler ST Assembler-Linker

4.6 Conditional assembly #IF, #ELSE and #ENDIF directives

Conditional assembly is used to choose to ignore or select whole areas of assembler code.
This is useful for generating different versions of a program by setting a particular variable in
an INCLUDE file that forces the use of certain pieces of code instead of others.

There are three main directives used to perform conditional assembly, as shown in Table 13.

Table 13. Summary of conditional assembly directives

Directive Usage

Marks the start of the conditional and decides whether the following zone will be

#IF assembled or not.
#ELSE Optionally reserves the condition of the previous #IF for the following zone.
#ENDIF Marks the end of the previous #IF's.

The condition given with the '#IF' may take the form of any numeric expression. The rule for
deciding whether it resolves to 'true’ or ‘false’ is simple: if it has a zero value then it is false,
else it is true. These directives should NOT start at column 1 of the line, reserved for labels.
For example:

#IF {count eq 1}
%0UT 'true'
HELSE

%0UT 'false'
HENDIF

This sequence would print true if the label count did equal 1, and ‘false’ if it did not.
For example:

#IF {count gt 1}

%$0UT count more than one

#IF {count gt 2}

%0UT ...and more of TWO !
#ELSE

%0UT ...but not more than two!
HENDIF

#ELSE

%$0UT count not more than one
HENDIF

As you can see, conditionals may be nested, the #ELSE and #ENDIF directive are assumed
to apply to the most recent unterminated #IF.

Other special #IF directives are available as shown in Table 14.

Table 14. Other special #IF directives

Directive Usage

Requires no conditional argument. If the appropriate pass is. being assembled, the

#IF1 and condition is considered 'true’; for instance #IF1 will be considered true while the
#IF2 L o

assembiler is in first pass, #IF2 while in the second pass.
#IFDEF Checks for label definition.

32/89 Doc ID 11392 Rev 4 KYI

ST Assembler-Linker ST assembler

Table 14. Other special #IF directives

Directive Usage
HTFB Checks for empty argument (that is, empty, or containing spaces / tabs), useful for
testing macro parameter existence.
#IFF (IF False) is similar to #IF, but checks the negation of the condition argument.
Tests for string equality between two arguments separated by a space. This is useful
#IFIDN : - . .
for testing macro parameters against fixed strings.
#IFLAB Checks if the argument is a predefined label.
4.7 Running the assembler
4.7.1 Command line

The assembler needs the following arguments:
ASM <file to assemble>, <listing file>, <switches> [;]

If any or all the arguments are left out of the command line, you'll be prompted for the
remaining arguments. For example:

ASM
STMicroelectronics - Assembler - rel. 4.44
File to Assemble: game

In the example above, no parameters were given on the command line, so all the
parameters were prompted for.

The <file to assemble> parameter assumes a default suffix » . AsM". For example, if
you type 'game' then 'game . asm' is the actual filename used.

The listing file is the file to which the assembly report is sent if selected. The default
filename (which is displayed in square brackets), is made from the path and base-name of
the file to assemble. The default filename suffix for the assembly report file is ". LST". For
instance, if you type 'game’, then 'game . 1st' is the actual filename used.

Note that unless the assembler is told to create either a pass-1 or pass-2 complete listing by
the options argument, the listing file will not be created.

4.7.2 Options

Options are always preceded with a minus sign '-'. Upper and lower cases are accepted to
define options. Supported options are listed in Table 15.

Table 15. Command line options

Option Function
-SYM Enable symbol table listing (see page 34)
-LI Enable pass-2 listing (see page 34)
-LI=<listfile> Enable listing and specify name of list file
-OBJ=<path> Specify .OBJ file (see page 34)
-FI=<mapfile> Specify final' listing mode (see page 35)

IYI Doc ID 11392 Rev 4 33/89

ST assembler

ST Assembler-Linker

Table 15. Command line options

Option Function

-D <1> <2>

#define <1> <2> (see page 36)

-I

Specify paths for included or loaded files (see page 36)

-M Output make rule (see page 37)
-PA Enable pass-1 listing (see page 37)
-NP Disable phase errors (seepage 37)
SYM option
Description: Allows the generation of a symbol table.
Format: ASM <file> -sym
Example: ASM prog -sym
The output is the file prog. sym
LI option
Description: Request to generate a complete listing file. To specify the pathname for the
generated list file use the option -1i=<pathname>. The default extension
is LST. Note that the extension must be three characters long.
Format: ASM <file> -1i or
ASM <file> -li=<pathnames
Example: ASM prog -1i
The output is the file prog.Ist in the current directory
ASM prog -li=obj\prog
The output is the file obj\prog.lst
ASM prog -li=prog.lsr
The output is the file prog.lsr
OBJ option
Description: You can specify the pathname for the generated . 0BJ file, using this option:
Format: ASM <file> -obj=<pathnames
Example: ASM prog -obj=obj\prog

34/89

Forces the assembler to generate the object file obj\prog. obj.

Doc ID 11392 Rev 4 KYI

ST Assembler-Linker ST assembler

Fl option

Note: Instead of using ASM -fi, it is advised to use the list file post processor ABSLIST
which guarantees that the final list file is consistent with the executable code
generated by the linker.

Description: One side effect of using a linker is that all modules are assembled
separately, leaving inter modules' cross-references to be fixed up by the
linker. As a result the assembiler listing file set all unresolved references to 0,
and displays a warning character.

The -fi option enables you to perform an absolute patch on the desired
listing. Therefore, you must have linked your application to compute
relocations and produce a . coD file and a map file.

To generate a full listing, you must not have made any edits since the last
link (otherwise the named map-file would be 'out of date' for the module
being assembled). This is not usually a problem since full listings are only
needed after all the code has been completed. - fi automatically selects a
complete listing.

Format: ASM <file> -fi=<file>.map

The output <files>.1lst contains the absolute patches.
Example: ASM ex1 (produces ex1 .obj)

ASM ex2 (produces ex2 . obj)

LYN exl+ex2,ex (produces ex.map, ex.cod)

(see Chapter 5: Linker on page 38)
ASM ex1 -fi=ex.map (producesexl.lst)

ASM ex2 -fi=ex.map (producesex2.lst)
Note: When assembling in '- £i' mode, the assembler uses the map file produced by the linker,
and no object files are generated.

When using the option - fi=<file>.map, the assembler step may fail under certain
circumstances:

e If there are empty segments (Error 73). To avoid this, comment out any empty
segments.

e Ifyoutry to assemble afile that has not been used to produce the .map file (Error
73).

e Some EXTERN labels are never used (Warning 80). To avoid this, comment the
unused EXTERN labels out.

IYI Doc ID 11392 Rev 4 35/89

ST assembler

ST Assembler-Linker

D option

Description: Allows to specify a string that is to be replaced by another during the
assembly.
A blank space or = is required between the string to be replaced and the
replacement string. For example -D <string> 2 isthe same as -D
<string>=2.
It is possible to specify only one argument (-D <strings). In which case,
<string> is replaced with 1.
This is extremely useful for changing the assembly of a module using #IF
directives, because you can change the value of the #1F tests from the
assembler's command line. It means that you can run the assembler with
different -D switches on the same source file, to produce different codes.

Format: ASM <file> -D <string> <strings or
ASM <file> -D <strings>=<strings> or
ASM <file> -D <string>

Example: ASM exl -D EPROM 2 -D RAM 3
ASM exl -D EPROM=2 -D RAM=3
In both cases, EPROM is replaced with 2, RAM is replaced with 3.
ASM exl -D EPROM
In this case EPROM is replaced with 1.

Note: If you specify multiple -p switches, they should always be separated by a space.

| option

Description: Used to specify the list of search paths for files that are included (with
#include) or loaded (with #load). The paths can be separated by the ;
character and the path list must be enclosed within double quotes. You can
also enter multiple include paths by using the - T option more than once and
separating each with a blank space.
The current working directory is always searched first. After that, the ST
assembler searches directories in the same order as they were specified
(from left to right) in the command line.

Format: ASM -I="<pathls>;<path2>;...;<pathN>" call or
ASM -I="<pathl>" -I="<path2>"... -I="<pathN>" call

Example: ASM -I="include;include2" call or

36/89

ASM -I="include" -I="include2" call

Doc ID 11392 Rev 4 KYI

ST Assembler-Linker

ST assembler

M option

Description:

Format:

Example:

PA option

Description:

Format:

Example:

NP option

Description:

Format:

Example:

Tells the ST assembler to output a rule suitable for make, describing the
dependencies to make an object file.

For a given source file, the ST assembler outputs one make rule whose
target is the object file name for that source file and whose dependencies
are all the included (#include) source files and loaded (#load) binary files it
uses. The rule is printed on the standard output.

-M <source file name>
ASM -I="include;include2" -M call

The output appears on the screen as the rule:
call.obj: call.asm include\map.inc include2\map2.inc
include\map3.inc include\code.bin

Request to generate a pass-1 listing. In this listing internal forward
references are not yet known. They are marked as undefined with a 'U" in the
listing file.

ASM <file> -pa
ASM filel -pa

The output file is filel.1lst

Disables the error generation.
ASM <file> -np

ASM filel -np

Doc ID 11392 Rev 4 37/89

Linker

ST Assembler-Linker

5.1

5.2

5.3

53.1

38/89

Linker

What the linker does

After having separately assembled all the component modules in your program, the next
step is to link them together into a . coD file which can then be sent on to its final destination
using OBSEND.

This linking process is not just as a simple concatenation of the object modules. It resolves
all the external references. If a referenced label is not defined as PUBLIC, an error is
detected. It also checks the type of relocation to do, places the segment according to your
mapping, and checks if any of them is overrun.

Invoking the linker

Command line

Arguments

The linker needs the following arguments:

LYN [-no overlap error] <.OBJ file>[+<.0OBJ file>...],
[<.COD file>], [<lib>] [+<lib>...]

-no_overlap error forces the generation of the . cod executable even if some
segments overlap.

If all or any arguments are left out of the command line, you will be prompted. For example:

LYN

STMicroelectronics - Linker - rel 3.00
.OBJ files: begin

.COD file [begin.cod]: begin

Libraries:

The .0BJ files are simply a list of all the object files that form your program. The . 0BJ suffix
may be left out, and if more than one is specified they should be separated by '+' characters,
for example game+scores+keys would tell the linker to link game . obj, scores.obj and
key.obj. Object file path names should not include '-' or '; ' characters. Character *.’
should be avoided, except for suffixes.

The .cobD file has a default name formed of the first object file's name with forced suffix of
.coD. This will be the name of the file produced at the end of the link session. It contains all
the information from the link session in a special format: however, OBSEND must be used on
the . cob file before it is ready to use. If the default filename is not what you want, the
filename given at the prompt is used instead. The suffix will be forced to . cob if left blank.
The default is selected by leaving this argument blank at the command line, or pressing
<ENTER> at the prompt.

The Libraries prompt asks for a list of library files generated by the lib utility that should
be searched in case of finding unresolved external references. The format for giving multiple
libraries is the same as for the . 0BJ list, except the suffix . LIB is assumed.

Doc ID 11392 Rev 4 KYI

ST Assembler-Linker Linker

5.3.2

Note:

Some examples:

Linking together the modules game . obj, scores.obj, key.obj, gamel.obj,
game2.obj and game3 .obj without using any libraries and generating a . cob file named
game . cod, requires the following command line:

LYN game+scores+keys+gamel+game2+game3;

Linking the same modules in the same environment, but generating a . cod file named
prog.cod requires the following command line:

LYN game+scores+keys+gamel+game2+game3, prog;

Response files

Response files are text files that replace the command line to generate the arguments
required. Although they can be used on the assembler and linker, it only really makes sense
to use them on the linker.

The command line given with the name of the program to execute (here LYN) can only take
up to 128 characters as its argument. For most programs this is fine, but the linker allows up
t0128 modules to be linked in one run; all their names have to be declared to the linker in its
first argument.

This is where response files come in, they allow you to redirect the command line parser
to afile instead of expecting arguments to come from the command line or the keyboard. A
response file is invoked by giving an ‘@’ sign and a filename in response to the first argument
you want to come from the response file.

The filename is assumed to have a suffix '. RSP' if none is supplied. Repeating our example
used as earlier, but this time with a response file called game . rsp:

LYN @game.rsp
is all that needs to be typed, and the file game . rsp must contain:
game+scores+keys+
gamel+
game2+game3
prog

Which echoes what would have been typed at the keyboard. If the response file ends
prematurely, the remaining arguments are prompted for at the keyboard. In very large
session, the .0BdJ files argument will not fit on one line: it can be continued to the next by
ending the last . 0BJ file on the first line with a '+'.

When using response files, there must be at least two carriage returns at the end of the file.

Doc ID 11392 Rev 4 39/89

Linker ST Assembler-Linker
54 Linking in detail
541 PUBLICs and EXTERNS
All labels declared external in the modules being linked together must have a corresponding
PUBLIC definition in another module. If it does not, it may be an error. Similarly, there must
only be one PUBLIC definition of a given label.
The bulk of the linker's job is filling those relative or external blanks left by the assembler in
the .0BJ files; to a lesser extent, it also handles special functions such as DATE or SKIP
directives. Equally important, it has to collate together and allocate addresses to segments.
5.4.2 Segments in the linker

40/89

A typical system may look like the diagram alongside: a good candidate for four different
segments, perhaps named RAMO, RAM1, EPROM and ROM.

If the reset and interrupt vectors live at the end of the map, perhaps from FFEE-FFFF then
we might mark a fifth segment called vectors at those addresses and truncate ROM to end
at FFED; that way the linker will warn us if ROM has so much code in it that it overflows into
where the vectors live. These classes would be introduced as follows:

segment byte at: O0-FF '"RAMO'
segment byte at: 100-027F 'RAM1'
segment byte at: 8000-BFFF 'EPROM'
segment byte at: C000-FFDF '"ROM'
segment byte at: FFEO-FFFF 'VECTORS'

After their full introduction that needs only be done once in the whole program, the rest of
the program can refer to the classes just by giving the class names in quotes, for example:

segment 'RAMO’

xtemp ds.w ; temp storage for X register

time ds.b ; timer count index

segment 'ROM'

hex 1d A, #1
add A, #10
nop

If this example followed immediately after the class instruction the 'xtemp' label would be
given the value 0, time would be given 2 and hex €000. If, however, the code was several
modules away from the introduction with segments of the classes 'RAMO0’ or 'ROM', then the
value allocated to all the labels will depend on how much space was used up by those
modules. The linker takes care of all this allocation. This is the way the linker handles the
problems of relocatability; keep in mind that this link system is going to have to handle
compiled code from high level languages and you will perhaps begin to understand why
things have to be generalized so much.

So far the segments we have looked at have had no <name> field, or, more accurately, they
all had a null <name> field. You can ensure that related segments of the same class,
perhaps scattered all over your modules with segments of the same class are collated
together in a contiguous area of the class memory by giving them the same name.

Doc ID 11392 Rev 4 KYI

ST Assembler-Linker Linker

5.4.3

For example:
grafix segment byte at: 100-027F 'RAM1'
cursor_buf ds.b 64 ; buffer for map under cursor

segment byte at: 8000-BFFF 'ROM'
show page nop
segment 'RAMI1'
field-buf ds.b {{256 mult 256}/8}
segment 'ROM'
dump_buf 1d A,field buffer
grafix segment 'RAM1'
cursor_temp ds.b 64

This complex sequence of segments shows now instances of the class RAM1 being used
with a segment name of grafix. Because the first instance of the class RAM1 had the
name grafix the two grafix RAM1 segments are placed in memory first followed by the
null-name RAM1 segment (which defines £ield buf). Note this is not the order of the
segments in the code, segments with the same name are collated together (even from
separate .0BJ files), and the lumps of segments of the same name are put into memory in
the order that the names are found in the . 0BJ files.

As explained on page 29, if x is your cod file suffix when introducing a class, all code for that
code is sent into a new cod-file named file x.cod, where £ile is the name of the first
cod file, and x is the cod-file suffix (1-9).

Symbol files

At the end of a successful link, one or more . 0BJ files will have been combined into a single
.cobD file. A .MAP file will have been produced, containing textual information about the
segments, classes and external labels used by the .0BJ module(s). Finally a compact

. syYM file is generated, containing all PUBLIC symbols found in the link with their final
values.

The linker supports a special feature, you can link in . sSYM files from other link sessions.
This means that with big programs, you cannot only partition your code at assembler level,
but divide the code up into ‘lumps' which are linked and loaded separately, but have access
to each other's label as EXTERNs. You can 'link in* a symbol table simply by giving its name
with the suffix . sYM. Always give symbol tables at the start of the object file list.

OBJ file example: LYN progl.sym+prog2,vectors, irqg;

Once this is done, all the PUBLIC symbols from progl. sym are now available as PUBLICs
to prog2.obj, vectors.obj and irqg.obj.

Because changes in one link will not automatically update references to the changed link
code in other links, it is necessary when using this technique to 'fix' each link in an area of
memory, and have a 'jump table' at the top of each area. This means that all ‘function’
addresses are permanently fixed as jump table offset, and changes to each link will result in
automatic redirection of the jump targets to the new start of each routine. Put another way,
each link must have entry fixed points to all its routine, otherwise re-linking one 'lump’ of a
program could make references to its addresses in other modules out of date.

Doc ID 11392 Rev 4 41/89

Linker

ST Assembler-Linker

5.5

5.5.1

5.5.2

5.5.3

42/89

The linker in more detail

The composition of the .OBJ files

The .0BJ files produced by the assembler contain an enormous amount of overhead,
mostly as coded expressions describing exactly what needs to go into the 'blank spaces' the
assembler has been so liberal with. The linker contains a full arithmetic parser for working
out complex expressions that include external labels: this means (unlike most other
assemblers) there are few restrictions on where external labels may appear.

The assembler also includes line-number information with the . 0BJ file, connecting each
piece of generated object code with a line number from a given source file.

.OBJ files also contain 'special' markers for handling SKIP and DATE type directive.

The composition of the .COD files

The . cobD files, on the other hand, contain very little overhead; there are six bytes per
segment that describe the start address and length of that segment. Besides that, the rest of
the code is in its final form. A segment of zero length marks the end of the file. It only
remains for OBSEND to take the code segment by segment and send it on to its destination.

Reading a mapfile listing

The linker also generates files with the suffix . sSYM and .MAP in addition to the . cob file we
have already discussed. The . sYM file contains a compact symbol table list suitable with the
debuggers and simulators.

The .MAP file listing shows three important things: a table of segments with their absolute
address, a table of all classes in the program, and a list of all external labels with their true
values, modules they were defined in and size.

Here is an example MAPFILE, where one of the class, ROM, has gone past its limit,
overwriting (or more correctly, having part of itself overwritten by) VECTORS.

The [void] on some segments in the segment list says that these segments were not used
to create object code, but were used for non-coding-creating tasks such as allocating label
values with ds.b etc. The number in straight brackets on the segment as true address list
shows how many segments 'into’ the module this segment is, that is, the 1%, 2" etc. of the
given module. The first x-y shows the range of addresses. The def (1line) field on the
external labels list shows the source code file and line number that this label was defined in.
The number at the start of each class list line is the cod-file that the class contents were sent
to (default is 0).

Segment address list:

prog [1] 10- 86 0- 6 ‘RAMO' [void]
prog [2] 88- 278 100- 138 'RAM1' [void]
main [1] 8- 563 8000- 875B 'eprom'
prog [4] 282- 889 C000- C508 'rom'
main [2] 568- 1456 C509- F578 'rom'
monitor [1] 8- 446 F579- FFF9 'rom'
monitor [2] 448- 467 FFEE- FFFF 'vectors’
Doc ID 11392 Rev 4 Kﬁ

ST Assembler-Linker Linker

Class list:

0 *‘RAMO' byte from 0 to 78 (lim FF) 45% D

0 ‘RAM1' byte from 100 to 138 (lim 27F) 50% D

0 ‘eprom' byte from 8000 to 875B (lim BFFF) 21% C

0 ‘rom' byte from C000 to FFF9 (lim FFDF) C*Overrunt*
0 ‘vectors' Dbyte from FFEE to FFFF (lim FFFF) 100% D

The external label list only includes labels that were declared PUBLIC: labels used
internally to the module are not included. This table is most useful for debugging purposes,
since the values of labels are likely to be relocated between assemblies. The labels are
given in first-character-alphabetic order.

External label list:

Symbol Name Value Size Def(line)

char 64 BYTE game.obj (10)
charl 66 BYTE game.obj (11)
label ABCD WORD game.obj (25)
3 labels

IYI Doc ID 11392 Rev 4 43/89

OBSEND

ST Assembler-Linker

6

6.1

6.2

6.2.1

6.2.2

6.2.3

44/89

OBSEND

What OBSEND does for you

After your program has been assembled and linked to form a . cobD file it must be sent to the
place where it will be executed. Right now, your code is just stored as a file on a disk where
the target system cannot get at it.

OBSEND is a general purpose utility for . coD files in various ways using various formats.

Invoking OBSEND

OBSEND follows the same standard formats as the rest of the assembler / linker; arguments
can be given from the command line, keyboard or response file. The general syntax is:

OBSEND <file>,<destinations>[, <args>], <formats>

where <file> is the name of the . cob file to be formatted (default extension .coD). If the
filename is not given on the command line, you are prompted at the keyboard with:

OBSEND

STMicroelectronics - Obsend - rel. .2.00
File to Send: test

Destination Type (<f>ile,<v>ideo): £

Final Object code Filename [test.fin]: test.sl9
Object Format <ENTER>=Straight Binary, ...,
ST REC <2>, ST REC <4>: s

Destination type

<destination> can be £ (file) or v (video). Only a single character is required.

Destination arguments

When the destination type is £ (file) the argument <£ilename> tells OBSEND where to
send the code. The default suffix . FIN is assumed if none is given. For example:

OBSEND test,f,image.sl9,s

The command generates the file image . s19 containing the code from test.cod, in S-
record s format.

When the destination code is "v" (video), this field is void.

Format definitions

<format> specifies the output format. Output format options are listed in Table 16.

Table 16. Output formats

<format> Output format

<nones straight binary, that is, a bit-for-bit image

i Intel hex

Doc ID 11392 Rev 4 KYI

ST Assembler-Linker OBSEND

6.2.4

Note:

6.2.5

Table 16. Output formats

<format> Output format
i32 Intel hex with 32 bytes of data per line
ix Intel hex extended
S Motorola S-record (1 byte per address, for example ST7)
X Motorola S-record extended with symbol file
2 ST S-record 2 (2 bytes per address, for example D950)
4 ST S-record 4 (4 bytes per address, for example ST18932 program space)
f 'Filled' straight binary format
g GP industrial binary format

Straight binary format

<format>= <none>

This is the simplest of the formats. It is nothing but a bit-for-bit copy of the original file. This is
the usual mode for sending to the EPROM emulators, etc., and is the default if no format
argument is given.

When the destination is the screen (the destination code is "v"), do not use this format;
otherwise you get weird control codes.

<format>= <f>

This is the ‘filled’ straight binary format where gaps between adjacent segments are filled
with $FF.

Intel hex format

<format>= i

This format is very much more complex. Intel hex bears similarities to S-record that we look
at later. Let's look at a line of the Intel hex format in detail:

:10190000FFFFFFFFFFCO00064FFC0006462856285E0
10 number of data bytes (16 in decimal)
1900 address
00 record type

data bytes
EO checksum

The first thing to note is that everything is in printable ASCII. Eight-bit numbers are
converted into two-character hexadecimal representation.

Each line begins with an ASCII ':' ($3a) character.

The next two characters form a byte that declares how many data bytes follow in the data
byte section a little further along.

The next four characters form a 16-bit high-byte first number that specifies the address for
the first byte of this data; the rest follows on sequentially.

Doc ID 11392 Rev 4 45/89

OBSEND

ST Assembler-Linker

6.2.6

Note:

46/89

The next two characters are the record type for this line: 00 is a data line, and 01 signals
EOF. The following characters, until the last two, are the 16 data bytes for this line, the last
two are a checksum for the line, calculated by starting with $00 subtracting the real value of
all characters sent after the ': " until the checksum itself. ‘Real value' means that for example,
the two characters 3 and 0 should subtract $30 from the checksum, not 51 and 48. Every
line ends with a CR-LF combination, $0A and $0D.

The last line sent must be an END-OF-FILE line, which is denoted by a line with no data
bytes and a record type of 01 instead of 00.

Giving 132 or i32 instead of intel as the argument uses the same format, but sends 32 bytes
of data per line.

Motorola S-record format

<format>= s

This is another complex method for sending data. Again it cuts the data into 16-byte
‘records’ with overhead both sides. S-record come in four types: SO, known as a header
record, S1 and S2 data records with 16 and 24-bit address fields, and S9 and S8 EOF
records with 16 and 24-bit address fields.

The convention is to close an S1 16-bit data record with the S9 16-bit EOF record, and to
close an S2 24-bit data record with the S8 24-bit EOF record.

S10D0010E0006285E000628562856D
S1 record type
0D number of bytes left,address,data and checksum (13 in decimal)
0010 address
. data bytes
6D checksum

The first two characters define the record type: s0, S1, S2, S8 or 9.

The next two characters form a hexadecimal representation of the numbers of bytes left in
the record (that is, numbers of characters /2) This count must include the checksum and
addresses bytes that follow. The address field is four characters wide in 80, S1, 89 and six
characters wide in 82 and s8. The most significant character always comes first.

OBSEND always uses 81 type records wherever possible (that is, when the address is less
than $10000) and use sS2 type data records where it has to (that is, address > $FFFF).

Up to 16 data bytes then follow, with the checksum appended on the end. The checksum is
calculated by starting with $FF and subtracting the ‘real value' of all bytes sent from and
including the byte count field until the checksum itself. In this context, 'real value' means the
value of the byte before it is expanded into two ASCII characters.

The record is concluded by a CR-LF combination $0A, $0D. The s0, s8 and s9 (that is,
header and EOF) records are always the same:

S00600004844521B
and:

S804000000FB
S9030000FC

A complete example of S-record transmission may look like:

S00600004844521B

Doc ID 11392 Rev 4 KYI

ST Assembler-Linker OBSEND

6.2.7

6.2.8

S113001AFF120094FF130094D08AFF390094FF1250
S20801C004FFC0000073
<format>= x

The extended S-record format, selected by format x, sends code as described above,
except that after the s9, it sends a list of SX records, one after the other, in the format:

SX 0000 LABEL

where 0000 are four ASCII zeroes, and LABEL is five ASCII characters. There are two
spaces after the sx and one space after the 0000. 0000 represents the hexadecimal value
of the label. LABEL may extend to 31 characters, and end with a carriage return.

ST 2 and ST 4 S-record formats

<format>= 2
<format>= 4

These are industrial formats defined for specific needs:
e 2: specify 2-byte words for one address.
e 4 : specify 4-byte words for one address.

GP binary

<format>= g

This format is simple. It has a 16-byte count at the beginning low-byte first, calculated by
starting at 0, and adding the value of each byte until the end of the data is reached. If there
are any 'gaps' in your code, OBSEND fills them in with $FF, and adjusts the checksum
accordingly. After four bytes of header information, the data follows in one big block.

Doc ID 11392 Rev 4 47/89

ABSLIST ST Assembler-Linker

7 ABSLIST

7.1 Overview

As the list file with absolute addresses generated by the assembler from the source file and
the map file (ASM exl.asm -fi=ex.map) may show differences with the actually generated
code, a post processor has been written to be sure that the list file will be coherent with the
executable file.

ABSLIST is a post processor which reads a list file with relative addresses and unresolved
symbols and converts it into a list file with absolute addresses and resolved symbols. For
this, the post processor needs information which is located in two files generated by the
linker: the map file and the executable file in Motorola S-record format (.s19) or in Intel Hex
format (.hex).

This is possible because the linker does not optimize the code generated by the assembler.

The list file with relative addresses is generated by the assembler and it must include
symbols.

Thus the following assembler command must be executed first, to generate a list file with
relative addresses and including a symbol list:

asm -sym filel.asm -1li=Debug\filel.lsr

Such a list file is composed of two parts:
e A list of assembler instructions with addresses, codes and mnemonics,
e Alist of labels.

To transform relative addresses for instructions and labels, the postprocessor adds to the
relative address the start address of the corresponding segment.

The segment start address is found in the segment list of the map file.

As for the list of relative labels, there are two cases:

e Public labels: their absolute addresses can be found in the external label list of the map
file.

e Private labels: as for the instructions, the start address of the corresponding segment
must be added to the relative address.

The segment corresponding to an instruction is the last segment which has been declared
in the source file.

It is the same for a local label, so a list of labels with the segments where they are defined
must be constituted as the list file is parsed.

To generate the code for instructions with unresolved labels (subroutine calls, variable read
or write accesses), the final code is read in the executable file.

48/89 Doc ID 11392 Rev 4 KYI

ST Assembler-Linker ABSLIST

7.2

Invoking the list file post processor

Here is the full command syntax of the list file post processor:

abslist <rel list file> -o <abs list file> -exe
<application>. (s19|hex) -map <applications.map

<rel list file> ::= <file>.lsr
<abs list file> <file>.1lst

-o precedes the output list file.

-exe precedes the executable file name. The executable format can be Motorola S-Record
format or Intel Hex format. The format is recognized by reading the first line of the
executable file.

-map precedes the map file name.

-o and -map options may be omitted.

If -0 is omitted, the absolute list file name is deduced from the relative list file name by
replacing its extension with .Ist.

If -map is omitted, the map file name is deduced from the executable file name by
replacing its extension with .map.

Here is the reduced command syntax:
abslist <rel list file> -exe <applications. (s19|hex)

It is possible to convert several list files at the same time. The source file names must be
separated by "," with no blank in between. If several source file names are given and if -o
option is used, corresponding destination file names must also be given.

For example:

abslist <rel 1st filel>,<rel 1st file2>,...,<rel 1lst fileN>

-0 <abs 1st filel>,<abs 1st file2>,...,<abs 1st fileN>

-exe <application>.s19

Example:

ASM -sym -li=exl.lsr exl.asm (produces ex1.obj and ex1.Isr)
ASM -sym -li=ex2.lsr ex2.asm (produces ex2.obj and ex2.Isr)
LYN "exl.obj+ex2.obj,ex.cod; " (produces ex.cod and ex.map)
OBSEND ex.cod, f,ex.sl9,s (pro