
November 2009 Doc ID 11392 Rev 4 1/89

 UM0144
User Manual

ST Assembler-Linker

Introduction
This manual describes using the ST Assembler-Linker to develop applications for the ST7
and STM8 microcontrollers. The assembly tools described in this book form a development
system that assembles, links and formats your source code.

Purpose and scope

This manual provides information about producing an application executable for the ST7
and STM8 microcontrollers from your application source code in assembler language. It
includes:

● An overview of assembly language for the ST7 and STM8 microcontrollers

● Instructions for running the ST Assembler-Linker

● Descriptions of the assembler output

For information on related subjects refer to the following documentation:

● ST7xxxx Datasheet – full description of the ST7 xxxxmicrocontroller

● STM8xxxx Datasheet – full description of the STM8xxxx microcontroller

● ST7 Programming Manual – a complete reference to the ST7 assembly language

● STM8 Programming Manual – a complete reference to the STM8 assembly language

Figure 1. Schematic overview of the assembler toolset

LYN

Obsend

Source files

Objects (*.obj)

Listings (*.lsr) with relative addresses

*.cod

*.map

Listings (*.lst) with

Programmable binary
file (*.s19 or *.hex)

ABSLIST

ASM

Stored object
files (*.lib)LIB

absolute addresses

www.st.com

http://www.st.com

Contents ST Assembler-Linker

2/89 Doc ID 11392 Rev 4

Contents

1 Introduction . 8

1.1 ST7 and STM8 incompatibilities . 8

1.2 Tools . 9

1.3 Host PC system requirements . 9

1.4 Getting assistance . 9

1.5 Conventions . 10

2 Getting started . 11

3 ST7 and STM8 addressing modes . 12

3.1 Overview of ST7 and STM8 addressing modes . 12

3.2 General instruction syntax . 13

3.3 Short and long addressing modes . 13

3.4 Inherent addressing mode . 14

3.5 Immediate operands . 14

3.6 Direct and indirect modes . 14

3.7 Indexed modes . 16

3.8 Relative mode . 16

3.9 High, low addressing modes . 16

4 ST assembler . 18

4.1 Overview . 18

4.2 Source files . 18

4.3 Assembler source code format . 18

4.3.1 Label structure . 19

4.3.2 Label size . 19

4.3.3 Label relativity . 20

4.3.4 Label scope . 21

4.3.5 Opcodes . 22

4.3.6 Operands . 22

4.3.7 Comments . 25

4.3.8 A source code example . 25

ST Assembler-Linker Contents

Doc ID 11392 Rev 4 3/89

4.4 Segmentation . 26

4.4.1 Segments explained . 26

4.4.2 Parameters . 27

4.5 Macros . 30

4.5.1 Defining macros . 30

4.5.2 Parameter substitution . 31

4.6 Conditional assembly #IF, #ELSE and #ENDIF directives 32

4.7 Running the assembler . 33

4.7.1 Command line . 33

4.7.2 Options . 33

5 Linker . 38

5.1 What the linker does . 38

5.2 Invoking the linker . 38

5.3 Command line . 38

5.3.1 Arguments . 38

5.3.2 Response files . 39

5.4 Linking in detail . 40

5.4.1 PUBLICs and EXTERNs . 40

5.4.2 Segments in the linker . 40

5.4.3 Symbol files . 41

5.5 The linker in more detail . 42

5.5.1 The composition of the .OBJ files . 42

5.5.2 The composition of the .COD files . 42

5.5.3 Reading a mapfile listing . 42

6 OBSEND . 44

6.1 What OBSEND does for you . 44

6.2 Invoking OBSEND . 44

6.2.1 Destination type . 44

6.2.2 Destination arguments . 44

6.2.3 Format definitions . 44

6.2.4 Straight binary format . 45

6.2.5 Intel hex format . 45

6.2.6 Motorola S-record format . 46

6.2.7 ST 2 and ST 4 S-record formats . 47

Contents ST Assembler-Linker

4/89 Doc ID 11392 Rev 4

6.2.8 GP binary . 47

7 ABSLIST . 48

7.1 Overview . 48

7.2 Invoking the list file post processor . 49

7.3 Limitations . 50

8 Librarian . 51

8.1 Overview . 51

8.2 Invoking the librarian . 51

8.3 Adding modules to a library . 52

8.4 Deleting modules from a library . 52

8.5 Copying modules from a library . 53

8.6 Getting details in your library . 53

9 Definitions . 54

Appendix A Assembler directives. 55

A.1 Introduction . 55

A.2 Directives. 56

Appendix B Error messages . 78

B.1 Format of error messages. 78

B.2 File CBE.ERR . 78

B.3 Assembler errors . 79

B.4 Linking errors. 83

Revision history . 84

ST Assembler-Linker List of tables

Doc ID 11392 Rev 4 5/89

List of tables

Table 1. Description of installed files . 11
Table 2. ST7 and STM8 addressing modes . 12
Table 3. ST7 only addressing modes . 12
Table 4. STM8 addressing modes . 12
Table 5. Numeric constants and radix formats . 23
Table 6. Level 1 operators . 24
Table 7. Level 2 operators . 24
Table 8. Level 3 operators . 24
Table 9. Level 4 operators . 25
Table 10. Alignment types . 27
Table 11. Combine types . 28
Table 12. Some useful directives . 31
Table 13. Summary of conditional assembly directives . 32
Table 14. Other special #IF directives . 32
Table 15. Command line options . 33
Table 16. Output formats . 44
Table 17. Library file options. 52
Table 18. Acronyms and terms used in this document . 54
Table 19. List of directives . 55
Table 20. .BELL . 56
Table 21. BYTE . 56
Table 22. BYTES . 56
Table 23. CEQU . 57
Table 24. .CTRL . 57
Table 25. DATE . 57
Table 26. DC.B . 57
Table 27. DC.W . 58
Table 28. DC.L . 58
Table 29. #DEFINE. 58
Table 30. DS.B . 59
Table 31. DS.W . 59
Table 32. DS.L . 60
Table 33. END . 61
Table 34. EQU . 61
Table 35. EXTERN . 61
Table 36. #ELSE. 62
Table 37. #ENDIF . 62
Table 38. FAR (STM8 only) . 62
Table 39. FCS. 63
Table 40. .FORM . 63
Table 41. GROUP. 63
Table 42. #IF. 63
Table 43. #IF1 Conditional . 64
Table 44. #IF2. 64
Table 45. #IFB . 65
Table 46. #IFIDN . 65
Table 47. #IFDEF . 65
Table 48. #IFLAB . 66

List of tables ST Assembler-Linker

6/89 Doc ID 11392 Rev 4

Table 49. #INCLUDE . 66
Table 50. INTEL . 66
Table 51. INTERRUPT . 67
Table 52. .LALL . 67
Table 53. .LIST . 67
Table 54. #LOAD . 67
Table 55. LOCAL . 68
Table 56. LONG . 68
Table 57. LONGS . 69
Table 58. MACRO . 69
Table 59. MEND . 69
Table 60. MOTOROLA . 70
Table 61. NEAR . 70
Table 62. .NOCHANGE . 70
Table 63. .NOLIST . 71
Table 64. %OUT . 71
Table 65. .PAGE. 71
Table 66. PUBLIC. 71
Table 67. REPEAT . 72
Table 68. .SALL . 72
Table 69. SEGMENT . 72
Table 70. .SETDP. 73
Table 71. SKIP . 73
Table 72. STRING . 74
Table 73. SUBTTL . 74
Table 74. .TAB . 74
Table 75. TEXAS . 74
Table 76. TITLE . 75
Table 77. UNTIL . 75
Table 78. WORD . 75
Table 79. WORDS . 76
Table 80. .XALL . 76
Table 81. ZILOG . 76
Table 82. Assembler errors . 79
Table 83. Linking errors . 83
Table 84. Document revision history . 84

ST Assembler-Linker List of figures

Doc ID 11392 Rev 4 7/89

List of figures

Figure 1. Schematic overview of the assembler toolset. 1
Figure 2. Assembler source code format example . 19
Figure 3. Error message format example . 78

Introduction ST Assembler-Linker

8/89 Doc ID 11392 Rev 4

1 Introduction

1.1 ST7 and STM8 incompatibilities
The new ST7/STM8 assembler development toolchain supports both the new STM8 core
and the old ST7 core. By placing a trigger (st7/ or stm8/) in the first line of your code, you
tell the assembler which set of rules to apply.

The STM8 assembler is not compatible with the ST7 assembler.

STM8 assembler (16-bit) features that are not compatible with the ST7 assembler (8-bit):

1. X and Y are 16 bits wide (ST7 is 8 bits):

ld A,X has been replaced by ld A,XL

ld X,A has been replaced by ld XL,A

ld A,Y has been replaced by ld A,YL

ld Y,A has been replaced by ld YL,A

2. Stack pointer (SP) is 16 bits wide (ST7 is 8 bits wide):

ld A,S and ld S,A instructions have been removed

ld X,S has been replaced by ldw X,SP

ld S,X has been replaced by ldw SP,X

ld Y,S has been replaced by ldw Y,SP

ld S,Y has been replaced by ldw SP,Y

3. more generally

ld is for an 8-bit transfer, for example: ld A,$5000

ldw is for 16-bit transfer, for example: ldw X,$5000 (instead of ld X,$5000)

4. RSP instruction has been removed

5. Some addressing modes have been removed, for example:

- short pointer to short data [pointer.b], for example:

ld A,[$10.b]

btjf [$11.b],#3,skip

- short pointer to short data X or Y indexed ([pointer.b],X) or ([pointer.b],Y), for example:

ld A,([$10.b],X)

ld ([$12.b],Y),A

- short pointer to short data relative [pointer.b], for example:

jreq [$13.b]

callr [$39.b]

6. Short bit operations have been replaced by long bit operations, for example:

btjf $1011,#2,jump (instead of btjf $11,#2,jump)

bset $1000,#1 (instead of bset $00,#1)

7. .h and .l suffixes are not supported, for example:

ld A,#mem.h can be replaced by ld A,#{high mem}

ld A,#mem.l can be replaced by ld A,#{low mem}

ST Assembler-Linker Introduction

Doc ID 11392 Rev 4 9/89

Generally, the instruction sets are similar, with the following notable differences:

● The STM8 instruction set supports several new addressing modes.

– The Stack Pointer (SP) can be used as an index.

– Long pointers have been added.

– There is a new 3-byte addressing mode called extended.

– Altogether there are 6 new addressing modes:

short offset SP indexed,

extended direct,

extended offset X or Y indexed,

long pointer to long data,

long pointer to long data X indexed,

long pointer to 24-bit data X or Y indexed.

● Several new instructions have been added.

● The STM8 instruction set allows for longer instructions which may span 5 bytes,
instead of 4 for the ST7.

1.2 Tools
The ST Assembler-Linker includes the following tools:

● Assembler (ASM): translates your source code (.ASM) written in assembly language,
into object code (.OBJ) specific to the target machine and a listing file with relative
addresses(.LSR).

● Linker (LYN): processes the object files (.OBJ) produced by the assembler, resolves
all cross-references between object files and locates all the modules in memory. The
resulting code is output in an object code file (.COD).

● Converter (OBSEND): translates the object code file to produce the final executable in
a format that you specify (Motorola S-record, Intel Hex).

● List file postprocessor (ABSLIST): patches the list file generated by the assembler to
produce a new list file with absolute addresses (.LST).

● Librarian (LIB): The librarian enables you to store frequently used subroutines in one
location for use with any number of ST microcontroller applications.

Note: The utility file asli.bat automatically runs ASM, LYN, OBSEND and ABSLIST one after
the other for you. Use this batch file only if you have only one assembly source file .ASM.

1.3 Host PC system requirements
Please see the release notes to ensure you have the most up-to-date information.

1.4 Getting assistance
For more information, application notes, FAQs and software updates for all the ST
microcontroller development tools, check out the CD-ROM or our web site: www.st.com.

Introduction ST Assembler-Linker

10/89 Doc ID 11392 Rev 4

For assistance on all ST microcontroller subjects, or for help developing applications that
use your microcontroller’s MSCI peripheral, refer to the contact list provided in Product
Support. We’ll be glad to help you.

1.5 Conventions
The following conventions are used in this document:

● Bold text highlights key terms and phrases, and is used when referring to names of
dialog boxes and windows, as well as tabs and entry fields within windows or dialog
boxes.

● Bold italic text denotes menu commands (or sequence of commands), options,
buttons or checkboxes which you must click with your mouse to perform an action.

● The > symbol is used in a sequence of commands to mean “then”. For example, to
open an application in Windows, we would write: Click Start>Programs>ST Toolset>.

● Courier font designates file names, programming commands, path names and any
text or commands you must type.

● Italicized type is used for value substitution. Italic type indicates categories of items for
which you must substitute the appropriate values, such as arguments, or hypothetical
filenames. For example, if the text was demonstrating a hypothetical command line to
compile and generate debugging information for any file, it might appear as:

cxst7 +mods +debug file.c

● Items enclosed in [brackets] are optional. For example, [options] means that zero
or more options may be specified because options appears in brackets. Conversely, the
line: options means that one or more options must be specified because options is
not enclosed by brackets. As another example, the line:

file1.[o|st7]

means that one file with the extension .o or .st7 may be specified, and the line:

file1 [file2...]

means that additional files may be specified.

Blue italicized text indicates a cross-reference—you can link directly to the reference by
clicking on it while viewing with Acrobat Reader.

ST Assembler-Linker Getting started

Doc ID 11392 Rev 4 11/89

2 Getting started

Installing the ST Assembler-Linker

The ST Assembler-Linker is delivered as part of the STVD toolset. A free installation
package is available at www.st.com. To install it:

● either select ST7/STM8>ST toolset from the main menu of the Microcontroller
Development Tools CD-ROM,

● or run the installation executable that you have downloaded from the internet.

Note: See the release notes for more guidance on installing the software components.

After installation, the installation directory should contain the files listed in Table 1.

 .

Up-to-date release notes are provided in PDF format. An additional file contains
demonstration examples.

Table 1. Description of installed files

ASM.EXE ST assembler

LYN.EXE ST linker

OBSEND.EXE Output file formatter

ABSLIST.EXE List file post processor

LIB.EXE Librarian

ST7.TAB ST7 description file

STM8.TAB STM8 description file

ASLI.BAT Batch file ASM+LYN+OBSEND+ABSLIST

ASM_LNK_RELEASE_NOTES.PDF Release notes

ST7 and STM8 addressing modes ST Assembler-Linker

12/89 Doc ID 11392 Rev 4

3 ST7 and STM8 addressing modes

3.1 Overview of ST7 and STM8 addressing modes
The ST7/STM8 assembler instruction set incorporates the following addressing modes:

All the ST7 and STM8 addressing modes are described in full detail, with specific examples,
in the relevant programming manual, which can be downloaded from the internet at

Table 2. ST7 and STM8 addressing modes

Addressing mode Example

Inherent nop

Immediate ld A,#$F5

Direct (short address) ld A,$F5

Direct (long address) ld A,$F5C2

X or Y indexed (no offset) ld A,(X)

X or Y indexed (short offset) ld A,($F5,X)

X or Y indexed (long offset) ld A,($F5C2,X)

Short pointer indirect (long pointed data) ld A,[$F5.w]

Short pointer indirect (long pointed data) X or Y indexed ld A,([$F5.w],X)

Direct relative (short offset) jrt $F5

Table 3. ST7 only addressing modes

Addressing mode Example

Short pointer indirect (short pointed data) ld A,[$F5]

Short pointer indirect (short pointed data) X or Y indexed ld A,([$F5],X)

Short pointer indirect relative (short pointed data) jrt [$F5]

Short bit operation bset $10, #5

Table 4. STM8 addressing modes

Addressing mode Example

Direct (extended address) callf $F5C2A0

SP indexed (short offset) ld A,($F5,SP)

X or Y indexed (extended offset) ldf A,($F5C2A0,X)

Long pointer indirect (long pointed data) ld A,[$F5C2.w]

Long pointer indirect (long pointed data) X indexed ld A,([$F5C2.w],X)

Long pointer indirect (extended pointed data) X or Y indexed ldf A,([$F5C2.e],X)

Long bit operation bset $1000, #1

ST Assembler-Linker ST7 and STM8 addressing modes

Doc ID 11392 Rev 4 13/89

www.st.com. This chapter only gives a brief explanation of the main addressing mode
types.

3.2 General instruction syntax
The ST7 and STM8 instruction sets provide a single source-coding model regardless of
which components are operands.

● For the ST7 the operands may be:

– the accumulator (A),

– an 8-bit index register (X or Y)

– an 8-bit stack pointer (S)

– the condition code register (CC), or a memory location.

● For the STM8 the operands may be:

– the accumulator (A),

– a 16-bit index register (X or Y)

– XH,XL (where XH is the high byte, and XL is the low byte)

– YH,YL (where YH is the high byte, and YL is the low byte)

– a 16-bit stack pointer (SP)

– the condition code register (CC), or a memory location.

For example, a single instruction, ld, originates register to register transfers as well as
memory to accumulator data movements.

Two-operand instructions are coded with the destination operand in the first position.
For example,

lab01 ld A,memory ; load accumulator A with memory contents
lab02 ld memory,A ; load memory location with A contents

ld X,A ; load X with accumulator contents (ST7 only)
ld XL,A ; load XL with accumulator contents (STM8 only)

3.3 Short and long addressing modes
The ST7 has two addressing modes that differ in memory address size (one byte for short
mode and two bytes for long mode).

For the STM8, in addition to long and short modes, there is also an extended addressing
mode (three bytes).

Because of these different addressing modes, the target address range of the operands
depends upon the addressing mode chosen:

● 0-$FF for short addressing mode

● $100-$FFFF for long addressing mode

● $10000-$FFFFFF extended addressing mode (STM8 only)

Some instructions accept both long and short addressing modes, while others only accept
one or the other. For example:

lab10 add A,memory ; accepts both types of addressing modes
lab11 inc memory ; ST7 instruction accepts only short

ST7 and STM8 addressing modes ST Assembler-Linker

14/89 Doc ID 11392 Rev 4

addressing mode, while STM8 instruction
accepts both modes

push memory ; STM8 accepts only long addressing mode, push
memory does not exist for ST7

For ST7 instructions supporting both short and long formats, when external symbols are
referenced, long mode is chosen by the assembler.

For example:

EXTERN symb3;
symb1 equ $10;
...

ld A,symb1; short mode
ld A,symb3; long mode chosen

STM8 instructions using the extended addressing mode always have an F suffix. The
following instructions use the extended addressing mode:

callf $10000
jpf $20000
ldf A,($30000,X)
retf ; permits you to return to the previous function in the stack
in subroutines that are called by CALLF

3.4 Inherent addressing mode
This concept is hardware-oriented, meaning that instruction operands are coded inside the
operation code. At source code level, operands are written explicitly.

For example:

lab06 push A ; put accumulator A onto the stack
lab07 mul X,A ; multiply X by A

ldw SP,X ; load X to the stack pointer

3.5 Immediate operands
Immediate operands permit you to input a specific value for use with an instruction. They are
signaled by the use of a sharp sign (#) before the value. The range for an 8-bit immediate
operand is from 0 to 255.

For example:

lab08 ld A,#1 ; load A with immediate value 1
lab09 bset memory,#3 ; set bit #3 in memory location

btjt memory,#3,label; test bit #3 of memory and jump if
true (set)

3.6 Direct and indirect modes
A direct addressing mode means that the data byte(s) required to do the operation is
found by its memory address, which follows the op-code.

ST Assembler-Linker ST7 and STM8 addressing modes

Doc ID 11392 Rev 4 15/89

An indirect addressing mode means that the data byte(s) required to do the operation is
found by its memory address which is located in memory (pointer).

The pointer address follows the op-code. A short pointer is one byte long. A long pointer is
two bytes long.

This last group consists of memory indirect variants:

● Short pointer to short data,
for ST7 only [shortpointer .b]

● Short pointer to long data [shortpointer .w]

● Short pointer to short data X or Y indexed,
for ST7 only ([shortpointer .b],X) ([shortpointer .b],Y)

● Short pointer to long data X or Y indexed ([shortpointer .w],X) ([shortpointer .w],Y)

● For STM8 devices only:

– long pointer to long data [longpointer .w]

– long pointer to long data X indexed ([longpointer .w], X)

– long pointer to extended data X or Y indexed ([longpointer .e],X)([longpointer .e],Y)

● Pointer addresses must always be in:

– page 0 (its address must be less than $100) for the ST7

– section 0 (its address must be less than $10000) for the STM8

Examples:

● To distinguish between short and long indirect addressing mode, the suffix.w indicates
that you want to work in long indirect mode (this is also true for indexed addressing
mode).

– Short indirect means that pointed data are short (one byte long)

– Long indirect means pointed data are long (two bytes long)

● Implicitly, if nothing is specified,

– for the ST7, short indirect addressing mode is assumed, you can also use .b to
specify short indirect addressing mode (as with the indexed addressing mode).
Use .w to specify long indirect addressing mode.

– for the STM8, long indirect addressing is assumed, you could use .w but it is not
necessary. With the STM8 ldf instruction, you must use .e to specify extended
indirect addressing mode.

ld A,[80] short pointer to short (ST7) or long (ST8) data
ld A,[80.b] short pointer to short data (ST7 only)
ld A,[80.w] short pointer to long data
ld A,[$1000.w] long pointer to long data (STM8 only)
ldf A,([$1000.e],X)long pointer to 24-bit data (STM8 only)

lab12 equ 80

ld A,([lab12],X) short pointer to short (ST7) or long (ST8) data X-indexed
ld A,([lab12.b],X) short pointer to short data X-indexed (ST7 only)
ld A,([lab12.w],Y) short pointer to long data Y-indexed

ST7 and STM8 addressing modes ST Assembler-Linker

16/89 Doc ID 11392 Rev 4

3.7 Indexed modes
The ST7 supports the following types of indexed mode:

● indexed without offset,

● indexed with an 8-bit unsigned offset (range [0:255]),

● indexed with a 16-bit offset.

In addition to these modes, the STM8 also supports the following indexed mode:

● indexed with a 24-bit offset.

The source code syntax is:

● (X) or (Y) for no-offset indexing.

● (offset,X) or (offset,Y) for indexed with offset.

Some instructions (such as ld A or add) support the first three types of indexed mode.
Some ST7 instructions (such as inc) only support the first two types (that is, indexed
without offset and indexed with 8-bit unsigned offset).

The STM8 instructions (such as inc) support the first three types.

Only the STM8 instruction, ldf, supports the “indexed with 24-bit offset” addressing mode.

Examples:

ld A,(X) ; no-offset mode
ld A,(0,X) ; 8-bit offset mode
ld A,(127,X) ; 8-bit offset mode
ld A,(259,X) ; 16-bit offset mode
ldf A,($FFF00, X) ; 24-bit offset mode (STM8 only)
ld A, ($F5, SP) ; SP indexed mode, 8-bit offset short(STM8 only)

3.8 Relative mode
This addressing mode is used to modify the program counter (PC) register value by adding
an 8-bit signed offset to it (in the range -128 to +127). The relative addressing mode is made
up of two sub-modes:

● relative (direct) where the offset follows the op-code. This is used by the instructions
JRxx, CALLR, and BTJx.

● relative (indirect) where the offset is defined in memory, this address follows the op-
code (ST7 only).

The target label is specified at source code level (the assembler computes the
displacement).

3.9 High, low addressing modes
In some instances, it may be necessary to access the highest part of an address (8 highest
bits) or the lowest part of an address (8 lowest bits) as well.

For this feature in the ST7, the syntax is the following: <expression>, where
<expression> is symbol.H (highest part), or symbol.L (lowest part). Examples:

lab12 equ $0012

ST Assembler-Linker ST7 and STM8 addressing modes

Doc ID 11392 Rev 4 17/89

nop
ld A,#lab12.h; load A with $00
ld A,#lab12.l; load A with $12

In the STM8, symbols .H and .L are not available. Use low and high primitives instead for
example:

lab1 equ $112233
ld A,#{low{seg lab1}}; load A with $11
ld A,#{high lab1} ; load A with $22
ld A,#{low lab1} ; load A with $33

ST assembler ST Assembler-Linker

18/89 Doc ID 11392 Rev 4

4 ST assembler

4.1 Overview
The ST assembler program is a cross-assembler, meaning that it produces code for a target
machine (an ST7 or STM8 microprocessor) which is different from the host machine.

The assembler turns the source code files into re-locatable object modules ready for linking.

During the process, it checks for many different types of errors. These errors are recorded in
an ASCII file called cbe.err (Note that the linker also writes to this file). Error messages are
explained in Appendix B: Error messages on page 78.

To produce code ready for execution, you must run the assembler (ASM), the linker (LYN),
and the object code formatter (OBSEND).

4.2 Source files
Source program code is written in the ST7 or STM8 assembler language and is saved in an
ASCII text file named source file. A source file has the extension .asm. It is made up of
lines, each of which is terminated by a new line character.

For a complete reference of the ST7 or STM8 assembler language, refer to the relevant
programming manual.

4.3 Assembler source code format
The first line of an assembler source code file is reserved for specifying the *.tab file for the
target processor. You cannot put other instructions or comments in this line.

Use this line to specify the directory location of the *.tab file. If the directory is not specified,
by default the Assembler searches first in the current directory, then in the directory where
the Assembler’s executable is located.

The '.tab' suffix may be left out, as the assembler only looks for this file type.

The first line of your source code might look like:

st7\ or c:\sttools\asm\st7\ (to use the ST7 processor)

stm8\ or c:\sttools\asm\stm8\ (to use the STM8 processor)

If the file st7.tab (or stm8.tab) cannot be found in the specified or default directories,
then an error is produced and assembly is aborted.

The rest of the source code lines have the following general format:

[label[:]]<space>[opcode]<space>[operand]<space>[;comment]

where <space> refers to either a SPACE ($20) or a TAB ($09) character.

All four fields may be left blank, but the <space> fields are mandatory unless:

● the whole line is blank, or

● the line begins as a comment, or

● the line ends before the remaining fields.

ST Assembler-Linker ST assembler

Doc ID 11392 Rev 4 19/89

For example:

Figure 2. Assembler source code format example

The next sections describe the main components of a source code file.

4.3.1 Label structure

Labels must start in column one. A label may contain up to 30 of any of the following
characters:

● Upper case letters (A-Z)

● Lower case letters (a-z)

● Digits (0-9)

● Underscore (_)

The first letter of a label must be a letter or an underscore. Note that upper and lower case
are treated differently because assembler is case sensitive.

Upon assembly, any label that exceeds 30 characters is truncated and a warning alerts the
user that this has occurred. When truncated, if two of more labels have the same name, a
phase inconsistency error is generated.

When labels are defined, several attributes are defined along with the value. These are:

● Size (Byte, Word or Long)

● Relativity (Linker Relative or Absolute)

● Scope (Internally or Externally defined)

The function of each attribute is explained in the following sections.

4.3.2 Label size

Defining a label’s size allows the assembler to determine what kind of addressing mode to
choose even if the value associated with the label is undefined.

The default size of the memory location for a label is word (2 bytes). Whenever the label has
no suffix, then the default size is assumed.

The directives BYTES, WORDS and LONGS (4 bytes) allow you to change the default.

Regardless of the default size, you can define the size for a specific label by adding a suffix
to it:

● .b for byte,

● .w for word

● .l for long.

examp ld A,$ffff ; long addressing mode

comments

operand

opcode

label

separator

ST assembler ST Assembler-Linker

20/89 Doc ID 11392 Rev 4

The suffix is not used when the label is referred to. Using of any suffixes other than .b, .w
and .l results in an error upon assembly.

For example:

lab equ 0 ; word-size label (default)
label1.b equ 5 ; byte-size label
label2.l equ 123 ; long label

segment byte at: 80 ‘ram’
bytes ; force the size of the label to bytes

count ds.b ; byte-size label
pointer ds.w ; byte-size label with a word-size

; space reserved at this address

4.3.3 Label relativity

There are two sorts of labels: absolute labels and relative labels.

● Absolute labels are usually assigned to constants, such as IO port addresses, or
common values used within the program.

● Relative labels are defined as (or derived from) an external label or a label derived from
the position of some program code. They are exclusively used for labels defined within
pieces of program or data.

For example:

lab equ 0 ; absolute label ‘count’
ioport equ $8000 ; absolute word label ‘ioport’
 segment ‘eprom’
start ld X,#count

ld A,#’*’
loop ld ioport,A

dec X
jrne loop

stop jp stop ; then loop for ever

Only the linker can sort out the actual address of the code, as the assembler has no idea
how many segments precede this one in the class. At assembly time, labels such as 'start'
or 'loop' are actually allocated 'blank' values ($0000). These values will be filled later by the
linker. Labels such as 'count' or 'ioport', which were defined absolutely will be filled by the
assembler.

Source code lines that have arguments containing relative labels are marked with an 'R' on
the listing, showing that they are 'linker relative'. Segments are discussed in Section 4.4 on
page 26.

ST Assembler-Linker ST assembler

Doc ID 11392 Rev 4 21/89

4.3.4 Label scope

Often, in multi-module programs, a piece of code needs to refer to a label that is actually
defined in another module. To do this, the module that exports the label must declare it
PUBLIC, and the module which imports the label must declare it EXTERN. The two
directives EXTERN and PUBLIC go together as a pair.

Most labels in a program are of no interest for other pieces of the program, these are known
as 'internal' labels since they are only used in the module where they are defined. Labels
are 'internal' by default.

Here are two incomplete example modules that pass labels between them:

module 1
EXTERN _sig1.w ; import _sig1
EXTERN _sig2.w ; import _sig2
PUBLIC _handlers ; export _handlers
segment byte ‘P’

_handlers: ; define _handlers
jp _sig1 ; refer to _sig1
jp _sig2 ; refer to _sig2
end

module 2
EXTERN _handlers.w ; import _handlers (addr. is a word)
PUBLIC _sig2 ; export _sig2
segment byte ‘P’

_sig2: ; define _sig2
...
call _handlers ; refer to _handlers
...
ret
end

As you can see, module 1 refers to the '_sig2' subroutine which is defined in module 2. Note
that when module 1 refers to the '_sig2' label in an EXTERN directive it specifies a WORD
size with the '.w' suffix. Because the assembler cannot look up the definition of '_sig2' it has
to be told its address size explicitly. It doesn't need to be told relativity: all external labels
are assumed to be relative.

Absolute labels declared between modules should be defined in an INCLUDE file that is
called by all modules in the program; this idea of using INCLUDE files is very important
since it can reduce the number of PUBLIC symbols, and therefore the link time, significantly.

Lines in the source code listing which refer to external labels are marked with an X and
given 'empty' values for the linker to fill.

As a short cut, labels may be declared as PUBLIC by preceding them with a '.' at their
definition. If this is done the label name need not be given in a PUBLIC directive. For
example, the following code fragment declares the label 'lab4' as PUBLIC automatically:

lab3 ld A,#0
ret

.lab4 nop
ret

ST assembler ST Assembler-Linker

22/89 Doc ID 11392 Rev 4

4.3.5 Opcodes

The Opcode field may serve three different purposes. It may contain:

● The opcode mnemonic for an assembly instruction.

● The name of a directive.

● The name of a macro to be invoked.

Opcodes must be separated from the preceding field (that is, label, if there is one) by a
space or a tab. A comprehensive Opcode description can be found in the ST programming
manual.

Macros are discussed in Section 4.5 on page 30.

Directives are discussed in Chapter 8: Librarian on page 51.

4.3.6 Operands

Operands may be any of the following:

● Numbers and addresses.

● String and character constants.

● Program counter references.

● Expressions.

The following paragraphs explain how to use these types of operands.

Number and address representation

By default, the representation of numbers and addresses follows the MOTOROLA syntax.
When you want to use hexadecimal number with instructions or labels, they must be
preceded by $. When nothing is specified, the default base is decimal.

For example:

lab03 equ 10 ; decimal 10
lab04 equ $10 ; hexadecimal 10

ld A,$ffff ; long addressing mode
ld A,#$cb ; immediate addressing mode
ld A,#100 ; decimal representation

You can change the Motorola format representation by using directives (.INTEL, .TEXAS) to
indicate the new setting format.

For more information, refer to Appendix A: Assembler directives on page 55.

Caution: Addresses for SEGMENT definition are always given in hexadecimal:
segment byte at: 100-1FF 'test'
The segment 'test' is defined within the 256-511 address range.

Numeric constants and radix

Constants may need special characters to define the radix of the given number.

The assembler supports the MOTOROLA format by default. INTEL, TEXAS, ZILOG formats
are also available if the format is forced by .INTEL .TEXAS or .ZILOG directives. Table 5 on
page 23 shows a summary of these formats.

Note: Decimal constants are always the default, and require no special characters.

ST Assembler-Linker ST assembler

Doc ID 11392 Rev 4 23/89

String constants

String constants are strings of ASCII characters surrounded by double quotes.
For example:
“This is an ASCII string”

ASCII character constants

The assembler's arithmetic parser also handles ASCII characters in single quotes,
returning the ASCII of the given character(s). For example:

‘A’ $41
‘6’ $06
‘AB’ $4142

Up to 4 characters may be used within a single pair of quotes to give a long constant. The
following special sequences are used to denote special characters:

‘\b’ $7F backspace
‘\f’ $0C formfeed
‘\n’ $0A linefeed
‘\r’ $0D carriage return
‘\t’ $09 tabulation
‘\\’ $5C slash
‘\’ $27 single-quote
‘\0’ $00 null
‘\”’ $22 double-quote

Program counter reference

The current value of the program counter (PC) can be specified by an asterisk "*".

For example: lab05 jra *

Expressions and operators

Expressions are numeric values that may be made up from labels, constants, brackets and
operators.

Labels and constants have been discussed in previous paragraphs.

Arithmetic brackets are allowed up to 8 nested levels, the curly braces {} are used
instead of the common “()” because instructions may use a parenthesis to denote indexed
addressing modes.

Operators have 4 levels of precedence. Operators in level #1 (listed in Table 6) take
precedence over operators in level #2 (listed in Table 7), and so on. In each level, operators
have same precedence, they are evaluated from left to right.

Table 5. Numeric constants and radix formats

Format Hex Binary Octal Current PC

Motorola $ABCD or &ABCD %100 ~665 *(use MULT for MULTIPLY)

Intel 0ABCDh 100b 665o or 665q $

Texas >ABCD ?100 ~665 $

Zilog %ABCD %(2)100 %(8)665 $

ST assembler ST Assembler-Linker

24/89 Doc ID 11392 Rev 4

Table 6. Level 1 operators

Operation Result, level #1

-a negated a

a and b logical AND of A and B

a or b logical OR of A and B

a xor b logical XOR of A and B

a shr b a shifted right b times

a shl b a shifted left b times

a lt b 1 if a<b, else 0

a gt b 1 if a>b, else 0

a eq b 1 if a=b, else 0

a ge b 1 if a>=b, else 0

a ne b 1 if a unequal b, else 0

high a a/256, force arg to BYTE type

low a a MOD 256, force arg to BYTE type

offset a a MOD 65536, force arg to WORD*16 type

seg a a/65536, force arg to WORD*16 type

bnot a invert low 8 bits of a

wnot a invert low 16 bits of a

lnot a invert all 32 bits of a

sexbw a sign extend byte to 16 bits

sexbl a sign extend byte a to 32 bits

sexwl a sign extend word to 32 bits

Table 7. Level 2 operators

Operation Result, level #2

a/b a divided by b

a div b a divided by b

Table 8. Level 3 operators

Operation Result, level #3

a * b a multiplied by b

a mult b as above for motorola (character * is reserved)

ST Assembler-Linker ST assembler

Doc ID 11392 Rev 4 25/89

Operator names longer than one character must be followed by a space character. For
example, '1 AND 2' is correct, '1AND2' is not.

Place curly braces { } around arithmetic expressions.

Always use curly braces at the top-level, when defining a numeric expression. Not doing so
may produce unexpected results.

Wrong syntax:

#define SIZE 128
DS.W SIZE+1 ; Wrong, syntax error
#IF SIZE eq 1 ; Wrong, same as #IF SIZE
#ENDIF

Correct syntax:

#define SIZE 128
DS.W {SIZE+1} ; OK
#IF {SIZE eq 1} ; OK
#ENDIF

4.3.7 Comments

Comments are preceded by a semicolon. Characters following a semicolon are ignored by
the assembler.

4.3.8 A source code example

Below is an example of a short source code.

st7/
; small example module showing source formats
ioport equ $8000 ; 8 bit I0 port A
handshake equ $9000 ; write xx here to strobe

segment 'program'
start ld a,#0 ; zero counter
loop ld ioport,x ; store into ioport

segment word at: FFFC 'code'
WORD start
end

Do not worry if some directives do not make sense yet; they will be covered soon. Also, take
special notice of the SEGMENT directive.

Table 9. Level 4 operators

Operation Result, level #4

a-b a minus b

a+b a plus b

ST assembler ST Assembler-Linker

26/89 Doc ID 11392 Rev 4

4.4 Segmentation

4.4.1 Segments explained

Segments are very important. You have to understand segments before you can use the
assembler. Take the time to understand them now and you will save yourself a lot of puzzling
later.

Segmentation is a way of 'naming' areas of your code and making sure that the linker
collates areas of the same name together in the same memory area, whatever the order of
the segments in the object files. Up to 128 different segments may be defined in each
module. The segment directive itself has four arguments, separated by spaces:

[<name>] SEGMENT [<align>] [<combine>] '<class>' [cod]

For example:

FILE1:

st7/
BYTES
segment byte at: 80-FF ‘RAM0’

counter.b ds.b ; loop counter
address.b ds.w ; address storage

ds.b 15 ; stack allocation
stack ds.b ; stack grows downward

segment byte at: E000-FFFF ‘eprom’
ld A,#stack
ld S,A ; init stack pointer
end

FILE2:

st7/
segment ‘RAM0’

serialtemp ds.b
serialcou ds.b

WORDS
segment ‘eprom’

serial_in ld A,#0
end

In the preceding example, FILE1 and FILE2 are two separate modules belonging to the
same program. FILE1 introduces two classes: 'RAM0' and 'eprom'. The class-names
may be any names you choose up to 30 characters.

The first time a class is used, introduced, you have to declare the default alignment, the start
and the end addresses of the class, and of course, the name of the class.

Users generally specify a new class for each 'area' of their target system.

In the examples above, the user has one class for the 128 bytes of on-chip RAM from 0080
to 00FF ('RAM0') and another for the 'eprom'.

The code is stored from E000 to FFFF ('eprom'). You have to supply all this information
the very first time you use a new class, otherwise only the class-name is necessary, as in
FILE2.

ST Assembler-Linker ST assembler

Doc ID 11392 Rev 4 27/89

4.4.2 Parameters

Possible arguments are:

● Name

● Align

● Combine

● cod parameter, output file control

The following paragraphs describe each argument in detail, and the final paragraph
describes Copying code.

Name

The <name> argument is optional; it can contain a name of up to 12 characters. If it does,
then all segments with the same name are grouped together within their class, in the order
that new names are defined.

Align

The <align> argument defines the threshold on which each segment must start. The
default is the alignment specified at the introduction of the class (if none is specified in the
class introduction then para alignment is assumed), although the alignment types
described in Table 10 are allowed to be specified overriding the default.

Looking back to our example on page 26, you should now be able to see that the 'RAM0'
class will allocate 80 to counter, 81 to address, 92 to stack in FILE1, and when the
linker meets the segment in FILE2 of the same class, serialtemp will be allocated 93, and
serialcou 94. The same processing happens to the two 'eprom' class segments, the
second, in FILE2, will be tacked on to the end of the first in FILE1. If the FILE2 'eprom'
class segment had specified, say, the long align type instead of the default byte, then that
segment would have been put on the next long-word boundary after the end of the FILE1
'eprom' class segment.

Table 10. Alignment types

Type Description Examples

byte Any address

word Next address on boundary 1001->1002

para Next address on 16-byte boundary 1001->1010

64 Next address on 64-byte boundary 1001->1040

128 Next address on 128-byte boundary 1001->1080

page Next address on 256-byte boundary 1001->1100

long Next address on 4-byte boundary 1001->1004

1k Next address on 1k-byte boundary 1001->1400

4k Next address on 4K-byte boundary 1001->2000

ST assembler ST Assembler-Linker

28/89 Doc ID 11392 Rev 4

Combine

The <combine> argument tells the assembler and linker how to treat the segment. There
are three types to handle it:

The at-type <combine> must be used at the introduction of a class, only once.

The at-type <combine> must have one argument: the start address of the class, and may
optionally be given the end address (or limit) of the class too. If given, the linker checks that
no items in the class have gone over the limit address; if this does occur, a warning is issued
at link time. The hexadecimal numbers X and Y should not have radix specifiers.

All common-type <combine> segments that have the same class name will start at the
same address. The linker keeps track of the longest segment. common segments can be
used for sharing data across different applications.

For example:

st7/
dat1 segment byte at: 10 'DATA'

ds.w
com1 segment common 'DATA'
.lab1 ds.w 4
com1 segment common 'DATA'
.lab2 ds.w 2
com2 segment common 'DATA'
.lab3 ds.w
com2 segment common 'DATA'
.lab4 ds.w 2
dat2 segment 'DATA'
.lab5 ds.w 2

end

The values for labels lab1, lab2, lab3, lab4, and lab5 are 12, 12, 1A, 1A and 1E,
respectively.

Note: Since you cannot specify both at and common combines simultaneously, the only way to
specify the exact location of commons is to insert an empty at combine segment before the
first common declaration.

For example:

com1 segment byte at: 10 'DATA'
com1 segment common 'DATA'

...
com1 segment common 'DATA'

...

Table 11. Combine types

Type Description

at:X[-Y] Starts a new class from address X [to address Y]

common
All common segments that have the same class name will start at the
same address. This address is determined by the linker.

<none> Follows on from end of last segment of this class.

ST Assembler-Linker ST assembler

Doc ID 11392 Rev 4 29/89

cod parameter, output file control

The last field of a SEGMENT directive controls where the linker places the code for a given
class. When introducing a class, if this field is not specified, the code for this class is sent to
the normal, default.COD file by the linker. If the [cod] file is given a number between 0 and
9 then all code generated under the class being introduced will be sent to a different '.COD'
file by the linker.

If the linker produces a file called 'prog.cod', for example, then all code produced under
classes with no [cod] field will go into that file, as normal.

If one class is introduced with a [cod] field of 1, though, then all code produced under that
class is sent instead to a file prog_1.cod. The code produced under the other classes is
sent on as usual to prog.cod.

Using this scheme, you can do bank switching schemes quickly and directly, even when
multiple EPROMs share the same addressing space. Simply allocate each EPROM class of
its own, and introduce each class with a different [cod] field. This will result in the linker
collating EPROM's contents into a different .COD file for you to OBSEND independently.

For example:

segment byte at:8000-BFFF 'eprom1' 1
segment byte at:8000-BFFF 'eprom2' 2

Copying code

It sometimes happens that you need to copy a block of code from EPROM to RAM. This
presents some difficulties because all labels in that piece of code must have the RAM
addresses, otherwise any absolute address references in the code will point back to the
EPROM copy.

In this case, it helps to specify a class for execution, and use a different class for storage,
as in the following example:

segment byte at: 0 'code'
segment byte at: 8000 'ram'
segment 'ram>code'

label1:nop

The code starting from label1 will be stored in the code class as usual, but all the labels in
that special segment will be given addresses in the ram class, and memory will also be
reserved in the ram class for the contents of the special segment.

ST assembler ST Assembler-Linker

30/89 Doc ID 11392 Rev 4

4.5 Macros
Macros are assembly-time subroutines.

When you call an execution-time subroutine you have to go through several time-consuming
steps: loading registers with the arguments for the subroutine, having saved and emptied
out the old contents of the registers if necessary, pushing registers used by the subroutine
(with its attendant stack activity) and returning from the subroutine (more stack activity) then
popping off preserved registers and continuing.

Although macros don't get rid of all these problems, they can go a long way toward making
your program execute faster than using subroutines, at a cost. The cost is program size.

Each time you invoke a macro to do a particular job, the whole macro assembly code
is inserted into your source code.

This means there is no stacking for return addresses, your program just runs straight into
the code; but it is obviously not feasible to do this for subroutines above certain size.

The true use of macros is in small snippets of code that you use repeatedly, perhaps with
different arguments, which can be formalized into a 'template' for the macros' definition.

4.5.1 Defining macros

Macros are defined using three directives: MACRO, MEND and LOCAL.

The format is:

<macro-name>MACRO [parameter-1][, parameter-2 ...]
[LOCAL] <label-name>[, label-name ...]]
<body-of-macro>
MEND

For example:

add16 MACRO first,second,result
ld A,first
adc A,second
ld result,A
MEND

The piece of code of the example might be called by:

add16 index,offset,index

which would add the following statements to the source code at that point:

ld A,index
adc A,offset
ld index.X,A

Note: The formal parameters given in the definition have been replaced by the actual
parameters given on the calling line.

These new parameters may be expressions or strings as well as label names or constants.
Because they may be complex expressions, they are bracketed when there is any extra
numeric activity; this is to make sure they come out with the precedence correctly parsed.

Macros do not need to have any parameters. You may leave the MACRO argument field blank
(and, in this case, give no parameters on the calling line).

ST Assembler-Linker ST assembler

Doc ID 11392 Rev 4 31/89

There is one further problem: because a macro may be called several times in the same
module, any labels defined in the macro will be duplicated. The LOCAL directive gets around
this problem:

For example:

getio MACRO
LOCAL loop

loop ld A,$C000
jra loop
MEND

This macro creates the code for a loop to await IO port at $C000 to go low. Without the
LOCAL directive, the label 'loop' would be defined as many times as the macro is called,
producing syntax errors at assembly time.

Because it's been declared LOCAL at the start of the MACRO definition, the assembler takes
care of it. Wherever it sees the label 'loop' inside the macro, it changes the name 'loop' to
'LOCXXXX' where XXXX is a hex number from 0000 to FFFF.

Each time a local label is used, XXXX is incremented. So, the first time the getio macro is
called, 'loop' is actually defined as 'LOC0', the second time as 'LOC1' and so on, each of
these being a unique reference name. The reference to 'loop' in the 'if' statement is also
detected and changed to the appropriate new local variable.

The directives in Table 12 are very useful, in conjunction with macros:

4.5.2 Parameter substitution

The assembler looks for macro parameters after every space character. If you want to
embed a parameter, for example, in the middle of a label, you must precede the parameter
name with an ampersand '&' character, to make the parameter visible to the preprocessor.
For example, if we have a parameter called 'param'.,

dc.w param

It works as expected, but the ampersand is necessary on:

label¶m:nop
label¶m&_¶m:nop

Otherwise 'labelparam' would be left as a valid label name; If the macro parameter
'param' had the value '5', then 'label5' and 'label5_5' would be created.

Table 12. Some useful directives

Directive Usage

#IFB To implement macro optional parameters.

#IFDEF To test if a parameter is defined.

#IFLAB To test if a parameter is a label.

#IFIDN To compare a parameter to a given string.

ST assembler ST Assembler-Linker

32/89 Doc ID 11392 Rev 4

4.6 Conditional assembly #IF, #ELSE and #ENDIF directives
Conditional assembly is used to choose to ignore or select whole areas of assembler code.
This is useful for generating different versions of a program by setting a particular variable in
an INCLUDE file that forces the use of certain pieces of code instead of others.

There are three main directives used to perform conditional assembly, as shown in Table 13.

The condition given with the '#IF' may take the form of any numeric expression. The rule for
deciding whether it resolves to 'true' or 'false' is simple: if it has a zero value then it is false,
else it is true. These directives should NOT start at column 1 of the line, reserved for labels.
For example:

#IF {count eq 1}
%OUT 'true'
#ELSE
%OUT 'false'
#ENDIF

This sequence would print true if the label count did equal 1, and ‘false’ if it did not.
For example:

#IF {count gt 1}
%OUT count more than one
#IF {count gt 2}
%OUT ...and more of TWO !
#ELSE
%OUT ...but not more than two!
#ENDIF
#ELSE
%OUT count not more than one
#ENDIF

As you can see, conditionals may be nested, the #ELSE and #ENDIF directive are assumed
to apply to the most recent unterminated #IF.

Other special #IF directives are available as shown in Table 14.

 .

Table 13. Summary of conditional assembly directives

Directive Usage

#IF
Marks the start of the conditional and decides whether the following zone will be
assembled or not.

#ELSE Optionally reserves the condition of the previous #IF for the following zone.

#ENDIF Marks the end of the previous #IF's.

Table 14. Other special #IF directives

Directive Usage

#IF1 and
#IF2

Requires no conditional argument. If the appropriate pass is. being assembled, the
condition is considered 'true'; for instance #IF1 will be considered true while the
assembler is in first pass, #IF2 while in the second pass.

#IFDEF Checks for label definition.

ST Assembler-Linker ST assembler

Doc ID 11392 Rev 4 33/89

4.7 Running the assembler

4.7.1 Command line

The assembler needs the following arguments:

ASM <file to assemble>, <listing file>, <switches> [;]

If any or all the arguments are left out of the command line, you'll be prompted for the
remaining arguments. For example:

ASM
STMicroelectronics - Assembler - rel. 4.44
File to Assemble: game

In the example above, no parameters were given on the command line, so all the
parameters were prompted for.

The <file to assemble> parameter assumes a default suffix ".ASM". For example, if
you type 'game' then 'game.asm' is the actual filename used.

The listing file is the file to which the assembly report is sent if selected. The default
filename (which is displayed in square brackets), is made from the path and base-name of
the file to assemble. The default filename suffix for the assembly report file is ".LST". For
instance, if you type 'game', then 'game.lst' is the actual filename used.

Note that unless the assembler is told to create either a pass-1 or pass-2 complete listing by
the options argument, the listing file will not be created.

4.7.2 Options

Options are always preceded with a minus sign '-'. Upper and lower cases are accepted to
define options. Supported options are listed in Table 15.

#IFB
Checks for empty argument (that is, empty, or containing spaces / tabs), useful for
testing macro parameter existence.

#IFF (IF False) is similar to #IF, but checks the negation of the condition argument.

#IFIDN
Tests for string equality between two arguments separated by a space. This is useful
for testing macro parameters against fixed strings.

#IFLAB Checks if the argument is a predefined label.

Table 14. Other special #IF directives

Directive Usage

Table 15. Command line options

Option Function

-SYM Enable symbol table listing (see page 34)

-LI

-LI=<listfile>

Enable pass-2 listing (see page 34)

Enable listing and specify name of list file

-OBJ=<path> Specify .OBJ file (see page 34)

-FI=<mapfile> Specify 'final' listing mode (see page 35)

ST assembler ST Assembler-Linker

34/89 Doc ID 11392 Rev 4

SYM option

LI option

OBJ option

-D <1> <2> #define <1> <2> (see page 36)

-I Specify paths for included or loaded files (see page 36)

-M Output make rule (see page 37)

-PA Enable pass-1 listing (see page 37)

-NP Disable phase errors (seepage 37)

Description: Allows the generation of a symbol table.

Format: ASM <file> -sym

Example: ASM prog -sym

The output is the file prog.sym

Description: Request to generate a complete listing file. To specify the pathname for the
generated list file use the option -li=<pathname>. The default extension
is LST. Note that the extension must be three characters long.

Format: ASM <file> -li or

ASM <file> -li=<pathname>

Example: ASM prog -li

The output is the file prog.lst in the current directory
ASM prog -li=obj\prog

The output is the file obj\prog.lst
ASM prog -li=prog.lsr

The output is the file prog.lsr

Description: You can specify the pathname for the generated .OBJ file, using this option:

Format: ASM <file> -obj=<pathname>

Example: ASM prog -obj=obj\prog

Forces the assembler to generate the object file obj\prog.obj.

Table 15. Command line options

Option Function

ST Assembler-Linker ST assembler

Doc ID 11392 Rev 4 35/89

FI option

Note: Instead of using ASM -fi, it is advised to use the list file post processor ABSLIST
which guarantees that the final list file is consistent with the executable code
generated by the linker.

Note: When assembling in '-fi' mode, the assembler uses the map file produced by the linker,
and no object files are generated.

When using the option -fi=<file>.map, the assembler step may fail under certain
circumstances:

● If there are empty segments (Error 73). To avoid this, comment out any empty
segments.

● If you try to assemble a file that has not been used to produce the .map file (Error
73).

● Some EXTERN labels are never used (Warning 80). To avoid this, comment the
unused EXTERN labels out.

Description: One side effect of using a linker is that all modules are assembled
separately, leaving inter modules' cross-references to be fixed up by the
linker. As a result the assembler listing file set all unresolved references to 0,
and displays a warning character.
The -fi option enables you to perform an absolute patch on the desired
listing. Therefore, you must have linked your application to compute
relocations and produce a .COD file and a map file.
To generate a full listing, you must not have made any edits since the last
link (otherwise the named map-file would be 'out of date' for the module
being assembled). This is not usually a problem since full listings are only
needed after all the code has been completed. -fi automatically selects a
complete listing.

Format: ASM <file> -fi=<file>.map
The output <file>.lst contains the absolute patches.

Example: ASM ex1 (produces ex1.obj)

ASM ex2 (produces ex2.obj)

LYN ex1+ex2,ex (produces ex.map, ex.cod)
(see Chapter 5: Linker on page 38)

ASM ex1 -fi=ex.map (produces ex1.lst)

ASM ex2 -fi=ex.map (produces ex2.lst)

ST assembler ST Assembler-Linker

36/89 Doc ID 11392 Rev 4

D option

Note: If you specify multiple -D switches, they should always be separated by a space.

I option

Description: Allows to specify a string that is to be replaced by another during the
assembly.
A blank space or = is required between the string to be replaced and the
replacement string. For example -D <string> 2 is the same as -D
<string>=2.
It is possible to specify only one argument (-D <string>). In which case,
<string> is replaced with 1.

This is extremely useful for changing the assembly of a module using #IF
directives, because you can change the value of the #IF tests from the
assembler's command line. It means that you can run the assembler with
different -D switches on the same source file, to produce different codes.

Format: ASM <file> -D <string> <string> or

ASM <file> -D <string>=<string> or

ASM <file> -D <string>

Example: ASM ex1 -D EPROM 2 -D RAM 3
ASM ex1 -D EPROM=2 -D RAM=3

In both cases, EPROM is replaced with 2, RAM is replaced with 3.

ASM ex1 -D EPROM

In this case EPROM is replaced with 1.

Description: Used to specify the list of search paths for files that are included (with
#include) or loaded (with #load). The paths can be separated by the ;
character and the path list must be enclosed within double quotes. You can
also enter multiple include paths by using the -I option more than once and
separating each with a blank space.
The current working directory is always searched first. After that, the ST
assembler searches directories in the same order as they were specified
(from left to right) in the command line.

Format: ASM -I="<path1>;<path2>;...;<pathN>" call or

ASM -I="<path1>" -I="<path2>"... -I="<pathN>" call

Example: ASM -I="include;include2" call or

ASM -I="include" -I="include2" call

ST Assembler-Linker ST assembler

Doc ID 11392 Rev 4 37/89

M option

PA option

NP option

Description: Tells the ST assembler to output a rule suitable for make, describing the
dependencies to make an object file.
For a given source file, the ST assembler outputs one make rule whose
target is the object file name for that source file and whose dependencies
are all the included (#include) source files and loaded (#load) binary files it
uses. The rule is printed on the standard output.

Format: -M <source file name>

Example: ASM -I="include;include2" -M call

The output appears on the screen as the rule:
call.obj: call.asm include\map.inc include2\map2.inc
include\map3.inc include\code.bin

Description: Request to generate a pass-1 listing. In this listing internal forward
references are not yet known. They are marked as undefined with a 'U' in the
listing file.

Format: ASM <file> -pa

Example: ASM file1 -pa

The output file is file1.lst

Description: Disables the error generation.

Format: ASM <file> -np

Example: ASM file1 -np

Linker ST Assembler-Linker

38/89 Doc ID 11392 Rev 4

5 Linker

5.1 What the linker does
After having separately assembled all the component modules in your program, the next
step is to link them together into a .COD file which can then be sent on to its final destination
using OBSEND.

This linking process is not just as a simple concatenation of the object modules. It resolves
all the external references. If a referenced label is not defined as PUBLIC, an error is
detected. It also checks the type of relocation to do, places the segment according to your
mapping, and checks if any of them is overrun.

5.2 Invoking the linker

5.3 Command line

5.3.1 Arguments

The linker needs the following arguments:

LYN [-no_overlap_error] <.OBJ file>[+<.OBJ file>...],
[<.COD file>],[<lib>][+<lib>...]

-no_overlap_error forces the generation of the .cod executable even if some
segments overlap.

If all or any arguments are left out of the command line, you will be prompted. For example:

LYN
STMicroelectronics - Linker - rel 3.00
.OBJ files: begin
.COD file [begin.cod]: begin
Libraries:

The .OBJ files are simply a list of all the object files that form your program. The .OBJ suffix
may be left out, and if more than one is specified they should be separated by '+' characters,
for example game+scores+keys would tell the linker to link game.obj, scores.obj and
key.obj. Object file path names should not include '-' or ';' characters. Character '.'
should be avoided, except for suffixes.

The .COD file has a default name formed of the first object file's name with forced suffix of
.COD. This will be the name of the file produced at the end of the link session. It contains all
the information from the link session in a special format: however, OBSEND must be used on
the .COD file before it is ready to use. If the default filename is not what you want, the
filename given at the prompt is used instead. The suffix will be forced to .COD if left blank.
The default is selected by leaving this argument blank at the command line, or pressing
<ENTER> at the prompt.

The Libraries prompt asks for a list of library files generated by the lib utility that should
be searched in case of finding unresolved external references. The format for giving multiple
libraries is the same as for the .OBJ list, except the suffix .LIB is assumed.

ST Assembler-Linker Linker

Doc ID 11392 Rev 4 39/89

Some examples:

Linking together the modules game.obj, scores.obj, key.obj, game1.obj,
game2.obj and game3.obj without using any libraries and generating a .COD file named
game.cod, requires the following command line:

LYN game+scores+keys+game1+game2+game3;

Linking the same modules in the same environment, but generating a .cod file named
prog.cod requires the following command line:

LYN game+scores+keys+game1+game2+game3,prog;

5.3.2 Response files

Response files are text files that replace the command line to generate the arguments
required. Although they can be used on the assembler and linker, it only really makes sense
to use them on the linker.

The command line given with the name of the program to execute (here LYN) can only take
up to 128 characters as its argument. For most programs this is fine, but the linker allows up
to128 modules to be linked in one run; all their names have to be declared to the linker in its
first argument.

This is where response files come in, they allow you to redirect the command line parser
to a file instead of expecting arguments to come from the command line or the keyboard. A
response file is invoked by giving an ‘@’ sign and a filename in response to the first argument
you want to come from the response file.

The filename is assumed to have a suffix '.RSP' if none is supplied. Repeating our example
used as earlier, but this time with a response file called game.rsp:

LYN @game.rsp

is all that needs to be typed, and the file game.rsp must contain:

game+scores+keys+

game1+

game2+game3

prog

Which echoes what would have been typed at the keyboard. If the response file ends
prematurely, the remaining arguments are prompted for at the keyboard. In very large
session, the .OBJ files argument will not fit on one line: it can be continued to the next by
ending the last .OBJ file on the first line with a '+'.

Note: When using response files, there must be at least two carriage returns at the end of the file.

Linker ST Assembler-Linker

40/89 Doc ID 11392 Rev 4

5.4 Linking in detail

5.4.1 PUBLICs and EXTERNs

All labels declared external in the modules being linked together must have a corresponding
PUBLIC definition in another module. If it does not, it may be an error. Similarly, there must
only be one PUBLIC definition of a given label.

The bulk of the linker's job is filling those relative or external blanks left by the assembler in
the .OBJ files; to a lesser extent, it also handles special functions such as DATE or SKIP
directives. Equally important, it has to collate together and allocate addresses to segments.

5.4.2 Segments in the linker

A typical system may look like the diagram alongside: a good candidate for four different
segments, perhaps named RAM0, RAM1, EPROM and ROM.

If the reset and interrupt vectors live at the end of the map, perhaps from FFEE-FFFF then
we might mark a fifth segment called vectors at those addresses and truncate ROM to end
at FFED; that way the linker will warn us if ROM has so much code in it that it overflows into
where the vectors live. These classes would be introduced as follows:

segment byte at: 0-FF 'RAM0'
segment byte at: 100-027F 'RAM1'
segment byte at: 8000-BFFF 'EPROM'
segment byte at: C000-FFDF 'ROM'
segment byte at: FFE0-FFFF 'VECTORS'

After their full introduction that needs only be done once in the whole program, the rest of
the program can refer to the classes just by giving the class names in quotes, for example:

If this example followed immediately after the class instruction the 'xtemp' label would be
given the value 0, time would be given 2 and hex C000. If, however, the code was several
modules away from the introduction with segments of the classes 'RAM0' or 'ROM', then the
value allocated to all the labels will depend on how much space was used up by those
modules. The linker takes care of all this allocation. This is the way the linker handles the
problems of relocatability; keep in mind that this link system is going to have to handle
compiled code from high level languages and you will perhaps begin to understand why
things have to be generalized so much.

So far the segments we have looked at have had no <name> field, or, more accurately, they
all had a null <name> field. You can ensure that related segments of the same class,
perhaps scattered all over your modules with segments of the same class are collated
together in a contiguous area of the class memory by giving them the same name.

segment 'RAM0'

xtemp ds.w ; temp storage for X register

time ds.b ; timer count index

segment 'ROM'

hex ld A,#1

add A,#10

nop

ST Assembler-Linker Linker

Doc ID 11392 Rev 4 41/89

For example:

grafix segment byte at: 100-027F 'RAM1'
cursor_buf ds.b 64 ; buffer for map under cursor

segment byte at: 8000-BFFF 'ROM'
show_page nop

segment 'RAM1'
field-buf ds.b {{256 mult 256}/8}

segment 'ROM'
dump_buf ld A,field_buffer
grafix segment 'RAM1'
cursor_temp ds.b 64

This complex sequence of segments shows now instances of the class RAM1 being used
with a segment name of grafix. Because the first instance of the class RAM1 had the
name grafix the two grafix RAM1 segments are placed in memory first followed by the
null-name RAM1 segment (which defines field_buf). Note this is not the order of the
segments in the code, segments with the same name are collated together (even from
separate .OBJ files), and the lumps of segments of the same name are put into memory in
the order that the names are found in the .OBJ files.

As explained on page 29, if x is your cod file suffix when introducing a class, all code for that
code is sent into a new cod-file named file_x.cod, where file is the name of the first
cod file, and x is the cod-file suffix (1-9).

5.4.3 Symbol files

At the end of a successful link, one or more .OBJ files will have been combined into a single
.COD file. A .MAP file will have been produced, containing textual information about the
segments, classes and external labels used by the .OBJ module(s). Finally a compact
.SYM file is generated, containing all PUBLIC symbols found in the link with their final
values.

The linker supports a special feature, you can link in .SYM files from other link sessions.
This means that with big programs, you cannot only partition your code at assembler level,
but divide the code up into 'lumps' which are linked and loaded separately, but have access
to each other's label as EXTERNs. You can 'link in' a symbol table simply by giving its name
with the suffix .SYM. Always give symbol tables at the start of the object file list.

OBJ file example: LYN prog1.sym+prog2,vectors,irq;

Once this is done, all the PUBLIC symbols from prog1.sym are now available as PUBLICs
to prog2.obj, vectors.obj and irq.obj.

Because changes in one link will not automatically update references to the changed link
code in other links, it is necessary when using this technique to 'fix' each link in an area of
memory, and have a 'jump table' at the top of each area. This means that all 'function'
addresses are permanently fixed as jump table offset, and changes to each link will result in
automatic redirection of the jump targets to the new start of each routine. Put another way,
each link must have entry fixed points to all its routine, otherwise re-linking one 'lump' of a
program could make references to its addresses in other modules out of date.

Linker ST Assembler-Linker

42/89 Doc ID 11392 Rev 4

5.5 The linker in more detail

5.5.1 The composition of the .OBJ files

The .OBJ files produced by the assembler contain an enormous amount of overhead,
mostly as coded expressions describing exactly what needs to go into the 'blank spaces' the
assembler has been so liberal with. The linker contains a full arithmetic parser for working
out complex expressions that include external labels: this means (unlike most other
assemblers) there are few restrictions on where external labels may appear.

The assembler also includes line-number information with the .OBJ file, connecting each
piece of generated object code with a line number from a given source file.

.OBJ files also contain 'special' markers for handling SKIP and DATE type directive.

5.5.2 The composition of the .COD files

The .COD files, on the other hand, contain very little overhead; there are six bytes per
segment that describe the start address and length of that segment. Besides that, the rest of
the code is in its final form. A segment of zero length marks the end of the file. It only
remains for OBSEND to take the code segment by segment and send it on to its destination.

5.5.3 Reading a mapfile listing

The linker also generates files with the suffix .SYM and .MAP in addition to the .COD file we
have already discussed. The .SYM file contains a compact symbol table list suitable with the
debuggers and simulators.

The .MAP file listing shows three important things: a table of segments with their absolute
address, a table of all classes in the program, and a list of all external labels with their true
values, modules they were defined in and size.

Here is an example MAPFILE, where one of the class, ROM, has gone past its limit,
overwriting (or more correctly, having part of itself overwritten by) VECTORS.

The [void] on some segments in the segment list says that these segments were not used
to create object code, but were used for non-coding-creating tasks such as allocating label
values with ds.b etc. The number in straight brackets on the segment as true address list
shows how many segments 'into' the module this segment is, that is, the 1st, 2nd etc. of the
given module. The first x-y shows the range of addresses. The def (line) field on the
external labels list shows the source code file and line number that this label was defined in.
The number at the start of each class list line is the cod-file that the class contents were sent
to (default is 0).

Segment address list:

prog [1] 10- 86 0- 6 ‘RAM0' [void]

prog [2] 88- 278 100- 138 'RAM1' [void]

main [1] 8- 563 8000- 875B 'eprom'

prog [4] 282- 889 C000- C508 'rom'

main [2] 568- 1456 C509- F578 'rom'

monitor [1] 8- 446 F579- FFF9 'rom'

monitor [2] 448- 467 FFEE- FFFF 'vectors’

ST Assembler-Linker Linker

Doc ID 11392 Rev 4 43/89

Class list:

The external label list only includes labels that were declared PUBLIC: labels used
internally to the module are not included. This table is most useful for debugging purposes,
since the values of labels are likely to be relocated between assemblies. The labels are
given in first-character-alphabetic order.

External label list:

0‘RAM0' byte from 0 to 78 (lim FF) 45% D

0‘RAM1' byte from 100 to 138 (lim 27F) 50% D

0‘eprom' byte from 8000 to 875B (lim BFFF) 21% C

0‘rom' byte from C000 to FFF9 (lim FFDF) C*Overrun*

0‘vectors' byte from FFEE to FFFF (lim FFFF) 100% D

Symbol Name Value Size Def(line)

char 64 BYTE game.obj(10)

char1 66 BYTE game.obj(11)

label ABCD WORD game.obj(25)

3 labels

OBSEND ST Assembler-Linker

44/89 Doc ID 11392 Rev 4

6 OBSEND

6.1 What OBSEND does for you
After your program has been assembled and linked to form a .COD file it must be sent to the
place where it will be executed. Right now, your code is just stored as a file on a disk where
the target system cannot get at it.

OBSEND is a general purpose utility for .COD files in various ways using various formats.

6.2 Invoking OBSEND
OBSEND follows the same standard formats as the rest of the assembler / linker; arguments
can be given from the command line, keyboard or response file. The general syntax is:

OBSEND <file>,<destination>[,<args>],<format>

where <file> is the name of the .COD file to be formatted (default extension .COD). If the
filename is not given on the command line, you are prompted at the keyboard with:

OBSEND
STMicroelectronics - Obsend - rel. .2.00
File to Send: test
Destination Type (<f>ile,<v>ideo): f
Final Object code Filename [test.fin]: test.s19
Object Format <ENTER>=Straight Binary, ...,

ST REC <2>, ST REC <4>: s

6.2.1 Destination type

<destination> can be f (file) or v (video). Only a single character is required.

6.2.2 Destination arguments

When the destination type is f (file) the argument <filename> tells OBSEND where to
send the code. The default suffix .FIN is assumed if none is given. For example:

OBSEND test,f,image.s19,s

The command generates the file image.s19 containing the code from test.cod, in S-
record s format.

When the destination code is "v" (video), this field is void.

6.2.3 Format definitions

<format> specifies the output format. Output format options are listed in Table 16.

Table 16. Output formats

<format> Output format

<none> straight binary, that is, a bit-for-bit image

i Intel hex

ST Assembler-Linker OBSEND

Doc ID 11392 Rev 4 45/89

6.2.4 Straight binary format

<format>= <none>

This is the simplest of the formats. It is nothing but a bit-for-bit copy of the original file. This is
the usual mode for sending to the EPROM emulators, etc., and is the default if no format
argument is given.

Note: When the destination is the screen (the destination code is "v"), do not use this format;
otherwise you get weird control codes.

<format>= <f>

This is the ‘filled’ straight binary format where gaps between adjacent segments are filled
with $FF.

6.2.5 Intel hex format

<format>= i

This format is very much more complex. Intel hex bears similarities to S-record that we look
at later. Let's look at a line of the Intel hex format in detail:

:10190000FFFFFFFFFFC00064FFC0006462856285E0
10 number of data bytes (16 in decimal)
1900 address
00 record type
... data bytes
E0 checksum

The first thing to note is that everything is in printable ASCII. Eight-bit numbers are
converted into two-character hexadecimal representation.

Each line begins with an ASCII ':' ($3A) character.

The next two characters form a byte that declares how many data bytes follow in the data
byte section a little further along.

The next four characters form a 16-bit high-byte first number that specifies the address for
the first byte of this data; the rest follows on sequentially.

i32 Intel hex with 32 bytes of data per line

ix Intel hex extended

s Motorola S-record (1 byte per address, for example ST7)

x Motorola S-record extended with symbol file

2 ST S-record 2 (2 bytes per address, for example D950)

4 ST S-record 4 (4 bytes per address, for example ST18932 program space)

f 'Filled' straight binary format

g GP industrial binary format

Table 16. Output formats

<format> Output format

OBSEND ST Assembler-Linker

46/89 Doc ID 11392 Rev 4

The next two characters are the record type for this line: 00 is a data line, and 01 signals
EOF. The following characters, until the last two, are the 16 data bytes for this line, the last
two are a checksum for the line, calculated by starting with $00 subtracting the real value of
all characters sent after the ':' until the checksum itself. 'Real value' means that for example,
the two characters 3 and 0 should subtract $30 from the checksum, not 51 and 48. Every
line ends with a CR-LF combination, $0A and $0D.

The last line sent must be an END-OF-FILE line, which is denoted by a line with no data
bytes and a record type of 01 instead of 00.

Giving I32 or i32 instead of intel as the argument uses the same format, but sends 32 bytes
of data per line.

6.2.6 Motorola S-record format

<format>= s

This is another complex method for sending data. Again it cuts the data into 16-byte
'records' with overhead both sides. S-record come in four types: S0, known as a header
record, S1 and S2 data records with 16 and 24-bit address fields, and S9 and S8 EOF
records with 16 and 24-bit address fields.

Note: The convention is to close an S1 16-bit data record with the S9 16-bit EOF record, and to
close an S2 24-bit data record with the S8 24-bit EOF record.

S10D0010E0006285E000628562856D
S1 record type
0D number of bytes left,address,data and checksum (13 in decimal)
0010 address
.... data bytes
6D checksum

The first two characters define the record type: S0, S1, S2, S8 or S9.

The next two characters form a hexadecimal representation of the numbers of bytes left in
the record (that is, numbers of characters /2) This count must include the checksum and
addresses bytes that follow. The address field is four characters wide in S0, S1, S9 and six
characters wide in S2 and S8. The most significant character always comes first.

OBSEND always uses S1 type records wherever possible (that is, when the address is less
than $10000) and use S2 type data records where it has to (that is, address > $FFFF).

Up to 16 data bytes then follow, with the checksum appended on the end. The checksum is
calculated by starting with $FF and subtracting the 'real value' of all bytes sent from and
including the byte count field until the checksum itself. In this context, 'real value' means the
value of the byte before it is expanded into two ASCII characters.

The record is concluded by a CR-LF combination $0A, $0D. The S0, S8 and S9 (that is,
header and EOF) records are always the same:

S00600004844521B

and:

S804000000FB
S9030000FC

A complete example of S-record transmission may look like:

S00600004844521B

ST Assembler-Linker OBSEND

Doc ID 11392 Rev 4 47/89

S113001AFF120094FF130094D08AFF390094FF1250
S20801C004FFC0000073

<format>= x

The extended S-record format, selected by format x, sends code as described above,
except that after the S9, it sends a list of SX records, one after the other, in the format:

SX 0000 LABEL

where 0000 are four ASCII zeroes, and LABEL is five ASCII characters. There are two
spaces after the SX and one space after the 0000. 0000 represents the hexadecimal value
of the label. LABEL may extend to 31 characters, and end with a carriage return.

6.2.7 ST 2 and ST 4 S-record formats

<format>= 2

<format>= 4

These are industrial formats defined for specific needs:

● 2: specify 2-byte words for one address.

● 4: specify 4-byte words for one address.

6.2.8 GP binary

<format>= g

This format is simple. It has a 16-byte count at the beginning low-byte first, calculated by
starting at 0, and adding the value of each byte until the end of the data is reached. If there
are any 'gaps' in your code, OBSEND fills them in with $FF, and adjusts the checksum
accordingly. After four bytes of header information, the data follows in one big block.

ABSLIST ST Assembler-Linker

48/89 Doc ID 11392 Rev 4

7 ABSLIST

7.1 Overview
As the list file with absolute addresses generated by the assembler from the source file and
the map file (ASM ex1.asm -fi=ex.map) may show differences with the actually generated
code, a post processor has been written to be sure that the list file will be coherent with the
executable file.

ABSLIST is a post processor which reads a list file with relative addresses and unresolved
symbols and converts it into a list file with absolute addresses and resolved symbols. For
this, the post processor needs information which is located in two files generated by the
linker: the map file and the executable file in Motorola S-record format (.s19) or in Intel Hex
format (.hex).

This is possible because the linker does not optimize the code generated by the assembler.

The list file with relative addresses is generated by the assembler and it must include
symbols.

Thus the following assembler command must be executed first, to generate a list file with
relative addresses and including a symbol list:

asm -sym file1.asm -li=Debug\file1.lsr

Such a list file is composed of two parts:

● A list of assembler instructions with addresses, codes and mnemonics,

● A list of labels.

To transform relative addresses for instructions and labels, the postprocessor adds to the
relative address the start address of the corresponding segment.

The segment start address is found in the segment list of the map file.

As for the list of relative labels, there are two cases:

● Public labels: their absolute addresses can be found in the external label list of the map
file.

● Private labels: as for the instructions, the start address of the corresponding segment
must be added to the relative address.

The segment corresponding to an instruction is the last segment which has been declared
in the source file.

It is the same for a local label, so a list of labels with the segments where they are defined
must be constituted as the list file is parsed.

To generate the code for instructions with unresolved labels (subroutine calls, variable read
or write accesses), the final code is read in the executable file.

ST Assembler-Linker ABSLIST

Doc ID 11392 Rev 4 49/89

7.2 Invoking the list file post processor
Here is the full command syntax of the list file post processor:

abslist <rel_list_file> -o <abs_list_file> -exe
<application>.(s19|hex) -map <application>.map

<rel_list_file> ::= <file>.lsr
<abs_list_file> ::= <file>.lst

-o precedes the output list file.

-exe precedes the executable file name. The executable format can be Motorola S-Record
format or Intel Hex format. The format is recognized by reading the first line of the
executable file.

-map precedes the map file name.

-o and -map options may be omitted.

If -o is omitted, the absolute list file name is deduced from the relative list file name by
replacing its extension with .lst.

If -map is omitted, the map file name is deduced from the executable file name by
replacing its extension with .map.

Here is the reduced command syntax:

abslist <rel_list_file> -exe <application>.(s19|hex)

It is possible to convert several list files at the same time. The source file names must be
separated by "," with no blank in between. If several source file names are given and if -o
option is used, corresponding destination file names must also be given.

For example:

abslist <rel_lst_file1>,<rel_lst_file2>,...,<rel_lst_fileN>
-o <abs_lst_file1>,<abs_lst_file2>,...,<abs_lst_fileN>
-exe <application>.s19

Example:

ASM -sym -li=ex1.lsr ex1.asm (produces ex1.obj and ex1.lsr)
ASM -sym -li=ex2.lsr ex2.asm (produces ex2.obj and ex2.lsr)
LYN "ex1.obj+ex2.obj,ex.cod; " (produces ex.cod and ex.map)
OBSEND ex.cod,f,ex.s19,s (produces ex.s19)
ABSLIST ex1.lsr -o ex1.lst -exe ex.s19 (produces ex1.lst)
ABSLIST ex2.lsr -o ex2.lst -exe ex.s19 (produces ex2.lst)

Or

ABSLIST ex1.lsr,ex2.lsr -exe ex.s19 (produces ex1.lst and ex2.lst)

ABSLIST ST Assembler-Linker

50/89 Doc ID 11392 Rev 4

7.3 Limitations
1. There is one main limitation. The update of the relative address is based on the search

of the last declared segment. If the search cannot succeed because of the use of
.NOLIST directives which hide segment declarations, the absolute file cannot be
properly generated.
There is the same problem with .XALL and .SALL for macro expansions. If a segment
is declared in a macro, these directives should not be used.
There is the same kind of problem for label definitions which are removed from the list
file by the previously mentioned directives. Label definitions are needed to compute the
addresses of labels printed in the symbol table at the end of the list file.
In conclusion, do not use .NOLIST, .XALL and .SALL primitives to hide code where
segments are declared or labels are defined.

2. There is another limitation regarding the use of the EQU and CEQU directives to define
private labels.
The addresses of public labels can be found in the symbol table generated in the map
file.
There is a problem with private labels set by EQU or CEQU to a relative expression
involving a label defined in a relative segment. As ABSLIST does not parse the
expression after EQU and CEQU directives, it has no way to know which label is used in
the expression and which segment it belongs to.
ABSLIST always generates warnings for labels equaled to relative expressions.
For private labels equaled to relative expressions, the post processor will print question
marks for the unknown address.
There is a workaround to get the addresses of labels equaled to relative expressions in
the list file: just make these labels public and ABSLIST will be able to find their
addresses in the map file.

3. ABSLIST only accepts the ST7 and the STM8 processors. It could be easily
generalized to other processors but more validation time would be necessary.

ST Assembler-Linker Librarian

Doc ID 11392 Rev 4 51/89

8 Librarian

8.1 Overview
If you do a lot of work on similar boards especially those with the same processor, it makes
a great deal of sense to reuse lumps of code you have already written to do the same task in
a different program. At the simplest level, you could just copy the source code as a block of
text into the new program. This works fine, but has a subtle disadvantage: if you update the
subroutine, you have to hunt around all the usages of it, performing the update on each.

To get around this problem, many people have the source for common routines in one place,
and link the .OBJ module with each program needing routine. Then you only need to update
the source code once, reassemble it to get a new .OBJ file, then link again all the users of
the routine, who will now have the new .OBJ file.

While this scheme works well, it generates some problems of its own. For example, each
routine needs its own .OBJ file. By nature, these common routines tend to be small, so you
end up giving dozens of extra .OBJ modules to the linker, and having the .OBJ modules
scattered around your hard disk.

The base concept of a librarian is to combine all these small, useful .OBJ modules into one
large .LIB library file. You could then tell the linker about the library, and it takes care of
which .OBJ modules to pull in to link. It would know which ones to pull in by the fact that the
main code being linked would have undefined externals, for example, to call the missing
library routines. The librarian simply takes each undefined external in turn, and checks it
against all the modules in the library. If any of the modules declares a PUBLIC of the same
name, it knows you need that .OBJ module and it includes it automatically.

8.2 Invoking the librarian

The librarian is called LIB, and takes one command line argument that is the name of the
library to operate on. If not given, you are prompted for it.

LIB [library name]

.LIB is added if the suffix is left off.

If the library you indicate does not exist, LIB asks you if it is a new library. For example:

LIB LIB1
STMicroelectronics - Librarian - rel 1.00
Couldn't open Library file 'LIB1.LIB'
is it a new file? (y/n): y

If the answer is 'n', LIB aborts. If the library exists, LIB prints up a report on the library.

Library LIB1.LIB is 2K long.
16/1024 Public labels used in 2/128 modules.

Next comes the main prompt:

LIB1.LIB: Operation (<ENTER> for help):

Pressing ENTER gives you access to the options shown in Table 17.

Librarian ST Assembler-Linker

52/89 Doc ID 11392 Rev 4

8.3 Adding modules to a library
Typing for example: +user1\board would look for a file, called user1\board.obj, and
add it to the library.

If LIB cannot find the named file, LIB reports the fact and returns to the operations prompt.
Else LIB issues the following message:

Adding new board.obj ...
15 labels added
Done.

If the library already contains a file board.obj, it prompts you with:

board.obj already in library LIB1.LIB,
replace with board.obj (Y/N):

Responding with 'N’ returns you to the operations prompt, while 'Y' first removes the old
board.obj then continues as above.

8.4 Deleting modules from a library
This is done by, for example:

-board

If LIB cannot find board.obj in the current library, it reports an error and aborts back to the
operation prompt.

If it can find it, it makes sure you know what you are doing with:

board.obj to be deleted from library LIB1.LIB:Are you sure (Y/N):

N’ aborts to operation prompt. 'Y' continues, reporting:

Removing old board.obj ...
Done.

Table 17. Library file options

Operation Description

+filename Add/update object module to/in library

-filename Delete object module from library

!filename Update object module in library

*filename Copy object module to separate file from library

? List contents of library

x Exit to DOS

ST Assembler-Linker Librarian

Doc ID 11392 Rev 4 53/89

8.5 Copying modules from a library
To make a copy of a .OBJ module located in a library back to your hard disk, use, for
example:

*board

This checks the existence of board.obj in the current library, if not it reports the
failure and aborts the operation prompt. If it does find it, it invites you to give it the name
of the hard disk file to create to contain the copy of the .OBJ module.

Copy into .obj file [board.obj]:

If you type <ENTER>, it selects the original name of the object module as the copy's
name. Otherwise, give it a path spec. If the file you give already exists, LIB says:

File board.obj already exists; overwrite? (Y/N):

Again, responding 'N' aborts to the operations prompt, while 'Y' does the copy with the
message:

Copying board.obj to disk...
Done.

8.6 Getting details in your library
The last operation:

?

causes LIB to print out details of the current library.

Library LIB1.LIB is 2K long
16/1024 Publics labels used on 2/128 modules
0: z1.obj (z1.asm) length 2DE
1: board.obj (board.asm) length 7FFF

The name in brackets is the source module from which the named object module was
assembled.

Definitions ST Assembler-Linker

54/89 Doc ID 11392 Rev 4

9 Definitions

Table 18. Acronyms and terms used in this document

Name Definition

Application
board

This is the printed circuit board onto which you wish to connect the target ST MCU. It should
include a socket or footprint so that you can connect the application board to your emulator or
development kit using the probe and the appropriate device adapter. This allows you to emulate
the behavior of the ST MCU in a real application in order to debug your application program.

Device adapter

Device adapters are included in your emulator kit to allow you to connect the emulator to your
application board. The type of device adapter depends on the target device’s packaging. Many
MCUs come in at least different packages, and you should therefore use the device adapter that
corresponds to the type of package you have chosen for your application.

DIL
Dual in line. Designates a type of device package with two rows of pins for thru-hole mounting.
Sometimes also called DIP (dual in-line package).

ECP Extended capabilities port communication standard.

EPP Enhanced parallel port communication standard.

LSB Least significant byte of a 16-bit value.

Main board
This is the main board of the emulator that is common to the entire ST HDS2 family of emulators.
It controls common functions such as communication with your PC via the parallel port.

mem Memory location.

mnem Mnemonic.

MCU

Microcontroller unit. Otherwise referred to as the target device throughout this manual. This is the
core product (or family of products) for which the Development Kit is designed to act as an
emulator and programming tool. In general terms, an MCU is a complete computer system,
including a CPU, memory, a clock oscillator and I/O on a single integrated circuit.

ST7MDT6-
active probe

A printed card having connector pins that allow you to connect the emulator to the MCU socket of
the user application board. Using the active probe allows the HDS2 emulator to function as if it
were the target device embedded in your application. The probe is connected to the emulator by
two flat cables.

PC
The program counter is the CPU register that holds the address of the next instruction or operand
that the CPU will use.

S Stack pointer LSB.

short Uses a short 8-bit addressing mode.

SO
Small outline. Designates a type of device package with two rows of pins for SMD or socket
mounting. For example, SO34 designates a 34-pin device of this package type.

src source

ST7 visual
debug (STVD7)

A graphic debugger software package that allows you to debug applications destined for the ST7
family of MCUs, either using a built-in simulator function, a Development Kit or an HDS2 Emulator.

Target device
This is the ST MCU that you wish to use in your application, and which your emulator or
development kit will emulate for you.

User application
board

Designates your application board.

ST Assembler-Linker Assembler directives

Doc ID 11392 Rev 4 55/89

Appendix A Assembler directives

A.1 Introduction
Each directive is described in a table.

● The name of the directive is given in the table title (and always appears in the Format).

● The Format shows the arguments allowed (if any) for this directive.

● The Description describes the action of the directive and the format and nature of the
argument specified in the Format.

● The Example gives one or more example of the directive in use.

● The See also lists possible cross references.

All the directives must be placed in the second, OPCODE, field, with any arguments one tab
away in the argument field.

Table 19. List of directives

Directive Table Directive Table Directive Table

.BELL Table 20 GROUP Table 41 .NOCHANGE Table 62

BYTE Table 21 #IF Table 42 .NOLIST Table 63

BYTES Table 22 #IF1 Conditional Table 43 %OUT Table 64

CEQU Table 23 #IF2 Table 44 .PAGE Table 65

.CTRL Table 24 #IFB Table 45 PUBLIC Table 66

DATE Table 25 #IFIDN Table 46 REPEAT Table 67

DC.B Table 26 #IFDEF Table 47 .SALL Table 68

DC.W Table 27 #IFLAB Table 48 SEGMENT Table 69

DC.L Table 28 #INCLUDE Table 49 .SETDP Table 70

#DEFINE Table 29 INTEL Table 50 SKIP Table 71

DS.B Table 30 INTERRUPT Table 51 STRING Table 72

DS.W Table 31 .LALL Table 52 SUBTTL Table 73

DS.L Table 32 .LIST Table 53 .TAB Table 74

END Table 33 #LOAD Table 54 TEXAS Table 75

EQU Table 34 LOCAL Table 55 TITLE Table 76

EXTERN Table 35 LONG Table 56 UNTIL Table 77

#ELSE Table 36 LONGS Table 57 WORD Table 78

#ENDIF Table 37 MACRO Table 58 WORDS Table 79

FAR Table 38 MEND Table 59 .XALL Table 80

FCS Table 39 MOTOROLA Table 60 ZILOG Table 81

.FORM Table 40 NEAR Table 61

Assembler directives ST Assembler-Linker

56/89 Doc ID 11392 Rev 4

A.2 Directives

Table 20. .BELL

Purpose Ring bell on console.

Format .BELL

Description
This directive simply rings the bell at the console; it can be used to signal the end of
pass-1 or pass-2 with #IF1 or #IF2. This directive does not generate assembly code or
data.

Example .BELL

See also

Table 21. BYTE

Purpose Define byte in object code.

Format BYTE <exp or “string”>,[,<exp or “string”>...]

Description

This directive forces the byte(s) in its argument list into the object code at the current
address. The argument may be composed of complex expressions, which may even
include external labels. If the argument was an expression and had a value greater
than 255 then the lower 8 bits of the expression are used and no errors are generated.
String argument(s) must be surrounded by double quotes: theses are translated into
ASCII and processed byte by byte. It is generally used for defining data tables.
Synonymous with STRING and DC.B.

Example
BYTE 1,2,3 ; generates 01,02,03

BYTE “HELLO” ; generates 48,45,4C,4C,4F

BYTE “HELLO”,0 ; generates 48,45,4C,4C,4F,00

See also DC.B, STRING, WORD, LONG, DC.W, DC.L

Table 22. BYTES

Purpose Label type definition where type = byte.

Format BYTES

Description

When a label is defined, 4 separate attributes are defined with it: scope (internally or
externally defined), value (actual numerical value of the label), relativity (absolute or
relative), and length, (BYTE, WORD and LONG).

All of these attributes, except length, are defined explicitly before or at the definition.
You can force the label to be a certain length by giving a dot suffix, e.g. 'label.b' forces
it to be byte length.
You may also define a default state for label length: labels are created to this length
unless otherwise forced with a suffix. The default is set to WORD at the start of the
assembly, but may be changed by BYTES, WORDS or LONGS to the appropriate
length.

Example
BYTES

lab1 EQU 5 ; byte length for lab1

See also LONGS, WORDS

ST Assembler-Linker Assembler directives

Doc ID 11392 Rev 4 57/89

Table 23. CEQU

Purpose Equate pre-existing label to expression.

Format label CEQU <exp>

Description
This directive is similar to EQU, but allows to change the label's value. Used in macros
and as counter for REPEAT / UNTIL.

Example lab1 CEQU {lab1+1} ; inc lab1

See also EQU, REPEAT, UNTIL

Table 24. .CTRL

Purpose Send control codes to the printer.

Format .CTRL <ctrl>[,<ctrl>]...

Description

This directive is used to send printing and non printing control codes to the selected
listing device. It's intended for sending control codes to embolden or underline, etc.
areas of listing on a printer. The arguments are sent to the listing device if the listing is
currently selected. This directive does not generate assembly code or data.

Example .CTRL 27,18

See also .LIST, .NOLIST, .BELL

Table 25. DATE

Purpose Define 12-byte ASCII date into object code.

Format DATE

Description

This directive leaves a message for the linker to place the date of the link in a 12-byte
block the assembler leaves spare at the position of the DATE directive. This means
that every link will leave its date in the object code, allowing automatic version control.
The date takes the form (in ASCII) DD_MMM_YYYY where character '_' represents a
space; for example 18 JUL. 1988. The date is left for the linker to fill instead of the
assembler since the source code module containing the DATE directive may not be
reassembled after every editing session and it would be possible to lose track.

Example DATE

See also

Table 26. DC.B

Purpose Define byte(s) in object code.

Format DC.B <exp or "string">,[,<exp or "string">]

Description

This directive forces the byte(s) in its argument list into the object code at the current
address. The argument may be composed of complex expressions, which may even
include external labels. If the argument was an expression and had a value greater
than 255 then the lower 8 bits of the expression are used and no errors are generated.
String argument(s) must be surrounded by double-quotes: these are translated into
ASCII and processed byte by byte.
It's generally used for defining data tables. Synonymous with BYTE and STRING.

Assembler directives ST Assembler-Linker

58/89 Doc ID 11392 Rev 4

Example
DC.B 1,2,3 ; generates 01,02,03

DC.B “HELLO” ; generates 48,45,4C,4C,4F

DC.B “HELLO”,0 ; generates 48,45,4C,4C,4F,00

See also

Table 27. DC.W

Purpose Define word(s) in object code.

Format DC.W<exp>[, <exp>...]

Description

This directive forces the word(s) in its argument list into the object code at the current
address. The arguments may be composed of complex expressions, which may even
include external labels. If the argument was an expression and had a value greater
than FFFF then the lower 16 bits of the expression are used and no errors are
generated. DC.W sends the words with the most significant byte first.

It's generally used for defining data tables. Synonymous with WORD, except that
DC.W places the words in High / Low order.

Example DC.W 1,2,3,4,$1234 ;0001,0002,0003,0004,1234

See also DC.B, BYTE, STRING, WORD, LONG, DC.L

Table 28. DC.L

Purpose Define long word(s) in object code.

Format DC.L <exp>[,<exp>...]

Description

This directive forces the long word(s) argument list into the object code at the current
address. The arguments may be composed of complex expressions, which may even
include external labels. If the argument was an expression and had a value greater
than FFFFFFFF then the 32 bits of the expression are used and no errors are
generated. DC.L sends the words with the most significant byte first.

It's generally used for defining data tables. Synonymous with LONG, except that DC.L
stores the long-words in High / Low order.

Example
DC.L 1,$12345678 ; 0000,0001,1234,5678

LONG 1,$12345678 ; 0100,0000,7856,3421

See also DC.B, DC.W, BYTE, STRING, WORD, LONG

Table 29. #DEFINE

Purpose Define manifest constant.

Format #DEFINE <CONSTANT ID> <real characters>

Table 26. DC.B

ST Assembler-Linker Assembler directives

Doc ID 11392 Rev 4 59/89

Description

The benefits of using labels in assembler level programming are obvious and well
known. Sometimes, though, values other than the straight numerics allowed in labels
are used repeatedly in programs and are ideal candidates for special labelling.

The #DEFINE directive allows you to define special labels called 'manifest constants'.
These are basically labels that contain strings instead of numeric constants. During
the assembly, wherever a manifest ID is found in the source code, it is replaced by its
real argument before the assembly proceeds. The #DEFINE is not the definition of a
label, so a space must precede the declaration.

The number of defines that the Assembler can manage is limited to 4096. However,
this depends on the number of characters in the statements. Depending on their
length, you may reach this limit sooner.

Example
#define value 5

ld a,#value ; ld a,#5

See also

Table 30. DS.B

Purpose Define byte space in object code.

Format DS.B [optional number of bytes]

Description

This directive is used to 'space out' label definitions. For example let's say we need a
set of byte-sized temporary storage locations to be defined in RAM, starting at
address $4000. We could write:

segment byte at 4000 'RAM'

temp1 equ $4000

temp2 equ $4001

which would work fine, however, we recommend you to write:

segment byte at 4000 'RAM'

temp1 DS.B

temp2 DS.B

which does the same job. The advantage is that the PC increments automatically.
There are two other types of DS instructions available for doing WORD and LONG
length storage areas: DS.W and DS.L. Note that the areas in question are not
initialized to any value; it's merely a way of allocating values to labels.

The optional argument specifies how many bytes to allocate; the default is 1.
Because no code is generated to fill the space, you are not allowed to use DS.B in
segments containing code, only for segments with data definitions.

Example labl DS.B

See also DS.W, DS.L

Table 31. DS.W

Purpose Define word space in object code.

Format DS.W [optional number of words]

Table 29. #DEFINE

Assembler directives ST Assembler-Linker

60/89 Doc ID 11392 Rev 4

Description

This directive is used to 'space out' label definitions. For example let's say we need a
set of word-sized temporary storage locations to be defined in RAM, starting at
address $4000. We could write:

segment byte at 4000 'RAM'

temp1 equ $4000

temp2 equ $4002

which would work fine, however, we recommend you to write:

segment byte at 4000 'RAM'

temp1 DS.W

temp2 DS.W

which does the same job. The advantage is that the PC increments automatically.
There are two other types of DS instructions available for doing BYTE and LONG
length storage areas: DS.B and DS.L. Note that the areas in question are not
initialized to any value; it's merely a way of allocating values to labels.

The optional argument specifies how many bytes to allocate; the default is 1.

Because no code is generated to fill the space, you are not allowed to use DS.W in
segments containing code, only for segments with data definitions.

Example labl DS.W

See also DS.B, DS.L

Table 32. DS.L

Purpose Define long space in object code.

Format DS.L [optional number of long words]

Description

This directive is used to 'space out' label definitions. For example let's say we need a
set of long-word-sized temporary storage locations to be defined in RAM, starting at
address $4000. We could write:

segment byte at 4000 'RAM'

temp1 equ $4000

temp2 equ $4004

which would work fine, however, we recommend you to write:

segment byte at 4000 'RAM'

temp1 DS.L

temp2 DS.L

which does the same job. The advantage is that the PC increments automatically.
There are two other types of DS instructions available for doing BYTE and WORD
length storage areas: DS.B and DS.W. Note that the areas in question are not
initialized to any value; it's merely a way of allocating values to labels.

The optional argument specifies how many bytes to allocate; the default is 1.

Because no code is generated to fill the space, you are not allowed to use DS.L in
segments containing code, only for segments with data definitions.

Example labl DS.L

See also DS.B, DS.W

Table 31. DS.W

ST Assembler-Linker Assembler directives

Doc ID 11392 Rev 4 61/89

Table 33. END

Purpose End of source code.

Format END

Description
This directive marks the end of the assembly on the main source code file. If no END
directive is supplied in a source-code file then an illegal EOF error will be generated by
the assembler. Include files do not require an END directive.

Example END

See also

Table 34. EQU

Purpose Equate the label to expression.

Format label EQU <EXPRESSIONS>

Description

Most labels created in a program are attached to a source code line that generates
object code, and are used as a target for jumps or memory references. The rest are
labels used as 'constants', used for example, to hold the IO port number for the system
keyboard: a number that will remain constant throughout the program.
The EQU directive allocates the value, segment type and length to the label field. The
value is derived from the result of the expression, the relativity (absolute or segment-
relative derived from the most recent segment), the length is BYTE, WORD or LONG,
derived from the size default (starts off as WORD and may be changed by directives
BYTES, WORDS or LONGS).

Example labl END 5

See also

Table 35. EXTERN

Purpose Declare external labels.

Format EXTERN

Description

When your program consists of several modules, some modules need to refer to labels
that are defined in other modules. Since the modules are assembled separately, it is
not until the link stage that all the necessary label values are going to be known.
Whenever a label appears in an EXTERN directive, a note is made for the linker to
resolve the reference.
Declaring a label external is a way of telling the assembler not to expect the label to be
defined in this module, although it will be used. Obviously, external labels must be
defined in other modules at link stage, so that all the gaps left by the assembler can be
filled with the right values.

Because the labels declared external are not actually defined, the assembler has no
way of knowing the length, (byte, word or long) of the label. Therefore, a suffix must be
used on each label in an EXTERN directive declaring its type; if the type is undefined,
the current default label scope (set by BYTES, WORDS, LONGS directives) is
assumed.

Example EXTERN label.w, label1.b, label2.l

See also PUBLIC

Assembler directives ST Assembler-Linker

62/89 Doc ID 11392 Rev 4

Table 36. #ELSE

Purpose Conditional ELSE.

Format #ELSE

Description

Forces execution of the statements until the next #ENDIF if the last #IF statement was
found false or disables execution of the statements until the next #ENDIF if the last #IF
statement was found true.

The #ELSE is optional in #IF / #ENDIF structures. In case of nested #ELSE
statements, a #ELSE refers to the last #IF.

Example

#IF {1 eq 0} ;

; block A ... not assembled

#ELSE

; block B ... assembled

#ENDIF

See also #IF, #ENDIF

Table 37. #ENDIF

Purpose Conditional terminator.

Format #ENDIF

Description

This is the non optional terminator of a #IF structure. If there is only one level of #IF
nesting in force, then the statements after this directive will never be ignored, no
matter what the result of the previous #IF was. In other words, the #ENDIF ends the
capability of the previous #IF to suppress assembly. When used in a nested situation it
does the same job, but if the last #IF / #ENDIF structure was in a block of source
suppressed by a previous #IF still in force, the whole of the last #IF / #ENDIF structure
will be ignored no matter what the result of the previous #IF was.

Example
#IF {count gt 0}

...

#ENDIF

See also #IF, #ELSE

Table 38. FAR (STM8 only)

Purpose
Specifies to debuggers that the return address in the stack for functions using this
directive is written over three bytes.

Format FAR <"string">

Description
This directive is used with functions called by CALLF, whose return stack address
spans three bytes. Every function called by CALLF must be classified as FAR. This
directive is for use with the STM7 Assembler only.

Example
PUBLIC func

FAR func

func retf

See also NEAR, INTERRUPT

ST Assembler-Linker Assembler directives

Doc ID 11392 Rev 4 63/89

Table 39. FCS

Purpose Form constant string.

Format FCS <"string"> |<bytes> [<“string”> |<bytes>]...

Description
This directive works in the same way as the common STRING directive, except that
the last character in any string argument has bit 7 (for example MSB) forced high.
Numeric arguments in the same list are left untouched.

Example
FCS “ALLO” ; 41,4C,4C,CF

STRING “ALLO” ; 41,4C,4C,4F

See also STRING

Table 40. .FORM

Purpose Set form length of the listing device.

Format .FORM <exp>

Description
The assembler paginates the listing (when selected) with a default of 66 lines per
page. This directive changes the page length from the default. This directive does not
generate assembly code or data.

Example .FORM 72

See also TITLE, SUBTTL, %OUT, .LALL, .XALL, .SALL, .LIST,.NOLIST

Table 41. GROUP

Purpose Name area of source code.

Format GROUP <exp>

Description
All source code following a GROUP directive until the next GROUP directive or the
end of the file - 'belongs' to the named group. Source code not included inside a group
is allocated to a special group called 'Default'.

Example GROUP mainloop

See also

Table 42. #IF

Purpose Start conditional assembly.

Format #IF <exp>

Assembler directives ST Assembler-Linker

64/89 Doc ID 11392 Rev 4

Description

Sometimes it is necessary to have different versions of a program or macro. This can
be achieved by completely SEPARATE programs / macros, but this solution has the
associated problem that changes to any part of the program common to all the
versions requires all of them being changed, which can be tedious.

Conditional assembly offers the solution of controlled 'switching off' assembly of the
source code, depending on the value of the numeric expressions.

The structure is known as 'IF/ELSE/ENDIF': see the example for the format.

The #ELSE statement is optional. If the expression resolves to 0 the expression is
assumed to have a 'false' result: the source code between the false #IF and the next
#ENDIF (or #ELSE if supplied) will not be assembled.

If the #ELSE is supplied, the code following the #ELSE will be assembled only if the
condition is false.

Conditionals may be nested up to 15 levels: when nesting them, keep in mind that
each #IF must have a #ENDIF at its level, and that #ENDIFs and #ELSEs refer to the
last unterminated #IF.

Example

#IF {1 eq 1}

%out true

#FALSE

%out false

#ENDIF

See also #ENDIF, #ELSE, #IF1, #IF2

Table 43. #IF1 Conditional

Purpose Conditional on being in pass #1.

Format #IF1

Description
This directive works just like #IF except it has no argument and only evaluates itself as
true if the assembler is on its first pass through the source code. Can use #ELSE and
requires #ENDIF.

Example
#IF1

%OUT “Starting Assembly”

#ENDIF

See also #IF2, #ELSE, #IF, #ENDIF

Table 44. #IF2

Purpose Conditional on being in pass #2.

Format #IF2

Description
This directive works just like #IF except it has no argument and evaluates itself as true
only if the assembler is on its second pass through the source code.

Example
#IF2

%OUT “GONE through PASS-1 OK”

#ENDIF

See also #IF1, #IF, #ENDIF, #ELSE

Table 42. #IF

ST Assembler-Linker Assembler directives

Doc ID 11392 Rev 4 65/89

Table 45. #IFB

Purpose Conditional on argument being blank.

Format #IFB <arg>

Description
This directive works just like #IF except it doesn't evaluate its argument: it simply
checks to see if it is empty or blank. Spaces count as blank.

Example

check MACRO param1

#IFB param1

%OUT “No param1”

#ELSE

%OUT param1

#ENDIF

MEND

...

check ,

check 5

See also #IF2, #ELSE, #IF, #END

Table 46. #IFIDN

Purpose Conditional on arguments being identical.

Format #IFIDN <arg-1> <arg-2>

Description
This directive works just like #IF except it compares two strings separated by a space.
If identical, the result is true.

Example

check MACRO param1

#IFIDN param1 HELLO

%OUT “Hello”

#ELSE

%OUT “No Hello”

#ENDIF

MEND

See also #IF2, #ELSE, #IF, #END

Table 47. #IFDEF

Purpose Conditional on argument being defined.

Format #IFDEF <exp>

Description This directive works just like #IF except it tests for its argument being defined.

Example

check MACRO param1

#IFDEF param1

%OUT “Arg is OK”

#ELSE

%OUT “Arg is undefined”

#ENDIF

MEND

See also #IF2, #ELSE, #IF, #END

Assembler directives ST Assembler-Linker

66/89 Doc ID 11392 Rev 4

Table 48. #IFLAB

Purpose Conditional on argument being a label.

Format #IFLAB <arg>

Description
This directive works just like #IF except it tests that its argument is a valid, predefined
label.

Example

check MACRO param1

#IFLAB param1

%OUT “LABEL”

#ENDIF

MEND

See also #IF2, #ELSE, #IF, #END

Table 49. #INCLUDE

Purpose Insert external source code file.

Format #INCLUDE “<filename>”

Description

INCLUDE files are source code files in the same format as normal modules but with
two important differences: the first line usually reserved for the processor name is like
any other source line, and they have no END directive. They are used to contain
#DEFINE and macro definitions that may be used by many different modules in your
program.

Instead of having each module declare its own set of #DEFINE and macro definitions,
each module just includes the contents of the same #INCLUDE file. The assembler
goes off to the named INCLUDE file and assembles this file before returning to the line
after the #INCLUDE directive in the former source code file.

The benefit is that any alterations made to a macro must be done once, in the include
file; but you'll still have to reassemble all modules referring to the changed entry.

NOTE that the filename must be inside double-quotes.

Example

st7/

#include “defst7.h”

...

END

See also

Table 50. INTEL

Purpose Force Intel-style radix specifier.

Format INTEL

Description

The Intel style:

0ABh Hexadecimal
17o or 17q Octal

100b Binary

17 Decimal (default)
$ Current program counter

This directive forces the Intel format to be required during the assembly.

ST Assembler-Linker Assembler directives

Doc ID 11392 Rev 4 67/89

Example
INTEL

ld X,0FFFFh

See also MOTOROLA, TEXAS, ZILOG

Table 51. INTERRUPT

Purpose Specifies to the debugger that a routine is an interrupt rather than a function.

Format INTERRUPT <string>

Description
This directive is used with interrupt handlers and so aids the debugger in correctly
searching the stack for return address of the interrupted function.

Example
PUBLIC trap_handler

INTERRUPT trap_handler

trap_handler IRET

See also NEAR, FAR

Table 52. .LALL

Purpose List whole body of macro calls.

Format .LALL

Description
This directive forces the complete listing of a macro expansion each time a macro is
invoked. This is the default. This directive does not generate assembly code or data.

Example .LALL

See also .XALL, .SALL

Table 53. .LIST

Purpose Enable listing (default).

Format .LIST

Description

This directive switches on the listing if a previous .NOLIST has disabled it. The -'pa' or
-'li' options must also have been set from the command line to generate a listing. This
directive, in conjunction with the directive .NOLIST, can be used to control the listing of
macro definitions. This directive does not generate assembly code or data.

Example .LIST

See also .NOLIST

Table 54. #LOAD

Purpose Load named object file at link time.

Format #LOAD “pathname\filename[.ext]”

Description

This directive leaves a message for the linker to load the contents of the named file at
the current position in the current segment. The file should be in 'straight binary'
format, that is, a direct image of the bytes you want in the object code. It should not be
in Motorola (.s19) or Intel (.hex) format.

Table 50. INTEL

Assembler directives ST Assembler-Linker

68/89 Doc ID 11392 Rev 4

Example
segment byte at 8000-C000 'EPROM1'

#LOAD “table.bin”

See also

Table 55. LOCAL

Purpose Define labels as local to macro.

Format LOCAL <arg>

Description

A macro that generates loop code gives rise to an assembly problem since the loop
label would be defined as many times as the macro is called. The LOCAL directive
enables you to overcome this difficulty.

Consider the following piece of code:

waiter MACRO ads

loop ld A,ads

jrne loop

MEND

If this macro is called twice, you will be creating two labels called 'loop'. The answer is
to declare very early in the MACRO all labels created by the macro as LOCAL. This
has the effect of replacing the actual name of a local label (here 'loop') with
LOCXXXX where XXXX starts from 0 and increments each time a local label is used.
This provides each occurrence of the labels created inside the macro with a unique
identity.

Example

waiter MACRO ads

LOCAL loop

loop led Aids

drone loop

MEND

See also MACRO, MEND

Table 56. LONG

Purpose Define long word in object code.

Format LONG <exp>[,<exp>...]

Description

This directive forces the long word(s) in its argument list into the object code at the
current address. The arguments may be composed of complex expressions, which
may even include external labels. If the argument was an expression and had a value
greater than FFFFFFFF then the 32 bits of the expression are used and no errors are
generated. LONG sends long words with the least significant byte first.
It's generally used for defining data tables. Synonymous with DC.L, except that LONG
sends the low-byte first.

Example
DC.L 1,$12345678 ; 0000,0001,1234,5678

LONG 1,$12345678 ; 0100,0000,7856,3421

See also DC.B, DC.L, DC.W, BYTE, STRING, WORD

Table 54. #LOAD

ST Assembler-Linker Assembler directives

Doc ID 11392 Rev 4 69/89

Table 57. LONGS

Purpose Default new label length long.

Format LONGS

Description

When a label is defined, four SEPARATE attributes are defined with it: scope
(internally or externally defined), value (actual numerical value of the label), relativity
(absolute or relative), and lastly, length (BYTE, WORD or LONG).

All these attributes except length are defined explicitly before or at the end of the
definition: you can force a label to be a certain length by giving a dot suffix, for
example 'label.b' forces it to be byte length.

You may also define a default state for label length: labels are created to this length
unless otherwise forced with a suffix. The default is set to WORD at the start of the
assembly, but may be changed by BYTES, WORDS or LONGS to the appropriate
length.

Example
LONGS

lab1 EQU 5 ; long length for lab1

See also BYTES, WORDS

Table 58. MACRO

Purpose Define macro template.

Format <macro> MACRO [param-1][,param-2]...

Description

This directive defines a macro template that can be invoked later in the program. The
label field holds the name of the macro: this name is used to invoke the rest of the
macro whenever it is found in the opcode field. The arguments are dummy names for
parameters that will be passed to the macro when it is used: these dummy names will
be replaced by the actual calling line's arguments.
Note: If you don't want the definition of the macro to be listed, insert directive .NOLIST
before the macro definition, and append directive .LIST after the macro definition.

Example

cmp16 MACRO first,second,result

LOCAL trylow

ld A,first

add A,second

cp A,#0

jreq trylow

cpl A

trylow ld result,A

MEND

See also MEND, .LALL, .SALL, .XAL

Table 59. MEND

Purpose End of macro definition.

Format MEND

Description End of macro definition.

Assembler directives ST Assembler-Linker

70/89 Doc ID 11392 Rev 4

Example

cmp16 MACRO first,second,result

LOCAL trylow

ld A,first

add A,second

cp A,#0

jreq trylow

cpl A

trylow ld result,A

MEND

See also MACRO

Table 60. MOTOROLA

Purpose Force Motorola-style radix specifier.

Format MOTOROLA

Description

The Motorola style:

$AB Hexadecimal

~17 Octal
%100 Binary

17 Decimal (default)

* Current program counter
This directive forces the Motorola format to be required during the assembly. The
default format is MOTOROLA.

Example
MOTOROLA

ld X,$FFFF

See also INTEL, TEXAS, ZILOG

Table 61. NEAR

Purpose
Specifies to debuggers that the return address in the stack for functions using this
directive is written over two bytes.

Format NEAR <"string">

Description
This directive is used with functions called by CALL or CALLR, whose return stack
address spans two bytes. Every function called by CALL or CALLR must be classified
as NEAR.

Example
PUBLIC func

NEAR func

func ret

See also FAR, INTERRUPT

Table 62. .NOCHANGE

Purpose List original #define strings.

Format .NOCHANGE

Table 59. MEND

ST Assembler-Linker Assembler directives

Doc ID 11392 Rev 4 71/89

Description

Strings named in the first argument of a #DEFINE directive will be changed to the
second argument of the #DEFINE: the default is that the changed strings will be listed.
If you want the original source code to be listed instead, place a .NOCHANGE
directive near the start of your source code. This directive does not generate assembly
code or data.

Example .NOCHANGE

See also #DEFINE

Table 63. .NOLIST

Purpose Turn off listing.

Format .NOLIST

Description

Certain parts of your modules may not be required on a listing; this directive disables
the listing until the next .LIST directive. The default is for the listing to be enabled. This
directive, in conjunction with the directive .LIST, can be used to control the listing of
macro definitions. This directive does not generate assembly code or data.

Example .NOLIST

See also LIST

Table 64. %OUT

Purpose Output string to the console.

Format %OUT string

Description
This directive prints its argument (which does not need to be enclosed in quotes) to
the console. This directive does not generate assembly code or data.

Example %OUT hello!

See also

Table 65. .PAGE

Purpose Perform a form feed.

Format .PAGE

Description Forces a new page listing. This directive does not generate assembly code or data.

Example .PAGE

See also

Table 66. PUBLIC

Purpose Make labels public.

Format PUBLIC <arg>

Table 62. .NOCHANGE

Assembler directives ST Assembler-Linker

72/89 Doc ID 11392 Rev 4

Description

This directive marks out given labels defined during an assembly as 'PUBLIC',
accessible by other modules. This directive is related to EXTERN; if one module
wants to use a label defined in another, then the other module must have that label
declared PUBLIC.

A label may also be declared PUBLIC as its definition by preceding the label name
with a dot; it won't need to be declared in a PUBLIC directive then.

Example

module1.asm
EXTERN print.w, print1.w

...

call print

...

jp print1

module2.asm
PUBLIC print

print nop

.print1 nop

See also EXTERN

Table 67. REPEAT

Purpose Assembly-time loop initiator.

Format REPEAT

Description
Used together with UNTIL to make assembly-time loops; it is useful for making tables
etc. This directive should not be used within macros.

Example REPEAT

See also CEQU, UNTIL

Table 68. .SALL

Purpose Suppress all body of called macro.

Format .SALL

Description
This directive forces the complete suppression of the listing of a macro expansion
each time a macro is invoked. This instruction is never listed.

Note:This directive may produce confusing listings.

Example .SALL

See also .LALL, .XALL

Table 69. SEGMENT

Purpose Start of new segment.

Format [<name>] SEGMENT <align> <combine> '<class>' [cod]

Description

The SEGMENT directive is very important: every module in your program will need at
least one.
The <name> field may be up to 11 characters in length, and may include underscores.
The <align> field is one of the following:

Table 66. PUBLIC

ST Assembler-Linker Assembler directives

Doc ID 11392 Rev 4 73/89

Example

byte no alignment; can start on any byte boundaries
word aligned to next word boundaries if necessary, i.e., 8001=8002
para aligned to the next paragraph (=16 bytes) boundary, i.e., 8001=8010
64 aligned to the next 64-byte boundary, i.e., 8001=8040
128 aligned to the next 128-byte boundary, i.e., 8001=8080
page aligned to the next page (=256 bytes) boundary, i.e., 8001=8100
long aligned to the next long-word(=4 bytes) boundary, i.e., 8001=8004
1K aligned to next 1K boundaries, i.e., 8001=8400
4K aligned to next 4K boundaries, i.e., 8001=9000

See also

X[-Y] Introduces new class that starts from X and goes through to address Y.
Address Y is optional.
<none> Tack this code on the end of the last segment of this class.

common Put the segment at the same address than other common segments that
have the same name, and note the longest length segment.
The optional [cod] suffix is a number from 0 to 9 - it decides into which. COD file the
linker sends the contents of this class. 0 is the default and is chosen if the suffix is left
off. A suffix of 1-9 will cause the linker to open the [cod] suffix, and send the contents
of this class into the cod file instead of the default. This allows bank switching to be
supported directly at link level- different code areas at the same address can be
separated out into different .cod files.

Table 70. .SETDP

Purpose Set base address for direct page.

Format .SETDP <base address>

Description

If you have used an ST processor, you are aware of its 'zero-page' or 'direct'
addressing modes. These use addresses in the range 00..FF in shorter, faster
instructions than the more general 0000..FFFF versions. Other processors use the
same scheme, but with a twist: you can choose the 'base page' where the direct mode
does not have to be in range 0000 00FF but can be from nn00..nnFF where nn00 is
the 'base page', loaded into a register at run-time. Because the assembler cannot
track what's in the base page register at run-time, you need to fill it in about the current
'base page' with the .SETDP directive. At the start of the assembly, SETDP defaults to
0000.

Example
.SETDP $400

ld A,$401 ; direct mode chosen

See also

Table 71. SKIP

Purpose Inserts given number of bytes with an initialization value.

Format SKIP <number of bytes>,<value to fill>

Description
This directive leaves a message for the linker that you want X number of Y bytes to be
inserted into the object code at this point. Both the arguments must be absolute values
rather than external or relative values.

Example SKIP 100,$FF ; insert 100 bytes all $FF

See also

Table 69. SEGMENT

Assembler directives ST Assembler-Linker

74/89 Doc ID 11392 Rev 4

Table 72. STRING

Purpose Define a byte-level string.

Format STRING <exp or “string”>,[,<exp or “string”>...]

Description

This directive forces the byte(s) in its argument list into the object code at the current
address. The arguments may be composed of complex expressions, which may even
include external labels. If the argument was an expression and had a value greater
than 255 the lower 8 bits of the expression are used and no errors are generated.
String argument(s) must be surrounded by double-quotes: these are translated into
ASCII and processed byte by byte. It's generally used for defining data tables.
Synonymous BYTE and DC.B.

Example
STRING 1,2,3 ; generates 01,02,03

STRING “HELLO” ; generates 48,45,4C,4C,4F

STRING “HELLO”,0 ; generates 48,45,4C,4C,4F,00

See also DC.B, BYTE, WORD, LONG, DC.W, DC.L, FCS

Table 73. SUBTTL

Purpose Define a subtitle for listing heading.

Format SUBTTL “<Subtitle string>”

Description

This directive is related to the TITLE directive: its argument is used as a subtitle at the
beginning of each page on a listing. We recommend that individual subtitles are
generated for each module in a program, while the TITLE is defined once in the
include file called by all the modules. This directive does not generate assembly code
or data.

Example SUBTTL “A/D control routines”

See also TITLE

Table 74. .TAB

Purpose Set listing field lengths.

Format .TAB <label>,<Opcode>,<operand>,<comment>

Description

Sets the size of the four source code fields for listings. The defaults of 0, 8, 16, 24 are
for 80-column printer; if yours can go wider, you need to tell the assembler using this
directive. The four fields are the width of the label field, the opcode field, operand and
comment. This directive does not generate assembly code or data.

Example .tab 10,6,16,40

See also .LIST, .NOLIST

Table 75. TEXAS

Purpose Texas Instruments-style radix specifier.

Format TEXAS

ST Assembler-Linker Assembler directives

Doc ID 11392 Rev 4 75/89

Description

The Motorola style:

>AB Hexadecimal

~17 Octal

?100 Binary

17 Decimal (default)

$ Current program counter

This directive forces the Texas Instruments format to be required during the assembly.

Example
TEXAS

ld X,>FFFF

See also INTEL, MOTOROLA, ZILOG

Table 76. TITLE

Purpose Define main title for listing.

Format TITLE “<Title string>”

Description

The first fifty-nine characters of the argument (which must be enclosed in double-
quotes) will be included on the first line of each page in a listing as the main title for the
listing. We suggest you set the title in the include file called by each module in your pro-
gram, and give each module a separate subtitle (see SUBTTL section). This directive
does not generate assembly code or data.

Example TITLE “ST7 controller program”

See also SUBTTL

Table 77. UNTIL

Purpose Assembly time loop terminator.

Format UNTIL <exp>

Description
Related to REPEAT directive: if the expression in the argument resolves to a non zero
value then the assembler returns to the line following the last REPEAT directive. This
directive cannot be used inside macros.

Example

val CEQU 0

REPEAT

DC.L {10 mult val}

val CEQU {val+1}

UNTIL {val eq 50}

See also CEQU, REPEAT

Table 78. WORD

Purpose Define word in object code.

Format WORD <exp>[, <exp>...]

Table 75. TEXAS

Assembler directives ST Assembler-Linker

76/89 Doc ID 11392 Rev 4

Description

This directive forces the word(s) in its argument list into the object code at the current
address. The arguments may be composed of complex expressions that may even
include external labels. If the argument was an expression and had a value greater
than FFFF then the lower 16 bits of the expression are used and no errors are
generated. WORD sends the words with the least significant byte first.
It's generally used for defining data tables. Synonymous with DC.W.

Example WORD 1,2,3,4,$1234 ;0001,0002,0003,0004,1234

See also DC.B, BYTE, STRING, DC.W, LONG, DC.L

Table 79. WORDS

Purpose Default new label length word.

Format WORDS

Description

When a label is defined, four SEPARATE attributes are defined with its scope (internal
or external defined) value (actual numerical value of the label) relativity (the label is
ABSOLUTE or RELATIVE), and lastly length (BYTE, WORD, or LONG).

All these attributes except length are defined explicitly before or at the definition: you
can force the label to be of a certain length by giving a dot suffix, for example 'label.b'
forces it to byte length.

You may also define a default state for label length: the label is created to this length
unless otherwise forced with a suffix. The default is set to WORD at the start of the
assembly, but may be CHANGED by BYTES, WORDS or LONGS to the appropriate
length.

Example
WORDS

lab1 EQU 5 ; word length for lab1

See also BYTES, WORDS

Table 80. .XALL

Purpose List only code producing macro lines.

Format .XALL

Description
This directive forces a reduced listing of a macro expansion each time a macro is in-
voked. Only those lines of the macro that generated object code are listed. This instruc-
tion itself is not listed. This directive does not generate assembly code or data.

Example .XALL

See also .LALL,.SALL

Table 81. ZILOG

Purpose Force Zilog-style radix specifiers.

Format ZILOG

Table 78. WORD

ST Assembler-Linker Assembler directives

Doc ID 11392 Rev 4 77/89

Description

The Motorola style:

%AB Hexadecimal

%(8)17 Octal

%(2)100 Binary

17 Decimal (default)

$ Current program counter

This directive forces the Zilog format to be required during the assembly.

Example
ZILOG

ld X,%FFFF

See also INTEL, MOTOROLA, TEXAS

Table 81. ZILOG

Error messages ST Assembler-Linker

78/89 Doc ID 11392 Rev 4

Appendix B Error messages

B.1 Format of error messages
There are two classes of error trapped by the assembler

● fatal

● recoverable

A fatal error stops the assembly there and then, returning you to the caller (which may or
may not be DOS; CBE can also invoke the assembler) with a message and error number
describing the problem.

The format of the error messages is as follows:

file.asm(line): as<pass> : Error <errno> : <message> '<text>'

Figure 3. Error message format example

Note: The name of the program that handled the error (third field), can be as1 or as2 depending
on the pass in progress when the error was found.

The error number (fourth field) can be used as an index to find a more complete description
of the error in the next section (fatal errors read 'FATAL nn', instead of 'ERROR nn').

B.2 File CBE.ERR
Both fatal and recoverable errors are copied into the file CBE.ERR as they occur. Most link
errors (described on page 83) are also copied into CBE.ERR.

CBE can use this error file to give automatic error finding.

error number

name of the program that handled the error

 name of the file where the error was found

line number in the file

string describing the error

prog.asm(10): as2 : Error 50 : Doubly defined label 'fred'

ST Assembler-Linker Error messages

Doc ID 11392 Rev 4 79/89

B.3 Assembler errors
Table 82. Assembler errors

Error Definition

1 Empty file: The assembler could not read even the first line of the given source code file.

2
EOF while in Macro Definition: The file ended while a macro was being defined; you should end the last
macro definition properly with a MEND statement.

3
Could not return to old place in source file 'X.asm': This error should never occur; it implies you have a disk
fault of some kind. After a #include, the assembler returns to the line after the #include itself. If it cannot
return to that line this error is produced.

4 Illegal source EOF: Main source code files must end with an END directive and a carriage-return.

5
EOF before line terminator: The END directive must have at least one CR after it: for example <TAB> END
<EOF> will generate this error while <TAB> END <EOF> will work fine.

6

Code produced outside segment: Any code produced by the assembler is going to have to be placed on a
given address in the target system at the end of the day. Since segments are the assemblers way of
allocating addresses to lumps of code, any code generated before the first SEGMENT directive is
nonsense.
^T 55 Move to top line of current window

^V 56 Move to last line of current window

^U 57 Undo changes to last edited line

^[58 Drop start of black marker

^] 59 Drop end of black marker

^F 60 Find Source Code for Hex address

^J 61 Report value of given label

^N 62 Report address of current Editor line

These functions mostly explain themselves; the Alternate functions do the same job as the original
functions of the same name: having two indexes for the same job allows the cursor keys and control
codes to move the cursor, whichever the user prefers. Some indexes are not used by the default key
sequence matrix; these allow some WordStar-like commands to be implemented with more meaning.
Multiple-key sequences, such as those found in WordStar format control codes need to be implemented as
follows: take the sequence <^Y><L>, that is, CTRL-Y followed by the letter L should be coded as ^Y+L
where the + denotes that the following character needs no CTRL or SHIFT.

18 File capture error: #Include had problems finding the named file.

19
Cannot find position in source file: Again to do with #include, another 'impossible' error reporting that it
could not find the current position of the source file to remember it for after the #include.

20

Cannot have more than 4096 #defines: Each #define has to be checked for in each possible position in
each source line: having too many of them slows the assembly noticeably. Although you can have up to
4096 #defines, there are also limits on the storage space for both the arguments (error 23); an average of
eight characters for both arguments is recommended.

21 Run out of #define storage space (1): See error 20.

22
#define has no second argument: #define requires a space between the two parts of its argument to
delimit it.

23
Run out of #define storage space (2): See errors 20 and 21 above; you have reached the limit of the
storage space set aside for the second argument of #defines.

24 No strings in DC.W: Strings are only allowed as parts of BYTE, DC.B or STRING directives.

25 No strings in DC.L: Strings are only allowed as parts of BYTE, DC.B or STRING directives.

Error messages ST Assembler-Linker

80/89 Doc ID 11392 Rev 4

26
Illegal external suffix: Only the suffixes .b, .B, .w, .W, .l, .L are legal after an external label in an external
directive. If the suffix is left out then the default label size is used (as set by BYTES, WORDS or LONGS;
default is WORDS).

27 Bad character in public line.

28
More than four characters in single quotes: This assembler uses double-quotes to surround string items
and single-quotes to surround character constants. See Section 4.3 on page 18.

29 Uneven single quotes: Single-quoted items must have a closing quote to delimit.

30 Sequential operator error: It does not allow arithmetic operators to be hard up against each other.

31
No lvalue in expression: An lvalue is the left-hand argument of an operator: a + b has 'a' as its lvalue. +b
would cause this error.

32 Divide by zero: Attempt to divide a number by zero, in a numeric expression.

33 Ifs nested past 15 levels: Exceeded maximum number of nested #IF statements.

34 Spurious ELSE: An ELSE was discovered when no active IF was in force.

35 Spurious ENDIF: An ENDIF was discovered when no active IF was in force.

36 Only allowed inside Macros: A LOCAL directive was attempted outside a Macro definition.

37 No strings in word: See Error 24.

38 No string in long: See Error 25.

39 No REPEAT for this UNTIL: An UNTIL directive is found with no matching REPEAT directive.

40 Could not return to old place in source: Similar to Error 3 but generated by UNTIL instead of #include.

43 Syntax error in SKIP arguments: SKIP expects two numeric arguments, separated by a comma.

44
First SKIP argument is extern/relative; SKIP aborted: SKIP arguments must be known to the assembler
absolutely. Extern or relative arguments are not allowed, although arithmetic is. If you need to move up to
a new page, for example, use a new SEGMENT of the same class with a page align type.

45 Second SKIP argument is extern/relative; SKIP aborted: See Error 44.

46 Undefined label: This error happens when a reference is made to an undefined label.

47

Out of label space: A maximum of 1024 labels are allowed per module, and 10k is set aside to contain their
names. If either of these limits is exceeded, this error results. Cut the module into two smaller ones; the
assembly will happen twice as fast and you will only have to reassemble the half you have made changes
to, speeding things up.

48 Label more than 30 characters: Labels longer than 30 characters are not allowed.

49
Label defined as PUBLIC twice: This warning occurs if the same label appears more than once in a
PUBLIC statement. It is trapped because the second appearance may be a typographical error of a
slightly different label you wanted declared as public.

50 Doubly defined label: This happens when a label is defined twice or more.

Table 82. Assembler errors (continued)

Error Definition

ST Assembler-Linker Error messages

Doc ID 11392 Rev 4 81/89

51

Phase inconsistency (P1=X,P2=Y) 'label': Reports that the named label was allocated different values
from pass-1 and pass-2, implies awful things. It's generally caused when for some reason the assembler
has generated different lengths for the same instruction between pass-1 and pass-2. Sometimes if the
assembler has problems identifying which addressing mode you wanted for a particular instruction
because of typographical errors, or labels that are discovered to be undefined during the second pass it
may give an error (see Error 54) and create no object code for that line. All labels after that line will then be
allocated different values seeing as the object code is now that many bytes shorter, causing tons of Phase
Inconsistency errors. Because this mass of Error 51s can sometimes hide the real cause of the error, a
special assembler switch /np for 'no phase [errors]' can be used to switch them off. We strongly suggest
that you don't always use /np on all your assemblies; only use it when you need it or you might miss critical
phase errors.

52 Public symbol undefined: You defined a symbol in a PUBLIC directive that was not defined in the module.

53 Missing hex number: The assembler was led to expect a hex number but found one of zero length.

54

Cannot match addressing mode: This error is a catchall for the assembler if it cannot see anything wrong
with your line but cannot match it to a known addressing mode either.

There are two main causes of errors: significant ordering and numeric range errors. The significant
ordering error is a simple typographical error: what should have been (val),y was coded as (valy, or
whatever. All the components of the addressing mode are properly formed; it is just that the ordering is
wrong. The numeric range errors can be harder to detect. For example, an 8-bit relative branch branching
out of range would be trapped as an addressing mode error.

To aid diagnostics of what went wrong the assembler dumps out its model of the line to the screen just
before the error. Numerics are printed as a hex value followed by an attribute string: INTernal, EXTernal,
ABSolute, RELative and .b, .w, .l. Significands are printed as the characters they represent, and strings are
printed with their string.

Numeric range errors are also trapped at the link stage (See Section 5.1 on page 38).

55 Bad PSIG index: An 'impossible' error that could only occur through corruption of the .TAB file.

56
Un-recognized opcode: The Opcode (second field) could not be matched against any opcode names for
this instruction set, nor could it be matched against any macro names or directives.

57 No closing quote: String must have closing double-quote before the end of the line.

58
No more than 12 numerics allowed on one line: There is a limit of 12 numeric units allowed on one line:
this usually only matters on long DC.B-type directives where data tables are being defined. If it is a
problem, simply cut the offending long line into two shorter lines.

59
Out of space for macro definition: The macro storage area (ca 64K) has overflowed. You must have some
really big macros!

60 Too many macros attempted: There is a limit of 128 Macros allowed per source code module.

61 Mend only allowed in macro: MEND directive found with no matching MACRO directive.

62 No closing single quote: See error 29.

63 Bad ending: Another 'impossible' error, saying that the CR on the end of a source code line was missing.

64
Bad character in line: As each source code line is read into the assembler it is checked for non-ASCII
characters (that is >128).

65
Parameter mismatch: The macro definition implies that there is a different number of parameters than
there actually were in this calling line.

66
Currently unknown numeric type: An error in your Tabgen file, or a corrupted .TAB file: the numeric handler
was asked to check a number against an undefined numeric type. Are you using the latest version of
ASM.EXE and your .TAB file?

Table 82. Assembler errors (continued)

Error Definition

Error messages ST Assembler-Linker

82/89 Doc ID 11392 Rev 4

67 Improper characters: Unusual characters have been spotted in the source file, of value >127.

68
Label used before its EXTERN definition: Labels must be declared EXTERNAL before use, preferably in a
group at the top of the file.

69
Ambiguous label name: The label name in the single-quotes at the end of the error-line can be confused
with a register name in this instruction set. Change the name.

70
Cannot have DS.X in segments containing code/data! (only for [void] segs!): DS.X does not produce any
code; it simply advances the assembler's notional Program Counter. It cannot be used in the same
segment as real 'code' or data.

71
Cannot have code in segments previously containing DS.X (only for non-void segs!): DS.X does not
produce any code; it simply advances the assembler's notional Program Counter. It cannot be used in the
same segment as real 'code' or data.

72
Constant too large for directive 'value': A DC.B cannot be given an argument >255, for example. Use LOW
or OFFSET operators to truncate any wild arguments.

73
Could not find entry for segment in mapfile: This is for listings produced with '-fi' option. Complex include
file structures and empty segments can sometimes throw the assembler off the track.

74
COD index only allowed on introduction: When you are using the multiple linker output file scheme, you
can only specify the linker output file number for a particular class at the time of that class's introduction.

75
#LOAD before segment!: The #load has to be but at a given address! Before the first segment the
assembler does not know what address to put it at! Shift the #load after a SEGMENT directive.

76
#LOAD before segment!: The assembler had problems finding the file you have named in a #LOAD
directive.

77 All EQUs involving external args must be before first segment!

78 Cannot nest #includes > 5 levels

79
Could not find label list in mapfile: Happens with option '-fi' - Implies problem with the mapfile itself, or
unsuccessful previous link, etc.

80
Could not find label in mapfile: As above. Is the Mapfile up to date with your edits? A label may be declared
EXTERN, but never used.

81
Could not find label in mapfile: The date info has to be stored at a given address - before a SEGMENT
there is no address information for the assembler to work on.

82
No string given on FCS line?: FCS is used for defining strings. Why is there no string on this line? Did you
intend that? If so, use DC.B or BYTE.

83
Address not on WORD boundary: For 68000 and certain other genuine 16-bit, Opcodes must be on word
boundary. This error occurs if you have assembled an instruction at an odd address. Your processor would
crash!

84 Byte size label has value >255 (need WORDS?).

85 Word size label has value > 65535 (need LONGS?).

86 Over 250 macline pull: Internal error.

87 Run out of source file: Internal error.

88 TAB arguments incorrect: Must be in order num, num, num, num for example, TAB 8, 8, 12, 32.

89 Illegal suffix: An unknown suffix has been used with a label. Recognized suffixes are .b, .w and .l.

100 Label defined as NEAR and FAR

Table 82. Assembler errors (continued)

Error Definition

ST Assembler-Linker Error messages

Doc ID 11392 Rev 4 83/89

B.4 Linking errors

101 Label defined as NEAR and INTERRUPT

102 Label defined as FAR and INTERRUPT

103 Label defined as NEAR twice

104 Label defined as FAR twice

105 Label defined as INTERRUPT twice

Table 82. Assembler errors (continued)

Error Definition

Table 83. Linking errors

Error Definition

1 File list must be supplied

2, 3,
11, 13

 Incomplete object file. Fatal error - the linker has identified that the given object file has been truncated.
How are you for disk space?

4, 23
 Size mismatch on EXTERN from F1 says .X, PUBLIC from F2 says .Y.. When declared PUBLIC in file F2
the label L was given size attribute Y. However, when you came to use it in file F1, the EXTERN statement
named L as being of size .X - they did not tally. They must. Find out which is incorrect and alter it.

5
 No info on start address of class 'class'. The first time the linker sees a class (remember it goes through
the object files in the order given on the link command line), it must be given the full 'introduction' to the
class, with start and stop addresses. See Section 5.4 on page 40.

6

Too many secondary externals (32). Secondary externals ought to occur only rarely in your code - If you
are using >32 then your structure has something seriously wrong with it. Hint - all your labels that are used
all over the place, like constants, addresses of IO, and the like: make a module just for them, just
containing EQUs and/or DS.Xs, all declared public. Any arithmetic needs doing more than once
throughout your code, do it there, and declare the result with its own public label. Then refer to these
PUBLICs using simple EXTERNs in each module.

7, 19
 Corrupted object file. Disk nastiness. Reassemble. There may be an object code inconsistency: re-
assemble all the files, and link again.

8
 Public of same name as secondary EXTERN already exists! This error cannot be seen until link time.
Rename one or the other.

9 Too many XREFs to link (12048)

10 Undefined EXTERN L (from F1)

12 Could not seek back in file 'F1'. Internal error. Should never occur.

14 Unexpected 7f. Disk nastiness. Reassemble.

15
 Byte size exp >Offh 'value'. Needs looking at. If it is what you intended, either use the LOW operator to
saw off upper bits, or change the size attribute.

Revision history ST Assembler-Linker

84/89 Doc ID 11392 Rev 4

Revision history

Table 84. Document revision history

Date Revision Changes

01-Jul-2001 1 Initial release.

30-Jun-2005 2 Updated Introduction
Updated Getting started installation procedure

Added Revision history

05-June-2008 3
Reformatted document

Added information on STM8 microcontroller support

20-Nov-2009 4
Added Chapter 7: ABSLIST

Modified Figure 1, Section 1.2, Table 1, Table 15, and LI and FI
options in Section 4.7.2

Index ST Assembler-Linker

85/89 Doc ID 11392 Rev 4

Index

Symbols
.asm .18
.cod . 9, 29, 38, 44
.fin .44
.lib .51
.map .41
.obj .9
.rsp .39
.s19 .44
.sym .41
.tab .18
/np assembler switch .81
‘@’ sign (linker) .39
’&’ character .31
’.’ in labels .21

Numerics
128-byte boundary .27
16-byte boundary .27
1k-byte boundary .27
256-byte boundary .27
30 characters .80
4-byte boundary .27
4K-byte boundary .27
64-byte boundary .27
80-column printer .74

A
address representation 22
align

128 .73
1K .27, 73
4K .27, 73
64 .27, 73
byte .27, 73
long .27, 73
page .27, 73
para .27, 73
word .27, 73

Align argument in segments27
ampersand (’&’) character 31
asli.bat .9
ASM .33
assembler options

-d .34
-fi . 33-34

-i . 34
-li . 33
-li= . 33
-m . 34
-np . 34
-obj . 33
-pa . 34
-sym . 33

attributes
byte . 19
externally . 19
internally . 19
linker relative or absolute 19
long . 19
relativity . 19
scope . 19, 21
size . 19
word . 19

C
cbe.err . 18, 78
class-names . 26
combine

at . 28
common . 28, 73

Combine argument in a segment 28
comments . 25
conditional assembly . 32
conditionals (nesting) 64
constants . 22-23
copied code . 29
cross-references . 9

D
directives

#DEFINE . 58
#ELSE . 62
#ENDIF . 62
#IF . 63
#IF1 . 64
#IF2 . 64
#IFB . 65
#IFDEF . 65
#IFIDN . 65
#IFLAB . 66
#INCLUDE . 66
#LOAD . 67

ST Assembler-Linker Index

Doc ID 11392 Rev 4 86/89

%OUT .71
.CTRL .57
.FORM .63
.LALL .67
.LIST .67
.NOCHANGE . 70-71
.NOLIST .71
.PAGE .71
.SALL .72
.SETDP .73
.TAB .74
.XALL .76
BYTES .56
CEQU .57
DATE .57
DC.B .57
DC.L .58
DC.W .58
DS.B .59
DS.L .60
DS.W .59
END .61
EQU .61
EXTERN . 21, 40, 61
FCS .63
INTEL .66
INTERRUPT .67
LOCAL .30, 68
LONG .68
LONGS .69
MACRO .30, 69
MEND .30, 69
MOTOROLA .70
NEAR .70
PUBLIC . 21, 40, 71
REPEAT .72
SEGMENT .72
SKIP .73
STRING .74
SUBTTL .74
TEXAS .74
TITLE .75
UNTIL .75
WORD .75
WORDS .76
ZILOG .76

documentation
conventions .10

E
errors

#define has no second argument 79
#LOAD before segment! 82
address not on WORD boundary 82
all EQUs involving external args must... 82
ambiguous label name 82
bad character in line 81
bad character in public line 80
bad ending . 81
bad PSIG index . 81
byte size exp >Offh ’value’ 83
byte size label has value >255 82
Cannot find position in source file 79
Cannot have code in segments previously

containing DS.X... 82
Cannot have DS.X in segments containing

code/data!... . 82
Cannot have more than 180 #defines 79
Cannot match addressing mode 81
Cannot nest #includes > 5 levels 82
COD index only allowed on introduction . . . 82
code produced outside segment 79
constant too large for directive ’value’ 82
corrupted object file 83
Could not find entry for segment in mapfile . 82
Could not find label in mapfile 82
Could not find label list in mapfile 82
Could not return to old place in source 80
Could not return to old place in source file

’X.asm’ . 79
Could not seek back in file ’F1’ 83
currently unknown numeric type 81
divide by zero . 80
doubly defined label 80
empty file . 79
EOF before line terminator 79
EOF while in macro definition 79
file capture error . 79
file list must be supplied 83
first SKIP argument is extern/relative 80
IFs nested past 15 levels 80
illegal external suffix 80
illegal source EOF . 79
illegal suffix . 82
improper characters 82
incomplete object file 83
label defined as PUBLIC twice 80
label more than 30 characters 80
label used before its EXTERN definition . . . 82
mend only allowed in macro 81
missing Hex number 81
more than four characters in single quotes . 80
no closing quote . 81

Index ST Assembler-Linker

87/89 Doc ID 11392 Rev 4

no closing single quote 81
no info on start address of class ’class’83
no lvalue in expression 80
no more than 12 numerics allowed on one line .

81
no REPEAT for this UNTIL 80
no string given on FCS line?82
no string in Long .80
no strings in DC.L .79
no strings in DC.W .79
no strings in Word .80
only allowed inside macros80
out of label space .80
out of space for macro definition81
over 250 Macline pull 82
parameter mismatch81
phase inconsistency (P1=X,P2=Y) ’label’ . . .81
public of same name as secondary EXTERN

already exists! .83
public symbol undefined 81
Run out of #define storage space (1) 79
Run out of #define storage space (2) 79
run out of source file 82
second SKIP argument is extern/relative . . .80
sequential operator error80
size mismatch on EXTERN... 83
spurious ELSE .80
spurious ENDIF .80
syntax error in SKIP arguments 80
TAB arguments incorrect 82
too many macros attempted 81
too many secondary externals (32)83
too many XREFs to link (12048)83
undefined EXTERN L (from F1) 83
undefined label .80
uneven single quotes 80
unexpected 7f .83
un-recognized opcode81
Word size label has value > 6553582

executables
ASM .33
LIB .51
LYN .38
OBSEND .44

expressions .23
extended S-record format 47
external label list .43

F
files

asli.bat .9

cbe.err . 18, 78
response files . 39

G
GP binary . 47
GP industrial binary format 45

I
INCLUDE files . 21
INTEL hex format . 45

L
label structure . 19
labels with ’.’ . 21
LIB . 51
librarian . 51
library files . 38
linker . 38
linker (segments in) . 40
linking modules . 39
LOCXXXX . 31, 68
LYN . 38

M
macro parameters . 31
macros . 30
mapfile listing . 42
module (segments in) 26
modules to be linked . 39
MOTOROLA S-record format 46

N
Name of a segment . 27
nested levels . 23
nesting conditionals . 64
number representation 22
numbers

$ABCD . 23
%100 . 23
&ABCD . 23
~665 . 23

O
OBSEND . 38
obsend formats

2 . 45
4 . 45

ST Assembler-Linker Index

Doc ID 11392 Rev 4 88/89

f .45
g .45
i .44
i32 .45
ix .45
s .45
x .45

Opcodes .22
Operands .22
operators .23

{} .23
-a .24
a*b .24
a+b .25
a/b .24
a-b .25
and .24
bnot .24
div .24
eq .24
ge .24
gt .24
high .24
lnot .24
low .24
lt .24
mult .24
ne .24
offset .24
precedence .23
seg .24
sexbl .24
sexbw .24
sexwl .24
shl .24
shr .24
wnot .24
xor .24

P
pass-1,-2 .81
pass-1,-2 listing .33
precedence (operators) 23
program counter .23
PUBLIC labels .21

R
radix .22
representation of addresses22
representation of numbers22
response files .39

S
segment . 26
segment address list . 42
segment name . 27
segmentation . 26

example . 26
segments in the linker 40
SKIP aborted . 80
source files . 18
ST S-record . 45
ST S-record format . 47
straight binary format 44-45
string constants . 23
suffixes

.asm . 18

.cod .9, 29, 38, 44

.fin . 44

.lib . 51

.map . 41

.obj . 9, 51

.rsp . 39

.s19 . 44

.sym . 41

.tab . 18

T
table of segments . 42

U
utilities

asli.bat . 9

ST Assembler-Linker

Doc ID 11392 Rev 4 89/89

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	Figure 1. Schematic overview of the assembler toolset
	1 Introduction
	1.1 ST7 and STM8 incompatibilities
	1.2 Tools
	1.3 Host PC system requirements
	1.4 Getting assistance
	1.5 Conventions

	2 Getting started
	Table 1. Description of installed files

	3 ST7 and STM8 addressing modes
	3.1 Overview of ST7 and STM8 addressing modes
	Table 2. ST7 and STM8 addressing modes
	Table 3. ST7 only addressing modes
	Table 4. STM8 addressing modes

	3.2 General instruction syntax
	3.3 Short and long addressing modes
	3.4 Inherent addressing mode
	3.5 Immediate operands
	3.6 Direct and indirect modes
	3.7 Indexed modes
	3.8 Relative mode
	3.9 High, low addressing modes

	4 ST assembler
	4.1 Overview
	4.2 Source files
	4.3 Assembler source code format
	Figure 2. Assembler source code format example
	4.3.1 Label structure
	4.3.2 Label size
	4.3.3 Label relativity
	4.3.4 Label scope
	4.3.5 Opcodes
	4.3.6 Operands
	Table 5. Numeric constants and radix formats
	Table 6. Level 1 operators
	Table 7. Level 2 operators
	Table 8. Level 3 operators
	Table 9. Level 4 operators

	4.3.7 Comments
	4.3.8 A source code example

	4.4 Segmentation
	4.4.1 Segments explained
	4.4.2 Parameters
	Table 10. Alignment types
	Table 11. Combine types

	4.5 Macros
	4.5.1 Defining macros
	Table 12. Some useful directives

	4.5.2 Parameter substitution

	4.6 Conditional assembly #IF, #ELSE and #ENDIF directives
	Table 13. Summary of conditional assembly directives
	Table 14. Other special #IF directives

	4.7 Running the assembler
	4.7.1 Command line
	4.7.2 Options
	Table 15. Command line options

	5 Linker
	5.1 What the linker does
	5.2 Invoking the linker
	5.3 Command line
	5.3.1 Arguments
	5.3.2 Response files

	5.4 Linking in detail
	5.4.1 PUBLICs and EXTERNs
	5.4.2 Segments in the linker
	5.4.3 Symbol files

	5.5 The linker in more detail
	5.5.1 The composition of the .OBJ files
	5.5.2 The composition of the .COD files
	5.5.3 Reading a mapfile listing

	6 OBSEND
	6.1 What OBSEND does for you
	6.2 Invoking OBSEND
	6.2.1 Destination type
	6.2.2 Destination arguments
	6.2.3 Format definitions
	Table 16. Output formats

	6.2.4 Straight binary format
	6.2.5 Intel hex format
	6.2.6 Motorola S-record format
	6.2.7 ST 2 and ST 4 S-record formats
	6.2.8 GP binary

	7 ABSLIST
	7.1 Overview
	7.2 Invoking the list file post processor
	7.3 Limitations

	8 Librarian
	8.1 Overview
	8.2 Invoking the librarian
	Table 17. Library file options

	8.3 Adding modules to a library
	8.4 Deleting modules from a library
	8.5 Copying modules from a library
	8.6 Getting details in your library

	9 Definitions
	Table 18. Acronyms and terms used in this document

	Appendix A Assembler directives
	A.1 Introduction
	Table 19. List of directives

	A.2 Directives
	Table 20. .BELL
	Table 21. BYTE
	Table 22. BYTES
	Table 23. CEQU
	Table 24. .CTRL
	Table 25. DATE
	Table 26. DC.B
	Table 27. DC.W
	Table 28. DC.L
	Table 29. #DEFINE
	Table 30. DS.B
	Table 31. DS.W
	Table 32. DS.L
	Table 33. END
	Table 34. EQU
	Table 35. EXTERN
	Table 36. #ELSE
	Table 37. #ENDIF
	Table 38. FAR (STM8 only)
	Table 39. FCS
	Table 40. .FORM
	Table 41. GROUP
	Table 42. #IF
	Table 43. #IF1 Conditional
	Table 44. #IF2
	Table 45. #IFB
	Table 46. #IFIDN
	Table 47. #IFDEF
	Table 48. #IFLAB
	Table 49. #INCLUDE
	Table 50. INTEL
	Table 51. INTERRUPT
	Table 52. .LALL
	Table 53. .LIST
	Table 54. #LOAD
	Table 55. LOCAL
	Table 56. LONG
	Table 57. LONGS
	Table 58. MACRO
	Table 59. MEND
	Table 60. MOTOROLA
	Table 61. NEAR
	Table 62. .NOCHANGE
	Table 63. .NOLIST
	Table 64. %OUT
	Table 65. .PAGE
	Table 66. PUBLIC
	Table 67. REPEAT
	Table 68. .SALL
	Table 69. SEGMENT
	Table 70. .SETDP
	Table 71. SKIP
	Table 72. STRING
	Table 73. SUBTTL
	Table 74. .TAB
	Table 75. TEXAS
	Table 76. TITLE
	Table 77. UNTIL
	Table 78. WORD
	Table 79. WORDS
	Table 80. .XALL
	Table 81. ZILOG

	Appendix B Error messages
	B.1 Format of error messages
	Figure 3. Error message format example

	B.2 File CBE.ERR
	B.3 Assembler errors
	Table 82. Assembler errors

	B.4 Linking errors
	Table 83. Linking errors

	Revision history
	Table 84. Document revision history

