
Introduction
This application note describes how to manage the memory protection unit (MPU) in the STM32 products. The MPU is an
optional component for the memory protection. Including the MPU in the STM32 microcontrollers makes them more robust and
reliable. The MPU must be programmed and enabled before using it. If the MPU is not enabled, there is no change in the
memory system behavior.

This application note concerns all the STM32 products listed in Table 1 that include Cortex®-M0+/M3/M4 and M7 design which
supports the MPU.

For more details about the MPU, refer to the following documents available on http://www.st.com:
• STM32F7 Series and STM32H7 Series Cortex®-M7 processor programming manual (PM0253)
• STM32F10xxx/20xxx/21xxx/L1xxxx Cortex®-M3 programming manual (PM0056)
• STM32L0 Series and STM32G0 Series Cortex®-M0+ programming manual (PM0223)
• STM32 Cortex®-M4 programming manual (PM0214)
• STM32 Cortex®-M33 programming manual (PM0264)

Table 1. Applicable products

Type Product series

Microcontrollers

• STM32F1 Series, STM32F2 Series, STM32F3 Series, STM32F4 Series, STM32F7 Series
• STM32G0 Series, STM32G4 Series
• STM32H7 Series
• STM32L0 Series, STM32L1 Series, STM32L4 Series, STM32L4+ Series, STM32L5 Series
• STM32WB Series

Managing memory protection unit in STM32 MCUs

AN4838

Application note

AN4838 - Rev 4 - February 2020
For further information contact your local STMicroelectronics sales office.

www.st.com

http://www.st.com

1 General information

This application note applies to the STM32 MCU listed in Table 1. Applicable products that are Arm®-based
devices.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

AN4838
General information

AN4838 - Rev 4 page 2/20

2 Overview

The MPU can be used to make an embedded system more robust and more secure by:
• prohibiting the user applications from corrupting data used by critical tasks (such as the operating system

kernel)
• defining the SRAM memory region as a non-executable (eXecute Never XN) to prevent code injection

attacks
• changing the memory access attributes

The MPU can be used to protect up to sixteen memory regions. In ARMv6 and ARMv7 architecture (Cortex®

M0+, M3, M4, and M7) this regions, in turn can have eight subregions, if the region is at least 256 bytes. The
exact amount of regions protected can vary between core and devices in the STM32, please refer to table 5 for
more details. The subregions are always of equal size, and can be enabled or disabled by a subregion number.
Because the minimum region size is driven by the cache line length (32 bytes), 8 subregions of 32 bytes
corresponds to a 256 bytes size.
The regions are numbered 0-15. In addition, there is another region called the default region with an id of -1. All
the 0-15 memory regions take priority over the default region.
The regions can overlap, and can be nested. The region 15 has the highest priority and the region 0 has the
lowest one and this governs how overlapping the regions behave. The priorities are fixed, and cannot be
changed.
In ARMv8 architecture (Cortex®-M33) the regions are defined using a base and a limit adress offering flexibility
and simplicity to the developper on the way to organise them. Additionaly the Cortex®-M33 does not include
subregions as the region size is now more flexible.
Figure 1. Example of overlapping regions shows an example with six regions. This example shows the region 4
overlapping the region 0 and 1. The region 5 is enclosed completely within the region 3. Since the priority is in an
ascending order, the overlap regions (in orange) have the priority. So if the region 0 is writeable and the region 4
is not, an address falling in the overlap between 0 and 4 is not writeable.

Figure 1. Example of overlapping regions

Region 4

Region 0

Region 1

Region 2

Region 5

Region 3

0

4 Gbytes

Regions
Overlap regions

AN4838
Overview

AN4838 - Rev 4 page 3/20

Caution: In ARMv8 architecture (Cortex®-M33) regions are now not allowed to overlap. As the MPU region
definition is much more flexible, overlapping MPU regions are not necessary.
The MPU is unified, meaning that there are not separate regions for the data and the instructions.
The MPU can be used also to define other memory attributes such as the cacheability, which can be exported to
the system level cache unit or the memory controllers. The memory attribute settings in Arm® architecture can
support 2 levels of cache: inner cache and outer cache. For the STM32F7 Series and STM32H7 Series, only one
level of cache (L1-cache) is supported.
The cache control is done globally by the cache control register, but the MPU can specify the cache policy and
whether the region is cacheable or not.

2.1 Memory model

In the STM32 products, the processor has a fixed default memory map that provides up to 4 Gbytes of
addressable memory. The memory map of Cortex® M0+, M3, M4, and M7 is :

Figure 2. Processor memory map

0x0000 0000

0x1FFF FFFF

0x3FFF FFFF

0x5FFF FFFF

0x9FFF FFFF

0xDFFF FFFF

0xE00F FFFF

0xFFFF FFFF

Vendor-specific memory

External RAM

Peripheral

SRAM

Code

External device

Private peripheral bus

0.5 Gbyte

0.5 Gbyte

0.5 Gbyte

1.0 Gbyte

1.0 Gbyte

1.0 Mbyte

511 Mbytes

0x2000 0000

0x4000 0000

0x6000 0000

0xA000 0000

0xE000 0000

0xE010 0000

AN4838
Memory model

AN4838 - Rev 4 page 4/20

Figure 3. Processor memory map for Cortex®-M33 products

Cortex M33
Non-secure

OCTOSPI1 bank
Non-secure

FMC bank 3
Non-secure

FMC bank 1
Non-secure

Peripherals
Non-secure callable

Peripherals
Non-secure

SRAM2
Non-secure callable

SRAM 2
Non-secure

Code
Non-secure

Code
Non-secure callable

Code
Non-secure

Reserved
AHB3

Reserved
AHB2

Reserved
AHB1

Reserved
APB2

Reserved
APB1

Reserved
AHB3

Reserved
AHB2

Reserved
AHB1

Reserved
APB2

Reserved
APB1

Reserved
RSS

Reserved
SRAM2
SRAM1

Reserved
FLASH

Reserved
OTP

Reserved
System memory

Reserved
SRAM2
SRAM1

Reserved
FLASH

External memories remap

0xFFFF FFFF

0xE000 0000

0xA000 0000

0x9000 0000

0x8000 0000

0x7000 0000

0x6000 0000

0x5000 0000

0x4000 0000

0x3003 0000

0x2003 0000

0x1000 0000

0x0C00 0000

0x0000 0000

0x6000 0000
0x5402 2000
0x5402 0000

0x520C 8000

0x5202 0000
0x5003 3000
0x5002 0000
0x5001 6800
0x5001 0000

0x5000 E000

0x5000 0000

0x5000 0000
0x4402 2000
0x4402 0000

0x420C 8400

0x4202 0000
0x4003 3400
0x4002 0000
0x4001 6800
0x4001 0000

0x4000 E000

0x4000 0000

0x0C00 0000
0x0BFB 0000
0x0BFA 0000

0x0BF9 7FFF

0x0BF9 0000
0x0A04 0000
0x0A03 0000
0x0A00 0000
0x0808 0000

0x0800 0000

0x0000 0000

0x1000 0000

0x0FF8 27FF
0x0FF8 0000
0x0E04 0000
0x0E03 0000
0x0E00 0000

0x0C08 0000

0x0C00 0000

Non-secure

Non-secure callable

SRAM 1
Non-secure

0x2000 0000

SRAM1
Non-secure callable

0x3000 0000

AN4838
Memory model

AN4838 - Rev 4 page 5/20

3 Memory types, registers and attributes for architecture embedded
in Cortex®M0+, M3, M4 and M7 devices

The memory map and the programming of the MPU split the memory map into regions. Each region has a defined
memory type, and memory attributes. The memory type and attributes determine the behavior of accesses to the
region.

3.1 Memory types

There are three common memory types:
Normal memory: allows the load and store of bytes, half-words and words to be arranged by the CPU in an
efficient manner (the compiler is not aware of memory region types). For the normal memory region the load /
store is not necessarily performed by the CPU in the order listed in the program.
Device memory: within the device region, the loads and stores are done strictly in order. This is to ensure the
registers are set in the proper order.
Strongly ordered memory: everything is always done in the programmatically listed order, where the CPU waits
the end of load/store instruction execution (effective bus access) before executing the next instruction in the
program stream. This can cause a performance hit.

3.2 MPU Registers description

The MPU registers are located at 0xE000ED90. There are 5 basic MPU registers and a number of alias registers
for each of the regions. The following are used to set up regions in the MPU:
• MPU_TYPE: read-only register used to detect the MPU presence.
• MPU_CTRL: control register.
• MPU_RNR: region number, used to determine which region operations are applied to.
• MPU_RBAR: region base address.
• MPU_RASR: region attributes and size.
• MPU_RBAR_An: alias n of MPU_RBAR, where n is 1 to 3.
• MPU_RASR_An: alias n of MPU_RASR, where n is 1 to 3.

Note: The Cortex®-M0+ does not implement the MPU_RBAR_An and MPU_RASR_An registers.
For more details about the MPU registers, refer to the programming manuals listed at the introduction section.

3.3 Memory attributes

The region attributes and size register (MPU_RASR) are where all the memory attributes are set. Table 2 shows a
brief description about the region attributes and size in the MPU_RASR register.

Table 2. Region attributes and size in MPU_RASR register

Bits Name Description

28 XN Execute never

26:24 AP Data Access Permission field (RO, RW or No access)

21:19 TEX Type Extension field

18 S Shareable

17 C Cacheable

16 B Bufferable

15:8 SRD Subregion disable. For each subregion 1=disabled, 0=enabled.

5:1 SIZE Specifies the size of the MPU protection region.

AN4838
Memory types, registers and attributes for architecture embedded in Cortex®M0+, M3, M4 and M7 devices

AN4838 - Rev 4 page 6/20

• The XN flag controls the code execution. In order to execute an instruction within the region, there must be
read access for the privilege level, and XN must be 0. Otherwise a MemManage fault is generated.

• The data access permission (AP) field defines the AP of memory region. Table 3. Access permission of
regions illustrates the access permissions:

Table 3. Access permission of regions

AP[2:0] Privileged permissions Unprivileged permissions Description

000 No access No access All accesses generate a permission fault

001 RW No access Access from a privileged software only

010 RW RO Written by an unprivileged software generates a permission
fault

011 RW RW Full access

100 Unpredictable Unpredictable Reserved

101 RO No access Read by a privileged software only

110 RO RO Read only, by privileged or unprivileged software

111 RO RO Read only, by privileged or unprivileged software

• The S field is for a shareable memory region: the memory system provides data synchronization between
bus masters in a system with multiple bus masters, for example, a processor with a DMA controller. A
strongly-ordered memory is always shareable. If multiple bus masters can access a non-shareable memory
region, the software must ensure the data coherency between the bus masters. The STM32F7 Series and
STM32H7 Series do not support hardware coherency. The S field is equivalent to non-cacheable memory.

• The TEX, C and B bits are used to define cache properties for the region, and to some extent, its
shareability. They are encoded as per the following table:

Table 4. Cache properties and shareability

TEX C B Memory Type Description Shareable

000 0 0 Strongly Ordered Strongly Ordered Yes

000 0 1 Device Shared Device Yes

000 1 0 Normal Write through, no write allocate S bit

000 1 1 Normal Write-back, no write allocate S bit

001 0 0 Normal Non-cacheable S bit

001 0 1 Reserved Reserved Reserved

001 1 0 Undefined Undefined Undefined

001 1 1 Normal Write-back, write and read allocate S bit

010 0 0 Device Non-shareable device No

010 0 1 Reserved Reserved Reserved

• The subregion disable bits (SRD) flag whether a particular subregion is enabled or disabled. Disabling a
subregion means that another region overlapping the disabled range matches instead. If no other enabled
region overlaps the disabled subregion the MPU issues a fault.

For the products that implement a cache (only for STM32F7 Series and STM32H7 Series that implement L1-
cache) the additional memory attributes include:
• Cacheable/ non-cacheable: means that the dedicated region can be cached or not.

AN4838
Memory attributes

AN4838 - Rev 4 page 7/20

• Write through with no write allocate: on hits it writes to the cache and the main memory, on misses it
updates the block in the main memory not bringing that block to the cache.

• Write-back with no write allocate: on hits it writes to the cache setting dirty bit for the block, the main
memory is not updated. On misses it updates the block in the main memory not bringing that block to the
cache.

• Write-back with write and read allocate: on hits it writes to the cache setting dirty bit for the block, the
main memory is not updated. On misses it updates the block in the main memory and brings the block to the
cache.

Note: For Cortex®-M7, TCMs memories always behave as non-cacheable, non-shared normal memories, irrespective
of the memory type attributes defined in the MPU for a memory region containing addresses held in the TCM.
Otherwise, the access permissions associated with an MPU region in the TCM address space are treated in the
same way as addresses outside the TCM address space.

3.4 Cortex-M7 constraint speculative prefetch

The Cortex-M7 implements the speculative prefetch feature, which allows speculative accesses to normal
memory locations (for example: FMC, Quad-SPI devices). When a speculative prefetch happens, it may impact
memories or devices which are sensitive to multiple accesses (such as FIFOs, LCD controller). Or it may disturb
the traffic generated by another masters such as LCD-TFT or DMA2D with higher bandwidth consumption when a
speculative prefetch happens. In order to protect normal memories from a speculative prefetch it is recommended
to change memory attributes from normal to a strongly ordered or to device memory thanks to the MPU. For more
details about configuring memory attributes refer to Section 6 Example for setting up the MPU with cube HAL on
ARMv6 and ARMv7 Architecture.

AN4838
Cortex-M7 constraint speculative prefetch

AN4838 - Rev 4 page 8/20

4 Memory types, registers and attributes of the CM33

Although the concepts for the MPU operations are similar, the MPU in the ARMv8-M architecture has a different
programmers’ model to the MPU in previous versions of the M-profile Arm® architecture.
It is important to realize that all MPU registers are banked. If TrustZone is enabled, there is a set of MPU registers
for the Secure state, and a mirror set for the Non-secure state. When accessing the MPU address between
0xE000ED90 and 0xE000EDC4, the type of MPU registers accessed is determined by the current state of the
processor.
Non-secure code can access Non-secure MPU registers and Secure code can access Secure MPU registers. In
addition, Secure code can access Non-secure MPU registers at their aliased address.
Secure access sees Secure MPU registers, Non-secure access sees Non-secure MPU registers. Secure software
can also access Non-secure MPU registers using the alias address.

4.1 Memory types and attributes of the Cortex® M33

In ARMv8-M architecture, memory types are divided into:
• normal memory
• device memory

Note: The Strongly Ordered (SO) device memory type in ARMv6-M and ARMv7-M is now a subset of the device
memory type.
The Normal Memory type is intended to be used for MPU regions that are used to access general instruction or
data memory. Normal memory allows the processor to perform some memory access optimizations, such as
access reordering or merging. Normal memory also allows memory to be cached and is suitable for holding
executable code. Normal memory must not be used to access peripheral MMIO registers, the Device memory
type is intended for that use. Note the Normal Memory definition remains mostly unchanged from the ARMv7-M
architecture.
Normal memory can have several attributes applied to it. The following memory attributes are available:
• cacheability : memories cacheable or non-cacheable
• shareability: normal memory shareable or non-shareable
• eXecute Never : memories marked as executable or eXecute Never (XN)

Device memory must be used for memory regions that cover peripheral control registers. Some of the
optimizations that are allowed to Normal memory, such as access merging or repeating, would be unsafe to a
peripheral register.
The Device memory type has several attributes:
• G or nG : gathering or non-gathering. (Multiple accesses to a device can be merged into a single transaction

except for operations with memory ordering semantics, for example, memory barrier instructions, load
acquire/store release).

• R or nR : reordering.
• E or nE : early write acknowledge (similar to bufferable).

Only four combinations of these attributes are valid :
• device-nGnRnE : equivalent to ARMv7-M strongly ordered memory type
• device-nGnRE : equivalent to ARMv7-M device memory
• device-nGRE : new to ARMv8-M
• device-GRE : new to ARMv8-M

4.2 Attribute indirection

The attribute indirection mechanism allows multiple MPU regions to share a set of memory attributes. For
example, in the following figure MPU regions 1, 2 and 3 are all assigned to SRAM, so they can share cache-
related memory attributes.

AN4838
Memory types, registers and attributes of the CM33

AN4838 - Rev 4 page 9/20

Figure 4. Exemple of attribute indirection

Region #0

Region #3

Region #2

Region #1

SRAM

Rom/
Flash

I

I

I

0

Attr3

Attr2

Attr1

Attr0

MPU_MAIR 0

MPU_MAIR I

Attr7

Attr6

Attr5

Attr4

Memory attribute for peripheral space

Memory attribute for SRAM

Memory attribute for Flash

MPU_RLAR

At the same time, regions 1, 2, and 3 can still have their own access permission, XN, and shareability attributes.
This is required as each region can have different uses in the application.

4.3 Memory protection unit registers

The MPU registers of the Cortex® M33 are changing versus previous Cortex® cores, offering more flexibilities and
compatibilities with Trust zone. Consequently, the programming approach used in previous series cannot be
applied in this family. The introduction of the MPU Region Base Limit Register for example, will allow user to
easily define start and end of their protected regions.

Table 5. Cortex® M33 MPU registers

Secure address NS address alias Register Description

0xE000ED90 0xE002ED90 MPU_TYPE MPU Type Register

0xE000ED94 0xE002ED94 MPU_CTRL MPU Control Register

0xE000ED98 0xE002ED98 MPU_RNR MPU Region Number Register

0xE000ED9C 0xE002ED9C MPU_RBAR MPU Region Base Address Register

0xE000EDA0 0xE002EDA0 MPU_RLAR MPU Region Base Limit Register

0xE000EDA4 0xE002EDA4 MPU_RBAR_A1 MPU Region Base Address Register Alias 1

0xE000EDAC 0xE002EDAC MPU_RBAR_A2 MPU Region Base Address Register Alias 2

AN4838
Memory protection unit registers

AN4838 - Rev 4 page 10/20

Secure address NS address alias Register Description

0xE000EDB4 0xE002EDB4 MPU_RBAR_A3 MPU Region Base Address Register Alias 3

0xE000EDA8 0xE002EDA8 MPU_RLAR_A1 MPU Region Limit Address Register Alias 1

0xE000EDB0 0xE002EDB0 MPU_RLAR_A2 MPU Region Limit Address Register Alias 2

0xE000EDB8 0xE002EDB8 MPU_RLAR_A3 MPU Region Limit Address Register Alias 3

0xE000EDC0 0xE002EDC0 MPU_MAIR0 MPU Memory Attribute Indirection Register 0

0xE000EDC4 0xE002EDC4 MPU_MAIR1 MPU Memory Attribute Indirection Register 1

AN4838
Memory protection unit registers

AN4838 - Rev 4 page 11/20

5 Comparison of MPU features between Cortex®-M0+, Cortex®-M3/M4,
Cortex®-M7, and Cortex®-M33

There are few differences at the MPU level between Cortex®-M0+, Cortex®-M3/M4, Cortex®-M7 and Cortex®-
M33 so the user must be aware of them if the MPU configuration software has to be used. Table 6 illustrates the
differences of the MPU features between Cortex®-M0+, Cortex®-M3/M4, Cortex®-M7, and Cortex®-M33.

Table 6. Comparison of MPU features between Cortex®-M0+, Cortex®-M3/M4, Cortex®-M7, and Cortex®-
M33

Features Cortex®-M0+ Cortex®-M3/M4 Cortex®-M7 Cortex®-M33

Number of regions 8 8 8/16 (1)(2) 8 MPU_S / 8 MPU_NS

Region address Yes Yes Yes Yes

Region size 256 bytes to 4 Gbytes 32 bytes to 4 Gbytes 32 bytes to 4 Gbytes 32 bytes to 4 Gbytes

Region memory
attributes S, C, B, XN (*)(3) TEX, S, C, B, XN TEX, S, C, B, XN S,C, E (4),G (5), R (6),

XN

Region access
permission (AP) Yes Yes Yes Yes (priviliged or not)

Subregion disable 8 bits 8 bits 8 bits NA

MPU bypass for NMI/
Hardfault Yes Yes Yes Yes

Alias of MPU registers No Yes Yes Yes

Fault exception Hardfault only Hardfault /
MemManage

Hardfault /
MemManage

Hardfault /
MemManage

1. For STM32H7 Series devices.
2. For STM32F7 Series devices.
3. Cortex®-M0+ supports one level of cache policy that is why the TEX field is not available in Cortex®-M0+ processor.
4. Early write acknowledge (similar to bufferable)
5. Gathering
6. Reordering

AN4838
Comparison of MPU features between Cortex®-M0+, Cortex®-M3/M4, Cortex®-M7, and Cortex®-M33

AN4838 - Rev 4 page 12/20

6 Example for setting up the MPU with cube HAL on ARMv6 and
ARMv7 Architecture

The table below describes an example of setting up the MPU with the following memory regions: Internal SRAM,
Flash memory and peripherals. The default memory map is used for privileged accesses as a background region,
the MPU is not enabled for the hard fault handler and NMI.
Internal SRAM: 8 Kbytes of internal SRAM is configured as Region0.
Memory attributes: shareable memory, write through with no write allocate, full access permission and code
execution enabled.
Flash memory: the whole Flash memory is configured as Region1.
Memory attributes: non-shareable memory, write through with no write allocate, full access permission and code
execution enabled.
Peripheral region: is configured as Region2.
Memory attributes: shared device, full access permission and execute never.

Table 7. Example of setting up the MPU

Usage Memory type Base address Region number Memory size Memory attributes

Internal SRAM Normal memory 0x2000 0000 Region0 8 Kbytes

Shareable, write through, no write allocate

C=1, B = 0, TEX = 0, S=1

SRD = 0, XN= 0, AP = full access

Flash memory Normal memory 0x0800 0000 Region1 1 Mbyte

Non-shareable write through, no write allocate

C=1, B = 0, TEX = 0, S=0

SRD = 0, XN= 0, AP = full access

FMC Normal memory 0x6000 0000 Region2 512 Mbytes

Shareable, write through, no write allocate

C=1, B = 0, TEX = 0, S=1

SRD = 0, XN= 0, AP = full access

AN4838
Example for setting up the MPU with cube HAL on ARMv6 and ARMv7 Architecture

AN4838 - Rev 4 page 13/20

Setting the MPU with cube HAL

void MPU_RegionConfig(void)
{
MPU_Region_InitTypeDef MPU_InitStruct;
/* Disable MPU */
HAL_MPU_Disable();
/* Configure RAM region as Region N°0, 8kB of size and R/W region */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x20000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_8KB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER0;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Configure FLASH region as REGION N°1, 1MB of size and R/W region */
MPU_InitStruct.BaseAddress = 0x08000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_1MB;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER1;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Configure FMC region as REGION N°2, 0.5GB of size, R/W region */
MPU_InitStruct.BaseAddress = 0x60000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_512MB;
MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER2;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Enable MPU */
HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}

AN4838
Example for setting up the MPU with cube HAL on ARMv6 and ARMv7 Architecture

AN4838 - Rev 4 page 14/20

7 Conclusion

Using the MPU in the STM32 microcontrollers makes them robust, reliable and in some cases more secure by
preventing the application tasks from accessing or corrupting the stack and data memory used by the other tasks.
This application note is a description of the different memory attributes, the types and the MPU registers.
It provides also an example for setting up the MPU with the cube HAL to illustrate how to configure the MPU in
the STM32 MCUs.
For more details about the MPU registers, refer to the Cortex®-M33/M7/M3/M4/M0+ programming manuals
available on STMicroelectronics web site.

AN4838
Conclusion

AN4838 - Rev 4 page 15/20

Revision history

Table 8. Document revision history

Date Revision Changes

24-Mar-2016 1 Initial release.

04-May-2018 2

Added STM32H7 Series in the whole document.

Updated Figure 1. Example of overlapping regions.

Added Section 1 General information

Added Section 3.4 Cortex-M7 constraint speculative prefetch.

17-Jul-2019 3 Updated Introduction adding STM32G0 Series, STM32G4 Series, STM32L4+ Series, STM32L5
Series and STM32WB Series.

10-Feb-2020 4

Added:
• PM0214 in Section Introduction
• Section 4 Memory types, registers and attributes of the CM33
• Section 5 Comparison of MPU features between Cortex-M0+, Cortex-M3/M4, Cortex-M7,

and Cortex-M33

Updated :
• title of the document
• Section Introduction
• Section 2 Overview
• Section 2.1 Memory model

AN4838

AN4838 - Rev 4 page 16/20

Contents

1 General information .2

2 Overview .3

2.1 Memory model. 4

3 Memory types, registers and attributes for architecture embedded in Cortex®M0+,
M3, M4 and M7 devices .6

3.1 Memory types . 6

3.2 MPU Registers description. 6

3.3 Memory attributes . 6

3.4 Cortex-M7 constraint speculative prefetch. 8

4 Memory types, registers and attributes of the CM33 .9

4.1 Memory types and attributes of the Cortex® M33 . 9

4.2 Attribute indirection . 9

4.3 Memory protection unit registers . 10

5 Comparison of MPU features between Cortex®-M0+, Cortex®-M3/M4, Cortex®-M7,
and Cortex®-M33 .12

6 Example for setting up the MPU with cube HAL on ARMv6 and ARMv7 Architecture .
. .13

7 Conclusion .15

Revision history .16

Contents .17

List of tables .18

List of figures. .19

AN4838
Contents

AN4838 - Rev 4 page 17/20

List of tables
Table 1. Applicable products . 1
Table 2. Region attributes and size in MPU_RASR register . 6
Table 3. Access permission of regions . 7
Table 4. Cache properties and shareability . 7
Table 5. Cortex® M33 MPU registers . 10
Table 6. Comparison of MPU features between Cortex®-M0+, Cortex®-M3/M4, Cortex®-M7, and Cortex®-M33 12
Table 7. Example of setting up the MPU . 13
Table 8. Document revision history . 16

AN4838
List of tables

AN4838 - Rev 4 page 18/20

List of figures
Figure 1. Example of overlapping regions . 3
Figure 2. Processor memory map. 4
Figure 3. Processor memory map for Cortex®-M33 products . 5
Figure 4. Exemple of attribute indirection . 10

AN4838
List of figures

AN4838 - Rev 4 page 19/20

	1 General information
	2 Overview
	2.1 Memory model

	3 Memory types, registers and attributes for architecture embedded in Cortex(R)M0+, M3, M4 and M7 devices
	3.1 Memory types
	3.2 MPU Registers description
	3.3 Memory attributes
	3.4 Cortex-M7 constraint speculative prefetch

	4 Memory types, registers and attributes of the CM33
	4.1 Memory types and attributes of the Cortex(R) M33
	4.2 Attribute indirection
	4.3 Memory protection unit registers

	5 Comparison of MPU features between Cortex(R)-M0+, Cortex(R)-M3/M4, Cortex(R)-M7, and Cortex(R)-M33
	6 Example for setting up the MPU with cube HAL on ARMv6 and ARMv7 Architecture
	7 Conclusion
	Revision history
	Contents
	List of tables
	List of figures

