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Getting started with sigma-delta digital interface 
on applicable STM32 microcontrollers

Introduction

The DFSDM (digital filter for sigma-delta modulators) is an innovative embedded peripheral 
available in a selection of STM32 microcontrollers (see Table 1: Applicable products), and is 
of particular interest for applications that process external analog signals.

Although the DFSDM is a pure digital peripheral, it is designed to support a wide range of 
external analog front ends. By keeping the analog front-end part (sigma-delta modulator) 
outside of the microcontroller, the user has total flexibility to select the analog properties 
according to the application requirements (analog range, noise, sampling speed).

The raw converted digital data from the sigma-delta modulator is then processed by the 
DFSDM peripheral (digital filtering). The DFSDM configuration is flexible enough to support 
a wide range of converted data properties: output data width, output data rate, output 
frequency range.

From an application point of view, the DFSDM with its external analog front-end behaves 
like an ADC converter. Additional functions typical of an ADC are also available within the 
DFSDM such as analog watchdog, extremes detector and offset correction.

Reference:

[TUTORIAL] In this document, [TUTORIAL] refers to a DFSDM simulator available in the 
form of a Microsoft® Excel® workbook, that can be downloaded from 
www.st.com, using home page search engine with keyword 
“DFSDM_tutorial”.

          

Table 1. Applicable products 

Type
Applicable 
perimeter

Series, lines, references

Microcontrollers

Complete Series STM32L4 Series, STM32L4+ Series, STM32H7 Series

Complete Line STM32F412 line, STM32F413/423 line

STM32F76xxx

STM32F765BG, STM32F765BI, STM32F765IG, STM32F765II, 
STM32F765NG, STM32F765NI, STM32F765VG, 
STM32F765VI, STM32F765ZG, STM32F765ZI, 
STM32F767BG, STM32F767BI, STM32F767IG, STM32F767II, 
STM32F767NG, STM32F767NI, STM32F767VG, 
STM32F767VI, STM32F767ZG, STM32F767ZI, STM32F768AI, 
STM32F769AG, STM32F769AI, STM32F769BG, 
STM32F769BI, STM32F769IG, STM32F769II, STM32F769NG, 
STM32F769NI, STM32F769SL

STM32F77xxx
STM32F777BI, STM32F777II, STM32F777NI, STM32F777VI, 
STM32F777ZI, STM32F778AI, STM32F779AI, STM32F779BI, 
STM32F779II, STM32F779NI

www.st.com

http://www.st.com
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1 Overview of A/D conversion principle using DFSDM

This document supports Arm®(a)-based devices.

1.1 Fundamental concept of A/D conversion using DFSDM

The basic block diagram of analog-to-digital conversion using DFSDM is provided in 
Figure 1.

Figure 1. A/D conversion block diagram using the DFSDM

The external analog signal is processed by an external sigma-delta modulator which 
converts the analog signal into a digital 1-bit stream (DATA and CLK signals). The 1-bit 
stream is a fast serial line stream of logical ones and zeros: the DATA signal is sampled by 
CLK (clock signal). The average value of these logical ones and zeros, computed during a 
long enough time duration, represents the analog input value. The duration of the averaging 
period determine the precision of the analog input signal capture.

The averaging of the 1-bit stream is performed by the STM32 microcontroller DFSDM 
peripheral (DFSDM = digital filter for sigma-delta modulators). The DFSDM acquires and 
processes the 1-bit data stream (digital filtering, averaging). The DFSDM outputs data 
samples at a slower data rate than the input 1-bit stream but with a higher resolution. The 
DFSDM digital filter settings define the output resolution and data rate.

1.2 Sigma-delta modulator

The DFSDM peripheral requires an external analog front-end that performs the A/D 
conversion of the analog source. This external analog to digital conversion is performed in a 
sigma-delta modulator.

A sigma-delta modulator consists in a 1-bit(b) A/D converter which digitizes the input analog 
data into a serial digital data stream. The analog input is sampled and converted into a 1-bit 
digital data stream with alternating zeros and ones. The mean value of the digital stream 

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

MSv43870V1

STM32 microcontroller

DFSDMAnalog

Sigma-Delta modulator
(Σ∆)

Digitizer
DATA
CLK

1-bit data 
stream

Serial line

Analog 
input

b. In general the output of a sigma-delta modulator can be multi-bit however in this document the focus is on a 1-
bit A/D converter (which is the most frequent case).
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computed during a given time interval represents the average value of the input analog 
signal during the same time interval. The sigma-delta modulation principle could be 
presented as a special PWM modulation where both the period and the duty cycle would be 
modulated (whereas the period is fixed and only the duty cycle is modulated in a typical 
PWM modulation). See Figure 2 and Figure 3 for comparison between PWM and sigma-
delta modulation.

The digital data stream outputting the sigma-delta modulator is then processed by the 
STM32 microcontroller DFSDM peripheral. The DFSDM performs a digital filtering using 
parameters that need to be configured according the application requirements.

Note: For analysis, the digital stream is usually “converted” from binary 0 and binary 1 weights into 
+1 and -1 weights for comparison with input voltages cleared of any DC component. The 
zero input voltage generates duty cycle 50:50 (first order sigma-delta modulator is used).

Figure 2. PWM modulation example
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Figure 3. Sigma-delta modulation example

1.3 Digital filter 

The DFSDM peripheral (digital filter for sigma-delta modulators) processes the digital part of 
the A/D conversion. The digital data stream is provided by an external sigma-delta 
modulator. The basic functionality of the DFSDM is to implement a digital filter. The DFSDM 
processing consists in averaging a fast rate input serial stream and producing a parallel, 
lower rate, data output with higher resolution. The DFSDM embedded filter features a set of 
configurable parameters that allow to tune the output resolution and data rate and meet the 
application requirements.

The DFSDM features additional ADC-related functionalities including:

• Independent fast watchdog on each channel with programmable speed and resolution 
to detect input signals exceeding minimal or maximal allowed voltage levels.

• Break signal generation used to instantaneously report events like analog watchdog or 
short circuit detection to other peripherals (timers).

• Short circuit detector on each channel for very fast detection of signal clamping: when 
input voltage reaches one of the analog range limits and stays steady in excess of a 
given time duration (independent from the main conversion).

• Extreme detector to record minimal and maximal input voltage excursion.

MSv43872V1
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2 Sigma-delta modulation principle (external analog 
front-end functioning, simulations)

2.1 Principle of sigma-delta modulation

The basic functional block diagram of a sigma-delta modulator is presented on Figure 4.

Figure 4. Sigma-delta modulation principle

1. The references [1] to [5] present in the above figure are used in the following paragraphs.

MSv36525V2
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Figure 5 provides an example of the signals available at the different stages of the analog to 
digital conversion.

Figure 5. Sigma-delta modulator voltages timing diagram

1. The references [1] to [5] present in the above figure are used in the following paragraph.

The below description of sigma-delta modulation uses references present in Figure 4 and 
Figure 5:

The analog input signal [1] is added to the 1-bit DAC output feedback from the comparator 
(+Vref or -Vref voltage) and the result [2] goes to the integrator. The integrator cumulates the 
difference between the analog input signal [1] and the 1-bit DAC output feedback (+Vref or -
Vref voltage). The integrator output [3] is then compared with the zero voltage reference by 
the comparator. The comparator output [4] is latched periodically at the clock frequency by 
the D-latch to propagate the comparator result to the modulator output in quantized time 
steps (clock ticks). The D-latch output [5] is the digital 1-bit output from the sigma-delta 
modulator. The output is fed back to the 1-bit D/A converter which outputs only 2 possible 
analog voltages (usually implemented as a switch between +Vref and -Vref reference 
voltages). The data rate of the 1-bit output data stream is defined by the modulator clock 
frequency.

The output of the sigma-delta modulation is a digital data stream (black curve on Figure 5) 
that is clocked by the modulator clock. The average value of this output (computed in the 
digital domain) represents the input analog voltage. This digital average should be 
computed as the ratio between the number of ones versus the number of zeros observed 
during a given number of clock periods within the sigma delta output stream.

This digital data stream constitutes the input of the STM32 microcontroller DFSDM 
peripheral where it can be filtered. DFSDM configurable parameters need to be set 
according the application requirements.
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2.2 Advantages of sigma-delta modulation

2.2.1 Noise shaping

The output signal from the sigma-delta modulation must be filtered to remove the high 
frequency content (the quantization noise) and retain only the useful frequency band. In 
order to properly design such filter, some understanding of the sigma-delta modulated signal 
spectrum is required. The sigma-delta modulated signal spectrum is different from the PWM 
modulation spectrum.

The PWM modulation signal is characterized by a fixed period and a variable duty cycle. 
Due to the fixed modulation period (or frequency), the PWM spectrum exhibits typical peaks 
of energy corresponding to the modulation base frequency and its harmonics. The removal 
of these harmonic peaks is more difficult by analog filtering (RC or LC filter).

The sigma-delta modulation uses both variable duty cycle and variable frequency. As a 
result, the energy on the sigma-delta spectrum is spread more evenly and is not 
concentrated on regularly spaced peaks like for the PWM (there is no fixed modulation 
frequency). Furthermore, there is usually more energy at higher frequencies for sigma-delta 
modulations than for PWM (due to higher modulation frequencies). The noise content of 
sigma-delta modulation can be easily removed by analog filtering (RC or LC filter).

A typical spectrum for a PWM and for a sigma-delta modulation are provided on Figure 6 
(corresponding respectively to signals presented in Figure 2: PWM modulation example and 
Figure 3: Sigma-delta modulation example). The PWM modulation produces higher peaks 
at lower frequencies, therefore the PWM processing requires a filter of higher order in order 
to properly reject the first peak of energy corresponding to the PWM modulation base 
frequency. In the sigma-delta modulation spectrum the energy is less present at lower 
frequencies so the filter design can be simpler. The filtering capabilities must be adapted to 
the order of the sigma-delta modulator. For example, digital microphones typically have a 
4th order sigma-delta modulator, which has a low quantization noise in the useful band, but 
a very strong out-off band quantization noise. The filter order must be selected in order to 
suppress this strong out-off band quantization noise without affecting the useful band.

The effect of the sigma-delta modulation to spread the quantization noise more evenly and 
to higher frequencies is called "noise shaping". One can take advantage of such 
characteristic to design simpler filters and benefit from less noisy baseband signals.
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Figure 6. Spectrum of PWM and sigma-delta modulation

2.2.2 Linearity of A/D conversion

The output from the sigma-delta modulator is 1-bit serial data stream. The resolution of this 
stream is only one bit which is usually not enough for the application. The method to 
increase the signal resolution consists in averaging the 1-bit stream during a given period of 
time. The averaged data stream has a wider resolution (typically 16-bit) but a slower sample 
rate. The averaging (filtering) operation is based on linear mathematical operation in the 
digital domain hence there is no added non-linear distortion due to filtering.

A/D converters with parallel data output usually use more analog elements than the sigma-
delta modulators. For example the SAR ADC type with N-bits resolution uses internally a R-
2R resistor network (or C-2C capacitor network) with N resistors (or capacitors). The 
resistors (capacitors) used in these type of ADCs must have a precise 1:1 or 1:2 resistance 
(capacitance) ratio. The linearity of the SAR ADC depends on the precision of the resistors 
(capacitors). In practice the ratios are never perfect and the imprecision is at the origin of 
non-linearities that impact the transfer curve.

For above mentioned reasons, the linearity of A/D conversion using sigma-delta modulation 
is usually better than with other type of A/D conversion. The non-linearity in the sigma-delta 
ADC conversion depends only on the sigma-delta modulator design (see Figure 4: Sigma-
delta modulation principle). Furthermore, the non-linearity depends only on the influence of 
the input voltage on analog element intrinsic characteristics (capacitors/resistors in 
integrator and switches which capacitance/resistance changing with input voltage) and not 
on ratios between the different component nominal values. Linearity is more important for 
audio applications where the non-linearity causes signal distortion (static linearity INL is 
linked with dynamic linearity THD).

2.2.3 Scalable ADC resolution

The final output resolution for sigma-delta conversion is not fixed (as it is for example for a 
12-bit SAR ADC). The output from a sigma-delta modulator is 1-bit resolution which can 
then be increased by following digital filtering (averaging) to the required resolution.
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The drawback of this resolution increase is the reduction of the output data rate. This data 
rate decrease is predictable and must be computed for a given application requirement. For 
example a digital filter can be configured for a 24-bit output @ 1 kHz output data rate, or for 
a 16-bit output @ 50 kHz output data rate.

The resolution increase is theoretically unlimited but in practice one needs to take into 
consideration the noise and the errors caused by the components in the conversion path 
(sigma-delta modulator design, injected noise …). Another consideration is the stability of 
the signal during the sampling period that can affect the precision of the measurement, in 
particular for applications with very low data rate and high resolution.

2.3 Disadvantages of sigma-delta modulation

2.3.1 Offset and gain error

The average of the 1-bit data stream signal from sigma-delta modulator represents the 
mean value of the analog input signal. The precision of this digital output average (in the 
range [0..1]) can be affected by the following sigma-delta modulator components (see 
Figure 4: Sigma-delta modulation principle): 

• resistors and capacitors in the integrator

• reference voltage in the 1-bit DAC (+Vref / -Vref)

• offset of the integrator

These components have tolerances: capacitor/resistor values, offset voltage, difference 
between +Vref and -Vref absolute voltage.

In the ideal case, a 1-bit digital output having in average the same amount of 0's and 1's 
corresponds exactly to a zero volt input signal. Due to the components tolerances 
(mentioned above) the input analog voltage corresponding in a same amount of 0's and 1's, 
is not exactly zero volt, and represents the offset error. The offset error can be compensated 
by software or by hardware (calibration process).

In the ideal case the output 1-bit digital signal with a 50:50 duty cycle (amount of 0's is equal 
to the amount of 1's) should correspond exactly to the zero input analog voltage. Due to the 
components tolerances (mentioned above) the input analog voltage corresponding to the 
50:50 duty cycle is not exactly zero and represents the offset error. The offset error can be 
compensated by software or by hardware (calibration process).

The gain coefficient that is the ratio between the output data and the input voltage is also 
affected by the sigma-delta component tolerances. The difference between the theoretical 
gain and the actual measured conversion gain represents the gain error. It can be also 
compensated by calibration (usually in software).

Some characteristics of the sigma-delta components are also dependent on temperature, 
which affects in turn the offset and gain errors. The influence of the temperature on the 
integrator resistors and capacitors affects only the gain error. The offset error is less affected 
by the temperature changes because the errors affecting +Vref and -Vref, due to the 
symmetric nature of these references, are self compensated.

2.3.2 Lower data rate

With sigma-delta modulators, a way to increase the resolution is to increase the averaging 
of the 1-bit data stream (longer averaging time or higher filter order). This is why the sigma-
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delta converters are primarily used for lower data rate applications (usually for audio 
frequency range and lower frequencies). But in special cases where the excellent linearity is 
a must, the sigma-delta converters can be used for higher data rate applications.

For quasi static applications (temperature sensors) the data rate is not a constraint and the 
sigma-delta modulator is often chosen for its scalable resolution capability (high resolution 
on low data rates).

2.4 Simulation of sigma-delta modulation

2.4.1 Simulation with [TUTORIAL]

To help understanding the sigma-delta modulation, the sigma-delta model (as shown in 
Figure 4: Sigma-delta modulation principle) has been implemented in [TUTORIAL]. The 
timing diagrams are provided for each voltage signal referenced in Figure 4: Sigma-delta 
modulation principle. The user can change some parameters and input voltages and see the 
impact at each stage of the sigma-delta modulator. A simulation example available in 
[TUTORIAL] and based on a sinewave input signal is shown on Figure 7.

Figure 7. Simulation of sigma-delta modulator
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3 Digital filtering - principle and design

3.1 Function description

The digital filter performs the filtering (averaging) of the 1-bit data stream generated from the 
sigma-delta modulator. The filter output is a data word with higher resolution (usually 12 - 
24 bits) but reduced data rate (decimation). The digital filter function consists in removing 
out-off band frequency components (quantization noise, unwanted signals...) and reducing 
the data rate according to the useful bandwidth (decimation).

The design of the filter has a strong influence on the A/D conversion characteristics and is 
the result of a compromise between the required parameters (sharpness of filter, filter 
tuning, final resolution, …) and the hardware implementation complexity (which leads to 
cost issue). The goal is to minimize the filter design complexity while meeting the required 
A/D characteristics.

Note: Signal filtering often requires more complex processing than simply averaging the 1-bit data 
stream.

Here are some elements to consider when designing a filter:

• Filter type:

Among various types of filter, the Sinc filter presents interesting characteristics, combining a 
cheap hardware implementation with acceptable level of performance. The Sinc filter has a 
frequency response that can be modelized by a sinc(x) function (hence its name). The Sinc 
filter is the most commonly used type in sigma-delta A/D converter implementations. It is 
cheap because no multipliers are required, and the filter coefficients are integers. The Sinc 
filter performs a simple “moving average” calculation over the 1-bit samples.

• Filter length (FOSR - filter oversampling ratio): 

A longer filter (averaging of more samples) generates higher resolution but decreases the 
output data rate (decimation). Therefore the filter length is selected as a compromise 
between required conversion rate and final data resolution.

• Filter order (FORD): 

The “moving average” calculation can be applied multiple times to already averaged 
samples. The filter order defines how many time the “moving average” calculation is applied 
to the same input samples. A higher order filter generates higher resolution (by adding more 
averaging loops) but increases latency.

3.2 Example of Sinc filter function - resolution increase

This section focuses on showing how multiple “moving average” calculations can increase 
the Sinc filter resolution. 

Here is a detailed presentation of a 3rd order filter (FORD=3) with length FOSR=10 (with 
moving averaging at each filter stage):

• The observation is done on 3 periods of the input stream: 3 x FOSR = 30 samples (see 
Figure 8 and Figure 9).

• The input 1-bit data stream is almost always ‘0’ except for '1' pulse per averaging 
period (FOSR=10) (see the "Input" curves on Figure 8 and on Figure 9). Two input 
streams are tested: one stream with exactly equidistant pulses (at position 10, 20 and 
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30 on horizontal axis see Figure 8) and another stream where the second pulse is 
anticipated by one period to simulate a slightly higher pulse density (position 10, 19 and 
29 on horizontal axis, see Figure 9).

• The first order filter stage is performing moving average (see the "1st order" curves) 
and the final result is sampled at each FOSR cycle and constitutes the 1st order filter 
result (at 10th, 20th, 30th cycle). It always produces '1' as the final result on both stream 
cases (Figure 8 and Figure 9) because of simple moving average in 1st filter stage 
(only one '1' in each period).

• The second order filter stage is performing moving average on samples from first filter 
order stage (see the "2nd order /10" curves). The final result is sampled at each FOSR 
cycle and constitutes the 2nd order filter result (at 20th, 30th cycle). There is a visible 
difference in the final results between the two output streams (Figure 8 and Figure 9): 
due to higher density of '1s' (with the higher density stream of Figure 9 it produces 
higher value than with the lower density stream of Figure 8).

• The third order filter stage is performing moving average on samples from the second 
filter order (see the "3rd order /100" curves). The final result is sampled at each FOSR 
cycle and constitutes the 3rd order filter result (at 30th cycle). There is a visible 
difference in the final result between the lower density stream (Figure 8) and the higher 
density stream (Figure 9). Due to moving averaging the third output is smoother and 
more precise.

• The dynamic range of the signal at the output of the filter is FOSRFORD but requires 
FORD x FOSR samples before obtaining the first result because every filter stage must 
be filled with valid samples from previous filter stage (see Figure 8 and Figure 9). In 
conclusion, higher order filters offer better resolution for a given stream duration or the 
same resolution for shorter stream duration. The drawback is a more complex 
hardware design and a longer initialization time for the filter.

Figure 8. Example of 3rd order filter outputs with one bit per filter length
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Figure 9. Example of 3rd order filter outputs with higher density of input pulses

3.3 Hardware design of Sinc filter

Sinc filters are characterized by a Sinc transfer function which equation in the digital domain 
is provided below. It can be interpreted as multiple moving average of input 1-bit data. The 
rest of this section focuses on finding simplifications in order to achieve an efficient and 
ultimately quite simple hardware implementation.

Equation 1:

Where:

x(n) is the input of nth sample

y(n) is the output of nth sample

Figure 10 provides the straight forward translation of the above equation into a hardware 
implementation:
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Figure 10. Basic schematic for simple moving average implementation

The above hardware implementation required (FOSR -1) adders and (FOSR-1) flip-flops. 
Some simplifications can be introduced that are developed hereafter.

The Equation 1: can be simplified by using previous output result y(n-1):

Equation 2:

Equation 3:

Figure 11 provides a simplified schematic requiring only 2 adders and FOSR+1 flip-flops. 
The schematic can now be divided into two parts: comb and integrator.

Figure 11. Simplification of Sinc filter design - step 1

A further simplification can be obtained by converting the equation to Z-domain (frequency 
domain) according these correspondences:

• X(z) in the Z-domain corresponds to x(n) in the discrete time domain, where n is an 
integer number of sample clock periods (sample clock period = 1/Fs; Fs = sampling 
frequency)

• z-N ₓ X(z) corresponds to x(n-N) that is x(n) delayed by N sample periods.
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The equation for a 1st order Sinc filter in Z-domain becomes:

          

The corresponding transfer function H(z) is:

          

In Figure 11 we introduced a decomposition of the Sinc filter in two stages: "comb" and 
"integrator". The transfer function of such filter (called CIC: cascaded integrator-comb filter) 
is given by:

The comb transfer function in Z-domain:

The integrator transfer function:

The overall transfer function is equivalent to the Sinc filter transfer function:

One more filter simplification consists in permuting the comb and the integrator operation as 
shown in Figure 12:

Figure 12. Simplification of Sinc filter design - step 2

Because the filtering limits the output signal bandwidth, it is possible to down-sample the 
output y(n) by a factor FOSR. This down-sampling is achieved by taking one sample of y(n) 
every FOSR clock cycles (see Figure 13).

Y z( ) X z( ) z
FOSR–

X z( )× z
1–

Y z( )×+–=

H z( ) Y z( )
X z( )
------------ 1 z

FOSR––
1 z

1––
-----------------------------= =

HC z( ) P z( )
X z( )
------------ 1 z

FOSR––= =

HI z( ) Y z( )
P z( )
------------ 1

1 z
1––

-----------------= =

HC z( ) HI⋅ z( ) P z( )
X z( )
------------ Y z( )

P z( )
------------⋅ 1 z

FOSR––( ) 1

1 z
1––

-----------------⎝ ⎠
⎛ ⎞ 1 z

FOSR––
1 z

1––
-----------------------------=⋅ H z( )= = =

H z( ) HI z( ) H⋅
C

z( ) 1

1 z
1––

-----------------⎝ ⎠
⎛ ⎞ 1 z

FOSR––( )⋅= =

MSv37941V2

+

+ y(n)Fs
x(n)

FOSR flip-flops

+

-Fsp(n)

p(n) = x(n) + p(n-1) : integrator y(n) = p(n) - p(n-FOSR) : comb



Digital filtering - principle and design AN4990

20/56 AN4990 Rev 1

Figure 13. Simplification of Sinc filter design - step 3

The down-sampled clock period is defined as:

The equation for the down-sampled comb section can be re-written as follows:

This operation corresponds to a down-sampling of p(n) by the factor FOSR, followed by a 
first order differentiator. The series of flip-flop sampled at high frequency can be replaced by 
one single flip-flop with down-sampled frequency. The final schematic is shown on 
Figure 14.

An effect of down sampling is to eliminate the moving average operation (because the 
output data rate is reduced).

Figure 14. Simplification of Sinc filter design - step 4

The final schematic (Figure 14) is reduced to 2 flip-flops and 2 adders (all with FOSR-bit 
width).

Higher order Sinc filters are obtained as a serial cascade of first order filter stages where 
comb and integrator stages can be grouped together (Figure 15). 
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Figure 15. Higher order Sinc filter implementation

The transfer function of a higher order Sinc filter (with filter order = FORD) is provided by:

• Cascading FORD first order filters:

• Reordering:

• Final equation:

The down-sampling is performed at the output of the final integrator stage, allowing to 
replace each comb stage with a unity delay differentiator at the down-sampled rate (see 
Figure 15).

Note: The Sinc filter implementation can be extended to multi-bit width input signal (for example 
for parallel data input instead of serial data input). In this case the bit-width of flip flops and 
adders should be extended.
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4 DFSDM peripheral operation

4.1 Block diagram

The block diagram of the DFSDM peripheral with all the internal functional blocks and their 
internal and external connections is provided on Figure 16. The DFSDM cannot be reduced 
to only a digital filter but consists in a complete digital peripheral that handles the overall A/D 
conversion (when associated with an external sigma-delta modulator).

Figure 16. Block diagram of DFSDM peripheral

4.2 DFSDM components

4.2.1 Serial transceivers

The “serial transceivers” block receives serial data from the external sigma-delta modulator. 
It features SPI and Manchester serial protocol formats with configurable rising/falling 
sampling clock edge in order to support most of the sigma-delta modulator types. It supports 
as well the PDM signal format used by digital microphones - see Figure 28: MEMS 
microphone connection to DFSDM (stereo support). 

Up to two digital microphones (configured as stereo microphone) can be connected to one 
DFSDM_DATINy pin. In this case, each microphone is configured to be sensitive to a 
different sampling clock edge (the signals from both microphones are present on a single 
DFSDM_DATIN data line). In order to distribute this composite signal to two different 
channels, both channels must be configured to take their serial input from the same pins 
(DFSDM_DATINy, DFSDM_CKINy) where the two microphones are physically connected 
(see Figure 28: MEMS microphone connection to DFSDM (stereo support)). Each channel 
is then configured to sample the data on a different sampling edge.

An external clock signal can be connected to DFSDM_CKINy pin (assuming sigma-delta 
modulator provides this clock signal) or the clock signal can be taken from the internal clock 
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generator (assuming sigma-delta modulator needs external clock signal). The internal clock 
generator drives the sigma-delta modulator through DFSDM_CKOUT pin. The Manchester 
format protocol does not require external clock signal because this protocol is single-wire 
(on DFSDM_DATINy pin) and clock signal is reconstructed from Manchester coded stream. 
There is a clock signal presence detector that can be used in case of missing clock (external 
hardware failure) to trigger an interrupt.

The serial transceiver provides also a "Pulse skipper". The Pulse skipper allows to pause 
the output of the serial transceivers during a given number of sampling clock pulses (given 
count of 1-bit data samples are discarded). In practice, the "Pulse skipper" is used in 
beamforming applications in order to delay one channel data with respect to another 
channel data. Beamforming is a technique that consists in sensing signals (sounds) from a 
preferred direction by using an array of detectors (microphones). A delay is injected to each 
microphone signal relative to the previous microphone signal. The delay defines the 
preferred sensing angle.

4.2.2 Parallel transceivers

The parallel transceiver is an internal 16-bit parallel input register which can be accessed 
through the APB bus by the CPU, the DMA, or directly by the internal ADC. Its function is to 
allow post processing (filtering) of internal signals. Examples of usage: 

• Filtering data captured by internal ADC

• Filtering data captured by SPI peripheral (through memory buffer)

• Filtering any 16-bit data stored in memory buffer (DMA transfer to DFSDM parallel 
transceiver).

4.2.3 Digital filter

The digital filter is a key component that processes the input data. The digital filter is 
configurable to support final application needs (speed, resolution). The following parameters 
can be configured:

• Filter order: Sinc1 ... Sinc5, FastSinc

• Oversampling ratio: 

– FOSR = 1 … 1024 (for Sinc1 … Sinc3, FastSinc)

– FOSR = 1 … 215 (for Sinc4)

– FOSR = 1 … 73 (for Sinc5)

The FOSR ranges provided above take into account the filter order and the filter internal 
resolution (32-bit width) in order to avoid overflow (case of a 1-bit input signal, for multi-bit 
parallel input signal the ranges are reduced).

4.2.4 Integrator

The optional integrator works as a simple adder. It sums up a given number of samples 
provided by the filter output. The number of filter output samples that are summed to provide 
the single integrator output is configurable in the range IOSR = 1 … 256. The integrator 
works like a Sinc1 filter (it is performing the average of a given number of samples).

4.2.5 Output data unit

The output data unit performs a final correction that consists in shifting the bits to the right 
and applying an offset correction on the data coming from the integrator.
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Shifting bits to the right is used to:

• fit the 32-bit internal output into the final 24-bit register

• limit even more the final resolution (to 16-bit for instance in case of audio data)

The offset correction allows to calibrate the external sigma-delta modulator offset error. The 
user configures the offset register with a signed 24-bit correction, and this register is 
automatically added to the output result. The offset correction value is usually the result of a 
calibration routine embedded within the microcontroller software that performs the offset 
calibration calculation and stores the correction into the offset register.

All operations in the DFSDM peripheral are in signed format (filtering, integration, offset 
correction, right bit shift).

4.2.6 Analog watchdog

The analog watchdog function is the same as in the ADC peripheral. Its purpose is to control 
that the ADC data excursion stays within given limits by triggering the microcontroller CPU 
(interrupt) or other peripherals (break signal) when the signal exceeds predefined 
thresholds.

Not only the DFSDM output data but also the raw data from the sigma-delta modulator 
(serial transceiver output) can be monitored.

The analog watchdog can monitor serial data directly from the serial transceiver through a 
dedicated configurable digital filter (FOSR = 1…32, FORD = 1…3). This gives the user the 
ability to find the best compromise between monitoring speed and monitoring resolution, 
independently from the main data conversion speed. Some applications require that the 
reaction time to an input signal exceeding the thresholds, be faster than the main 
conversion speed. The monitoring of the thresholds for the main conversion itself is usually 
more precise but slower.

4.2.7 Short circuit detector

The short circuit detector is designed for very fast detection of sudden analog input signal 
saturation, when the signal is over or under the maximum allowed range. In normal situation 
the analog input signal gain is controlled (current or voltage sensing loop) in order to never 
reach such saturation levels. In some extreme situations (like a short circuit) the sensed 
signal measurements can exceed the operating range limits. In this case the reaction time 
must be as fast as possible (to switch off the supply for instance).

This very fast detection is implemented in the short circuit detector. The detection of signal 
saturation is based on the analysis of the 1-bit data stream coming from the serial 
transceiver. A typical sigma-delta modulator outputs a 1-bit signal with frequent transitions 
between ‘0’ and ‘1’ (to reproduce the analog signal fluctuations). When a saturation of the 
input signal occurs the output from the sigma-delta modulator gets stuck with either long 
series of logical ‘0’ (signal under negative threshold) or long series of logical ‘1’ (signal 
above positive threshold). If this situation exceeds a certain duration the short circuit 
detector triggers a "short circuit" event. The duration threshold to trigger a detection can be 
set in the DFSDM short circuit detector threshold setting (SCDT) in the range 1 to 256 input 
sample counts. For example if SCDT=100 the short circuit detector event is triggered as 
soon as at least 100 consecutive ‘0’ or ‘1’ are detected in the input 1-bit data stream. The 
short circuit detector can trigger an interrupt (software intervention) or activate a break 
signal (fast hardware intervention).



AN4990 Rev 1 25/56

AN4990 DFSDM peripheral operation

55

This type of short-circuit detection is much faster than the detection based on analog 
watchdog involving digital filtering over longer series of 1-bit input samples.

4.2.8 Extremes detector

The extremes detector simply analyzes the final output data samples and stores the 
minimum and maximum values into extremes registers. By reading those extremes 
registers it is possible to monitor the maximum and minimum level of the converted signal 
during a period of time. Those levels are useful inputs for software post processing, for 
example for signal normalization or for automatic gain control. Each time the extremes 
registers are read, they are re-initialized with their reset values and the extremes detection 
is restarted.

4.3 DFSDM simulation

The sigma-delta modulator and the DFSDM internal blocks behavior are modeled within 
[TUTORIAL]. The incidence of the input signal and the influence of the DFSDM parameters 
can be simulated and both the internal and output signals can be observed and analyzed.

The proposed simulations cover:

• Sigma-delta modulator (principle of operation demonstration)

• Sinc filter + integrator (digital filter functionality demonstration)

• Frequency characteristics of Sinc filters (LP filters shape demonstration)

• FFT of PWM and sigma-delta signals (noise shaping demonstration)

• High order filters operation (demonstration of resolution increase by multiple signal 
average)

• Delta-sigma modulator (DAC converter) 

4.3.1 Sigma-delta modulator principle

This simulation is provided in the first worksheet of [TUTORIAL].

The simulation of the first order sigma-delta principle is based on the schematic provided in 
Figure 4: Sigma-delta modulation principle where each block has been modeled. The input 
signal to the modulator corresponds to one period of a sinewave signal. For each 
observation point (as referenced on Figure 4) corresponds a curve in the chart provided in 
Figure 17.

The user can modify the input signal shape or modify some parameters of the modulator 
(integrator gain, Vref level) and visualize the impact on the digital output of the sigma-delta 
modulator.

This simulation illustrates the principle of the sigma-delta modulator and allows to visualize 
the internal signal at different stages of the processing.

Here the sigma-delta modulator is modeled as a first order, in order to explain the basic 
principle. In practice most sigma-delta modulators are using 2nd order with the exception of 
digital microphones that are typically using 4th order.
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Figure 17. Sigma-delta modulator simulation

4.3.2 DFSDM filtering simulation (filter and integrator)

This simulation is provided in the second worksheet of [TUTORIAL]. This part of the DFSDM 
simulator corresponds to the Sinc filter and the integrator stages (see Section 4.2.3: Digital 
filter and Section 4.2.4: Integrator for details).

Both the Sinc filter and the integrator models are built within [TUTORIAL] and can be 
simulated. The user can change the FORD and FOSR parameters for the filter and the 
IOSR parameter for the integrator. The simulation results are identical to the results 
obtained with the actual DFSDM block. The user can tune in simulation the filter and the 
integrator parameters according to his application and observe the impact on the output 
signal shape without waiting for the actual prototypes.

This simulation requires a digital signal input (1-bit data stream) from the sigma-delta 
modulator (like in real application). In this particular simulation, the input is provided by the 
results of the first order sigma-delta modulator simulation also available in [TUTORIAL] (see 
Section 4.3.1: Sigma-delta modulator principle). By doing so, it is possible to compare the 
output digital signal (DFSDM filtering simulation curve) with the input analog signal applied 
to the sigma-delta modulator. The filter parameters should then be adjusted in order to 
reach the application requirements in term of acceptable error between the analog input 
signal into sigma-delta modulator versus the output digitized signal from the DFSDM (final 
output samples).

Figure 18 provides not only the output curve (FORD = 5) but also the internal data results at 
the output of each filter order. It shows the resolution gain that is obtained by performing 
more moving average loops.
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Figure 18. Filtering simulation

4.3.3 Frequency characteristics for Sinc filter

This simulation is provided in the third worksheet of [TUTORIAL]. It allows to visualize the 
frequency characteristics of the Sinc filter depending on the filter order.

The frequency characteristics of a filter can be determined by applying an impulse signal at 
the input of the filter and by computing the FFT transform of the impulse response at the 
output of the filter. This is how the filter characteristics have been computed in the 
simulation model. The model calculates the impulse response of the filter and submit the 
result to a 512-point FFT transform. The results for different filter orders are available in 
[TUTORIAL] and provided in Figure 19.

The frequency response has a comb shape with periodic attenuation points (notches - also 
called "zeroes") and a decreasing trend for higher frequencies (low pass filtering). The 
frequency of the first notch depends on the selected FOSR and is given by fsampling/FOSR. 
In case of continuous sampling, fsampling/FOSR is also the output data rate frequency. The 
frequency components of the input signal corresponding to the notches are completely 
rejected by the filter. This property can be used in some applications to remove external 
noise from the input signal at predetermined frequencies. As an example, the long wires that 
sometime are necessary to connect distant sensors to the microcontroller are prone to 
collect noise from the power network (50/60Hz) that can be filtered according the above 
property.

Another property is that the attenuation of the higher frequencies (other than notches which 
frequency depends only on FOSR) is proportional to the filter order (FORD). So the higher 
the filter order, the more rejection on higher frequencies. In applications which are sensing 
quasi static signals (like temperature or pressure sensors) a high order filter (FORD) is 
recommended as well as a high oversampling ratio (FORD) to suppress noise from AC 
perturbations. A further filtering of quasi static signals can be done by using the integrator 
located after the filter. Increasing the integrator oversampling ratio (IOSR) allows to 
performs additional averaging of the signal. In practice, the user should first set a (high) 
FORD and then set correctly the FOSR and the IOSR to suppress the noise from mains 
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frequency (50/60Hz). The first notch of the overall block consisting of [Sinc filter + integrator] 
is at frequency: fsampling/(FOSR*IOSR).

Figure 19. Filter frequency characteristics

4.3.4 Noise shaping of sigma-delta modulation

This simulation is provided in the fourth and the fifth worksheets of [TUTORIAL]. It compares 
the spectrum of a PWM modulated signal with the spectrum of a sigma-delta modulated 
signal and highlights the benefits of the later with respect to noise shaping. The same input 
signal (one period of a sinus wave, see Figure 20) is either sigma-delta modulated or PWM 
modulated before undergoing an FFT transform. The frequency spectrum of both the PWM 
modulated signal and the sigma-delta modulated signal are compared in Figure 21. The X-
axis represents the frequency in multiple of the base signal frequency (signal base 
frequency and its harmonics), the Y-axis represent the spectrum density. Logically, the 
amplitude of the spectrum at index 1 (signal base frequency) is very large (~470). All the 
other peaks located at indexes > 1 would have to be filtered out in order to reconstruct the 
original signal.
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Figure 20. Sigma-delta and PWM modulated signals (for frequency spectrum
comparison)
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Figure 21. Spectrum of sigma-delta signal and PWM signal

Figure 21 illustrates the fact that a PWM signal spectrum concentrates its energy on peaks 
located around multiple of the modulation frequency (modulation frequency = 16 x signal 
base frequency in this case). This is due to the characteristics of a PWM modulation that 
has a constant modulation frequency and a variable duty cycle. The amplitude of the peaks 
decreases with frequency increase.

On the opposite a 1st order sigma-delta modulation spectrum shows an amplitude that is low 
on the first harmonics, and then increases progressively with the frequency.

As a consequence of the previous observations, the requirements on the low-pass analog 
filter that is necessary to reconstruct the original signal (sinewave signal at index 1 on 
Figure 21) are lower for a sigma-delta modulated signal than for a PWM modulated signal. 
The low-pass filter (analog filter) must be designed with a cut-off frequency slightly higher 
than the useful analog bandwidth of the original signal to be observed, and must be sharp 
enough to sufficiently suppress all the higher frequency components resulting from the 
signal modulation. Because the PWM signal has more unwanted energy concentrated at 
lower frequency than the sigma-delta modulated signal, the low pass analog filter must be 
sharper (higher order analog filter).

Another particularity of the sigma-delta modulated signal is that the quantization noise on 
the lower part of the spectrum is almost constant and independent from the input signal 
resolution whereas for a PWM modulated signal, a degradation of the quantization noise 
affects the entire spectrum, and predominately the first harmonic. This higher sensitivity of 
the PWM modulated signal to a degradation of the quantization noise is put in evidence by 
decreasing the input signal magnitude from 95% of full scale (Figure 21) down to 10% of full 
scale (Figure 22).
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Figure 22. Spectrum of sigma-delta signal and PWM signal
with signal amplitude reduced to 10% of full scale

4.3.5 High order filters operation

This simulation is provided in the sixth worksheet of [TUTORIAL]. It shows how it is possible 
to increase the filter output resolution by the technique of multiple averaging of the same 
data (principle of the high order filters).

For this simulation the averaging period is 10 samples (FOSR=10). Over the averaging 
period the input signal consists of a single pulse (one sample at 1 and the nine other 
samples at 0). Multiple averaging is performed. Two different cases are observed (see 
Figure 23):

1. Equidistant pulses occurring at 10th, 20th and 30th sample. This situation correspond to 
a constant density signal.

2. Non-equidistant pulses occurring at 10th, 19th, 29th sample. This situation correspond 
to a signal with varying density.

MS45750V1
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Figure 23. High order filters - multiple averaging principle

The results are presented for both input signal cases, and for 1, 2 or 3 averaging (similar to 
filter orders FORD=1, FORD=2, FORD=3). The final output is sampled at every 10th sample 
period (end of average period).

In the first case, since the input pulses are at equidistant intervals (every 10th sample), the 
output (sampled at 10th, 20th, 30th sample) is always 1.00, whatever the filter order.

In the second case, the input pulses are a little bit closer (pulses at 10th, 19th and 29th 
sample), so the pulse density is slightly higher. It has no impact on the simple averaging 
filter that provides the same result 1.00 (constant over the 1st, 2nd, 3rd averaging period) as 
in the first case. This is because it performs averaging over one period only (10 samples). 
That means the first order filter is not able to detect changes in pulse density (or a filter with 
higher FOSR must be designed, with slower data rate).

The double averaging is a bit different. The first valid result is present on the output after the 
2nd averaging period because the double averaging uses 2 periods of signal to build one 
final sample. The results from this double averaging are: 1.10 (result after 2nd period) and 
1.00 (result after 3rd period). That means the second order filter is able to detect the 
increase of pulse density during the 2nd averaging period of the signal and the decrease of 
the pulse density during the 3rd averaging period.

The triple averaging gives even more precision. The first valid result is present on the output 
after the 3nd averaging period because the triple averaging uses 3 periods of signal to build 
one final sample. The results from this triple averaging is: 1.08 (result after 3rd period). That 
means the third order filter gives even more precision on the pulse density.
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4.3.6 Delta-sigma DAC simulation

This simulation is provided in the seventh worksheet of [TUTORIAL]. The sigma-delta 
modulation can be used not only for ADC conversion but also for DAC conversion. In this 
case, all analog blocks of the sigma-delta modulator diagram (see Figure 4: Sigma-delta 
modulation principle) are replaced by their digital equivalent (Figure 24).

Figure 24. First order delta-sigma DAC principle

Here are the particularities of each block in the digital domain:

• The “Subtraction” block is a digital operation.

• The “Integrator” block is also a simple accumulate operation (sum of incoming bits).

• The “Comparator” block is a digital comparator. It determines the sign of the digital data 
word coming from the integrator (most significant bit = sign bit).

• The "Bit fill" block is the equivalent of the 1-bit DAC used in Figure 4: Sigma-delta 
modulation principle. It is replaced by an ADC which output is ±digital_reference_word 
according the sign provided by the comparator output. The magnitude of 
"digital_reference_word” should correspond to the input range of the digital signal into 
the comparator (equivalent to +Vref, -Vref for sigma-delta converter).

• The "Low pass filter" block is an analog filter which performs analog filtering of the fast 
1-bit digital stream. The fast 1-bit digital stream represents the sigma-delta signal and 
in this case is built from the parallel N-bit width digital input signal (delta-sigma 
modulator). The 1-bit digital stream has the same properties as a 1-bit digital stream in 
the sigma-delta modulator (noise shaping) and can be filtered with a simpler analog 
filter (with respect to PWM signal).

The simulation of this delta-sigma DAC gets a digitized sinewave signal with amplitude +/-5 
as an input (see "Digital input" pink-color signal on Figure 25). In a real application, the fast 
1-bit digital stream output (blue signal on Figure 25) should undergo an analog low-pass 
filtering. For the need of the simulation, the analog low pass filtering is replaced by a digital 
Sincx filter.
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Figure 25. Delta-sigma DAC simulation

The final delta-sigma DAC output (see the various order outputs on Figure 25) show a quite 
well reconstructed “analog” sinewave despite the digital input sinewave quantization uses 
only 11 discrete levels [-5,...,+5]).

Once again the advantage of using a sigma-delta versus a PWM modulation is a simpler 
low-pass filtering (analog in the case of the DAC) of the output signal. This is for the same 
reason as the one developed in Section 4.3.4: Noise shaping of sigma-delta modulation.

4.3.7 High pass filter simulation

This simulation is provided in the eighth worksheet of [TUTORIAL]. High-pass filters are 
useful in many applications where the DC component and/or low frequency noise need to 
be removed from the input signal (audio applications including static pressure changes in 
microphone output, AC energy measurement, DC offset which vary with temperature, … ).

The DFSDM does not implement any high pass filtering but it can be easily implemented in 
software as a post processing over the DFSDM sampled data (as an alternative to the use 
of an external hardware high-pass filter).

The high-pass filter used in the simulation is modeled by the following equation:

y(n) = (coeff / 256) × (y(n-1) + x(n) - x(n-1))

with

y(n): = “filtered_value” in the simulation (filter output)

coeff: = "coeff" in the simulation (filter cutoff frequency)

y(n-1) = “last_filtered_value” in the simulation (previous filter output)

x(n) = “sample” in the simulation (filter input sample)

x(n-1) = “last_sample” in the simulation (filter previous input sample)

The complexity of this filter reduces to one multiplication, two additions and one shift 
operation (/256).
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For the simulation a sinewave with a decreasing DC offset is applied to the high-pass filter 
(light blue curve in Figure 26).

Figure 26. HP filter simulation

The high-pass filter output is represented by the dark blue line in Figure 26. After an 
adaptation period, the high-pass filter suppresses the DC and the low frequency content. 
The speed of adaptation depends on the "coeff" value (cut-off frequency of the filter).

4.4 Additional functions in DFSDM

4.4.1 Digital microphones (MEMS) support

Standardization in the domain of audio application has specified a PDM modulation (pulse 
density modulation) that is a common output format for digital microphones. A PDM signal is 
equivalent to a sigma-delta modulated signal and is therefore supported by the DFSDM.

Digital microphones are MEMS devices (micro electro mechanical systems) which are 
manufactured using semiconductor type of technology. The active actuator of such 
microphones consists in a membrane and a pair of micro electrodes. One of the electrode is 
fixed, the other one is incorporated within the membrane. As the air pressure (sound) is 
applied to the membrane, it moves the mobile electrode away from its default position and 
produces a change of capacity between both electrodes. The induced signal is processed 
by built-in electronic and output as a PDM modulated signal (pulse density modulation).

The digital microphones require an external clock signal (microphone CLK input signal) and 
data are sent over a DATA output line as a PDM modulated signal. The clock speed is 
usually in the range 1 to 3.2 MHz. The clock signal is provided by the DFSDM_CKOUT 
output signal and defines the microphone output data rate into the DFSDM. A schematic of 
a typical connection between a stereo digital microphone and the DFSDM is provided on 
Figure 28.
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The DFSDM allows to connect 2 microphones in parallel through one single line (stereo 
configuration: left and right channel). The data and clock signals are common for both 
microphones. The clock signal is distributed from DFSDM_CKOUT pin to the left and right 
microphones. The output data signals from both microphones are multiplexed on the same 
wire: the left microphone provides data on the rising clock edge and the right microphone 
provides data on the falling clock edge (see Figure 27). The configuration of microphone for 
left or right channel is usually done configuring a pin on the microphone (L/R selection pin).

Figure 27. MEMS microphone outputs (L and R channel)

Figure 28. MEMS microphone connection to DFSDM (stereo support)

1. Direct input, falling edge sampling (R data).

2. Redirected from next channel, rising edge sampling (L data).

The separation of the two microphone signals on the DATA wire is performed by the 
DFSDM. The input to DFSDM channel x can be redirected in order to take the same input 
as channel (x+1). Then channel x is configured to sample data on rising edge and channel 
(x+1) is configured to sample data on falling edge. The clock signal for both channels is the 
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same and internally connected to DFSDM_CKOUT signal. With such configuration, channel 
x is receiving data from left microphone and channel (x+1) is receiving data from right 
microphone. Both channels feed their own digital filters which eventually output two 
separate parallel data flows for left and right microphone channels. See Figure 28 for a 
complete diagram of a stereo microphone application using the DFSDM.

4.4.2 Beamforming support

Beamforming is a technique giving to an array of fixed multi-directional sensors the ability to 
favor the signals coming from a particular direction (array of microphones in the example 
below). The preferred direction can be changed by firmware (without changing the position 
of the sensors).

In the example below, an array of microphones are positioned on a line with equidistant 
spacing (see Figure 29). An audio source is placed in front of the microphone array at an 
arbitrary angle, while at the same time unwanted noise and interferences are present all 
around. If signals from all microphones are simply summed together then only the sounds 
coming perpendicularly to the array are coherently summed (and therefore amplified). The 
sounds coming from non-perpendicular directions are not coherently summed.

Figure 29. Beamforming principle

In order to amplify the signals coming from another direction than perpendicular, one 
solution would be to mechanically rotate the microphone array, another solution consists in 
adding a specific delay to each microphone in the array, so that the various propagation 
delays of the useful signal arriving through each microphone are all compensated at the 
input of the adder. When the delay lines of all microphone are adjusted, only the sounds 
coming from the direction of the useful source are in phase and amplified (coherent 
combination), the sounds coming with a different angle are less amplified (incoherent 
combination) (see Figure 29).

The above description of beam forming algorithm is a introduction (simplified view). More 
elaborated algorithm can be implemented, providing even better performances.
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Beamforming can be achieved with the DFSDM as follows. The DFSDM is able to sense 
signals coming from several microphones and process them separately to provide parallel 
outputs samples. The output samples from the different microphones are stored into 
separate data buffers in the microcontroller memory (for example 4 memory buffers from 4 
microphones). The samples are then summed together by the microcontroller in order to 
provide the final output. The delay line is realized in 2 steps:

1. Coarse step: a DFSDM output buffer (for a given microphone) can be shifted with 
respect to another by a given number of samples (one sample corresponds to a delay 
of 1/fdatarate, where fdatarate is the output data rate (typical audio rates: 44.1kHz, 
22.05kHz, 16kHz, … ). A shift of 1 sample corresponds to a propagation distance of the 
sound in the air of s = v / fdatarate (v is the sound speed in air ~343m/s). 
Example of coarse step:

– fdatarate = 44.1 kHz: s = 343 / 44100 = ~7.8 mm

– fdatarate = 16 kHz: s = 343 / 16000 = ~21.4 mm

2. Fine step: in order to support short distances between microphones in the array and to 
be able to fine tune the angle of the preferred sound source, a finer step is required. 
This is achieved by shifting samples on the 1-bit data stream between the microphone 
and the DFSDM rather than shifting DFSDM output samples in memory. The input 1-bit 
samples are sampled at PDM frequency. Here are examples of fine step distances:

– fPDM = 3 MHz: s = 343ms-1 / 3000000Hz = ~0.11mm

– fPDM = 200 kHz: s = 343ms-1 / 200000Hz = ~1.7mm

This range of values is compatible with the fine tuning of the preferred angle for sound 
reception even for miniature microphone arrays.

The DFSDM fine step circuitry used to fine tune beamforming is not based on delay lines but 
consists in skipping some samples of the input 1-bit stream. Some of the 1-bit samples 
coming from the serial transceiver are masked (by clock signal gating) and are not sent to 
digital filter. The principle based on skipping clock pulses is shown on Figure 30.

Figure 30. Pulse skipping implementation for beamforming
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Figure 31 provides an example that illustrates the pulse skipping mechanism and its 
similarity with a delay line.

Figure 31. Pulse skipping example (FOSR=8)

The top part of Figure 31 represents the normal operation, without clock skipping applied. 
Each output sample is built from 8 input samples (FOSR=8). For beam forming several 
DFSDM filters need to be started simultaneously.

On the bottom part of Figure 31 samples S10, S11, S12 have been skipped on the Left 
channel. The filter (with configuration: FOSR=8) waits for 3 more samples in order to get 8 
complete 1-bit samples for each channel and be able to build one output sample. From the 
filter output prospective, it seems like the Right channel uses older 1-bit input samples than 
the Left channel for the same final output sample index. This is the same behavior as if the 
Right channel would have a 3-samples delay line (the delay line buffers holding the last 3 
samples).

The above description of beam forming algorithm is a introduction (simplified view). More 
elaborated algorithm can be implemented, providing even better performances.

4.4.3 Audio clock support – independent clock operation

The DFSDM can clock an external sigma-delta modulator through a clock signal provided 
on the DFSDM_CKOUT pin. The clock frequency on this pin determines the input sampling 
frequency from which depends also the output data rate frequency. It is possible to select 
among the following sources to drive the DFSDM_CKOUT:

• DFSDM clock:

– APB clock

– System clock (independent from APB clock divider)

• PLL clock (audio PLL used for I2S)

The frequency from the selected clock source is divided by a factor in the range 2-256 
(predivider ratio set according CKOUTDIV field in DFSDM_CHyCFGR1 register) in order to 
provide the DFSDM_CKOUT frequency.
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In order to achieve a fine tuning of the DFSDM_CKOUT frequency, the PLL (providing both 
a multiplication and a division factor) must be selected as clock source. This is the 
appropriate selection for audio applications that require an accurate sampling frequency.

The DFSDM peripheral itself (transceivers, filters, additional functions) is using the APB 
clock or the system clock for digital processing. This “processing” frequency should be 4 
times faster than the input sampling frequency (or 6 times if Manchester coding is used).

In order to save power consumption, both the sampling frequency and the processing 
frequency should be configured with the minimum values required by the application.

4.5 DFSDM power consumption optimization

The DFSDM consumption depends on:

• Enabled blocks:

– Number of enabled channels

– Number of enabled filters

– Number of enabled features (analog watchdog, short circuit detector)

• Clock speed:

– Transceivers

– Digital filters (+ additional functions)

In order to optimize the power consumption, only the required blocks should be enabled 
when needed (transceivers, filters, additional functions) and the minimum clock speed to 
achieve the required input and output data rate should be used.

4.5.1 Power optimization in Sleep mode

The DFSDM may be used in Sleep mode. In this case, the DFSDM is typically used to 
monitor analog signals (analog watchdog enabled) and to wake up the CPU if an analog 
threshold is reached.

Examples of such applications are baby monitoring or broken glass detection where the 
CPU is almost always in sleep mode and the DFSDM is monitoring the sound level through 
the analog watchdog. If the sound threshold is reached, the CPU is woken up by the 
DFSDM analog watchdog interrupt, the DFSDM collects the captured data and the CPU 
performs analysis on the data collected by the DFSDM (to assess if it is really a baby sound 
or a broken glass sound). During the sleep mode it is not required that the DFSDM collects 
the data, only the analog watchdog functionality should be turned ON in order to optimize 
power consumption.
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Here is a example of DFSDM and MCU configuration for low power operation (sound 
detection):

• Clocks:

– Disable all peripherals except DFSDM

– Use system clock at minimum frequency for DFSDM operation. (example: 4 MHz, 
use internal MSI oscillator to reduce even more consumption)

– Reduce AHB and APB clocks to minimum because there is no need to access the 
peripherals during Sleep mode. Use high AHB and APB predividers (example: 
AHB predivider = 512, AHB clock = 4 MHz/512 = 7.8 kHz).

– Use system clock (example: 4 MHz) for the DFSDM because the APB clock is too 
slow for digital filter processing.

– Sampling clock for digital MEMS microphone should be less than DFSDM clock / 4 
(example: 1 MHz is appropriate for microphone operation).

• DFSDM:

– Configure the filter for appropriate output data rate (example: 16 kHz).

– Set the analog watchdog for monitoring output data and set appropriate thresholds 
for sound detection.

– Disable overrun errors of final data because data are not collected from DFSDM 
(only analog watchdog is working).

• After wakeup (interrupt from analog watchdog):

– Set back AHB, APB clocks (predividers) for high speed operation to speed up 
DFSDM communication and data transfer (example: AHB predivider = 1, AHB 
clock = 4 MHz).

– Optionally reconfigure DFSDM for higher output data rate for better sound 
recognition analysis (example: 44.1 kHz). 

– Start data collection from DFSDM into memory buffers (example: DMA data 
transfer).

– Perform sound recognition over each data buffer (example: FFT analysis).

– If a critical sound is detected, perform the necessary action (invoke alarm). If the 
sound was not critical (or no more sound is detected after a while) then go to the 
Sleep operation again and wait for next wakeup from analog watchdog.

With the above DFSDM scenario ongoing, the increase of the microcontroller power 
consumption (due to DFSDM activity) is limited to roughly a factor 2 (with respect to the 
consumption in a strict sleep mode without any DFSDM activity and same system clock 
frequency).
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5 DFSDM peripheral configuration tutorial

The DFSDM functionality is similar to an A/D converter that would have an external analog 
front-end part. The DFSDM offers a lot of flexibility but requires a bit of methodology to 
navigate through all the settings. The following tutorial helps the user to configure the 
DFSDM according the application requirements for A/D conversion.

5.1 Configuration introduction

The basic application parameters for A/D conversion are:

• Input analog range (sigma-delta modulator property)

• Minimum output data rate

• Data rate precision setting

• Minimum output data resolution

• Number of collected channels (per ADC)

• Additional functionality:

– Analog watchdog

– Short circuit detector

• Type of data transfer: DMA, interrupt, polling.

Application related properties impacting the DFSDM configuration:

• System clock range

• Supply voltage

• Consumption limitation

• Used sigma-delta converter (or digital microphone) properties: clock speed range, input 
analog range, order of sigma-delta modulator.

In the next sections, the tutorial goes through the configuration of the various DFSDM parts 
in order to achieve the application requirements.

5.2 Clocks configuration

The DFSDM clock selection is guided by the data requirements:

• Minimum output data rate

• Data rate precision

• Minimum output data resolution

The goal is to set the filter parameters and the input sampling clock rate in order to reach the 
output data rate.

The input sampling clock selection is driven by the sigma-delta modulator (or digital 
microphone) characteristics:

Please refer to Table 2 below providing examples of clocks configuration for two different 
applications.
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5.3 Transceivers

5.3.1 Serial transceivers configuration

The serial transceivers convert the data present on the input pins (DFSDM_DATIN and 
DFSDM_CKIN) and provide them to the filters. The configuration of the transceivers 
depends on the characteristics of the external device(s) connected to the DFSDM (sigma-
delta modulator or digital microphone).
The Table 2 below provides examples of DFSDM configurations for two different applica-
tions:

Application 1:

• Application: temperature measurement consisting in measuring voltage and current 
over a Pt100 sensor and determining the Pt100 sensor resistance/temperature. The 
temperature measurement is triggered by a timer every 1 second.

• External device: dual external sigma delta modulator STPMS2 for voltage and current 
channel measurement.

• Physical connection:

– The STPMS2 uses only one SPI line (pins: CLK, DAT). 

– The STPMS2 CLK pin is driven by DFSDM_CKOUT pin

– The STPMS2 DAT pin is connected to DFSDM_DATIN1 (serial data input on 
channel 1 pin, the channel 0 input is redirected to channel 1 pin, then signal on 
DATIN1 is connected to both channel 0 and channel 1).

– DFSDM_CKIN1 pin (serial clock input on channel 1) is not used. Data are 
sampled using internally redirected clock from CKOUT pin (SPICKSEL [1:0] = 1).

• Post processing:

– Data from channel 0 (U, voltage) are processed by filter 0.

– Data from channel 1 (I, current) are processed by filter 1.

– The resistance of Pt100 sensor is determined in firmware as R = U/I and is used to 
extrapolate the Pt100 sensor temperature.

Application 2:

• Application: audio recording at 48 kHz data rate.

• External device: MEMS digital microphone MP34DT01-M.

• Physical connection:

– MP34DT01-M has one data line (pins: CLK, DOUT). 

– The MP34DT01-M CLK pin is driven by DFSDM_CKOUT.

– The MP34DT01-M DOUT pin is connected to DFSDM_DATIN0 (serial data input 
on channel 0).

• Post processing:

– Data from channel 0 (microphone) are processed by filter 0.

– The output stream at a datarate of 48 kHz is stored in a RAM buffer by the DMA, in 
continuous mode.
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Table 2. DFSDM application examples 

Parameters Application 1: temperature measurement Application 2: audio sampling

Description Options Setting(1) Notes Setting(1) Notes

Selection of 
the serial 
protocol

(SITP[1:0])

SPI type x STPMS2 uses SPI communication x MP34DT01-M uses SPI type protocol.

Manchester 
type

- - - -

Clock 
master

DFSDM(2) x STPMS2 has clock input pin x MP34DT01-M needs clock input.

External 
device(3) - - - -

Active 
sampling 

edge

Rising edge - current stream active on rising edge x
MP34DT01-M has pin “L/R” at GND level – rising 
edge is active.

Falling edge - voltage stream active on falling edge - -

Clock source

APB clock

System clock

PLL clock

System 
clock

(fHSI16)
fCKIN requirement 2 MHz(4)

fCKIN configuration: 
fCKIN = fHSI16 / (CKOUTDIV + 1) with,

fHSI16 = 16 MHz
CKOUTDIV = 7

PLL clock

fCKIN requirement 3.072 MHz(5)

fCKIN configuration:

fCKIN = fHSE * N/(Q*(CKOUTDIV+1)) with

fHSE = 16 MHz (crystal - precise clock)
N =48
Q = 2
CKOUTDIV = 124

Input clock 
frequency

fCKIN/fCKOUT 2 MHz 3.072 MHz

Number of 
data streams 

sent over 
one serial 

line

One stream(6) -
Also supported by STPMS2 but requires one 
more wire/pin

x Mono microphone is used.

Two streams(7) x
A common wire for current and voltage signal is 
used in this example. Only one pin/wire is 
necessary.

- -

Clock 
accuracy

Low accuracy x

No need of precise clock – temperature 
measurement is triggered each second by timer. 
Clock signal based on DFSDM clock (16MHz): 
CKOUTSRC = 0

- -

High accuracy - - x
Required precise 48 kHz data rate (audio 
standard).

1. ‘x’ = valid setting, ‘-’ = invalid setting.
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2. Device requires external clock (clock input into device).

3. Device uses internal clock (clock output by the device).

4. STPMS2 clock input range: 1 to 4.915 MHz.

5. fCKIN = datarate * FOSR * IOSR with datarate = 48 kHz, FOSR = 64, continuous mode.

6. One stream sent (only one sampling edge active).

7. Two streams sent (one stream data active on rising clock edge, second stream data active on falling clock edge).
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5.3.2 Parallel transceivers

The parallel transceivers offer an alternative consisting in providing 16-bit wide data into the 
digital filter directly from internal microcontroller data sources.

The parallel transceivers consist in a set of 32-bit (2x16-bit) parallel input registers feeding 
the digital filter. There is one 32-bit parallel input register (divided into 2x16-bit) for each 
serial input channel. The DATMPX[1:0] bits in DFSDM_CHyCFGR1 register allow to select 
the filter input from either the serial input or the 16-bit parallel input. If DATMPX[1:0] = 0 then 
data are taken from serial transceivers (as 1-bit serial stream) otherwise the data are taken 
from parallel transceivers (as 16-bit signed data).

Data can be written into parallel registers by the CPU, by the DMA (DATMPX[1:0]=2) or by 
the ADC (DATMPX[1:0]=1). Depending on the embedded ADC capability, some 
microcontrollers feature a dedicated fast internal 16-bit bus between ADC and parallel input 
registers.

Each channel has its own 32-bit parallel register which is divided into two 16-bit registers. It 
allows to use 32-bit accesses to those registers and write 2 input samples at each write 
access. The usage of upper and lower 16-bit samples in 32-bit registers depends on the 
selected "data packing operation mode" defined in field DATPACK[1:0]:

• Standard mode: only lower 16-bit sample is used

• Interleaved mode: both samples are used for the same channel (like a 2 samples FIFO 
buffer)

• Dual mode: the lower 16-bit sample is used as input for a given channel while the 
upper 16-bit sample is used as input for the next channel.

Writing one 16-bit sample into the parallel input register automatically generates one 
sampling clock signal for the digital filter which in turn automatically samples the parallel 
input register as next input to be processed. Therefore the final output data rate depends on 
the input data rate (CPU or DMA or ADC data transfer speed).
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The parallel transceivers allow to perform fast low-pass filtering without CPU intervention. 
Here are 3 practical examples:

• Post-processing of ADC samples

The ADC is used as data source.

The ADC is configured to be used with DFSDM.

The DFSDM configuration is as follows:

– Parallel inputs selected from ADC: DATMPX[1:0]=1.

– The ADC is sending its outputs data over 16-bit internal bus directly into parallel 
registers (only lower 16-bit part is used). The data packing has no meaning in case 
of ADC data inputs and it is recommended to set DATPACK[1:0]=0.

– The DFSDM processes data according the setting of filter parameters (FOSR, 
FORD, IOSR) and then produces the final output data samples at a lower data 
rate. Example: averaging of data from ADC.

• Post-processing of data stored in RAM memory buffer (for instance low-pass filtering of 
data from ADC after software high-pass filtering)

The parallel inputs are selected from the parallel input registers: DATMPX[1:0]=2.

The CPU can write data directly from a buffer to the parallel registers. Alternatively the 
DMA can be used to load data into the parallel input registers.

The data packing should be optimized according the application:

– If data are stored in a buffer in 16-bit format, then DATPACK[1:0]=2 setting can be 
used to improve performance. In this case 2 consecutive samples can be written 
in one 32-bit transfer (FIFO buffer).

– If data are stored in a buffer in 16-bit format and each second sample is from 
another data source (for example odd samples corresponding to audio L channel 
and even samples corresponding to audio R channel) then DATPACK[1:0]=3 
setting can be used to improve performance. In this case one sample pair can be 
written in one 32-bit transfer (write 2 samples into 2 different channels parallel 
input registers).

• Post-processing of data from another communication peripheral: the analog data are 
transferred from the peripheral directly into the given parallel input register (DMA) and 
processed by the DFSDM to produce the final filtered samples. For instance an 
external ADC may be connected to the microcontroller SPI interface and the DFSDM 
used for low-pass filtering. In this case the setting of DFSDM is similar to case 2.

5.4 Filter

5.4.1 Sinc filter

The digital filter performs digital signal processing on data received by serial or parallel 
transceivers. Data can be in 1-bit format (serial transceivers) or in 16-bit signed integer 
format (parallel transceivers). Each sample received by the transceiver is automatically 
sampled by the digital filter for processing. According the digital filter configuration 
parameters, several input samples may be required until the first output data is available 
from the filter.
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The filter implemented in the DFSDM is a low pass filter of the Sinc type (also known also as 
comb filter). The basic parameters for this filter are as follows:

• FOSR: filter oversampling ratio - defines how many samples are processed together in 
the moving average. FOSR range is 1..1024.

• FORD: filter order - defines the number of iterations of the moving average. FORD 
range is 1..5.

The configuration of the filter depends on the application requirements and are discussed in 
the next 4 sub-sections:

Low pass filtering characteristics

The filter transfer frequency characteristic is important for the application. The Sinc filter 
frequency characteristic for FORD = 1, 3 and 5 and for fixed FOSR = 8 is provided in 
Figure 32: Sinc filter frequency characteristic shape (a more general figure was introduced 
in Figure 19). The magnitude response curves in Figure 32 indicate the amount of rejection 
applied to the high frequency components of the signal, outside of the filter passband (from 
around -20dB rejection for FORD = 1 down to around -100 dB for FORD = 5). The higher 
the filter order, the better the higher frequencies suppression (low pass filter). There is a 
side effect of using high filter order that may affect the signal within the useful filter 
passband. This is illustrated by the “passband zoom” curves of Figure 32. The filter is not 
flat within the passband but applies a slight attenuation that increases with the frequency 
and the filter order. Depending on the useful frequency bandwidth of the analog input signal, 
this may affect the quality of the filtered signal. If necessary, this attenuation can be 
compensated by application of a software compensation filter on the final output data.

The notch frequencies are those discrete frequencies where the attenuation of the signal is 
maximum (see Figure 32: Sinc filter frequency characteristic shape). The first notch 
frequency (and all its harmonics) of the Sinc filter is independent of FORD and depends only 
on the sampling clock and the selected FOSR: fnotch = fsampling / FOSR. Decreasing FOSR 
results in larger steps between notch frequencies.

In some applications, one can take advantage of the notch frequencies to better reject 
sources of noise with energy concentrated at a particular frequency. For instance if an 
application is sensitive to the 50 Hz mains frequency and its harmonics, it is recommended 
to tune the filters so that the first notch frequencies equals 50 Hz. With such configuration 
and filter tuning, it is possible to exploit very low signals in relatively high noise environment.

Figure 32. Sinc filter frequency characteristic shape

MSv43887V1

0.2
f/f

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

0 0.5 1 1.5 2 2.5 3 3.5 4

dB

f/fs

Magnitude response

FORD=1 FORD=3 FORD=5

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

dB

s

Passband zoom

FORD=1 FORD=3 FORD=5



AN4990 Rev 1 49/56

AN4990 DFSDM peripheral configuration tutorial

55

Output data resolution

A consequence of the Sinc filter operation (moving average) is to increase the resolution of 
the sampled signal (by a factor FOSR). Multiple averaging increases even more the 
resolution. The total resolution (in LSBs) of the output signal is then:

Resolutionout = Resolutionin * FOSRFORD.

• Resolutionin correspond to the input data resolution (2 in case of serial data input or 
wider in case of parallel data input, for example 4096 for 12-bit parallel input).

• Caution must be taken to not increase Resolutionout over the 32-bit range because the 
filter is performing all internal operations in 32-bit resolution. 

Output data rate

A consequence of the Sinc filter operation (moving average) is to reduce the output data 
rate with respect to the input sampling rate. The output data rate for a continuous signal 
conversion depends only on FOSR:

Datarateout = fsampling / FOSR (equal to first fnotch frequency).

Since Datarateout depends only on FOSR while Resolutionout depends on both FOSR and 
FORD, it is recommended to first adjust the FOSR to achieve the required output data rate, 
and then adjust the FORD to achieve the required output resolution.

Latency time

The latency represents the time that elapses between starting the filter (with valid input 
samples) and the first valid output sample. The latency has to be considered after starting 
the filter (first sample) and also after resuming the filter processing (in case input samples 
are not continuous and a trigger is used to restart conversion). The filter consists in a chain 
of clocked logic (adders and registers, principle of moving average) that needs to be 
initialized with valid data from previous input samples. If the input sample flow was stopped 
and therefore the history of input data was lost, it is necessary to wait that the filter logic is 
refilled with valid data before the output data becomes meaningful again. The filter latency is 
given by:

Tlatency = Tsampling * [(FOSR*FORD) + (FORD+1)]

Note: The theoretically minimum latency is Tlatency = Tsampling * (FOSR*FORD) but due to filter 
implementation and optimization, a few more cycles are required represented by the term 
(FORD+1) in the formula.

Simulation

The digital filter simulation available in [TUTORIAL] allows to:

• Define an input signal: either a signed 1-bit data stream or a signed 16-bit data stream

• Configure the filter parameters (FOSR, FORD and IOSR)

• Compute the final output signal and verify the influence of the filter parameters. An 
example of simulation result is provided in Figure 18: Filtering simulation.

5.4.2 Integrator

The integrator has one configuration parameter, the IOSR (integrator oversampling ratio). 
The integrator processing consists in accumulating (sum) IOSR consecutive samples from 
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the filter output. This operation additionally decreases the output data rate (by a factor 
IOSR).

The requirements to consider in order to set the IOSR are:

• Required output data rate

• Required number of samples from the filter to produce one integrator output sample.

An example of simulation result extracted form [TUTORIAL] is provided in Figure 18: 
Filtering simulation.

5.5 Analog watchdog

The configuration parameters of the analog watchdog embedded inside the DFSDM 
peripheral are provided in Table 3.

          

Each input channel has its own comparator which compares the analog watchdog data 
(from analog watchdog filter) with analog watchdog threshold values (AWHT/AWLT). When 
several channels are selected (AWDCH[] in DFSDM_FLTxCR2 register), several 
comparison requests may be received simultaneously. In this case, the channel request with 
the lowest number is managed first and then continuing to higher selected channels. For 
each channel, the result can be recorded in a separate flag (AWHTF[], AWLTF[] in 
DFSDM_FLTxAWSR register). One comparison takes 1 DFSDM clock cycle. To be able to 
perform comparisons from all selected channels the user must properly configure the 
number of watched channels and analog watchdog filter parameters with respect to the 
input sampling clock speed and DFSDM frequency.

The DFSDM analog watchdog can generate interrupts and break signals. The interrupts are 
used to trigger the CPU and require a software intervention. The break signals 
(BKAWH[3:0]) are used for fast hardware interaction with other peripherals (for example 
stopping the timers to generate PWM in motor applications).

5.6 Short circuit detector

A short circuit detector is available on each channel and can be enabled with the SCDEN 
bit. The short circuit detector threshold is configured for each channel with SCDT[7:0] 
(range 0-255).

Table 3. DFSDM analog watchdog parameters 

Parameter Description

AWLT Analog watchdog low threshold. Signed 24-bit format.

AWHT Analog watchdog high threshold. Signed 24-bit format.

AWFSEL
Analog watchdog fast mode select.

0: analog watchdog watches output final 24-bit data (after the digital filter)
1: analog watchdog watches data based on input 1-bit serial data samples(1)

1. In case AWFSEL=1 the serial input data are filtered by a dedicated analog watchdog filter that should be 
configured in the same way as the main digital filter: 
- AWFORD: analog watchdog filter order 
- AWFOSR = analog watchdog oversampling ratio 
Due to reduced analog watchdog filter options (AWFOSR = 1…32, AWFORD = 1…3) the signal from this 
filter as a maximum resolution of 16 bits. In this case the resolution of the high (AWHT[23:0]) and low 
(AWLT[23:0]) threshold levels is limited to the higher 16 bits (AWHT[23:8], AWLT[23:8]).
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The short circuit detector features an upcounting counter that counts consecutive 0’s or 1’s 
on serial data receiver outputs. The counter is restarted each time a logical transition is 
detected in the data stream (from 1 to 0 or from 0 to 1). If the counter reaches the value 
stored in SCDT[7:0], then a short-circuit event is invoked.

There are to type of usage for the short circuit detector feature that are presented in the 
following 2 subsections.

True short circuit detection

In this case the goal is to detect situations where the DFSDM input signal is in the overflow 
state (continuously exceeding the external sigma-delta modulator full scale range 
specification) during a period of time exceeding the allowed duration of overflow state.

According application requirements, the maximum duration of the short circuit state is 
defined as tshortmax. This is converted into a maximum number of consecutive 0’s or 1’s that 
is used to configure SCDT[7:0]:

SCDT[7:0] = tshortmax × fsampling

Each time the short circuit detector detects that input signal is stable during SCDT[7:0] bits, 
an error is reported (the input signal is in saturation over the maximum allowed time).

Short circuit detection handling

There are 2 ways of handling the short circuit detection events:

• Software interrupt generation. The microcontroller application software (interrupt 
routine) should perform the required actions (feedback) to a given short circuit event 
(for example stop the PWM generation into motor control applications).

• Break signal. A break signal, configured through the BKSCD[3:0] field, can be 
transmitted to other peripherals without any software intervention (example the break 
signal can be used to control a timer peripheral and stop the PWM generation into 
motor control applications).

5.7 Pulse skipper

The DFSDM can be used in beamforming applications where the location of an input signal 
source can be selected according its angle of incidence versus an array of sensors. The 
principle is described in Section 4.4.2: Beamforming support. Beamforming is usually used 
in conjunction with an array of digital microphones within audio applications.

The configuration of the DFSDM for beamforming requires to calculate the respective delay 
to be applied to each microphone in the array (see Figure 29: Beamforming principle). The 
delay of each microphone is calculated according the preferred receiving angle and the 
input sampling frequency and converted into a number of clock pulses of the serial input 
signal sampling frequency. Before configuring the delays, the reception of each microphone 
input bitstream by the respective DFSDM channel must be started synchronously, this is 
handled by the DFSDM global enable signal (DFSDMEN=1). After the DFSDM conversions 
are started, the calculated delay for each microphone channel must then be programmed 
once in each respective PLSSKP[5:0] field for each channel. After configuring the 
PLSSKP[5:0] fields, the software should read back the PLSSKP[5:0] fields and check that 
the values have been reset to 0 before asserting that the DFSDM final output data have 
been processed with the required delays.
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After being initially configured, the delays can be updated again without stopping the audio 
data reception, but only by adding-up to the already programmed delays. The software must 
remember the successive writes into each PLSSKP[5:0] field for each microphone channel 
and consider that the effectively applied delay is the cumulated value of all successive 
writes.

Example:

Let’s assume 3 microphone channels have been synchronously started and their 
PLSSKP[5:0] fields programmed with respective delay values of 0, 5 and 10 corresponding 
to a preferred angle φ. If the preferred angle should be changed to -φ, a second write should 
be performed in PLSSKP[5:0] fields with the respective values 20, 10, 0, resulting in a 
cumulated total delay for the respective channels of 20, 15, 10 (this is the difference 
between the delays that determine the preferred angle and not the delay absolute values).

If the DFSDM is stopped (all continuous streams from microphones are stopped) the 
cumulated delays for all microphones are reset to zero at new DFSDM synchronous start 
(DFSDMEN=1).

5.8 Configuration using [TUTORIAL]

The [TUTORIAL] provides a configurable simulator based on the principles and formulas 
presented in this application note as well as a model of the DFSDM peripheral.

The interface of the DFSDM simulator is presented in a simple way, like if it would be a 
standard ADC. The user can configure the characteristics of the input signal and the 
DFSDM parameters according a specific analog-to-digital conversion application (sampling 
frequency, mode selection, filter parameters …). The user can play with the input 
parameters and converge to the expected final conversion properties (output data rate and 
resolution) or use the simulator as a verification mean of a predefined configuration. The 
second approach (more deterministic) involves a preliminary analysis consisting in 
translating the application requirements into a digital signal processing scenario ported onto 
the DFSDM architecture, with the help of this application note. The analysis is not always 
straightforward and the user may sometime consider some trade-offs (like resolution versus 
data rate).
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Figure 33. DFSDM configuration in [TUTORIAL]
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6 Conclusion

The DFSDM peripheral embeds advanced, and sometime complex, features that are useful 
and beneficial in many applications involving analog-to-digital conversion. This document 
introduces many different fields of application for the DFSDM, the advantages of using this 
peripheral and configurations examples as well as guidelines. The [TUTORIAL] allows to 
quickly experiment the influence of the various DFSDM parameters and validate that the 
software architecture choices and associated configurations allow to meet application 
requirements. The understanding of the principles underlying the DFSDM processing and 
how they can be implemented with appropriate tools and methods (the aim of this 
document) is a key factor for successful DFSDM-based applications.
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