
October 2019 UM1722 Rev 3 1/28

UM1722
User manual

Developing applications on STM32Cube with RTOS

Introduction
The STM32Cube is an STMicroelectronics original initiative to significantly improve
developer productivity by reducing development effort, time and cost. STM32Cube covers
the whole STM32 portfolio.

STM32Cube includes

• STM32CubeMX, a graphical software configuration tool that allows the generation of C
initialization code using graphical wizards.

• A comprehensive embedded software platform, delivered per Series (such as
STM32CubeF4 for STM32F4 Series)

– The STM32Cube HAL, STM32 abstraction layer embedded software ensuring
maximized portability across the STM32 portfolio,

– Low-layer APIs (LL) offering a fast light-weight expert-oriented layer, which is
closer to the hardware than the HAL. LL APIs are available only for a set of
peripherals.

– A consistent set of middleware components such as RTOS, USB, TCP/IP,
Graphics,

– All embedded software utilities, delivered with a full set of examples.

A real-time operating system is an operating system optimized for use in embedded/real-
time applications. Their primary objective is to ensure a timely and deterministic response to
events. Using a real-time operating system allows applications to be written as a set of
independent threads that inter-communicate using message queues and semaphores.

This user manual is intended for developers who use STM32Cube firmware on STM32
microcontrollers and microprocessors. It provides a full description of how to use the
STM32Cube firmware components with a real-time operating system (RTOS); this user
manual comes also with description of a set of examples based on FreeRTOS™ using the
common APIs provided by the CMSIS-OS wrapping layer. In the STM32Cube firmware
FreeRTOS™ is used as real-time operating system through the generic CMSIS-OS
wrapping layer provided by Arm®. Examples and applications using the FreeRTOS™ can
be directly ported on any other RTOS without modifying the high level APIs, only the
CMSIS-OS wrapper has to be changed in this case. Refer to the release notes of the
package to know the version of FreeRTOS™ and CMSIS-RTOS firmware components used
with the STM32Cube.

This document is applicable to all STM32 devices; however for simplicity reason, the
STM32F4xx devices and STM32CubeF4 are used as reference platform. To know more
about the examples implementation on your STM32 device, please refer to the readme file
provided within the associated STM32Cube firmware package.

www.st.com

http://www.st.com

Contents UM1722

2/28 UM1722 Rev 3

Contents

1 FreeRTOS™ . 5

1.1 Overview . 5

1.2 License . 6

1.3 FreeRTOS™ source organization . 7

1.4 Porting FreeRTOS™ on STM32 . 8

1.5 FreeRTOS™ API . 9

1.6 FreeRTOS™ memory management . 10

1.7 FreeRTOS™ low power management . 12

1.8 FreeRTOS™ configuration . 12

2 CMSIS-RTOS module . 14

2.1 Overview . 14

2.2 CMSIS-RTOS API . 15

3 FreeRTOS™ applications . 18

3.1 Thread creation example . 18

3.2 Semaphores examples . 19

3.2.1 Semaphore between threads . 19

3.2.2 Semaphore from ISR . 20

3.3 Mutexes example . 21

3.4 Queues example . 21

3.5 Timer example . 22

3.6 Low-power example . 23

4 Conclusion . 25

5 FAQs . 26

6 Revision history . 27

UM1722 Rev 3 3/28

UM1722 List of tables

3

List of tables

Table 1. FreeRTOS™ API . 9
Table 2. CMSIS-RTOS API . 15
Table 3. FreeRTOS™ application categories . 18
Table 4. Comparison of power consumption . 24
Table 5. Document revision history . 27

List of figures UM1722

4/28 UM1722 Rev 3

List of figures

Figure 1. FreeRTOS™ license. 7
Figure 2. FreeRTOS™ architecture . 8
Figure 3. FreeRTOS™ port . 9
Figure 4. FreeRTOS™ configuration . 13
Figure 5. CMSIS-RTOS architecture . 14
Figure 6. Thread example . 19
Figure 7. Semaphore example. 20
Figure 8. Obtaining semaphore from ISR . 20
Figure 9. Queue process . 22
Figure 10. Periodic timer . 23

UM1722 Rev 3 5/28

UM1722 FreeRTOS™

27

1 FreeRTOS™

1.1 Overview

FreeRTOS™ is a class of RTOS that is designed to be small enough to run on a
microcontroller or microprocessor, although its use is not limited to microcontroller and
microprocessor applications.

A microcontroller or a microprocessor is a small and resource real-time constrained
processor that incorporates, on a single chip, the processor itself, read only memory (ROM
or Flash) to hold the program to be executed, and the random access memory (RAM)
needed by the programs it executes. Typically the program is executed directly from the
read only memory.

Microcontrollers and microprocessor are used in deeply embedded applications (those
applications where you never actually see the processors themselves or the software they
are running) that normally have a very specific and dedicated job to do. The size
constraints, and dedicated end application nature, rarely warrant the use of a full RTOS
implementation - or indeed make the use of a full RTOS implementation possible.
FreeRTOS™ therefore provides the core real-time scheduling functionality, inter-task
communication, timing and synchronization primitives only. This means it is more accurately
described as a real-time kernel, or real-time executive. Additional functionality, such as a
command console interface, or networking stacks, can be then be included with add-on
components.

FreeRTOS™ is a scalable real-time demonstration builder core designed specifically for
small embedded systems. Highlights include

• FreeRTOS™ demonstration builder core-preemptive, cooperative and hybrid
configuration options.

• Official support for 27 architectures (counting ARM7 and Arm® Cortex®-M3 as one
architecture each).

• FreeRTOS-MPU supports the Arm® Cortex®-M3 Memory Protection Unit (MPU).

• Designed to be small, simple and easy to use. Typically a demonstration builder core
binary image will be in the region of 4K to 9K bytes.

• Very portable code structure predominantly written in C.

• Supports both tasks and co-routines.

• Queues, binary semaphores, counting semaphores, recursive semaphores and
mutexes for communication and synchronization between tasks, or between tasks and
interrupts.

• Mutexes with priority inheritance.

• Supports efficient software timers.

• Powerful execution traces functionality.

• Stack overflows detection options.

• Pre-configured demo applications for selected single board computers allowing out of
the box operation and fast learning curve.

• Free forum support, or optional commercial support and licensing.

• No software restriction on the number of tasks that can be created.

• No software restriction on the number of priorities that can be used.

FreeRTOS™ UM1722

6/28 UM1722 Rev 3

• No restrictions imposed on priority assignment - more than one task can be assigned
the same priority.

• Free development tools for many supported architectures.

• Free embedded software source code.

• Royalty free.

• Cross development from a standard Windows host.

The heap2 scheme of FreeRTOS™ is used for the memory allocation management, this
scheme uses a best fit algorithm allows previously allocated blocks to be freed. It does not
however combine adjacent free blocks into a single large block. The total amount of
available RAM is set by the definition configTOTAL_HEAP_SIZE - which is defined in
FreeRTOSConfig.h.

1.2 License

The FreeRTOS™ source code is licensed by a modified GNU General Public License. The
modification takes the form of an exception. The full text of the GNU General Public License
is shown here:

UM1722 Rev 3 7/28

UM1722 FreeRTOS™

27

Figure 1. FreeRTOS™ license

1.3 FreeRTOS™ source organization

The FreeRTOS™ download includes source code for every processor port, and every
demonstration application. Placing all the ports in a single download greatly simplifies
distribution, but the number of files may seem daunting. The directory structure is however
very simple, and the FreeRTOS™ real-time kernel is contained in just 4 files (additional files
are required if software timer or co-routine functionality is required).

The FreeRTOS.org source code is licensed by the modified GNU General Public
License (GPL) text provided below. The FreeRTOS download also includes
demo application source code, some of which is provided by third parties
AND IS LICENSED SEPARATELY FROM FREERTOS.ORG.

For the avoidance of any doubt refer to the comment included at the top
of each source and header file for license and copyright information.

This is a list of files for which Real Time Engineers Ltd are not the
copyright owner and are NOT COVERED BY THE GPL.

1) Various header files provided by silicon manufacturers and tool vendors
 that define processor specific memory addresses and utility macros.
 Permission has been granted by the various copyright holders for these
 files to be included in the FreeRTOS download. Users must ensure license
 conditions are adhered to for any use other than compilation of the
 FreeRTOS demo applications.

2) The uIP TCP/IP stack the copyright of which is held by Adam Dunkels.
 Users must ensure the open source license conditions stated at the top
 of each uIP source file is understood and adhered to.

3) The lwIP TCP/IP stack the copyright of which is held by the Swedish
 Institute of Computer Science. Users must ensure the open source license
 conditions stated at the top of each lwIP source file is understood and
 adhered to.

4) Various peripheral driver source files and binaries provided by silicon
 manufacturers and tool vendors. Permission has been granted by the
 various copyright holders for these files to be included in the FreeRTOS
 download. Users must ensure license conditions are adhered to for any
 use other than compilation of the FreeRTOS demo applications.

5) The files contained within FreeRTOS\Demo\WizNET_DEMO_TERN_186\tern_code,
 which are slightly modified versions of code provided by and copyright to
 Tern Inc.

Errors and omissions should be reported to Richard Barry, contact details for
whom can be obtained from http://www.FreeRTOS.org.

The GPL license text follows.

A special exception to the GPL is included to allow you to distribute a
combined work that includes FreeRTOS without being obliged to provide
the source code for any proprietary components. See the licensing section
of http://www.FreeRTOS.org for full details. The exception text is also
included at the bottom of this file.

FreeRTOS™ UM1722

8/28 UM1722 Rev 3

Figure 2. FreeRTOS™ architecture

The core RTOS code is contained in three files, called tasks.c, queue.c and list.c., in the
FreeRTOS/Source directory. The same directory contains two optional files called timers.c
and croutine.c which implement software timer and co-routine functionality. Each supported
processor architecture requires a small amount of architecture specific RTOS code. This is
the RTOS portable layer, located in the FreeRTOS/Source/Portable/[compiler]/[architecture]
sub directories, where [compiler] and [architecture] are the compiler used to create the port,
and the architecture on which the port runs, respectively.

The sample heap allocation schemes are also located in the portable layer. The various
sample heap_x.c files are located in the FreeRTOS/Source/portable/MemMang directory.

1.4 Porting FreeRTOS™ on STM32

FreeRTOS™ supports the following ST processor families: STM32 (Arm®(a) Cortex®-M0,
Arm® Cortex®-M3 and Arm® Cortex®-M4F), STR7 (ARM7) and STR9 (ARM9), and can be
used with the following tools: IAR, Atollic® TrueStudio®, GCC, Keil®, Rowley CrossWorks.

STM32Cube FatFs middleware runs on STM32 32-bit microcontrollers based on the -M
processor.

FreeRTOS

Demo Source

PortableTask.c

Compiler

Platform

List.c

Queue.c

Port.c

Hardw
are

Abstraction Layer
(HAL)

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and or elsewhere.

UM1722 Rev 3 9/28

UM1722 FreeRTOS™

27

Figure 3. FreeRTOS™ port

1.5 FreeRTOS™ API

Table 1. FreeRTOS™ API

APIs categories API

Task creation
– xTaskCreate

– vTaskDelete

Task control

– vTaskDelay

– vTaskDelayUntil

– uxTaskPriorityGet

– vTaskPrioritySet

– vTaskSuspend

– vTaskResume

– xTaskResumeFromISR

– vTaskSetApplicationTag

– xTaskCallApplicationTaskHook

Task utilities

– xTaskGetCurrentTaskHandle

– xTaskGetSchedulerState

– uxTaskGetNumberOfTasks

– vTaskList

– vTaskStartTrace

– ulTaskEndTrace

– vTaskGetRunTimeStats

Kernel control

– vTaskStartScheduler

– vTaskEndScheduler

– vTaskSuspendAll

– xTaskResumeAll

FreeRTOS™ UM1722

10/28 UM1722 Rev 3

1.6 FreeRTOS™ memory management

Four sample RAM allocation schemes are included in the FreeRTOS™ source code
download (V2.5.0 onwards). These are used by the various demo applications as
appropriate. The following sub-sections describe the available schemes, when they should
be used, and highlight the demo applications that demonstrate their use.

Each scheme is contained in a separate source file (heap_1.c, heap_2.c, heap_3.c and
heap_4.c respectively) which can be located in the Source/Portable/MemMang directory.
Other schemes can be added if required.

Scheme 1 - heap_1.c

This is the simplest scheme of all. It does not permit memory to be freed once it has been
allocated, but despite this is suitable for a surprisingly large number of applications.

The algorithm simply subdivides a single array into smaller blocks as requests for RAM are
made. The total size of the array is set by the definition configTOTAL_HEAP_SIZE - which is
defined in FreeRTOSConfig.h. This scheme:

can be used if your application never deletes a task or queue (no calls to vTaskDelete () or
vQueueDelete () are ever made).

• is always deterministic (always takes the same amount of time to return a block).

• is used by the PIC, AVR and 8051 demo applications - as these do not dynamically
create or delete tasks after vTaskStartScheduler() has been called.

heap_1.c is suitable for a lot of small real-time systems provided that all tasks and
queues are created before the kernel is started.

Queue management

– xQueueCreate

– xQueueSend

– xQueueReceive

– xQueuePeek

– xQueueSendFromISR

– xQueueSendToBackFromISR

– xQueueSendToFrontFromISR

– xQueueReceiveFromISR

– vQueueAddToRegistry

– vQueueUnregisterQueue

Semaphores

– vSemaphoreCreateBinary

– vSemaphoreCreateCounting

– xSemaphoreCreateMutex

– xSemaphoreTake

– xSemaphoreGive

– xSemaphoreGiveFromISR

APIs categories API

UM1722 Rev 3 11/28

UM1722 FreeRTOS™

27

Scheme 2 - heap_2.c

This scheme uses a best fit algorithm and, unlike scheme 1, allows previously allocated
blocks to be freed. It does not however combine adjacent free blocks into a single large
block.

Again the total amount of available RAM is set by the definition configTOTAL_HEAP_SIZE -
which is defined in FreeRTOSConfig.h.

This scheme:

• can be used even when the application repeatedly calls vTaskCreate ()/vTaskDelete ()
or vQueueCreate ()/vQueueDelete () (causing multiple calls to pvPortMalloc() and
vPortFree()).

• should not be used if the memory being allocated and freed is of a random size - this
would only be the case if tasks being deleted each had a different stack depth, or
queues being deleted were of different lengths.

• could possibly result in memory fragmentation problems should your application create
blocks of queues and tasks in an unpredictable order. This would be unlikely for nearly
all applications but

• should be kept in mind.

• is not deterministic - but is also not particularly inefficient.

heap_2.c is suitable for most small real-time systems that have to dynamically create tasks.

Scheme 3 - heap_3.c

This is just a wrapper for the standard malloc() and free() functions. It makes them thread
safe. This scheme:

• Requires the linker to setup a heap, and the compiler library to provide malloc() and
free() implementations.

• Is not deterministic.

• Will probably considerably increase the kernel code size.

• Is used by the PC (x86 single board computer) demo application.

Scheme 4 - heap_4.c

This scheme uses a first fit algorithm and, unlike scheme 2, does combine adjacent free
memory blocks into a single large block (it does include a coalescence algorithm).

The total amount of available heap space is set by configTOTAL_HEAP_SIZE - which is
defined in FreeRTOSConfig.h.

The xPortGetFreeHeapSize() API function returns the total amount of heap space that
remains unallocated (allowing the configTOTAL_HEAP_SIZE setting to be optimized), but
does not provide information on how the unallocated memory is fragmented into smaller
blocks.

This implementation:

• can be used even when the application repeatedly deletes tasks, queues, semaphores
and mutexes.

• is much less likely than the heap_2 implementation to result in a heap space that is
badly fragmented into multiple small blocks - even when the memory being allocated
and freed is of random size.

FreeRTOS™ UM1722

12/28 UM1722 Rev 3

• Is not deterministic - but is much more efficient that most standard C library malloc
implementations.

heap_4.c is particularly useful for applications that want to use the portable layer memory
allocation schemes directly in the application code (rather than just indirectly by calling API
functions that themselves call pvPortMalloc() and vPortFree()).

1.7 FreeRTOS™ low power management

It is common to reduce the power consumed by the microcontroller/microprocessor on
which FreeRTOS™ is running by using the Idle task hook to place the
microcontroller/microprocessor into a low-power state. The power saving that can be
achieved by this simple method is limited by the necessity to periodically exit and then re-
enter the low-power state to process tick interrupts. Further, if the frequency of the tick
interrupt is too high, the energy and time consumed entering and then exiting a low-power
state for every tick will outweigh any potential power saving gains for all but the lightest
power saving modes.

The FreeRTOS™ tickless idle mode stops the periodic tick interrupt during idle periods
(periods when there are no application threads that are able to execute), then makes a
correcting adjustment to the RTOS tick count value when the tick interrupt is restarted.

Stopping the tick interrupt allows the microcontroller/microprocessor to remain in a power
saving state until either an interrupt occurs, or it is time for the RTOS kernel to transition a
thread into the Ready state.

1.8 FreeRTOS™ configuration

A number of configurable parameters exist that allow the FreeRTOS™ kernel to be tailored
to your particular application. These items are located in a file called FreeRTOSConfig.h.
Each demo application included in the FreeRTOS™ source code download has its own
FreeRTOSConfig.h file. Here is a typical example

UM1722 Rev 3 13/28

UM1722 FreeRTOS™

27

Figure 4. FreeRTOS™ configuration

Note: SVC_Handler and PendSV_Handler must be removed from stm32f4xx_it.c/.h files when
working with FreeRTOS™ to avoid a duplicate definition

/* Ensure stdint is only used by the compiler, and not the assembler. */
#if defined(__ICCARM__) || defined(__CC_ARM) || defined(__GNUC__)
 #include <stdint.h>
 extern uint32_t SystemCoreClock;
#endif

#define configUSE_PREEMPTION 1
#define configUSE_IDLE_HOOK 0
#define configUSE_TICK_HOOK 0
#define configCPU_CLOCK_HZ (SystemCoreClock)
#define configTICK_RATE_HZ ((portTickType) 1000)
#define configMAX_PRIORITIES ((unsigned portBASE_TYPE) 7)
#define configMINIMAL_STACK_SIZE ((unsigned short) 128)
#define configTOTAL_HEAP_SIZE ((size_t) (15 * 1024))
#define configMAX_TASK_NAME_LEN (16)
#define configUSE_TRACE_FACILITY 1
#define configUSE_16_BIT_TICKS 0
#define configIDLE_SHOULD_YIELD 1
#define configUSE_MUTEXES 1
#define configQUEUE_REGISTRY_SIZE 8
#define configCHECK_FOR_STACK_OVERFLOW 0
#define configUSE_RECURSIVE_MUTEXES 1
#define configUSE_MALLOC_FAILED_HOOK 0
#define configUSE_APPLICATION_TASK_TAG 0
#define configUSE_COUNTING_SEMAPHORES 1
/* Cortex-M specific definitions. */
#ifdef __NVIC_PRIO_BITS
 /* __BVIC_PRIO_BITS will be specified when CMSIS is being used. */
 #define configPRIO_BITS __NVIC_PRIO_BITS
#else
 #define configPRIO_BITS 4 /* 15 priority levels */
#endif

/* The lowest interrupt priority that can be used in a call to a "set priority"
function. */
#define configLIBRARY_LOWEST_INTERRUPT_PRIORITY 0xf

/* The highest interrupt priority that can be used by any interrupt service
routine that makes calls to interrupt safe FreeRTOS API functions */
#define configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY 5

/* Interrupt priorities used by the kernel port layer itself. These are generic
to all Cortex-M ports, and do not rely on any particular library functions. */
#define configKERNEL_INTERRUPT_PRIORITY (
configLIBRARY_LOWEST_INTERRUPT_PRIORITY << (8 - configPRIO_BITS))
#define configMAX_SYSCALL_INTERRUPT_PRIORITY (
configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY << (8 - configPRIO_BITS))

/* Definitions that map the FreeRTOS port interrupt handlers to their CMSIS
standard names. */
#define vPortSVCHandler SVC_Handler
#define xPortPendSVHandler PendSV_Handler

/* IMPORTANT: This define MUST be commented when used with STM32Cube firmware,
 to prevent overwriting SysTick_Handler defined within STM32Cube HAL
*/
/* #define xPortSysTickHandler SysTick_Handler */

CMSIS-RTOS module UM1722

14/28 UM1722 Rev 3

2 CMSIS-RTOS module

2.1 Overview

The CMSIS-RTOS is a common API for Real-Time operating systems. It provides a
standardized programming interface that is portable to many RTOS and enables therefore
software templates, middleware, libraries, and other components that can work across
supported the RTOS systems.

This module is represented by cmsis_os.c/h files located under the following repository
“Middlewares\Third_Party\FreeRTOS\CMSIS_RTOS”.

Figure 5. CMSIS-RTOS architecture

A typical CMSIS-RTOS API implementation interfaces to an existing Real-Time Kernel. The
CMSIS-RTOS API provides the following attributes and functionality:

• Function names, identifiers, and parameters are descriptive and easy to understand.
The functions are powerful and flexible which reduces the number of functions exposed
to the user.

• Thread Management allow defining, creating, and controlling threads.

• Interrupt Service Routines (ISR) can call many CMSIS-RTOS functions. When a
CMSIS-RTOS function cannot be called from ISR context it rejects the invocation.

• Three different thread event types support communication between multiple threads
and/or ISR:

– Signals: are flags that may be used to signal specific conditions to a thread.
Signals can be modified in an ISR or set from other threads.

– Message: is a 32-bit value that can be sent to a thread or an ISR. Messages are
buffered in a queue. The message type and queue size

– are defined in a descriptor.

– Mail: is a fixed-size memory block that can be sent to a thread or an ISR. Mails are
buffered in a queue and memory allocation is provided. The mail type and queue
size

– are defined in a descriptor.

• Mutex management and semaphore management are incorporated.

• CPU time can be scheduled

• d with the following functionality:

– A timeout parameter is incorporated in many CMSIS-RTOS functions to avoid
system lockup. When a timeout is specified the system waits until a resource is
available or event occurs. While waiting, other threads are scheduled.

UM1722 Rev 3 15/28

UM1722 CMSIS-RTOS module

27

– The osDelay function puts a thread into the state WAITING for a specified period
of time.

– The generic osWait function waits for events that are assigned to a thread.

– The osThreadYield provides co-operative thread switching and passes execution
to another thread of the same priority.

The CMSIS-RTOS API is designed to optionally incorporate multi-processor systems and/or
access protection via the Arm® Cortex®-M memory protection unit (MPU).

In some RTOS implementation threads may execute on different processors and Mail and
Message queues can therefore reside in shared memory resources.

The CMSIS-RTOS API encourages the software industry to evolve existing RTOS
implementations. Kernel objects are defined and accessed using macros. This allows
differentiation. RTOS implementations can be different and optimized in various aspects
towards the Arm® Cortex®-M processors. Optional features may be for example:

• Generic Wait function; i.e. with support of time intervals.

• Support of the Arm® Cortex®-M Memory Protection Unit (MPU).

• Zero-copy mail queue.

• Support of multi-processor systems.

• Support of a DMA controller.

• Deterministic context switching.

• Round-robin context switching.

• Deadlock avoidance, for example with priority inversion.

• Zero interrupt latency by using the Arm® Cortex®-M3/M4 instructions LDEX and STEX.

2.2 CMSIS-RTOS API

The following list provides a brief overview of all CMSIS-RTOS API:

Table 2. CMSIS-RTOS API

Module API Description

Kernel information and
control

osKernelInitialize Initialize the RTOS kernel

osKernelStart Start the RTOS kernel

osKernelRunning Query if the RTOS kernel is running

osKernelSys Tick (*) Get RTOS kernel system timer counter

osKernelSys TickFrequency (*) RTOS kernel system timer frequency in Hz

osKernelSys TickMicroSec (*)
Convert microseconds value to RTOS
kernel system timer value

CMSIS-RTOS module UM1722

16/28 UM1722 Rev 3

Thread management:

Define, create and control
thread functions

osThreadCreate Start execution of a thread function.

osThreadTerminate Stop execution of a thread function.

osThreadYield
Pass execution to next ready thread
function.

osThreadGetId
Get the thread identifier to reference this
thread.

osThreadSetPriority
Change the execution priority of a thread
function.

osThreadGetPriority
Obtain the current execution priority of a
thread function.

Generic wait functions:

Wait for a time period or
unspecified events.

osDelay Wait for a specified time.

osWait (*)
Wait for any event of the type Signal,
Message, or Mail.

Timer management(1):

Create and control timer
and timer callback

functions.

osTimerCreate
Define attributes of the timer callback
function

osTimerStart Start or restart the timer with a time value.

Signal management:
Control or wait for signal

flags.

osSignalSet Set signal flags of a thread.

osSignalClear Reset signal flags of a thread.

osSignalClear
Suspend execution until specific signal
flags are set.

Mutex management(1):

Synchronize thread
execution with a Mutex.

osMutexCreate Define and initialize a mutex

osMutexWait
Obtain a mutex or Wait until it becomes
available.

osMutexRelease Release a mutex

osMutexDelete Delete a mutex

Semaphore
management(1):

Control access to shared
resources.

osSemaphoreCreate Define and initialize a semaphore.

osSemaphoreWait
Obtain a semaphore token or Wait until it
becomes available.

osSemaphoreRelease Release a semaphore token.

osSemaphoreDelete Delete a semaphore.

Memory pool
management(1):

Define and manage fixed-
size memory pools.

osPoolCreate
Define and initialize a fix-size memory
pool.

osPoolAlloc Allocate a memory block.

osPoolCAlloc
Allocate a memory block and zero-set this
block.

osPoolFree
Return a memory block to the memory
pool.

Table 2. CMSIS-RTOS API (continued)

Module API Description

UM1722 Rev 3 17/28

UM1722 CMSIS-RTOS module

27

Message queue
management(1): Control,
send, receive, or wait for

messages.

osMessageCreate Define and initialize a message queue.

osMessagePut Put a message into a message queue.

osMessageGet
Get a message or suspend thread
execution until message arrives

Mail queue
management(1): Control,
send, receive, or wait for

mail.

osMailCreate
Define and initialize a mail queue with fix-
size memory blocks

osMailAlloc Allocate a memory block

osMailCAlloc
Allocate a memory block and zero-set this
block

osMailPut Put a memory block into a mail queue

osMailGet
Get a mail or suspend thread until mail
arrives.

osMailFree Return a memory block to the mail queue.

1. The modules or APIs marked with (*) are optional.

Table 2. CMSIS-RTOS API (continued)

Module API Description

FreeRTOS™ applications UM1722

18/28 UM1722 Rev 3

3 FreeRTOS™ applications

The STM32CubeF4 FreeRTOS™ package comes with several applications that use the
stack API sets.

The applications are divided into two categories

3.1 Thread creation example

A real-time application that uses an RTOS can be structured as a set of independent
threads. Each thread executes within its own context with no coincidental dependency on
other threads within the system or the RTOS scheduler itself. Only one thread within the
application can be executing at any point in time and the RTOS scheduler is responsible for
deciding which thread this should be.

The aim of this example is to explain how to create threads using CMSIS-RTOS based on
FreeRTOS™ API.

The example implements two threads running with the same priority, which execute in a
periodic cycle. Below details about each thread execution.

Thread 1: this thread toggles the LED1 each 200 ms for 5 seconds and then it suspends
itself, after 5 seconds the thread 2 resume the execution of thread 1 which toggles the LED1
each 400 ms for the next 5 seconds.

Thread creation description:

/* Thread 1 definition */

osThreadDef(LED1, LED_Thread1, osPriorityNormal, 0,
configMINIMAL_STACK_SIZE);

/* Start thread 1 */

LEDThread1Handle = osThreadCreate (osThread(LED1), NULL);

Thread 2: this thread toggles the LED2 each 500 ms for 10 seconds then it suspend itself.
Thread 1 will resume the execution of thread 2 after 5 seconds.

Table 3. FreeRTOS™ application categories

Categories Applications

Getting started (basic)

Thread creation example

Semaphore between threads example

Semaphore from ISR example

Mutexes example

Queues example

Features
Timer example

Low-power example

UM1722 Rev 3 19/28

UM1722 FreeRTOS™ applications

27

Figure 6. Thread example

Using the example:

• Build and program the application code into the STM32 Flash memory

• Run the example and check that LEDs are toggling as described in Figure 6.

3.2 Semaphores examples

Semaphores are used for both mutual exclusion and synchronization purposes.

3.2.1 Semaphore between threads

The aim of this example is to explain how to use semaphores through CMSIS-RTOS based
on FreeRTOS™ APIs.

This example implements two threads with different priorities that share a semaphore to
toggle LEDs, following more details about the execution of the example.

1. The thread 1 which has the higher priority obtains the semaphore and toggle the LED1
for 5 seconds

2. The thread 1 releases the semaphore and suspends itself.

3. The low priority thread can execute now, it obtains the semaphore and resume
execution of the thread 2.

4. As it has the higher priority the thread 1 will try to obtain the semaphore, but it blocks
because the semaphore is already taken by the low priority thread,

5. Thread 2 will toggle the LED2 for 5 seconds, before releasing the semaphore and
begin a new cycle.

Thread 1 toggles LED1 each 200 ms
Thread 2 toggles LED2 each 500 ms

Thread 1 suspend itself

Thread 2 resume Thread 1
Thread 2 suspend itself
Thread 1 LED1 each 400 ms

Thread 1 resume Thread 2
End of the cycle

0 s

5 s

10 s

15 s

FreeRTOS™ applications UM1722

20/28 UM1722 Rev 3

Figure 7. Semaphore example

Semaphore creation description:

/* Define the semaphore */

osSemaphoreDef(SEM);

/* Create the binary semaphore */

osSemaphoreId osSemaphore = osSemaphoreCreate(osSemaphore(SEM), 1);

Using the example:

1. Build and program the application code into the STM32 Flash memory.

2. Run the example and check that LEDs are toggling as described in Figure 7.

3.2.2 Semaphore from ISR

This example demonstrates how to use semaphores from interrupts.

It consists of a basic thread waiting indefinitely for a semaphore to toggle a LED. The
semaphore is released when the STM32 generates an interrupt after pushing the KEY
button of the evaluation board by the user

Figure 8. Obtaining semaphore from ISR

Using the example

1. Build and program the application code into the STM32 Flash memory

2. Run the example and check that LED1 is toggling when pushing KEY button of the
evaluation board.

Thread 1 (high priority) obtains semaphore
and toggles LED1

Thread 1 release the semaphore and suspends itself
Thread 2 (low priority) obtains the semaphore,
resume Thread 1 and toggles LED2

0 s

10 s

Thread 2 release the semaphore
End of cycle

5 s

Thead 1 waiting for
semaphore to toggle LED

Thread (blocked)

osSemaphoreWait()

Thread (blocked)

osSemaphoreWait()

Thread (running)

osSemaphoreWait()

Thread (running)

osSemaphoreWait()

Interrupt

osSemaphoreRelease()

Interrupt

osSemaphoreRelease()

UM1722 Rev 3 21/28

UM1722 FreeRTOS™ applications

27

3.3 Mutexes example

Mutexes are binary semaphores that include a priority inheritance mechanism. Whereas
binary semaphores are the better choice for implementing synchronization (between tasks
or between tasks and an interrupt), mutexes are the better choice for implementing simple
mutual exclusion.

This example creates three threads with different priorities, which access to the same
mutex. Following

1. the High priority thread executes first and grabs the mutex and sleeps for a short period
to let the lower priority threads execute.

2. the Medium priority thread attempts to access the mutex by performing a blocking
'wait'. This thread blocks when the mutex is already taken by the high priority thread. It
does not unblock until the high priority thread has released the mutex, and it does not
actually run until the high priority thread has suspended itself.

3. the Low priority thread spins round a tight loop attempting to obtain the mutex with a
non-blocking call. As the lowest priority thread it will not successfully obtain the mutex
until both high and medium priority threads are suspended.

4. the High priority thread gives the mutex back before suspending itself.

5. the Medium priority thread obtain the mutex, all it does is give the mutex back prior to
also suspending itself. At this point both the high and medium priority threads are
suspended.

6. the Low priority thread obtain the mutex, it first resumes both suspended threads prior
to giving the mutex back, resulting in the low priority thread temporarily inheriting the
highest thread priority.

Mutex creation description

/* Define the mutex */

osMutexDef(osMutex);

/* Create the mutex */

osMutexId osMutex = osMutexCreate(osMutex(osMutex));

Using the example

1. Build and program the application code into the STM32 Flash memory

2. When running in debug mode, add the following variables to the debugger live watch:
HighPriorityThreadCycles, MediumPriorityThreadCycles and LowPriorityThreadCycles;
these three variables must remain equal. LED1, LED2 and LED4 should toggle
indefinitely and LED3 will turn on in case of error

3.4 Queues example

Queues are the primary form of intertask communications. They can be used to send
messages between tasks, and between interrupts and tasks. In most cases they are used
as thread safe FIFO (First In First Out) buffers with new data being sent to the back of the
queue, although data can also be sent to the front.

This example creates two threads that send and receive an incrementing number to/from a
queue. One thread acts as a producer and the other as the consumer.

FreeRTOS™ applications UM1722

22/28 UM1722 Rev 3

The consumer is a higher priority than the producer and is set to block on queue reads. The
queue only has space for one item, as soon as the producer posts a message on the queue
the consumer will unblock, preempt the producer, and remove the item.

Figure 9. Queue process

Queue creation description:

/* Define a queue with “QUEUE_SIZE” items of 2 bytes */

osMessageQDef(osqueue, QUEUE_SIZE, uint16_t);

/* Create the queue */

osMessageQId osQueue = osMessageCreate (osMessageQ(osqueue), NULL);

Using the example:

1. Build and program the application code into the STM32 Flash memory.

2. Run the example and check that LED1 toggles for each correct message received, else
LED3 will toggle.

3.5 Timer example

A timer allows a function to be executed at a set time in the future. The function executed by
the timer is called the timer’s callback function. The time between a timer being started, and
its callback function being executed, is called the timer’s period. Put simply, the timer's
callback function is executed when the timer's period expires.

This example demonstrates how to use timers of CMSIS RTOS API based on FreeRTOS™
API., creating a periodic timer that calls a callback function every 200 ms to toggle the LED1
of the evaluation board.

Thread (Producer)

osMessagePut()

Thread (Producer)

osMessagePut()

Thread (Consumer)

osMessageGet()

Thread (Consumer)

osMessageGet()

QueueQueue

MessageMessage

UM1722 Rev 3 23/28

UM1722 FreeRTOS™ applications

27

Figure 10. Periodic timer

Periodic timer creation description:

/* Define a timer with “osTimerCallback” as callback process */

osTimerDef(LEDTimer, osTimerCallback);

/* Create the timer */

osTimerId osTimer = osTimerCreate (osTimer(LEDTimer), osTimerPeriodic,
NULL);

Using the example

1. Build and program the application code into the STM32 Flash memory.

2. Run the example and check that LED1 toggles every 200 ms (Timer expiration)

Note: To use FreeRTOS™ software timers please add “timers.c” to your project workspace.

3.6 Low-power example

This example demonstrates how to run FreeRTOS™ in low-power mode using STM32
devices (for more information about FreeRTOS™ low-power mode refer to Section 1.7).

Built-in tickless idle functionality (low power) is enabled by defining
configUSE_TICKLESS_IDLE as 1 in FreeRTOSConfig.h

In this example two threads and a queue are created with the following functionality:

• The first thread “RxThread” blocks on a queue to wait for data, toggles an LED each
time data is received (turning it on and then off again) before returning to block on the
queue once more.

• The second thread “TxThread” repeatedly enters the blocked state for 500ms. On
exiting the blocked state the “TxThread” sends a message through the queue to the
“RxThread” (causing the “RxThread” to exit the blocked state and toggle the LED).

When the two threads are blocked, the kernel stops the tick interrupt and place the STM32
into low-power (Sleep) mode to reduce the power consumption.

Table 4 present power consumption measured on STM32F4 devices in the context of the
example described above.

0 100 200 300 400

Timer started
Timer expires after 200 ms and
executes its callback function

Time (ms)

FreeRTOS™ applications UM1722

24/28 UM1722 Rev 3

Table 4. Comparison of power consumption

Hardware platform Runtime mode Sleep mode

STM324xG-EVAL 62.4 mA 14.2 mA

STM324x9I-EVAL 80.5 mA 20.8 mA

UM1722 Rev 3 25/28

UM1722 Conclusion

27

4 Conclusion

This User manual explains how to integrate the FreeRTOS™ middleware components
within the STM32Cube HAL drivers.

A set of examples have been described to help users developing applications with CMSIS-
RTOS API based on FreeRTOS™ operating system.

FAQs UM1722

26/28 UM1722 Rev 3

5 FAQs

How to port FreeRTOS™ to different Arm® Cortex®-M cores?

To port FreeRTOS™ to the right Arm® Cortex®-M product you have to import the “port.c”
from the correct folder. For example if the microcontroller has Arm® Cortex®-M0 core with
IAR tool, you have to get the port.c file from “FreeRTOS\Source\portable\IAR\ARM_CM0”
repository.

How much ROM/RAM does FreeRTOS™ use?

This depends on your compiler, architecture, and RTOS kernel configuration. Generally the
RTOS kernel itself required about 5 to 10 Kbytes of ROM space.

RAM usage increase if the number of created threads or queues increases.

How to set the CPU clock?

The CPU clock is defined by configCPU_CLOCK_HZ in FreeRTOSConfig.h, within
STM32CubeF4 firmware it’s provided by SystemCoreClock which represent the HCLK clock
(AHB bus), this value is set when configuring the RCC clock by calling
SystemClock_Config() function.

How to set interrupt priorities?

Any interrupt service routine that uses an RTOS API function must have its priority manually
set to a value that is numerically equal to or greater than the
configMAX_SYSCALL_INTERRUPT_PRIORITY setting in FreeRTOSConfig.h file.

This ensures the interrupt logical priority is equal to or less than the
configMAX_SYSCALL_INTERRUPT_PRIORITY setting.

How to use a clock other than SysTick to generate the tick interrupt?

User can optionally provide its own tick interrupt source by generating an interrupt from a
timer other than SysTick:

• Provide an implementation of vPortSetupTimerInterrupt() that generates an interrupt at
the frequency specified by the configTICK_RATE_HZ FreeRTOSConfig.h constant.

• Install xPortSysTickHandler() as the handler for the timer interrupt, and ensure
xPortSysTickHandler() is not mapped to SysTick_Handler() in FreeRTOSConfig.h, or
renamed as SysTick_Handler() in port.c.

How to enable the tickless idle mode?

The FreeRTOS™ tickles mode (low power), allows reducing the power consumption of the
MCU by entering sleep mode and stopping the periodic tick interrupt. This functionality is
enabled by defining configUSE_TICKLESS_IDLE as 1 in FreeRTOSConfig.h

The tickless idle mode can be enabled when a timer other than SysTick is used to generate
the tick interrupt. User has to add the following actions to those described in the previous
question:

• Set configUSE_TICKLESS_IDLE to 2 in FreeRTOSConfig.h.

• Define portSUPPRESS_TICKS_AND_SLEEP() as described in the documentation
page on the FreeRTOS™ website.

UM1722 Rev 3 27/28

UM1722 Revision history

27

6 Revision history

Table 5. Document revision history

Date Revision Changes

18-Feb-2014 1 Initial release.

23-Jun-2014 2

On cover page updated:

– document title

– reference at STM32CubeF4 into STM32Cube

28-Oct-2019 3

Updated Section : Introduction on cover page.

Extended document scope to microprocessors.

Removed STM32Cube trademark.

Added trademark to FreeRTOS. Added registered trademark to Atollic,
TrueStudio and Keil.

Added Arm and Cortex registered trademark and legal notice in
Section 1.4: Porting FreeRTOS™ on STM32.

Updated message queue management in Table 2: CMSIS-RTOS API.

UM1722

28/28 UM1722 Rev 3

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

	1 FreeRTOS™
	1.1 Overview
	1.2 License
	Figure 1. FreeRTOS™ license

	1.3 FreeRTOS™ source organization
	Figure 2. FreeRTOS™ architecture

	1.4 Porting FreeRTOS™ on STM32
	Figure 3. FreeRTOS™ port

	1.5 FreeRTOS™ API
	Table 1. FreeRTOS™ API

	1.6 FreeRTOS™ memory management
	1.7 FreeRTOS™ low power management
	1.8 FreeRTOS™ configuration
	Figure 4. FreeRTOS™ configuration

	2 CMSIS-RTOS module
	2.1 Overview
	Figure 5. CMSIS-RTOS architecture

	2.2 CMSIS-RTOS API
	Table 2. CMSIS-RTOS API

	3 FreeRTOS™ applications
	Table 3. FreeRTOS™ application categories
	3.1 Thread creation example
	Figure 6. Thread example

	3.2 Semaphores examples
	3.2.1 Semaphore between threads
	Figure 7. Semaphore example
	3.2.2 Semaphore from ISR
	Figure 8. Obtaining semaphore from ISR

	3.3 Mutexes example
	3.4 Queues example
	Figure 9. Queue process

	3.5 Timer example
	Figure 10. Periodic timer

	3.6 Low-power example
	Table 4. Comparison of power consumption

	4 Conclusion
	5 FAQs
	6 Revision history
	Table 5. Document revision history

