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Introduction 
 
This book is intended as a hands-on guide for anyone planning to use the Philips LPC2000 family of 
microcontrollers in a new design. It is laid out both as a reference book and as a tutorial. It is assumed that you 
have some experience in programming microcontrollers for embedded systems and are familiar with the C 
language. The bulk of technical information is spread over the first four chapters, which should be read in order if 
you are completely new to the LPC2000 and the ARM7 CPU.  
 
The first chapter gives an introduction to the major features of the ARM7 CPU. Reading this chapter will give you 
enough understanding to be able to program any ARM7 device. If you want to develop your knowledge further, 
there are a number of excellent books which describe this architecture and some of these are listed in the 
bibliography. Chapter Two is a description of how to write C programs to run on an ARM7 processor and, as 
such, describes specific extensions to the ISO C standard which are necessary for embedded programming. In 
this book a commercial compiler is used in the main text, however the GCC tools have also been ported to ARM.  
 
Appendix A details the ARM-specific features of the GCC tools. Having read the first two chapters you should 
understand the processor and its development tools.  Chapter Three then introduces the LPC2000 system 
peripherals. This chapter describes the system architecture of the LPC2000 family and how to set the chip up for 
its best performance. In Chapter Four we look at the on-chip user peripherals and how to configure them for our 
application code.  
 
Throughout these chapters various exercises are listed. Each of these exercises are described in detail in 
Chapter Five, the Tutorial section. The Tutorial contains a worksheet for each exercise which steps you through 
an important aspect of the LPC2000. All of the exercises can be done with the evaluation compiler and simulator 
which come on the CD provided with this book. A low-cost starter kit is also available which allows you to 
download the example code on to some real hardware and “prove” that it does in fact work. It is hoped that by 
reading the book and doing the exercises you will quickly become familiar with the LPC2000. 
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1 Chapter 1: The ARM7 CPU Core 
 

1.1 Outline 
 
The CPU at the heart of the LPC2000 family is an ARM7. You do not need to be an expert in ARM7 
programming to use the LPC2000, as many of the complexities are taken care of by the C compiler. You do 
need to have a basic understanding of how the CPU is working and its unique features in order to produce a 
reliable design. 
 
In this chapter we will look at the key features of the ARM7 core along with its programmers’ model and we will 
also discuss the instruction set used to program it. This is intended to give you a good feel for the CPU used in 
the LPC2000 family. For a more detailed discussion of the ARM processors, please refer to the books listed in 
the bibliography. 
 
The key philosophy behind the ARM design is simplicity. The ARM7 is a RISC computer with a small instruction 
set and consequently a small gate count. This makes it ideal for embedded systems. It has high performance, 
low power consumption and it takes a small amount of the available silicon die area.   
 

1.2 The Pipeline 
 
At the heart of the ARM7 CPU is the instruction pipeline. The pipeline is used to process instructions taken from 
the program store. On the ARM 7 a three-stage pipeline is used.  
    

 
A three-stage pipeline is the simplest form of pipeline and does not suffer from the kind of hazards such as 
read-before-write seen in pipelines with more stages. The pipeline has hardware independent stages that 
execute one instruction while decoding a second and fetching a third. The pipeline speeds up the throughput of 
CPU instructions so effectively that most ARM instructions can be executed in a single cycle. The pipeline works 
most efficiently on linear code. As soon as a branch is encountered, the pipeline is flushed and must be refilled 
before full execution speed can be resumed. As we shall see, the ARM instruction set has some interesting 
features which help smooth out small jumps in your code in order to get the best flow of code through the 
pipeline.  As the pipeline is part of the CPU, the programmer does not have any exposure to it. However, it is 
important to remember that the PC is running eight bytes ahead of the current instruction being executed, so 
care must be taken when calculating offsets used in PC relative addressing.  
 
For example, the instruction: 
 
0x4000 LDR PC,[PC,#4] 
 
will load the contents of the address PC+4 into the PC. As the PC is running eight bytes ahead then the 
contents of address 0x400C will be loaded into the PC and not 0x4004 as you might expect on first inspection. 
 

The ARM7 three-stage pipeline 
has independent fetch, decode 
and execute stages 
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1.3 Registers 
 
The ARM7 is a load-and-store architecture, so in order to perform any data processing instructions the data has 
first to be moved from the memory store into a central set of registers, the data processing instruction has to be 
executed and then the data is stored back into memory. 
 

 
The central set of registers are a bank of 16 user registers R0 – R15. Each of these registers is 32 bits wide and 
R0 – R12 are user registers in that they do not have any specific other function. The Registers R13 – R15 do 
have special functions in the CPU. R13 is used as the stack pointer (SP). R14 is called the link register (LR). 
When a call is made to a function the return address is automatically stored in the link register and is 
immediately available on return from the function. This allows quick entry and return into a ‘leaf’ function (a 
function that is not going to call further functions). If the function is part of a branch (i.e. it is going to call other 
functions) then the link register must be preserved on the stack (R13). Finally R15 is the program counter (PC). 
Interestingly, many instructions can be performed on R13 - R15 as if they were standard user registers. 
 

The ARM7 CPU is a load-and-
store architecture. All data 
processing instructions may 
only be carried out on a central 
register file 

The central register file has 16 word wide registers plus 
an additional CPU register called the current program 
status register. R0 – R12 are user registers R13 – R15 
have special functions. 
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1.4 Current Program Status Register 
 
In addition to the register bank there is an additional 32 bit wide register called the ‘current program status 
register’ (CPSR). The CPSR contains a number of flags which report and control the operation of the ARM7 
CPU. 

 
 
 
The top four bits of the CPSR contain the condition codes which are set by the CPU. The condition codes report 
the result status of a data processing operation. From the condition codes you can tell if a data processing 
instruction generated a negative, zero, carry or overflow result. The lowest eight bits in the CPSR contain flags 
which may be set or cleared by the application code. Bits 7 and 8 are the I and F bits. These bits are used to 
enable and disable the two interrupt sources which are external to the ARM7 CPU. All of the LPC2000 
peripherals are connected to these two interrupt lines as we shall see later. You should be careful when 
programming these two bits because in order to disable either interrupt source the bit must be set to ‘1’ not ‘0’ 
as you might expect. Bit 5 is the THUMB bit.  
 
The ARM7 CPU is capable of executing two instruction sets; the ARM instruction set which is 32 bits wide and 
the THUMB instruction set which is 16 bits wide. Consequently the T bit reports which instruction set is being 
executed. Your code should not try to set or clear this bit to switch between instruction sets. We will see the 
correct entry mechanism a bit later. The last five bits are the mode bits. The ARM7 has seven different 
operating modes. Your application code will normally run in the user mode with access to the register bank R0 – 
R15 and the CPSR as already discussed. However in response to an exception such as an interrupt, memory 
error or software interrupt instruction the processor will change modes. When this happens the registers R0 – 
R12 and R15 remain the same but R13 (LR ) and R14 (SP) are replaced by a new pair of registers unique to 
that mode. This means that each mode has its own stack and link register. In addition the fast interrupt mode 
(FIQ) has duplicate registers for R7 – R12. This means that you can make a fast entry into an FIQ interrupt 
without the need to preserve registers onto the stack. 

The Current Program Status Register contains condition code flags which indicate the result of 
data processing operations and User flags which set the operating mode and enable interrupts. 
The T bit is for reference only 
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Each of the modes except user mode has an additional register called the “saved program status register”. If 
your application is running in user mode when an exception occurs the mode will change and the current 
contents of the CPSR will be saved into the SPSR. The exception code will run and on return from the exception 
the context of the CPSR will be restored from the SPSR allowing the application code to resume execution. The 
operating modes are listed below.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.5 Exception Modes 
 
When an exception occurs, the CPU will change modes and the PC be forced to an exception vector. The 
vector table starts from address zero with the reset vector and then has an exception vector every four bytes.  
 
 
 

 

The ARM7 CPU has six operating modes 
which are used to process exceptions. The 
shaded registers are banked memory that 
is “switched in” when the operating mode 
changes. The SPSR register is used to 
save a copy of the CPSR when the switch 
occurs 

Each operating mode has an 
associated interrupt vector. When 
the processor changes mode the 
PC will jump to the associated 
vector. 

NB. there is a missing vector at 
0x00000014 
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NB: There is a gap in the vector table because there is a missing vector at 0x00000014. This location was used 
on an earlier ARM architecture and has been preserved on ARM7 to ensure software compatibility between 
different ARM architectures. However in the LPC2000 family these four bytes are used for a very special 
purpose as we shall see later.  
 

 
If multiple exceptions occur then there is a fixed priority as shown below. 
 
When an exception occurs, for example an IRQ exception, the following actions are taken: First the address of 
the next instruction to be executed (PC + 4) is saved into the link register. Then the CPSR is copied into the 
SPSR of the exception mode that is about to be entered (i.e. SPSR_irq). The PC is then filled with the address 
of the exception mode interrupt vector. In the case of the IRQ mode this is 0x00000018. At the same time the 
mode is changed to IRQ mode, which causes R13 and R14 to be replaced by the IRQ R13 and R14 registers. 
On entry to the IRQ mode, the I bit in the CPSR is set, causing the IRQ interrupt line to be disabled. If you need 
to have nested IRQ interrupts, your code must manually re-enable the IRQ interrupt and push the link register 
onto the stack in order to preserve the original return address. From the exception interrupt vector your code will 
jump to the exception ISR. The first thing your code must do is to preserve any of the registers R0-R12 that the 
ISR will use by pushing them onto the IRQ stack. Once this is done you can begin processing the exception.  
 

 
Once your code has finished processing the exception it must return back to the user mode and continue where 
it left off. However the ARM instruction set does not contain a “return” or “return from interrupt” instruction so 
manipulating the PC must be done by regular instructions. The situation is further complicated by there being a 
number of different return cases. First of all, consider the SWI instruction. In this case the SWI instruction is 
executed, the address of the next instruction to be executed is stored in the Link register and the exception is 
processed. In order to return from the exception all that is necessary is to move the contents of the link register 
into the PC and processing can continue. However in order to make the CPU switch modes back to user mode, 
a modified version of the move instruction is used and this is called MOVS (more about this later). Hence for a 
software interrupt the return instruction is 
 
MOVS  R15,R14     ; Move Link register into the PC and switch modes. 
 

Each of the exception sources has a fixed priority. The 
on chip peripherals are served by FIQ and IRQ 
interrupts. Each peripheral’s priority may be assigned 
within these groups 

When an exception occurs the CPU will change 
modes and jump to the associated interrupt 
vector
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However, in the case of the FIQ and IRQ instructions, when an exception occurs the current instruction being 
executed is discarded and the exception is entered. When the code returns from the exception the link register 
contains the address of the discarded instruction plus four. In order to resume processing at the correct point we 
need to roll back the value in the Link register by four. In this case we use the subtract instruction to deduct four 
from the link register and store the results in the PC. As with the move instruction, there is a form of the subtract 
instruction which will also restore the operating mode. For an IRQ, FIQ or Prog Abort, the return instruction is: 
 
SUBS R15, R14,#4 
 
In the case of a data abort instruction, the exception will occur one instruction after execution of the instruction 
which caused the exception. In this case we will ideally enter the data abort ISR, sort out the problem with the 
memory and return to reprocess the instruction that caused the exception. In this case we have to roll back the 
PC by two instructions i.e. the discarded instruction and the instruction that caused the exception. In other 
words subtract eight from the link register and store the result in the PC. For a data abort exception the return 
instruction is 
 
SUBS R15, R14,#8 
 
Once the return instruction has been executed, the modified contents of the link register are moved into the PC, 
the user mode is restored and the SPSR is restored to the CPSR. Also, in the case of the FIQ or IRQ 
exceptions, the relevant interrupt is enabled. This exits the privileged mode and returns to the user code ready 
to continue processing. 
 

At the end of the exception the CPU returns to 
user mode and the context is restored by 
moving the SPSR to the CPSR 
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1.6 The ARM 7 Instruction Set 
 
Now that we have an idea of the ARM7 architecture, programmers model and operating modes we need to take 
a look at its instruction set or rather sets. Since all our programming examples are written in C there is no need 
to be an expert ARM7 assembly programmer. However an understanding of the underlying machine code is 
very important in developing efficient programs. Before we start our overview of the ARM7 instructions it is 
important to set out a few technicalities. The ARM7 CPU has two instruction sets: the ARM instruction set which 
has 32-bit wide instructions and the THUMB instruction set which has 16-bit wide instructions. In the following 
section the use of the word ARM means the 32-bit instruction set and ARM7 refers to the CPU. 
 
The ARM7 is designed to operate as a big-endian or little-endian processor. That is, the MSB is located at the 
high order bit or the low order bit. You may be pleased to hear that the LPC2000 family fixes the endianess of 
the processor as little endian (i.e. MSB at highest bit address), which does make it a lot easier to work with. 
However the ARM7 compiler you are working with will be able to compile code as little endian or big endian. 
You must be sure you have it set correctly or the compiled code will be back to front. 
 

 
One of the most interesting features of the ARM instruction set is that every instruction may be conditionally 
executed. In a more traditional microcontroller the only conditional instructions are conditional branches and 
maybe a few others like bit test and set. However in the ARM instruction set the top four bits of the operand are 
compared to the condition codes in the CPSR. If they do not match then the instruction is not executed and 
passes through the pipeline as a NOP (no operation).  
 

 

The ARM7 CPU is designed to support code 
compiler in big endian or little endian format. The 
Philips silicon is fixed as little endian. 

Every ARM ( 32 bit) instruction is conditionally executed. The 
top four bits are ANDed with the CPSR condition codes. If they 
do not match the instruction is executed as a NOP 
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So it is possible to perform a data processing instruction, which affects the condition codes in the CPSR. Then 
depending on this result, the following instructions may or may not be carried out. The basic assembler 
instructions such as MOV or ADD can be prefixed with sixteen conditional mnemonics, which define the 
condition code states to be tested for. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So for example: 
 
EQMOV R1, #0x00800000 
 
will only move 0x00800000 into the R1 if the last result of the last data processing instruction was equal and 
consequently set the Z flag in the CPSR. The aim of this conditional execution of instructions is to keep a 
smooth flow of instructions through the pipeline. Every time there is a branch or jump the pipeline is flushed and 
must be refilled and this causes a dip in overall performance. In practice there is a break-even point between 
effectively forcing NOP instructions through the pipeline and a traditional conditional branch and refill of the 
pipeline. This break-even point is three instructions, so a small branch such as: 
 
if( x<100) 
{ 
 x++; 
} 
 
would be most efficient when coded using conditional execution of ARM instructions. 
 
The main instruction groups of the ARM instruction set fall into six different categories, Branching, Data 
Processing, Data Transfer, Block Transfer, Multiply and Software Interrupt.  

Each ARM (32- bit) instruction can 
be prefixed by one of 16 condition 
codes. Hence each instruction has 
16 different variants. 
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1.6.1 Branching 
 
The basic branch instruction (as its name implies) allows a jump forwards or backwards of up to 32 MB. A 
modified version of the branch instruction, the branch link, allows the same jump but stores the current PC 
address plus four bytes in the link register. 

 
 
So the branch link instruction is used as a call to a function storing the return address in the link register and the 
branch instruction can be used to branch on the contents of the link register to make the return at the end of the 
function. By using the condition codes we can perform conditional branching and conditional calling of functions. 
The branch instructions have two other variants called “branch exchange” and “branch link exchange”. These 
two instructions perform the same branch operation but also swap instruction operation from ARM to THUMB 
and vice versa. 
 

 
 
 
This is the only method you should use to swap instruction sets, as directly manipulating the “T” bit in the CPSR 
can lead to unpredictable results. 

The branch instruction has several forms. The 
branch instruction will jump you to a destination 
address. The branch link instruction jumps to the 
destination and stores a return address in R14. 

The branch exchange and branch link exchange 
instructions perform the same jumps as branch and 
branch link but also swap instruction sets from ARM to 
THUMB and vice versa. 
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1.6.2 Data Processing Instructions 
 
The general form for all data processing instructions is shown below. Each instruction has a result register and 
two operands. The first operand must be a register, but the second can be a register or an immediate value.  
 

In addition, the ARM7 core contains a barrel shifter which allows the second operand to be shifted by a full 32-
bits within the instruction cycle. The “S” bit is used to control the condition codes.  If it is set, the condition codes 
are modified depending on the result of the instruction. If it is clear, no update is made. If, however, the PC 
(R15) is specified as the result register and the S flag is set, this will cause the SPSR of the current mode to be 
copied to the CPSR. This is used at the end of an exception to restore the PC and switch back to the original 
mode. Do not try this when you are in the USER mode as there is no SPSR and the result would be 
unpredictable. 
 
Mnemonic  Meaning 
AND   Logical bitwise AND 
EOR   Logical bitwise exclusive OR 
SUB   Subtract 
RSB   Reverse Subtract 
ADD   Add 
ADC   Add with carry 
SBC   Subtract with carry  
RSC   Reverse Subtract with carry 
TST   Test 
TEQ   Test Equivalence 
CMP   Compare 
CMN   Compare negated 
ORR   Logical bitwise OR 
MOV   Move 
BIC   Bit clear 
MVN   Move negated 
 
 
These features give us a rich set of data processing instructions which can be used to build very efficiently-
coded programs, or to give a compiler-designer nightmares. An example of a typical ARM instruction is shown 
below. 
 
if(Z ==1)R1 = R2+(R3x4) 
 
Can be compiled to: EQADDS R1,R2,R3,LSL #2 
 

The general structure of the data 
processing instructions allows for 
conditional execution, a logical shift of up 
to 32 bits and the data operation all in the 
one cycle 
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1.6.2.1 Copying Registers 
 
The next group of instructions are the data transfer instructions. The ARM7 CPU has load-and-store register 
instructions that can move signed and unsigned Word, Half Word and Byte quantities to and from a selected 
register. 
 
Mnemonic  Meaning 
LDR   Load Word 
LDRH   Load Half Word 
LDRSH   Load Signed Half Word 
LDRB   Load Byte 
LRDSB   Load Signed Byte 
 
STR   Store Word 
STRH   Store Half Word 
STRSH   Store Signed Half Word 
STRB   Store Byte 
STRSB   Store Signed Half Word 
 
 
Since the register set is fully orthogonal it is possible to load a 32-bit value into the PC, forcing a program jump 
anywhere within the processor address space. If the target address is beyond the range of a branch instruction, 
a stored constant can be loaded into the PC. 
 

1.6.2.2 Copying Multiple Registers 
 
In addition to load and storing single register values, the ARM has instructions to load and store multiple 
registers. So with a single instruction, the whole register bank or a selected subset can be copied to memory 
and restored with a second instruction 

 
 
 
 

The load and store multiple instructions allow 
you to save or restore the entire register file 
or any subset of registers in the one 
instruction 
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1.7 Swap Instruction 
 
The ARM instruction set also provides support for real time semaphores with a swap instruction. The swap 
instruction exchanges a word between registers and memory as one atomic instruction. This prevents crucial 
data exchanges from being interrupted by an exception. 
This instruction is not reachable from the C language and is supported by intrinsic functions within the compiler 
library. 

 

1.8 Modifying The Status Registers 
 
As noted in the ARM7 architecture section, the CPSR and the SPSR are CPU registers, but are not part of the 
main register bank. Only two ARM instructions can operate on these registers directly. The MSR and MRS 
instructions support moving the contents of the CPSR or SPSR to and from a selected register. For example, in 
order to disable the IRQ interrupts the contents of the CPSR must be moved to a register, the “I” bit must be set 
by ANDing the contents with 0x00000080 to disable the interrupt and then the CPSR must be reprogrammed 
with the new value.  
 
 

 
The MSR and MRS instructions will work in all processor modes except the USER mode. So it is only possible 
to change the operating mode of the process, or to enable or disable interrupts, from a privileged mode. Once 
you have entered the USER mode you cannot leave it, except through an exception, reset, FIQ, IRQ or SWI 
instruction. 
 

1.9 Software Interrupt 
 

The swap instruction allows you to exchange the 
contents of two registers. This takes two cycles 
but is treated as a single atomic instruction so the 
exchange cannot be corrupted by an interrupt. 

The CPSR and SPSR are not memory-mapped or 
part of the central register file.  The only instructions 
which operate on them are the MSR and MRS 
instructions. These instructions are disabled when 
the CPU is in USER mode. 
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The Software Interrupt Instruction generates an exception on execution, forces the processor into supervisor 
mode and jumps the PC to 0x00000008.  As with all other ARM instructions, the SWI instruction contains the 
condition execution codes in the top four bits followed by the op code. The remainder of the instruction is empty. 
However it is possible to encode a number into these unused bits. On entering the software interrupt, the 
software interrupt code can examine these bits and decide which code to run. So it is possible to use the SWI 
instruction to make calls into the protected mode, in order to run privileged code or make operating system calls. 
 

 
 
 
 
 
 
The Assembler Instruction:  
 
SWI #3 
 
Will encode the value 3 into the unused bits of the SWI instruction. In the SWI ISR routine we can examine the 
SWI instruction with the following code pseudo code: 
 
switch( *(R14-4) & 0x00FFFFFF)    // roll back the address stored in link reg        
                                  // by 4 bytes  
{                    // Mask off the top 8 bits and switch                           

// on result     
 case ( SWI-1) 
  …… 
 
Depending on your compiler, you may need to implement this yourself, or it may be done for you in the compiler 
implementation. 
 

The Software Interrupt Instruction forces the CPU into SUPERVISOR mode and jumps the PC to 
the SWI vector. Bits 0-23 are unused and user defined numbers can be encoded into this space. 
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1.10  MAC Unit 
 
In addition to the barrel shifter, the ARM7 has a built-in Multiply Accumulate Unit (MAC). The MAC supports 
integer and long integer multiplication. The integer multiplication instructions support multiplication of two 32-bit 
registers and place the result in a third 32-bit register (modulo32). A multiply-accumulate instruction will take the 
same product and add it to a running total. Long integer multiplication allows two 32-bit quantities to be 
multiplied together and the 64-bit result is placed in two registers. Similarly a long multiply and accumulate is 
also available. 
 
Mnemonic  Meaning    Resolution 
MUL   Multiply     32 bit result 
MULA   Multiply accumulate   32 bit result 
UMULL   Unsigned multiply   64 bit result  
UMLAL   Unsigned multiply accumulate 64 bit result 
SMULL   Signed multiply    64 bit result 
SMLAL   Signed multiply accumulate 64 bit result 
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1.11  THUMB Instruction Set 
 
Although the ARM7 is a 32-bit processor, it has a second 16-bit instruction set called THUMB. The THUMB 
instruction set is really a compressed form of the ARM instruction set.  
 

 
This allows instructions to be stored in a 16-bit format, expanded into ARM instructions and then executed. 
Although the THUMB instructions will result in lower code performance compared to ARM instructions, they will 
achieve a much higher code density. So, in order to build a reasonably-sized application that will fit on a small 
single chip microcontroller, it is vital to compile your code as a mixture of ARM and THUMB functions. This 
process is called interworking and is easily supported on all ARM compilers. By compiling code in the THUMB 
instruction set you can get a space saving of 30%, while the same code compiled as ARM code will run 40% 
faster. 
 
The THUMB instruction set is much more like a traditional microcontroller instruction set. Unlike the ARM 
instructions THUMB instructions are not conditionally executed (except for conditional branches). The data 
processing instructions have a two-address format, where the destination register is one of the source registers: 
 
ARM Instruction    THUMB Instruction 
ADD R0, R0,R1   ADD R0,R1   R0 = R0+R1  
 
The THUMB instruction set does not have full access to all registers in the register file. All data processing 
instructions have access to R0 –R7 (these are called the “low registers”.)  
 
 

However access to R8-R12 (the “high registers”) is restricted to a few instructions: 
 
MOV, ADD, CMP 
 
The THUMB instruction set does not contain MSR and MRS instructions, so you can only indirectly affect the 
CPSR and SPSR. If you need to modify any user bits in the CPSR you must change to ARM mode. You can 

The THUMB instruction set is 
essential for archiving the 
necessary code density to 
make small single chip ARM7 
micros usable 

In the THUMB programmers’ model all 
instructions have access to R0-R7. Only a 
few instructions may access R8-R12 



1 - The ARM7 CPU Core                                                                                   

© Hitex (UK) Ltd.                                                                                   Page 24 

change modes by using the BX and BLX instructions. Also, when you come out of RESET, or enter an 
exception mode, you will automatically change to ARM mode. 

 
 
The THUMB instruction set has the more traditional PUSH and POP instructions for stack manipulation. They 
implement a fully descending stack, hardwired to R13. 
 

 
 
 
Finally, the THUMB instruction set does contain a SWI instruction which works in the same way as in the ARM 
instruction set, but it only contains 8 unused bits, to give a maximum of 255 SWI calls. 
 

The THUMB instruction set has dedicated 
PUSH and POP instructions which implement 
a descending stack using R13 as a stack 
pointer 
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1.12  Summary 
 
At the end of this chapter you should have a basic understanding of the ARM7 CPU. Please see the 
bibliography for a list of books that address the ARM7 in more detail. Also included on the CD is a copy of the 
ARM7 user manual.
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2 Chapter 2: Software Development 
 

2.1 Outline 
 
In this book we will be using an Integrated Development Environment from Hitex Development tools and from 
Keil Electronik. The Keil IDE is called uVision (pronounced “MicroVision”) and versions already exist for other 
popular microcontrollers including the 8051 and the Infineon C16X family. uVision successfully integrates 
project management, editor, compiler and debugger in one seamless front-end. The Hitex IDE is called HiTOP 
which controls instruction set simulators, JTAG debuggers and also high-end in-circuit emulators for various 
microcontroller architectures. HiTOP works with different compilers, in the case of ARM especially with the Keil 
and the GNU compiler. Although we are concentrating on the LPC2000 family in this book, the Hitex and Keil 
ARM tools can be used for any other ARM7 based microcontroller.  
 
 

2.2 Which Compiler? 
 
Both, the uVision and the HiTOP development environment can be used with several different compiler  tools. 
These include the commonly used ARM ADS compiler, the GNU compiler and Keil’s own ARM compiler. In this 
book the examples are based on the Keil CA-ARM compiler. However, a parallel set of examples is also 
included for the GNU compiler and Appendix A details the differences between the Keil and GNU compilers. 
This does beg the question of which compiler to use. First of all the GNU compiler is free, can be downloaded 
from the internet and is also included on the CD which comes with this book. So why use an expensive 
commercial compiler? Well, before you embark on a full project, it is worth looking at the table of benchmarks 
comparing some of the most popular C compilers available for the ARM CPU. 
 
We can see from this simple analysis that the commercial compilers are streets ahead of the GNU tools in terms 
of code density and speed of execution. The reasons to use each of the given compilers can be summed up as 
follows: if you want the fastest code and standard tools use the ARM compiler, for best code density use the 

Keil, if you have no budget or a simple project use the GNU. Since we are writing code for a small single-chip 
microcontroller with limited on-chip resources, the obvious choice for us is the Keil ARM compiler. When 
deciding on a toolset it is also important to examine how much support is given to a specific ARM7 
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implementation. Although a toolset may generate code for an ARM7, it may not understand how the ARM7 is 
being used in a specific system i.e. LPC2000.  Using a “raw” ARM7 will generate code, which will run on the 
LPC2000, but you will have to spend time writing the start-up code and struggle with a debugger, which will not 
understand the LPC peripherals. This can lead to “fighting” the development tools, which needless to say can be 
very frustrating. 
 

2.2.1 uVision IDE 
 
uVision also includes two debug tools. Once the code has been compiled and linked, it can be loaded into the 
uVision simulator. This debugger simulates the ARM7 core and peripherals of the supported micro. Using the 
simulator is a very good way of becoming familiar with the LPC2000 devices. Since the simulator gives cycle-
accurate simulation of the peripherals, as well as the CPU, it can be a very useful tool for verifying that the chip 
has been correctly initialised and that the correct values for things such as timer prescaler values have been 
calculated.  
 
However, the simulator can only take you so far and sooner or later you will need to take some inputs from the 
real world. This can be done to a certain extent with the simulator scripting language, but eventually you will 
need to run your code on the real target. The simulator front end can be connected to your hardware by the Keil 
ULINK interface. The ULINK interface connects to the PC via USB and connects to the development hardware 
by the LPC2000 JTAG interface. The JTAG interface is a separate peripheral on the ARM7 which supports 
debug commands from a host. By using the JTAG you can use the uVision simulator to have basic run control 
of the LPC2000 device. The JTAG allows you to download code onto the target, to single step, run code at full 
speed, to set breakpoints and view memory locations. 
 
 

2.2.2 HiTOP IDE 
 
HiTOP supports several different debug tools. You can test generic ARM7 code with the instruction set 
simulator and for standard debugger functions in the real hardware, the Tantino system can be used. Unlike the 
Keil ULINK, the Tantino supports ARM9 and ARM11 in addition to ARM7. If you are working with large images, 
it also has a shorter download time when programming FLASH and there are some more sophisticated 
debugging functions such as being able to set and clear breakpoints “on-the-fly”. 
 
The Tantino is connected via USB to the HiTOP IDE and to the LPC2000 microcontroller through a JTAG 
connector. Download, FLASH programming and the basic run control of the LPC2000 device can be performed. 
In addition to the JTAG connector, the LPC2000 devices have a second debug port called the “Embedded 
Trace Module” (ETM). With this ETM connection, an external Trace tool can record the execution of the 
microcontroller and the trace recording can be displayed in the HiTOP IDE as high-level language lines, 
executed instructions or as executed cycles. The ETM also allows tracing a data flow within the application. 
READs and WRITEs to RAM and SFR’s can be recorded in the trace buffer for later analysis. A basic JTAG 
cannot access the ETM information so a more complex system called Tanto is used.  The features of this 
system are discussed in the exercises section but one big advantage is that both the Tantino and Tanto use the 
same HiTOP IDE. A CASE tool called StartEasy is supplied with the Hitex tools that allows you to define a 
LPC2000 project and generate a project skeleton containing the startup code and initialisation functions for the 
peripherals you are going to use. Even if you are not using the Hitex tools, you can download the full version of 
StartEasy from the Hitex website. 
 

2.2.3 Tutorial 
 
Included with this book is a demonstration version of the Keil uVision IDE. The installation comes with two 
compilers; the Keil ARM compiler and the GNU tools. The tutorial section talks you through example programs 
illustrating the major features of the LPC2000. These examples can be run on the simulator, or if you have a 
starter kit from Hitex or Keil, they can be downloaded and run on the MCB2100 evaluation board. There are two 
sets of examples on the CD, one for the Keil compiler and one for the GNU. The main text concentrates on the 



2 – Software Development                                                                               

© Hitex (UK) Ltd.                                                                                   Page 28 

Keil compiler. However, Appendix A describes how to use the GNU compiler and also describes the GNU 
version of the exercises up to exercise 6. After exercise 6 you can use the exercise descriptions in the main 
text.  
 
As you read through the rest of the book, at the end of each section there will be an exercise described in the 
tutorial section which illustrates what has been discussed. The best way to use this book is to read each 
section, then jump to the tutorial and do the exercise. This way, by the time you have worked through the book 
you will have a firm grasp of the ARM7, its tools and the LPC2000 microcontroller. 
 

 
 
 
 

 

2.3 Startup Code 
 

There are multiple ways to write correct startup code. Here we describe the Keil variant, The Hitex variant is 
described in the Hitex, Tutorial Exercise 2.  In our example project we have a number of source files. In practice 
the .C files are your source code, but the file STARTUP.S is an assembler module provided by Keil. As its name 
implies, the start-up code is located to run from the reset vector. It provides the exception vector table as well as 
initialising the stack pointer for the different operating modes. It also initialises some of the on-chip system 
peripherals and the on-chip RAM before it jumps to the main function in your C code. The start-up code will 
vary, depending on which ARM7 device you are using and which compiler you have, so for your own project it is 
important to make sure that you are using the correct file. The start-up code for the Keil compiler may be found 
in C:\keil\ARM\startup and for the GNU use the files in C:\keil\GNU\startup. 

 
First of all the startup code provides the exception vector table as shown below 

 
The vector table is located at 0x00000000 and provides a jump to interrupt service routines (ISR) on each 
vector. To ensure that the full address range of the processor is available, the LDR (Load Register) instruction is 
used. This loads a constant from a table stored immediately above the vector table. The vector table and the 
constants table take up the first 64 bytes of memory. On the LPC2000 this first 64 bytes can be mapped from 
several sources, depending on the operating mode of the LPC2000. (This is discussed more fully later on.) The 
NOP instruction is used to pad out the vector table at location 0x00000014  which is the location of the ‘missing’ 
vector. Again this location is used by the LPC2000 bootloader (discussed again later.) You are responsible for 
managing the vector table in the startup code as it is not done automatically by the compiler. 

 

Exercise 1:  Configuring A New Project 
The first exercise covers installing the uVISION (Keil tutorial) or installing StartEasy and HiTOP
(Hitex tutorial) and setting up a first project.  
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The startup code is also responsible for configuring the stack pointers for each of the operating modes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since each operating mode has a unique R13 there are effectively six stacks in the ARM7. The strategy used by 
the compiler is to locate user variables from the start of the on-chip RAM and grow upwards. The stacks are 
located at the top of memory and grow downwards. The startup code enters each different mode of the ARM7 
and loads each R13 with the starting address of the stack  
 

 
 
Like the vector table you are responsible for configuring the 
stack size. This can be done by editing the startup code 
directly, however Keil provide a graphical editor that allows 
you to more easily configure the stack spaces.  In addition the 
graphical editor allows you to configure some of the LPC2000 
system peripherals. We will see these in more detail later but 
remember that they can be configured directly in the startup 
code. 
 
 
 
 
 
 
 
 

 

The six on chip stack pointers (R13) are 
initialised at the top of on chip memory. Care 
must be taken to allocate enough memory for 
the maximum size of each stack 

Exercise 2: Startup code 
The second exercise in the Keil or Hitex tutorial takes you through allocating space for each
processor stack and examines the vector table. 
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2.4 Interworking ARM/THUMB Code 
 

One of the most important things that we need to do in our application code is to interwork the ARM and 
THUMB instruction sets. In order to allow this interoperability, ARM have defined a standard called the ARM 
THUMB Procedure Call Standard ( ATPCS). The ATPCS defines among other things how functions call one 
another, how parameters are passed and how stacks are handled. The APCS adds a veneer of assembler code 
to support various compiler features. The more you use, the larger these veneers get. In theory the APCS 
allows code built in different toolsets to work together so that you can take a library compiled by a different 
compiler and use it with the Keil toolset.  

 

 
 

The APCS splits the register file into a number of regions: R0 to R3 are used for parameter passing between 
functions. If you need to pass more than 16 bytes then spilled parameters are passed via the stack. Local 
variables are allocated R4 – R11 and R12 is reserved as a memory location for the intra-call veneer code. In the 
Keil compiler all code is built for interworking and the global instruction set is the THUMB, so all code will be 
compiled as THUMB instructions (except for interrupt code which defaults to ARM.) This global default can be 
changed in the “Options for Target” menu. In the CC tab uncheck the “use THUMB code” box and the default 
instruction set will be ARM. In addition the programmer can force a given function to be compiled as ARM or 

THUMB code. This is done with the two 
programming directives #Pragma ARM 
and #pragma THUMB as shown below. 
The main function is compiled as ARM 
code and calls a function called 
THUMB_function, (No prizes for 
guessing that this function is compiled in 
the 16 bit instruction set.) 
 
 
 
 
 
 
 
 
 

 

The ARM procedure call standard defines how the 
user CPU registers should be used by compilers. 
Adhering to this standard allows interworking 
between different manufacturers tools 
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#pragma ARM // Switch to ARM instructions 
 
int main(void) 
{ 
 while(1) 
 { 
  THUMB_function(); //Call THUMB function 
 } 
} 
 
#pragma THUMB //Switch to THUMB instructions 
 
void THUMB_function(void) 
{ 
 unsigned long i,delay; 
 
 for (i = 0x00010000;i < 0x01000000 ;i = i<<1)  //LED FLASHer  
 { 
  for (delay = 0;delay<0x000100000;delay++)  //simple delay loop 
  { 
   ; 
  } 
  IOSET1 = i;     //Set the next led 
  } 
 } 

 
It is also possible to declare individual functions as either ARM or THUMB functions by using the following 
declarations on the function prototype: 

 
int ARM_FUNCTION ( int my_var) __THUMB 
{ 
 …. 
} 
 
int THUMB_FUNCTION ( int my_var) __THUMB 
{ 
 …. 
} 
 

 

Exercise 3: Interworking  
The next exercise demonstrates setting up a project which interworks ARM and THUMB code. 
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2.5 STDIO Libraries 
 

The high-level, formatted IO functions in the STDIO library, such as printf and scanf, are directed at UART0 on 
the LPC2000. It is up to the programmer to initialise the UART to the correct BAUD rate. Once this is done it is 
possible to use these high- level functions to stream data to a terminal program on a PC for example. The 
STDIO functions use two low-level drivers to send and receive a single character to the conio, the UART in this 
case. The two functions are called putchar and getchar and the source for them is available in serial.c in the Keil 
lib directory. By adding this file to your project the default library version is ignored and the code in serial.c is 
used in its place. So, by rewriting the putchar and getchar routines, the high level printf and scanf function can 
be redirected to any IO device you want to use, such as an LCD and keypad. Bear in mind that the high level 
STDIO functions are quite bulky and should only be used if your application is very I/O driven. 

 
 
 
 
 

2.6 Accessing Peripherals 
 

Once we have built some code and got it running on an LPC2000 device, it will at some point be necessary to 
access the special function registers (SFR) in the peripherals. As all the peripherals are memory-mapped, they 
can be accessed as normal memory locations. Each SFR location can be accessed by ‘hardwiring’ a volatile 
pointer to its memory location as shown below. 
 
#define SFR   (*((volatile unsigned long *) 0xFFFFF000)) 

 
The Keil compiler comes with a set of include files which define all the SFR’s in the different LPC2000 variants. 
Just include the correct file and you can directly access 
the peripheral SFR’s from your C code. The names of the include files are: 

 
LPC21xx.h 
LPC22xx.h 
LPC210x.h 
 

Exercise 4:  STDIO 
This exercise demonstrates the low-level routines used by printf and scanf and configures
them to read and write to the on-chip UART. 
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2.7 Interrupt Service Routines 
 

In addition to accessing the on-chip peripherals, your C code will have to service interrupt requests. It is 
possible to convert a standard function into an ISR, as shown below: 

 
void fiqint (void) __fiq 
{ 
 IOSET1  = 0x00FF0000;  // Set the LED pins 
 EXTINT  = 0x00000002; // Clear the peripheral interrupt flag 
} 

 
The keyword __fiq defines the function as a fast interrupt request service routine and so will use the correct 
return mechanism. Other types of interrupt are supported by the keywords __IRQ, __SWI, __ABORT.  As well 
as declaring a C function as an interrupt routine, you must link the interrupt vector to the function. 

 
Vectors:        LDR     PC,Reset_Addr          
                LDR     PC,Undef_Addr 
                LDR     PC,SWI_Addr 
                LDR     PC,PAbt_Addr 
                LDR     PC,DAbt_Addr 
                NOP                            /* Reserved Vector */ 
;               LDR     PC,IRQ_Addr 
                LDR     PC,[PC, #-0x0FF0]      /* Vector from VicVectAddr */ 
                LDR     PC,FIQ_Addr 
 
Reset_Addr:     DD      Reset_Handler 
Undef_Addr:     DD      Undef_Handler?A 
SWI_Addr:       DD      SWI_Handler?A 
PAbt_Addr:      DD      PAbt_Handler?A 
DAbt_Addr:      DD      DAbt_Handler?A 
                DD      0                      /* Reserved Address */ 
IRQ_Addr:       DD      IRQ_Handler?A 
FIQ_Addr:       DD      FIQ_Handler?A 

 
The vector table is in two parts. First there is the physical vector table, which has a Load Register Instruction 
(LDR) on each vector. This loads the contents of a 32-bit wide memory location into the PC, forcing a jump to 
any location within the processor’s address space. These values are held in the second half of the vector table, 
or the constants table which follows immediately after the vector table. This means that the complete vector 
table takes the first 64 bytes of memory. The Keil startup code contains predefined names for the Interrupt 
Service Routines (ISR). You can link your ISR functions to each interrupt vector by using the same name as 
your C function name. The table below shows the constants table symbols and the corresponding C function 
prototypes which should be used. 

 
Exception source  Constants table  C function prototype 
Undefined Instruction Undef_Handler?A void Undef_Handler (void)  __abort 
Prefetch Abort  PAbt_Handler?A void Pabt_Handler (void) __abort 
Data Abort   DAbt_Handler?A void Dabt_Handler (void) __abort 
Fast Interrupt   FIQ_Handler?A  void FIQ_Handler (void) __fiq 

 
The SWI and IRQ exceptions are special cases, as we will see later. The ?A is used to tell the linker that the 
corresponding function should be compiled with the ARM instruction set ?T is used for the THUMB instruction 
set. Only the IRQ and FIQ interrupt sources can be disabled. The protection exceptions (Undefined instruction, 
Prefetch Abort, and Data abort) are always enabled. Consequently these exceptions must always be trapped. If 
you do not declare a corresponding C function for these interrupt sources, then the compiler will default to using 
a tight loop to trap any entry to these exceptions. 
 
  Pabt_Handler:  B Pabt Handler ; Branch self! 
 

Default handling of exceptions 
for which no C function has 
been declared 

Exercise 5: Exception Handling 
In this exercise we configure a C routine to be a simple interrupt and see it working in the debugger. Later
on we will see how the LPC2000 hardware is configured to service interrupts. 
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2.7.1 Software Interrupt 
 

The Software Interrupt exception is a special case. As we have seen, it is possible to encode an integer into the 
unused portion of the SWI opcode. 

 
#define SWIcall2 asm{ swi#2} 

 
However, in the Keil CA ARM compiler, there is a more elegant method of handling software interrupts. A 
function can be defined as a software interrupt by using the following non ANSI keyword adjacent to the function 
prototype: 

 
int Syscall2 (int pattern) __swi(2) 
{ 
 ………. 
} 

 
In addition the assembler file SWI_VEC.S must be included as part of the project.  

 
Now when a call is made to the function an SWI instruction is used, causing the processor to enter the 
supervisor privileged mode and execute the code in the SWI_VEC.S file. This code determines which function 
has been called and handles the necessary parameter passing. This mechanism makes it very easy to take 
advantage of the exception structure of the ARM7 processor and to partition code which is non-critical code 
running in user mode, or privileged code such as a BIOS or operating system. In the tutorial section we will take 
a closer look at how this works. 

 

2.8 Locating Code In RAM 
 

As we shall see later, the main performance bottleneck for the ARM7 CPU is fetching the instructions to execute 
from the FLASH memory. The LPC2000 has special hardware to solve this problem for the on-chip FLASH. 
However if you are running from external FLASH you are stuck with the access time of the external FLASH.  
One trick is to boot the executable code into fast RAM and then run from this RAM. This means that you need to 
compile position-independent code which can be copied into the RAM, or compile code so that it runs in the 
RAM and is loaded by a separate bootloader program. Both of these solutions will work, but require extra effort 
to develop. Fortunately the Keil compiler has a directive which defines a function as a RAM function. The startup 
code will copy the function into RAM and the linker will resolve all calls to it as being located in the defined RAM 
area. The function declaration is shown below 

 
 int RAM_FUNCTION (int my_VAR) __ram 
 { 
  …. 
 } 

 
It is also necessary to define which section of memory will be used to hold these functions. This is done by 
declaring a section of the RAM as executable RAM or ERAM. This declaration makes use of the classes 
directive to allocate a region of RAM to contain all the executable RAM functions.  

 

Exercise 6: Software Interrupt 
The SWI support in the Keil compiler is demonstrated in this example. You can easily partition code 
to run in either the user mode or in supervisor mode. 
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The basic syntax is shown below:  
 

ERAM ( 0x40000000 – 0x40000FFF) 

 
This entry should be made in the LA Locate dialogue of the options for target menu. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The compiler does not check if your RAM function is calling functions or library functions which are not also 
stored in the RAM. So if your “fast “RAM function makes calls to a maths routine stored in the FLASH memory, 
you may not get the performance you were expecting. This method of locating functions in RAM is not only 
simple and easy to use, it has the added advantage that the linker knows where the function will finally end up 
and can place the debug symbols at the correct address. This will give you not only a ROMable image which will 
run standalone, but also an image which can be debugged. 
 
 

2.9  Inline Functions 
 
It is also possible to increase the performance of your code by inlining your functions. The inline keyword can be 
applied to any function as shown below 

 
 void NoSubroutine (void)  __inline 
 { 
  … 
 } 

 
When the inline keyword is used the function will not be coded as a subroutine, but the function code will be 
inserted at the point where the function is called, each time it is called. This removes the prologue and epilogue 
code which is necessary for a subroutine, making its execution time faster. However, you are duplicating the 
function every time it is called, so it is expensive in terms of your FLASH memory. 
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2.10  Operating System Support 
 

If you are using an operating system for the LPC2000, the OS is likely to take care of the system stacks and 
context switching. To avoid duplicating this by the compiler, it is possible to declare a function as a task within 
the operating system. This causes the compiler to just translate the code within the function and not to add the 
normal prologue and epilogue code which saves and restores registers to the stack. A function may be declared 
as a task as shown below 

 
 void AnalogueSample(void) __task 
 { 
  …. 
 } 

 
 

2.11  Fixing Objects At Absolute Locations 
 

The compiler also allows you to fix any C object, such as a variable or a function at any absolute memory 
location. The compiler has an extension to the C language as shown below 

 
 int checksum __at 0x40000000; 

 
Variables declared using this keyword cannot be initialised by the startup code. You must also be careful to fix 
variables on the correct boundaries, or you will get a memory abort. (For example if an integer is located at an 
uneven memory address.) 

 

2.12  Inline Assembler 
 

The compiler also allows you to use ARM or THUMB Assembler instructions within a C file. This can be done as 
shown below: 

 
__asm { mov r15,r2; } 
 
This can be useful if you need to use features which are not supported by the C language, for example the MRS 
and MSR instructions. 
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2.13  Hardware Debugging Tools 
 
Philips have designed the LPC2000 to have the maximum on-chip debug support. There are several levels of 
support. The simplest is a JTAG debug port. This port allows you to connect to the LPC2000 from the PC for a 
debug session. The JTAG interface allows you to have basic run control of the chip. That is, you can single step 
lines of code, run halt and set breakpoints and also view variables and memory locations once the code is 
halted.  
 

 
 
 
In addition, Philips has included the ARM embedded trace module. The embedded trace module provides much 
more powerful debugging options and real time trace, code coverage, triggering and performance analysis 
toolsets. In addition to more advanced debug tools, the ETM allows extensive code verification and software 
testing which is just not possible with a simple JTAG interface. If you are designing for safety critical 
applications, this is a very important consideration.  
 

 
 
 
The final on-chip debug feature is the Real Time Monitor. This is a kernel of code which is resident in a reserved 
area of memory. During a debug session the debugger can start the real monitor via the JTAG port. The real 
monitor can be used to provide “on the fly” updates as your code is running. This process is pseudo real time in 
that the real monitor code interrupts your code and uses some processor time to read and communicate debug 
information to the PC.  
 

Debug support on the LPC2000 includes a JTAG port for Flash programming and basic run control 
debugging. 

In addition to the JTAG port Philips have included the ARM ETM 
module for high end debugging tools 
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2.13.1.1 Important! 
 
The JTAG and ETM tools simply provide a fairly “dumb” serial debug connection to the ARM7 core. A generic 
ARM JTAG tool does not have any understanding of the overall LPC2000 architecture. This means that a 
generic tool will always enter the bootloader after reset because it does not write the “program signature” into 
the FLASH (this feature is discussed later) and consequently  will never run your code. If you are new to the 
LPC2000 this is likely to catch you out and be very frustrating. Since the Keil tools are developed for ARM7 
based general purpose microcontrollers MicroVision (“uVision”) understands the LPC2000 memory architecture 
and will debug the device seamlessly. 
 

2.13.1.2 Even More Important 
 
As mentioned above, the JTAG port is a simple serial debug connection to the ARM7 device. It is very important 
to understand its behaviour during reset. If the ARM7 CPU is reset, all of the peripherals including the JTAG are 
reset. When this happens the ULINK debugger loses control of the chip and has to re-establish control once the 
LPC2000 device comes out of reset. This will take a finite number of clock cycles. While this is happening, any 
code which is on the chip will be run as normal. Once the ULINK gets back control of the chip, it performs a soft 
reset by forcing the PC back to address zero. However, the on-chip peripherals are no longer in the reset 
condition ie peripherals will be initialised, interrupt enabled etc. You must bear this in mind if the application you 
are developing could be adversely affected by this. A quick solution is to place a simple delay loop in the startup 
code or at the beginning of main(). After a reset occurs, the CPU will be trapped in this loop until the ULINK 
regains control of the chip. None of the application code will have run, leaving the LPC2000 in its initialised 
condition. 

 

2.14  Summary 
 

So, by the end of this section you should be able to set up a project in the Keil uVision IDE, select the compiler 
and LPC2000 variant you want to use, configure the startup code, be able to interwork the ARM and THUMB 
instruction sets, access the LPC2000 peripherals and write C functions to handle exceptions. With this 
grounding we can now have a look at the LPC2000 system peripherals.  
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3 Chapter 3: System Peripherals   
 

3.1 Outline 
 
Now that we have some familiarity with the ARM7 core and the necessary development tools, we can begin to 
look at the LPC2000 devices themselves. In this section we will concentrate on the system peripherals, that is to 
say the features which are used to control the performance and functional features of the device. This includes 
the on-chip flash and SRAM memory, the external bus interface which is present on the LPC22xx devices, the 
phase locked loop which is used to multiply the external oscillator in order to provide a maximum of 60MHz 
processor clock and the power control features. Finally, we will take a look at the simplest user interrupt source, 
the external interrupt pins, before going on to look at the exception system in detail in the next section. 
 

3.2 Bus Structure 
 
To the programmer, the memory of all LPC2100 devices is one contiguous 32 bit address range. However, the 
device itself is made up of a number of buses. The ARM7 core is connected to the Advanced High performance 
Bus (AHB) defined by ARM. As its name implies, this is the fastest way of connecting peripheral devices to the 
ARM7 core. Connected to the AHB is the vector interrupt controller and a bridge to a second bus called the 
VLSI peripheral bus (VPB). Since the Interrupt vector controller is responsible for managing all the device 
interrupt sources, it is connected to the ARM7 core by the fastest bus.  
 
All the remaining user peripherals are connected to the VPB. The VBP bridge contains a clock divider, so the 
VPB bus can be run at a slower speed than the ARM7 core and the AHB. This is useful for two reasons. Firstly, 
we can run the user peripherals at a slower clock rate than the main processor to conserve power. Secondly it 
gives Philips the option of adding a slower peripheral to the LPC2000 family without it becoming a bottleneck on 
the AHB bus. Currently all the on-chip peripherals are capable of running at 60MHz so the VPB bus can be set 
to the same speed as the AHB bus. It is important to note that after reset the VPB divider is set to divide down 
the AHB clock by four, so all the on-chip peripherals will be running at ¼ the CPU clock frequency.  
 
Finally, there is a third local bus which is used to connect the on-chip Flash and RAM to the CPU. Connection of 
the program code and data store to the ARM7 CPU via the AHB bus is possible, but this introduces some 
execution stalls because of contention on the bus. Using a separate local bus removes the possibility of these 
stalls to give the best processor performance. 
 

 
 
 
 

Although the LPC2000 has a linear 
address space there are several 
internal buses. It is important to be 
aware of the difference between them 
and how the performance of the 
processor is affected 
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3.3 Memory Map 
 
Despite the number of internal buses, the LPC2000 has a completely linear memory map. The general layout is 
shown below. 
 

 
The on-chip flash is fixed at 0x00000000 upwards with the user RAM fixed at 0x4000000 upwards. The 
LPC2000 is pre-programmed at manufacture with a FLASH bootloader and the ARM real monitor debug 
program. These programs are placed in the region 0x7FFFFFF – 0x8000000. The region between 0x8000000 
and 0xE000000 is reserved for external memory. Currently the LPC22xx devices are capable of addressing 
external memory via four chipselects each with a 16 Mbyte page. 
 

 
 
The user peripherals located on the VPB are all mapped into the region between 0xE000000 and 0xE020000 
and each peripheral is allocated a 16K memory page. Finally the Vector Interrupt Unit is located at the top of the 
address range at 0xFFFFF000. 
 
If your user code tries to access memory outside these regions, or non-existent memory within them, an abort 
exception will be produced by the CPU. This mechanism is hardwired into the design of the processor and 
cannot be changed or switched off. 
 

The memory map of the LPC2000 includes 
regions for on chip flash memory user SRAM, a 
pre- programmed bootloader, external bus and 
user peripherals. 

All the user peripherals are located on 
the VLSI peripheral bus. Each 
peripheral has a 16K address range 
for its  registers. 
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3.4 Register Programming 
 
Before we start our tour through the system block, it is worth noting how Special Function Registers (SFR) are 
programmed on ARM7 chips. 
 

 
 
Each underlying SFR is controlled by three user registers. A Set register which is used to set bits, a Clear 
register which is used to clear bits by writing a logic 1 to the bits you wish to clear and a Status register which is 
used to read the current contents of the register. The most common mistake made when new to the LPC2100 is 
to write zero into the Clear register which has no effect. 
 

3.5 Memory Accelerator Module 
 
The Memory Accelerator Module (MAM) is the key to the high instruction execution rate of the LPC2100 family. 
The MAM is present on the local bus and sits between the FLASH memory and the ARM7 CPU.  
 

 
 
One of the main constraints in designing a high performance, single-chip microcontroller based on the ARM7 is 
the access time to the on-chip FLASH memory. The ARM CPU is capable of running up to 80MHz, however the 
on-chip FLASH has an access time of 50ns. Consequently, just running out of the FLASH would limit the 
execution speed to 20MHz (a quarter of the possible clock rate of the processor.) There are a number of ways 
round this problem. The simplest is to load the critical sections of your program into RAM and run out of RAM. 
As the RAM has a much faster access time, our overall performance will be greatly increased. The down side is 
that on-chip RAM is a finite and precious resource. Using it to hold program instructions greatly limits the size of 
application code which we could run. Another approach would be to have an on-chip cache. A cache is a small 
region of memory placed between the processor and memory store, which stores regions of recently referenced 
main memory. In a well-designed cache, the processor will use the cache memory whenever possible, thus 
reducing the bottleneck imposed by slow memory. However, a full cache is a complex peripheral that demands 

As a general rule all Special 
Function Registers originating from 
ARM are controlled by three 
registers: a Set, Clear and  Status 
register.  

NB To clear bits you must write a 
logic 1 to the relevant bit in the 
clear register.  

Running from on chip FLASH is a performance 
bottleneck for all ARM7 implementations. Philips 
have added a Memory Accelerator Module which 
greatly enhances the performance of the ARM7 CPU  
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a high number of gates and consequently a large portion of the LPC2000 die area. This flies in the face of the 
ARM7 design, which has simplicity as its watchword.  Another downside of a full cache is that the runtime of 
code using the cache is no longer deterministic and could not be used by any application that required 
predictability and repeatability. 
 
The Memory Accelerator Module is a compromise between the complexity of a full cache and the simplicity of 
allowing the processor to directly access the FLASH memory.  
 

 
 
 
Like a cache, the MAM attempts to have the next ARM instruction in its local memory in time for the CPU to 
execute. First of all the FLASH memory is split into two banks which are 128 bits wide and can be independently 
accessed . This means that a single FLASH access can load four ARM instructions or eight THUMB 
instructions. User code is interleaved between the two banks, so during sequential code execution the code 
fetched from one bank into the MAM  is being executed, while the next 128 bits of instructions from the second 
bank is being perfected. This ensures that it will be ready for execution once the last 128 bits has been 
executed. This technique works particularly well with the ARM instructions, which can use the condition codes to 
iron out small branches in order to keep the code-flow largely linear. In the case of small loops and jumps the 
MAM has branch and trail buffers that hold recently loaded instructions which can be re-executed if required. 
  
The complexities of the MAM are transparent to the user and it is configured by two registers, the timing register 
and the control register. There are some additional registers to provide runtime information on the effectiveness 
of the MAM. The timing register is used to control to relationship between the CPU clock and the FLASH access 
time. By writing to the first three bits of the timing register you can specify the number of CPU clock cycles 
required by the MAM to access the FLASH. As the FLASH has an access time of 20 MHz and the CPU clock 
can be set to a maximum of 60MHz, the number of cycles required to access the FLASH is 3. So, for each three 
CPU cycles, we can load four instructions which keep the MAM ahead of the game. The MAM configuration 
register is used to define the operating mode of the MAM.  
 
 
 

 
 
 

The FLASH memory is arranged as two 
interleaved banks of 128 bit wide  memory. 
One flash access from the MAM loads four  
ARM instructions or eight THUMB 
instructions which can be executed by the 
ARM7 CPU 
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On reset the MAM is disabled and all access to code and constant data are made directly to the FLASH.  It is 
possible to partially enable the MAM so that all sequential code is fetched from it, but branches and constant 
data stored in the FLASH are accessed directly from the FLASH. Finally, the MAM may be fully enabled so that 
it fetches all FLASH memory accesses from the MAM. The reason for these modes is that, like a cache code, 
running from the MAM is not deterministic, so we have the option to switch it off or reduce its impact if we need 
to guarantee the run time of our application code. However, even in its full operating mode the impact of the 
MAM is not as great as a cache. It is possible to predict runtime performance particularly with the ‘use 
performance analysis’ features in development tools. 
 
To help with this analysis and also to gauge the effectiveness of the MAM, there are a group of statistical 
registers which can be used to measure the MAM’s performance.  
 
 

 
The Statistics registers are based around two counters which record the accesses made to the FLASH and the 
accesses made to the MAM buffers. The statistical control register can further refine the type of access which 
will cause the counters to increment. By configuring the statistical control register we can differentiate between 
code constant and instruction fetches, so it is possible to determine the instruction or data hit rate or the 
combined instruction and data hit rate. These metrics can give us some information on the efficacy of the MAM 
with our application. On the CD there is a simple example which demonstrates the use of the MAM, its statistical 
registers and demonstrates how vital it is to the overall performance of the LPC2000 family. 

The MAM has some statistics 
registers which show the number of 
accesses to the FLASH and the 
number of accesses to the MAM so 
the effectiveness of the MAM can be 
calculated 
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3.5.1 Example MAM Configuration 
 
The example code shown below starts the LPC2000 with the PLL set to 60MHz and the MAM disabled. The 
code FLASHes each LED in sequence with a delay loop between each increment. An A/D conversion is also 
done and if the result is above 0x00000080, the code enables the MAM for maximum execution speed. The 
effect of the MAM can be seen on the update rate of the LEDs. In the next section we will look at burning the 
code into the FLASH to observe its operation. 
 
int main(void) 
{ 
 unsigned int delay; 
 unsigned int FLASHer = 0x00010000;  // define locals 
 
 IODIR1 = 0x00FF0000;    // set all ports to output 
 VPBDIV = 0x02; 
 ADCR   = 0x00270601;                    // Setup A/D: 10-bit AIN0 @ 3MHz  
 ADCR |= 0x01000000;                     // Start A/D Conversion  
 
 while(1) 
 { 
  do 
 { 
  val = ADDR;     // Read A/D Data Register  
 }         
 
 while ((val & 0x80000000) == 0); 
 val = ((val >> 6) & 0x03FF); 
 
 if (val <0x80) 
 { 
  MAMCR = 0; 
  MAMTIM = 0x03; 
  MAMCR = 0x02; 
 } 
 else 
 { 
  MAMCR = 0x0; 
 } 
 for(delay = 0;delay<0x100000;delay++) //simple delay loop 
 { 
  ; 
 } 
 
 ChangeGPIOPinState(FLASHer); //set the state of the ports 
 FLASHer = FLASHer <<1;  //shift the active led 
  
 if(FLASHer&0x01000000)  
 { 
  FLASHer = 0x00010000;//Increment FLASHer led and test for  
      // overflow 
 } 
 } 
} 
 
 
void ChangeGPIOPinState(unsigned int state) 
{ 
 

IOCLR1 = ~state; //clear output pins 
IOSET1 =  state; //set output pins 

 
} 
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3.6 FLASH Memory Programming 
 
Although the internal FLASH is arranged as two interleaved banks, you will be relieved to know that, to the user, 
it can be treated as one contiguous memory space and no special tools are required to prepare the code prior to 
programming the chip. In terms of programming the FLASH, to the user it appears as a series of 8K sectors 
which can be individually erased and programmed.  There are several methods which can be used to program 
the on-chip FLASH. The easiest is by the built-in bootloader which allows your code to be downloaded via 
UART 0 into RAM and then be programmed into the FLASH. It is also possible to use a JTAG development tool 
to program the memory. This is useful during development because it can be done from the debugging 
environment without the need to keep switching between debugger and bootloader. Also, the JTAG connection 
can be very fast, up to 400Kbytes/sec download, so in large applications, particularly those using external 
FLASH memory, it can be the best method of production programming. Finally it is also possible to reprogram 
sections of the FLASH memory under command of the application already on the chip. This, in application 
programming, can use any method to load the new code onto the chip ( SPI CAN I2C ) and then load it into a 
given section of FLASH. So there is an easy to use mechanism which allows field updates to your application. 
 

3.6.1 Memory Map Control 
 
Before looking at the operation of the bootloader we must first understand the different memory modes available 
on the LPC2100. As we have seen, the ARM7 interrupt vector table and its constants table take up the first 64 
bytes of memory. In the LPC2000 these first 64 bytes may be mapped from a number of locations, depending 
on the mode set in the MEMMAP register. It is important to note that these modes have nothing to do with the 
ARM7 operating modes. The MEMMAP register allows you to select between boot mode, FLASH mode, RAM 
mode and External memory mode. When selected, a new vector table will be mapped into the first 64 bytes of 
memory. So for the RAM mode the contents of 0x4000000- 0x400003F will be mapped to the start of memory. 
This allows a program to be loaded into RAM starting at 0x4000000 and the vector table can then be redirected, 
thus allowing the program and its interrupts to run in RAM. This mode is normally only used for debugging small 
programs. FLASH mode leaves the first 64 bytes of user FLASH unchanged and is the normal mode for user 
applications. Boot mode replaces the first 64 bytes of FLASH with the vector table for the bootloader and places 
a jump to the on-chip bootloader on the reset vector. 
 
 

 

The MEMMAP register maps the first 64 bytes of memory 
from one of four regions, 
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3.6.2 Bootloader 
 
Every time the LPC2000 comes out of reset its memory map will be in boot mode, so the instruction on the reset 
vector will cause it to jump into the bootloader code entry point at 0x7FFFFFFF. This can be the bane of new 
users if they load their code into FLASH with a JTAG, reset and single step the first instruction only to find that 
the program counter is at some wild high address. If this happens, you need to program the MEMMAP register 
to 0x00000002, to force the chip into FLASH mode and return the user vector table. 
 
Once the bootloader code has been entered, it will perform a number of checks to see if the FLASH needs to be 
programmed. First the watchdog is checked to see if the processor has had a hard reset of a soft reset. If it is a 
hard reset, the logic level on pin0.14 will be tested. If it is low, then the bootloader command handler will be 
entered. If it is a soft reset (ie watchdog timeout) or pin 0.14 is high, then there is no external request to 
reprogram the FLASH. However, before handing over to the user application, the bootloader will check to see if 
there is a valid user program in FLASH. In order to detect if a valid program is present, every user program must 
have a program signature. This signature is a word-wide number that is stored in the unused location in the 
ARM7 vector table at 0x00000014. The program signature is the two’s compliment of the checksum of the 
ARM7 vector table 
 

When this value is summed with the program signature the result will be zero for a valid program. If a valid 
program is detected, the memory operating mode is switched to FLASH, which restores the user vector table, 
the program counter is forced to zero and the user application starts execution. If there is no valid program, then 
the bootloader enters its command handler. So, without the program signature your code will never run! The 
program signature can be added to your startup code as shown below: 
 
  LDR     PC, Reset_Addr 
      LDR     PC, Undefined_Addr 
      LDR     PC, SWI_Addr 
      LDR     PC, Prefetch_Addr 
      LDR     PC, Abort_Addr 
 
      .long     0xB8A06F58   /* Program signature */ 
  LDR     PC, IRQ_Addr 
      LDR     PC, FIQ_Addr 
 

3.6.3 Philips ISP Utility 
 
If there is a valid program signature, or pin 0.14 is held low after reset, the LPC2000 will start the bootloader. 
Before handing over to the command handler it enters an auto-Baud routine. This routine listens on UART 0 for 
a synchronisation character. When this is sent by the host, the LPC2000 measures the bit period and adjusts 
the UART 0 Baud rate generator to match the host. Once this is done some further handshaking and 
configuration takes place and then control is passed to the command handler. 
 
The Bootloader command handler takes commands from UART0 in ASCII format. The command set is shown 
below and allows you full programming control of the FLASH. In addition the GO command is a simple 

The program signature is calculated as 
the two’s compliment of the checksum 
of the vector table. This signature must 
be stored in the unused vector at 
0x00000014 or your program will not run 
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debugging command which can be used to start execution of code loaded into RAM. A full description of the 
bootloader communication protocol is given in the LPC2000 datasheet. 
 

 
 
Philips provide a ready made FLASH In System Programming utility for the PC which can be used to program 
the development board. This tool automatically calculates and adds the program signature to your code, to 
ensure that your program will run. If you are using this tool to program the FLASH, your code should have a 
NOP instruction on the unused vector for this tool to work correctly. 
 
 

 
 
 
 
 
 

Exercise 7: Memory Accelerator Module and Flash Programming Utility 
This exercise describes the use of the Philips Flash programming tool to load a simple program into
the LPC2000. This program runs without the MAM switched on. By adjusting the A/D value the MAM
is enabled so we can see the performance increase caused by this important peripheral. 
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3.6.4 In-Application Programming 
 
It is also possible to reprogram the FLASH memory from within your program. All of the bootloader commands 
are available as an on-chip API and can be called by your code. To access the bootloader functions you must 
set up a table in RAM which contains a command code for the function you want to use followed by its 
parameters. The start address of this table is stored in R0. The start address of a second table which contains 
the status code and function results is stored in R1.   
 

 
 
The IAP entry point is at 0x7FFFFFF0 if you wish to call the functions from a THUMB function or at 
0x7FFFFFF1 if you wish to enter from an ARM function. The return address is expected to be stored in the link 
register. This convention is designed to work within the ARM procedure call standard. A method of calling the 
IAP routines through function pointers is detailed in the datasheet. An alternative method is shown below and 
both methods are used in the example program. If you are short of program space you can experiment with both 
methods to see which is the most efficient in your compiler. 
 
If we define a THUMB function with three parameters as shown below. 
 
void iap (unsigned *cmd, unsigned *rslt, unsigned entry) 
{ 
  asm("mov r15,r2"); 
}  
 
We can pass the start address of a command and result array and by the APCS convention these values will be 
stored in R0 and R1. We can also store the address of the entry point to the IAP routines in the next available 
parameter register R2. In THUMB mode we cannot program the high registers directly, but we can move low 
registers to high registers, hence we can move the contents of R2 directly into the program counter and initiate 
the requested In Application Programming routine. When the IAP routine has finished, it will return to your 
application code using the value stored in the link register, which is the next instruction in the function which 
called our void IAP (…) function. You should also note that the In Application functions return in ARM mode not 
THUMB. The IAP functions require the top 32 bytes of on-chip RAM, so you must either locate the stacks to 
start below this region so it is unused, or, if you need all the RAM, place the IRQ stack at the top of memory and 
disable interrupts before you enter the IAP routines. Using a pointer you can now copy the top 32 bytes of on-
chip SRAM into a temporary array and then restore them once you return from the IAP functions.  This way you 
will not risk corrupting any stacked data. 

 

The bootloader functions can be 
accessed to perform In application 
programming. Commands are passed 
via two tables in memory. The  start 
addresses for each table are stored in R0 
and R1 
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3.7 External Bus Interface 
 
The LPC22xx variants have an External Memory Controller (EMC). When enabled, the EMC provides four 
chipselects from 0x80000000. Each chipselect has a fixed 16Mbyte address range and a programmable wait 
state generation and can be programmed as an 8,16 or 32-bit wide bus. As well as allowing additional memory 
and peripheral devices to be interfaced to the LPC22xx devices, it is possible to boot the chip from external 
FLASH memory located on chip select zero. 
 

3.7.1 External Memory Interface 
 
The External Memory Interface of the LPC22xx devices is shown below. 
 

 
 
The data bus uses port 2 GPIO pins 2.0 – 2.31 and the address bus uses Port 3 GPIO pins 3.0 – 3.23. The 
remainder of port 3 is used for the Chipselects 1 – 3, the bytelane select pins and the write enable signal.  The 
remaining signal Chipselect 0 and output enable are on port 1. The two boot pins are multiplexed with the 
databus pins D26 and D27. Depending on the state of these pins at reset, the LPC22xx variants can boot from 
internal FLASH or any width of memory connected to Chipselect zero. The table below shows the states the 
pins should be held in to boot from a particular device. These two pins are fitted with weak internal pull up 
resistors which ensure the device will boot from internal FLASH in its default condition. 
 
The LPC22xx datasheet shows basic schematics for the most common memory interfacing options. However,  
 

we will consider a practical example of interfacing external FLASH and  static RAM onto a 32-bit bus. The 
FLASH memory we will use is the AMD AM29LV320DT. This is a 32 megabit FLASH memory which can be 
arranged as 4M by 8 bits, or 2M by 16 bits. For the RAM we will use a K6F1616U6A which is a 1M by 16 bit 
static RAM. Both these devices are designed for low power applications and the programming algorithm is 
supported by the ULINK JTAG interface. The FLASH is connected to Chipselect 0 and the RAM is connected to 
Chipselect 1. The schematic for each Chipselect is shown below. 
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Two of the 29LV320DT devices are arranged as 16-bit wide memories to give a 2M page of 32-bit wide FLASH 
memory. The byte# pin is pulled high on each device to enable the 16-bit mode. The FLASH device is designed 
to be a boot sector device and consequently has an option to protect the top and bottom sectors so that they 
cannot be corrupted. This feature is enabled by pulling the |WP/ACC pin low. Since we do not want this feature, 
the pin is pulled high allowing us to reprogram any sector of the FLASH memory. We are also not using the 
Ready/Busy output, so this is also tied high. The remaining control signals reset, Output enable (OE), Write 
Enable (WE) and Chip Enable are connected directly to the processor. As the memory is to be arranged word-
wide (32 bits) we need to be able to address it every quad bytes, hence A0 and A1 are not used.  If it is 
necessary to add more memory onto this chipselect  the 29LV320 can be replaced with a XXX to give a 4M 
page of word-wide memory. To access the full 16 Mbyte address range, a duplicate pair of devices can be 
added and the chipselect gated with A23 to provide a chipselect for each half of the memory page. 
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The RAM is interfaced to the address bus in a similar fashion using Chipselect1 except the devices are 1 Mbyte 
in size so we are using A2 to A21. Further devices can be mapped in by multiplexing A22 and A23 with the 
chipselect line. As this is a RAM device and we may want to access it word, half-word or byte wide we can use 
the byte lane pins to allow access to the upper and lower bytes in each device 
 

Finally the boot pins D26 and D27 must be pulled low if we want to boot from the external device. 
 

Four devices with 2 M x16-bit can be arranged as a 
linear 4M x 32-bit address space. The address line A23 
and CS0 are used to decode between the two different 
banks.  



3 – System Peripherals                                                                                                               

© Hitex (UK) Ltd.                                                                                   Page 52 

3.7.2 Using The External Bus Interface 
 
Each chipselect has a fixed address range and has a dedicated bus configuration register BCFG0 – 
BCFG3.The address range of each chipselect is shown below.  
 

 
In our hardware example above we have mapped the FLASH onto chip select 0 at 0x80000000 and the ram 
onto chipselect 1 at 0x81000000. Before we can use the external memory we must setup the chipselect 
configuration registers. 
 
 

 
Each of the chipselects in use must be programmed with the correct parameters to match the external device 
connected on to it. In the case of the FLASH memory, it has a 90ns read cycle so at 60MHz with a cycle time of 
16 ns we need 6 Cclk read waitstates with one idle cycle. The FLASH is accessed word-wide, so RBLE is set to 
zero to disable the byte laning. During normal operation the FLASH will not be written to, so WST2 is set to 
zero. Also, the write protect may be set to detect accidental writes to the FLASH bank, but during development it  

 
 

 
 
 
 
 

 
 
 

may be wise to set it to zero and disable write protect in case it interferes with the FLASH programming 
algorithm of the ULINK. Finally the bus width is set to 32 bits.  This gives a configuration value for Chipselect 
zero of 0x20000060. 

Each Chipselect may be configured 
with a buswidth of 8,16 or 32 bits 
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In the case of the RAM it has a 70ns read and write time. Consequently at 60MHz the read and write waitstate 
(WST1 and WST2) should be set to 5 Cclk cycles with IDCY set to one cycle. As the RAM is a byte-partitioned 
device, the byte lane control must be enabled by setting RBLE to one. And again the bus width must be set to 
32 bits. This gives us a chipselect configuration value of 0x20001440. 
 
These values can be configured with the graphical editor in the Keil startup code. 
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3.8 Booting From ROM 
 
By default the LPC22xx devices will boot from their internal FLASH memory and can access the external 
memory once the chipselects are configured. However, if the external bootpins are pulled low, the chip will boot 
from external memory. In this case Chipselect zero will be enabled in the bus width selected by the boot pins. Its 
waitstate parameters will default to 34 Cclk cycles for WST1 and WST2 and 16 Cclk cycles for the IDCY. This 
ensures that the accesses on Chipselect zero will be slow enough to interface with any external device. When 
booting from an external device is selected, the value in the MEMMAP register will be set to 0x3 (boot from 
external FLASH) and the first 64 bytes of external memory on Chipselect 0 will appear at Zero. This means that 
you must build your code so that the interrupt vector table and the constants table are located from address 
0x80000000. In practice this means changing the start address to 0x80000000 instead of 0x0000000. In the Keil 
startup code this is done by an assembler directive, which is used to relocate the CODE_BASE segment 
containing the vector table. 
 
$IF (EXTERNAL_MODE) 
        CODE_BASE       EQU     0x80000000 
$ELSE 
        CODE_BASE       EQU     0x00000000 
$ENDIF 
 
AREA   STARTUPCODE, CODE, AT CODE_BASE   // READONLY, ALIGN=4 
       PUBLIC__startup 
 
 
The define EXTERNAL_MODE is declared in the assembler local options menu as shown below: 

 
Once we have our program ready to run from external FLASH, there is a slight chicken and egg situation. In 
order to be able to program the external FLASH the chipselect must be configured, but to do this we must have 
code running on the chip. One solution would be to place a configuration program into the on-chip FLASH, boot 
from this and use it to configure the chipselects. However, some LPC variants are available without on-chip 
FLASH. Fortunately the ULINK JTAG can run a script file to setup the chipselects as required and then program 
the external memory. 
 
In addition it is possible to use the on-chip FLASH in conjunction with the external FLASH on chipselect 0. In 
this case you can make best use of the on chip flash by placing your interrupt functions in it. Since these will be 
coded in the ARM instruction set you will want them to run as fast as possible. However you must be careful 
when locating code into the on-chip FLASH. If you are booting from external FLASH, the interrupt vector table 
will be mapped into the first 64 bytes of internal memory. This means that you must locate any on-chip code 
from location 0x00000040 upwards. Anything located below 0x00000040 will be programmed into the FLASH 
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memory but will be mapped out during normal program operation.  As a result your code will crash, probably in 
quite a spectacular fashion. In the Keil compiler this can be achieved by reserving the vector table bytes as 
shown below 
 

 
 
 
 
 
 
 

 

Exercise 9: External Bus Interface 
This exercise shows the necessary changes to the project we set up in Exercise 1 so that it will boot and
run from external memory. 

The RESERVE 
command makes sure 
the first 64 bytes of on 
chip flash are unused, 
allowing the external 
vector table to be 
mapped in. The user 
segments table allows 
specific routines to be 
mapped on chip 
 



3 – System Peripherals                                                                                                               

© Hitex (UK) Ltd.                                                                                   Page 56 

3.9  Phase Locked Loop 
 
The Phase Locked Loop is used to take an external oscillator frequency from between 10 MHz – 25MHz from a 
fundamental crystal and multiply this frequency up to a maximum of 60MHz to provide the on-chip clocks for the 
ARM7 CPU and peripherals. This allows the LPC2000 to run at its maximum frequency with a low value 
external oscillator, thus minimising the EMC emissions of the LPC2000. The PLL output frequency can also be 
changed dynamically, allowing the device to throttle back its execution speed in order to conserve power when it 
is idling. 
 
 
Within the PLL are two constants which must be programmed in order to determine the  clock for the CPU and 

AHB. This clock is called Cclk. The first constant is a straightforward multiplier of the external crystal. The output 
frequency of the PLL is given by: 
 
 Cclk = M x Osc 
 
In the feedback path of the PLL is a current-controlled oscillator which must operate in the range 156MHz – 320 
MHz.. The second constant acts as a programmable divider which ensures that the CCO is kept in specification. 
The operating frequency of the CCO is defined as: 
 
 Fcco = Cclk x 2 x P   
 
On our development board there is a 12MHz oscillator so to reach the maximum CPU frequency of 60MHz 
 
 M = Cclk/Osc = 60/12 = 5 
 
And then for P: 
 
156< Fcco <320  = 60 x 2 x P   
 
By inspection, P = 2 
 
The programming interface for the PLL is shown below.  
 

The PLL is used to 
multiply the external 
crystal frequency up to 
the maximum 60 MHz. It 
is controlled by the 
constants M and P 
 

The PLL control registers can be 
programmed at any time but the new 
values will not take effect until a correct 
feed sequence has been written to PLL 
FEED 
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The values written to the user SFRs are not transferred to the internal PLL registers until a feed sequence is 
written to the PLL feed register. Once you have updated the PLLCON and PLLCFG registers, you must write 
0x000000AA followed by 0x00000055 (the PLLFEED register). These values must be written on consecutive 
cycles. If you program the PLL with interrupts enabled, it is conceivable that an interrupt could occur after the 
first word of the sequence is written and the new PLL settings would not become effective. To set up the PLL 
you must write the values for P and M to the PLLCFG register. Then, using the PLLCON register, the PLL is 
enabled. This starts up the PLL but there is a finite startup time before it is stable enough to be used as the Cclk 
source. The startup of the PLL can be monitored by reading the LOCK bit in the PLLSTATUS register. Once the 
lock bit is set, the PLL can be used as the main clock source. Alternatively an interrupt can be generated when 
the PLL locks, so that you can carry out other tasks while the PLL starts. Once the PLL has locked as a stable 
clock source, it can replace the external oscillator as the source for Cclk. This is done via the PLLC bit in the 
PLLCON register. 
 

 
Care should be taken with the values stored for the constants in the PLLCFG register. The values written to the 
register for the constants are P-1 and M-1, which ensures that the values of P and M in the PLL are never zero. 
Also the value for M is 5 bits long, so the value for P is not on an even nibble boundary. If you make a simple 
mistake setting up the PLL the whole chip may be running out of specification. If the chip enters power down 
mode, the PLL is switched off and disconnected. A wakeup from power down does not restore the PLL so the 
sme startup sequence must be followed each time the chip exits  the  power down setting. 
 

 

The PLL setup sequence is performed by the Keil compiler startup 
code and you just need to provide values for M and P. An interrupt is 
also generated when the PLL locks. This can be used to replace the 
polling of the lock bit to achieve maximum startup performance.  
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3.10  VLSI Peripheral Bus Divider 
 
The external oscillator or the output of the PLL is used as the source for the Cclk which is the clock source for 
the ARM7 CPU and the AHB bus. The peripherals are on the separate VPB bus.  
 

 
 
 
The clock on the VPB bus is called Pclk. This clock is derived from Cclk via the VPB bridge. The VPB bridge 
contains a divider which can divide down the Cclk by a factor of 1,2 or 4. The VPB divider register can be 
programmed by your application at any time. At reset it is set to the maximum value of four, so the Pclk is 
running at a quarter of the Cclk value at startup. Currently all the peripherals on the LPC2000 derivatives can 
run at the full 60MHz, so the VPB divider is principally used for power-saving by running the VPB clock at the 
slowest speed acceptable for your application.  
 
 

3.10.1.1 Example Code: PLL And VPB Configuration 
 
The code below demonstrates how to configure the PLL to give 60MHz Cclk and 30 MHz Pclk with an external 
crystal of 12MHz. 
 
void init_PLL(void) 
{ 
 PLLCFG = 0x00000024;       // Set multiplier and divider of PLL to  
       // give 60.00 MHz 
 PLLCON = 0x00000001;        // Enable the PLL 
 
 PLLFEED = 0x000000AA;  // Update PLL registers with feed sequence 
 PLLFEED = 0x00000055; 
 
 while (!(PLLSTAT & 0x00000400)); // test Lock bit 
 
 PLLCON = 0x00000003;  // Connect the PLL 
 
 PLLFEED = 0x000000AA;    // Update PLL registers 
 PLLFEED = 0x00000055; 
 
 VPBDIV = 0x00000002;   // Set the VLSI peripheral bus to 30.000MHz 
}  
 
 
 
 
 
 

The Output from the PLL is called 
Cclk and provides the clock for 
the CPU and AHB bus. The VLSI 
bus clock is called Pclk and is 
derived from Cclk by the VPB 
divider. 

Exercise 10: Phase Locked Loop 
In this exercise we configure the PLL to generate a Cclk of 60MHz and a Pclk of 30MHz 
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3.11  Power Control 
 
Power consumption on all ( well-designed) microcontrollers is a direct relationship with the number of gates and 
the switching speed. The LPC2000 is no exception, The simplicity and low gate count of the ARM7 core 
contributes to its low power consumption. Intelligent use of the PLL and VPB divider can contribute to reducing 
the runtime switching speed. In addition, the LPC2000 has additional dedicated power control features. The 
ARM7 CPU has two power down modes controlled by the first two bits of the PCON register. The CPU may be 
placed into Idle mode where the CPU is halted, but the peripherals are still operational. Any interrupt from a 
peripheral will wake up the CPU and processing will resume. 

Idle mode stops the clock to the CPU 
but the peripherals are still running 
and any interrupt will restart the CPU. 
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The ARM7 can also be placed into a power down mode which halts both the CPU and the peripherals. In this 
mode only a reset or an interrupt generated by the external interrupt pins will cause the chip to wake up. In 
power down mode the oscillator is shut down. All the internal states of the processor registers and on-chip 
SRAM are preserved, as are the static logic levels on the I/O pins. On wake up from power down the clock 
source is the external oscillator and the PLL must be reconfigured. 
 

 
 
The LPC2000 has an internal wake up timer which ensures the external oscillator is stable and the on chip 
memory and peripherals have initialised before the CPU starts to execute instructions. From wake up the 
oscillator will start to resonate. When its cycles become strong enough to drive the chip, the wake up timer will 
count 4096 cycles before initialising the FLASH memory and resuming program execution. This ensures the 
minimum restart delay after a power down or chip reset. It is also possible to power down an individual 
peripheral if it is not being used via its power control bit in the PCONP register. A few peripherals cannot be 
powered down: these are the Watchdog, GPIO, pin connect block and the system control block. Your code can 
optimise the configuration of the LPC2000 for minimum power consumption for a given application. Some 
unofficial power consumption figures are given below. 
 
 LPC2106 @60MHz    30mA 
   Power down    10 – 15uA 
 
 LPC2129 @60MHz    55mA 
   @60MHz VPBDIV = 4  40mA 
  
During development it is likely you will be using a JTAG development tool connected to the ARM7 via a 
dedicated serial link. If you place the CPU into Idle or Power Down mode no further debugging will be possible 
until the CPU is woken up.  

Power down mode halts the processor and the 
peripheral clocks. The external interrupts can 
be used to restart the processor and 
peripherals. 
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3.12  LPC2000 Interrupt System 
 
In the C code section we saw how to deal with ARM7 exceptions for an undefined instruction, a memory abort 
and a SWI  instruction. In this section we will look at the remaining two exception sources: the General Purpose 
Interrupt (IRQ) and Fast Interrupt (FIQ). These two exceptions are used to handle all the interrupt sources 
external to the ARM7 CPU. In the case of the LPC2100 these are the user peripherals. In order to examine the 
LPC interrupt structure, we need a simple interrupt source.  For this we can use the external interrupt pins which 
are the easiest peripheral to configure and EINT1 is connected to a switch on the development board which 
allows us to trigger an interrupt at will and observe the results with the debugger. 
 

3.12.1 Pin Connect Block 
All of the I/O pins on the LPC2000 are connected to a number of internal functions via a multiplexer called the 
pin select block. The pin select block allows a user to configure a pin as GPIO or select up to three other 
functions.  
 

 
 
On reset all the I/O pins are configured as GPIO. The secondary functions are selected through the PINSEL 
registers. The EINT1 interrupt line shares the same I/O pin as GPIO 0.14 and a UART1 control line. So, in order 
to use EINT1 we must configure the pin select register to switch from the GPIO function to EINT1. 
 

3.12.2 External Interrupt Pins 
 
The external interrupts are controlled by the four registers shown below. The EXMODE register can select 
whether the interrupt is level or edge sensitive. If an external interrupt is configured as edge sensitive, the 
EXPOL register is used to qualify whether the interrupt is triggered on the rising or falling edge. In the case of 
level-sensitive triggering, the external interrupts can only trigger on a logic zero level. If the power down mode is 
being used, the EXWAKE register can enable an interrupt to wake up the CPU. So to set up a simple interrupt 
source program configure the EINT1 interrupt to be level sensitive and then connect it to the processor pin via 
the pinsel0 register. 
 
 

The Pinselect module allows each I/O pin to 
be multiplexed  between one of four 
peripherals 
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3.12.3 Interrupt Structure 
 
The ARM7 CPU has two external interrupt lines for the fast interrupt request (FIQ) and general purpose interrupt 
IRQ request modes. As a generalisation, in an ARM7 system there should only be one interrupt source which 
generates an FIQ interrupt so that the processor can enter this mode and start processing the interrupt as fast 
as possible. This means that all the other interrupt sources must be connected to the IRQ interrupt. In a simple 
system they could be connected through a large OR gate. This would mean that when an interrupt was asserted 
the CPU would have to check each  peripheral in order to determine the source of the interrupt. This could take 
many cycles. Clearly a more sophisticated approach is required. In order to handle the external interrupts 
efficiently an on-chip module called the Vector Interrupt Controller (VIC) has been added. 

 
 
 
 The VIC is a component from the ARM prime cell range of modules and as such is a highly optimised interrupt 
controller. The VIC is used to handle all the on-chip interrupt sources from peripherals. Each of the on-chip 
interrupt sources is connected to the VIC on a fixed channel: your application software can connect each of 
these channels to the CPU interrupt lines (FIQ, IRQ) in one of three ways. The VIC allows each interrupt to be 
handled as an FIQ interrupt, a vectored IRQ interrupt, or a non vectored IRQ interrupt. The interrupt response 
time varies between these three handling methods. FIQ is the fastest followed by vectored IRQ with non-
vectored IRQ being the slowest.  We will look at each or these interrupt handling methods in turn. 
 
 

The VIC provides additional hardware support 
for the on-chip peripheral interrupts. Without 
the VIC the interrupt response time would be 
very slow. 

The VIC provides three levels of 
interrupt service and on chip interrupt 
sources may be allocated into each 
group 

The external interrupt pins are an easy to 
configure interrupt source when first 
experimenting with the LPC2000 
interrupt structure  
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3.12.4 FIQ interrupt 
 
Any interrupt source may be assigned as the FIQ interrupt. The VIC interrupt select register has a unique bit for 
each interrupt. Setting this bit connects the selected channel to the FIQ interrupt. In an ideal system we will only 
have one FIQ interrupt. However setting multiple bits in the Interrupt Select Register will enable multiple FIQ 
interrupt sources. If this is the case, on entry the interrupt source can be determined by examining the VIC FIQ 
Status register and the appropriate code executed. Clearly having several FIQ sources slows entry into the ISR 
code. Once you have selected an FIQ source the interrupt can be enabled in the VIC interrupt enable register. 
As well as configuring the VIC, the peripheral generating the interrupt must be configured and its own interrupt 
registers enabled. Once an FIQ interrupt is generated, the processor will change to FIQ mode and vector to 
0x0000001C, the FIQ vector. You must place a jump to your ISR routine at this location in order to serve the 
interrupt.  
 

3.12.5 Leaving An FIQ Interrupt 
 
As we have seen, declaring a C function as an FIQ interrupt will make the compiler use the correct return 
instructions to resume execution of the background code at the point at which it was interrupted. However, 
before you exit the ISR code you must make sure that any interrupt status flags in the peripheral have been 
cleared. If this is not done you will get continuous interrupts until the flag is cleared. Again, be careful, as to 
clear the flag you will have to write a logic 1 not a logic 0. 
 

 

At the end of an interrupt the interrupt status flag 
must be cleared . Failure to do this will result in 
continuous interrupts 
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3.12.5.1 Example Program:  FIQ Interrupt 
 
This function sets up the external interrupt as an FIQ interrupt then sits in a loop.  
 
void main (void) 
{ 
 
 IODIR1 = 0x00FF0000;   // Set the LED pins as outputs 
 PINSEL0 = 0x20000000;    // Select the EINT1 function in the pin connect block  
 VICIntSelect = 0x00008000;  // Enable a Vic Channel as FIQ 
 VICIntEnable = 0x00008000;  // Enable the EINT1 interrupt in the VIC 
 
 IOCLR1 = 0x00FF0000;      // Clear the LED's 
 
 while(1); //Loop here forever 
} 
 
In the startup code the FIQ interrupt routine must be added to the vector table. The address of the FIQ interrupt 
routine is suffixed with  ?A to demote the routine as an ARM ( 32 Bit instruction set) routine. 
 
   EXTERN  CODE32 (fiqint?A) 
__startup       PROC    CODE32 
 
Vectors:        LDR     PC,=Reset_Addr          
                LDR     PC,Undef_Addr 
                LDR     PC,SWI_Addr 
                LDR     PC,PAbt_Addr 
                LDR     PC,DAbt_Addr 
                NOP                        /* Reserved Vector */ 
                LDR     PC,[PC, #-0x0FF0]        
                LDR     PC,FIQ_Addr // Load the address of the FIQ routine into  
          // the PC from the constants table 
 
Reset_Addr:     DD      Reset_Handler 
Undef_Addr:     DD      Undef_Handler 
SWI_Addr:       DD      SWI_Handler 
PAbt_Addr:      DD      PAbt_Handler 
DAbt_Addr:      DD      DAbt_Handler 
                DD      0                      /* Reserved Address */ 
IRQ_Addr:       DD      IRQ_Handler 
FIQ_Addr:       DD      fiqint?A   // The address of the FIQ routine is 
stored here 
 
When the INT1 button is pressed on the MCB2100 the FIQ interrupt is generated and the code will vector to the 
fiqint routine. The routine is declared as an interrupt routine  by using the __fiq language extension. Before 
exiting the ISR the peripheral flag is cleared. 
 
void fiqint (void) __fiq 
{ 
 IOSET1 = 0x00FF0000; // Set the LED pins 
 EXTINT = 0x00000002; // Clear the peripheral interrupt flag 
 
} 
 
 
 
 
 
 
 

Exercise 11: FIQ interrupt 
This exercise sets up the VIC to respond to an external interrupt line as a FIQ exception 
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3.12.6  Vectored IRQ 
 
If we have one interrupt source defined as an FIQ interrupt all the remaining interrupt sources must be 
connected to the remaining IRQ line. To ensure efficient and timely processing of these interrupts, the VIC 
provides a programmable hardware lookup table which delivers the address of the C function to run for a given 
interrupt source. The VIC contains 16 slots for vectored addressing. Each slot contains a vector address register 
and a vector control register.  
 
 

 
The Vector Control Register contains two fields: a channel field and an enable bit. By programming the channel 
field, any interrupt channel may be connected to any given slot and then activated using the enable bit. The 
priority of a vectored interrupt is given by its slot number, the lower the slot number, the more important the 
interrupt. 
 
The other register in the VIC slot is the Vector Address Register. As its name suggests, this register must be 
initialised with the address of the appropriate C function to run when the interrupt associated with the slot 
occurs. In practice, when a vectored interrupt is generated the interrupt channel is routed to a specific slot and 
the address of the ISR in the slot’s Vector Address Register is loaded into a new register called the Vector 
Address Register. So whenever an interrupt configured as a vectored interrupt is generated, the address of it’s 
ISR will be loaded into a fixed memory location called the Vector Address Register.  
 
 
 

For a Vectored IRQ the VIC provides a hardware 
lookup table for the address of each ISR. The 
interrupt priority of each peripheral may also be 
controlled. 

Each vector address “slot” may be 
assigned to any peripheral interrupt 
channel: the lower the number of 
the vector address the higher its 
priority 

When an interrupt occurs the vector 
address slot associated with the 
interrupt channel will transfer its 
contents to the vector address 
register. 
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While this is happening in the VIC unit, the ARM7 CPU is going through its normal entry into the IRQ mode and 
will vector the 0x00000018 the IRQ interrupt vector.  In order to enter the appropriate ISR, the address in the 
VIC Vector Address Register must be loaded into the PC. The assembly instruction shown below does this in a 
single cycle. 
 
LDA PC,[PC,#-0xFF0] 

 
As we are on the IRQ we know the address is 0x00000018 + 8 (for the pipeline).  If we deduct 0xFF0 from this, 
it wraps the address round the top of the 32-bit address space and loads the contents of address 0xFFFFFF020 
(the Vector Address Register.) 

 
 

3.12.7 Leaving An IRQ Interrupt 
 
As in the FIQ interrupt, you must ensure that the interrupt status flags are cleared in the peripheral which 
generated the request. In addition, at the end of the interrupt you must do a dummy write to the Vector Address 
Register. This signals the end of the interrupt to the VIC and any pending IRQ interrupt will be asserted. 
 

 

When an IRQ exception occurs the CPU 
executes the instruction LDA PC[PC,#-
0xFF0] which loads the contents of the 
vector address register into the PC forcing 
a jump to the ISR 

At the end of a vectored IRQ interrupt you 
must make a dummy write to the Vector 
Address Register in addition to clearing the 
peripheral flag to clear the interrupt. 
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3.12.7.1 Example Program: IRQ interrupt 
 
This example is a repeat of the FIQ example but demonstrates how to set up the VIC for a vectored IRQ 
interrupt. 
 
The vector table should contain the instruction to read the VIC vector address as follows: 
 
Vectors:     LDR     PC,Reset_Addr          
             LDR     PC,Undef_Addr 
             LDR     PC,SWI_Addr 
             LDR     PC,PAbt_Addr 
             LDR     PC,DAbt_Addr 
             NOP                             
             LDR     PC,[PC, #-0x0FF0]      /* Vector from VicVectAddr */ 
             LDR     PC,FIQ_Addr 
 
The C routines to enable the VIC and sever the interrupt are shown below: 
 
void main (void) 
{ 
 
 IODIR1 = 0x000FF000; //Set the LED pins as outputs 
 PINSEL0 = 0x20000000; //Enable the EXTINT1 interrupt 
 VICVectCntl0 = 0x0000002F;  //select a priority slot for a  
       // given interrupt 
 VICVectAddr0 = (unsigned)EXTINTVectoredIRQ;  // pass the address  
          // of the IRQ into  
          // the VIC slot 
 VICIntEnable = 0x00008000; //enable interrupt 
 
 while(1); 
 
} 
 
 
void EXTINTVectoredIRQ (void)  __irq 
{ 
 
 IOSET1 = 0x000FF000; // Set the LED pins 
 EXTINT = 0x00000002; // Clear the peripheral interrupt flag 
 VICVectAddr = 0x00000000;  // Dummy write to signal end  
      // of interrupt 
} 
 
 
 
 
 
 
 

3.12.8 Non-Vectored Interrupts 
 
The VIC is capable of handling 16 peripherals as vectored interrupts and at least one as an FIQ interrupt. If 
there are more than 17 interrupt sources on the chip, any extra interrupts can be serviced as non-vectored 
interrupts. The non-vectored interrupt sources are served by a single ISR. The address of this ISR is stored in 
an additional vector address register called the default vector address register. If an interrupt is enabled in the 
VIC and is not configured as an FIQ or does not have a vectored interrupt slot associated with it, then it will act 
as a non-vectored interrupt. When such an interrupt is asserted the address in the default vector address is 

Exercise 12: Vectored interrupt 
This exercise uses the same interrupt source as in exercise 11 but this time the VIC is
configured to respond to it as a vectored IRQ exception. 
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loaded into the vector address register, causing the processor to jump to this routine. On entry the CPU must 
read the IRQ status register to see which of the non-vectored interrupt sources has generated the exception. 
 

 
 

3.12.9 Leaving A Non-Vectored IRQ Interrupt 
 
As with the vectored IRQ interrupt, you must clear the peripheral flag and write to the vector address register. 
 

3.12.9.1 Example Program: Non-Vectored Interrupt 
 
void main (void) 
{ 
 IODIR1 = 0x000FF000;     //Set the LED pins as outputs 
 PINSEL0 = 0x20000000;       //Enable the EXTINT0 interrupt 
 VICDefVectAddr = (unsigned)NonVectoredIRQ; //pass the address of the IRQ  
 //into the VIC slot 
 VICIntEnable = 0x8000;    //Enable EXTINT0 in the VIC 
 while(1); 
} 
 
Vectors:    LDR     PC,Reset_Addr          
             LDR     PC,Undef_Addr 
              LDR     PC,SWI_Addr 
              LDR     PC,PAbt_Addr 
    LDR     PC,DAbt_Addr 
    NOP                             
             LDR     PC,[PC, #-0x0FF0]        /* Vector from VicVectAddr */ 
              LDR     PC,FIQ_Addr 
 
 
 
 
 
void NonVectoredIRQ (void)  __irq 
{ 
 
if(VICIRQStatus&0x00008000) //Test for the interrupt source 
{ 
 IOSET1  = 0x00FF0000; //Set the LED pins 
 EXTINT  = 0x00000002; //Clear the peripheral interrupt flag 
 update++; 
} 
 
VICVectAddr = 0x00000000; //Dummy write to signal end of interrupt 
} 
 
 
 
Within the VIC it is possible for the application software to generate an interrupt on any given channel through 
the VIC software interrupt registers. These registers are nothing to do with the software interrupt instruction 
(SWI), but allow interrupt sources to be tested either for power-on testing or for simulation during development.  

The non-vectored interrupt has one 
vector address slot that will jump all 
non-vectored interrupt sources to 
one default ISR 

Exercise 13 : Non Vectored Interrupt 
This final exercise with the VIC demonstrates how to handle a non-vectored interrupt. It is
included for completeness since this mode will not normally be required. 
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In addition the VIC has a protected mode which prevents any of the VIC registers from being accessed in USER 
mode. If the application code wishes to access the VIC, it has to enter a privileged mode. This can be in an FIQ 
or IRQ interrupt, or by running a SWI instruction. 
 
Typical latencies for interrupt sources using the VIC are shown below. In the case of the non-vectored interrupts 
use the latency for the vectored interrupt plus the time taken to read the IRQstatus register and decide which 
routine to run. 
 
•FIQ 
 Interrupt Sync  

+ Worst Case Instruction execution  
+ Entry to first Instruction 
= FIQ Latency = 12 cycles = 200 nS @ 60MHz 
 

•IRQ 
 Interrupt sync 

 + worst case instruction execution 
 + Entry to first instruction 
 + Nesting 
 = IRQ Latency = 25 cycles = 416nS @ 60MHz 
 

3.12.10 Nested Interrupts 
 
The interrupt structure within the ARM7 CPU and the VIC does not support nested interrupts. If your application 
requires interrupts to be able to interrupt ISRs then you must provide support for this in software. Fortunately 
this is easy to do with a couple of macros. Before discussing how nested interrupts work, it is important to 
remember that the IRQ interrupt is disabled when the ARM7 CPU responds to an external interrupt. Also, on 
entry to a C function that has been declared as an IRQ interrupt routine, the LR_isr is pushed onto the stack. 

 
 
 
 
 
 
 
 
 
 
 

Once 
the 

processor has entered the IRQ interrupt 
routine, we need to execute a few 

instructions to enable nested interrupt handling. First of all the SPSR_irq must be preserved by placing it on the 

It is possible to simulate an 
interrupt source via the 
software interrupt set and clear 
registers in the VIC 

Two macros can be 
used to allow nested 
interrupt processing in 
the LPC2000 for a very 
small code and time 
overhead 
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stack. This allows us to restore the CPSR correctly when we return to user mode. Next we must enable the IRQ 
interrupt to allow further interrupts and switch to the system mode (remember system mode is user mode but 
the MSR and MRS instructions work). In system mode the new link register must again be preserved because it 
may have values which are being used by the background (user mode) code so this register is pushed onto the 
system stack ( also the user stack). Once this is done we can run the ISR code and then execute a second 
macro that reverses this process. The second macro restores the state of the link register, Disables the IRQ 
interrupts and switches back to IRQ mode finally restores the SPSR_irq and then the interrupt can be ended. 
The two macros that perform these operations are shown below. 
 
#define IENABLE                      /* Nested Interrupts Entry */    
  __asm { MRS     LR, SPSR      }    /* Copy SPSR_irq to LR     */    
  __asm { STMFD   SP!, {LR}     }    /* Save SPSR_irq           */    
  __asm { MSR     CPSR_c, #0x1F }    /* Enable IRQ (Sys Mode)   */    
  __asm { STMFD   SP!, {LR}     }    /* Save LR                 */    
 
#define IDISABLE                      /* Nested Interrupts Exit */   
  __asm { LDMFD   SP!, {LR}     }     /* Restore LR              */   
  __asm { MSR     CPSR_c, #0x92 }     /* Disable IRQ (IRQ Mode)  */   
  __asm { LDMFD   SP!, {LR}     }     /* Restore SPSR_irq to LR  */   
  __asm { MSR     SPSR_cxsf, LR }     /* Copy LR to SPSR_irq     */ 
 
 
The total code overhead is 8 instructions or 32 Bytes for ARM code and execution of both macros takes a total 
of 230 nSec. This scheme allows any interrupt to interrupt any other interrupt. If you need to prioritise interrupt 
nesting then the macros would need to block low priority interrupts by disabling the lower priority interrupt 
sources in the VIC. 
 
 
 
 
 
 
 
 

 

3.13  Summary 
 
This is the most important chapter in this book as it describes the system architecture of the LPC2000 family. 
You must be familiar with all the topics in this chapter in order to be able to successfully configure the LPC2000 
for its best performance and to avoid many of the common pitfalls which trap people new to this family of 
devices.

Exercise 14: Nested Interrupts 
OK, one last interrupt exercise. This exercise demonstrates setting a timer to generate a regular
periodic interrupt which must run. It also configures an interrupt which is triggered by Eint1. The
external interrupt uses the above technique to allow the timer interrupt to run even if the external
interrupt routine is active. 
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4 Chapter 4: User Peripherals 
 

4.1 Outline 
 
This chapter presents each of the user peripherals in turn. The examples show how to configure and operate 
each peripheral. Once you are familiar with how the peripherals work the example code can be used as the 
basis for a set of low-level drivers. 
 

4.2 General Purpose I/O 
 
On reset the pin connect block configures all the peripheral pins to be general purpose I/O (GPIO) input pins. 
The GPIO pins are controlled by four registers, as shown below. 
 

 
 
The IODIR pin allows each pin to be individually configured as an input (0) or an output (1). If the pin is an 
output the IOSET and IOCLR registers allow you to control the state of the pin. Writing a ‘1’ to these registers 
will set or clear the corresponding pin. Remember you write a ‘1’ to the IOCLR register to clear a pin not a ‘0’.  
The state of the GPIO pin can be read at any time by reading the contents of the IOPIN register. A simple 
program to flash the LED on the evaluation board is shown below. 
 

Each GPIO pin is controlled by a bit in each of the four 
GPIO registers. These bits are data direction, set and 
clear and pin status. 
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int main(void) 
{ 
 unsigned int delay; 
 unsigned int flasher = 0x00010000;  // define locals 
 
 IODIR1 = 0x00FF0000;    // set all ports to output 
 
 while(1) 
 { 
  for(delay = 0;delay<0x10000;delay++) //simple delay loop 
  { 
   ; 
  } 
 
 IOCLR1 = ~flasher;     //clear output pins 
 IOSET1 =  flasher;   //set the state of the ports 
  
 flasher = flasher <<1;    //shift the active led 
 if(flasher&0x01000000) flasher = 0x00010000; //Increment flasher  
          //led and test for  
 }         //overflow 
} 
 
 
 
 
 
 
 

Exercise 15: GPIO 
This simple exercise demonstrates using the GPIO as an LED chaser program. 
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4.3 General Purpose Timers 
 
The LPC2000 have a number of general purpose timers. The exact number will vary depending on the variant, 
but there are at least two timers. All of the general purpose timers are identical in structure but vary slightly in 
the number of features supported. The timers are based around a 32-bit timer counter with a 32-bit prescaler. 
The clock source for all of the timers is the VLSI peripheral clock PCLK 
 

 
 
The tick rate of the timer is controlled by the value stored in the prescaler register. The prescale counter will 
increment on each tick of Pclk until it reaches the value stored in the prescaler register. When it hits the 
prescale value the timer counter is incremented by one and the prescale counter resets to zero and starts 
counting again. The Timer control register contains only two bits which are used to enable/disable the timer and 
reset its count. 
 
In addition to the basic counter each timer has up to four capture channels. The capture channels allow you to 
capture the value of the timer counter when an input signal makes a transition. 
 

 
 
Each capture channel has an associated capture pin which can be enabled via the pin connect block. The 
Capture control register can configure if a rising or falling edge, or both, on this pin will trigger a capture event. 
When the capture event occurs, the current value in the timer counter will be transferred into the associated 
capture register and if necessary an interrupt can be generated. The code below demonstrates how to configure 
a capture channel. This example sets up a capture event on a rising edge on pin 0.2 (Capture 0.0) and 
generates an interrupt. 
 

The two timers and the PWM 
module have the same basic timer 
structure. A 32-bit timer counter 
with a 32-bit prescaler 

Each capture channel has a capture 
pin. This pin can trigger a capture 
event on a rising or falling edge. 
When an event occurs the value in 
the timer counter is latched into an 
associated capture register 
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int main(void) 
{ 
 VPBDIV  = 0x00000002; // Set pclk to 30 MHz 
 PINSEL0 = 0x00000020; // Enable pin 0.2 as capture channel0 
 T0PR    = 0x00007530; // Load prescaler for 1 Msec tick 
 T0TCR   = 0x00000002; // Reset counter and prescaler 
 T0CCR = 0x00000005;  // Capture on rising edge of channel0 
 T0TCR = 0x00000001;  // enable timer 
 
 VICVectAddr4 = (unsigned)T0isr; // Set the timer ISR vector address 
 VICVectCntl4 = 0x00000024;    // Set channel 
 VICIntEnable = 0x00000010;     // Enable the interrupt 
 
 while(1); 
} 
 
void T0isr (void) __irq 
{ 
 static int value; 
 value  = T0CR0;  // read the capture value 
 T0IR   |= 0x00000001; // Clear match 0 interrupt 
 VICVectAddr = 0x00000000; // Dummy write to signal end of  
       // interrupt 
} 
 
 
 
 
 
 
 
Each timer also has up to four match channels. Each match channel has a match register which stores a 32-bit 
number. The current value of the timer counter is compared against the match register. When the values match 
an event is triggered. This event can perform an action to the timer (reset, stop or generate interrupt) and also 
affect an external pin (set, clear,toggle). 
 
 

 

When the timer counter equals 
the value stored in the match 
register it can trigger a timer 
event and also affect an 
external match pin 

Exercise 16: Timer Capture. 
This exercise configures a general purpose timer with a capture event to measure the width of a
pulse applied to a capture pin. 
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To configure the timer for a match event, load the match register with the desired value. The internal match 
event can now be configured through the Match Control Register. In this register each channel has a group of 
bits which can be used to enable the following actions on a match event: generate a timer interrupt, reset the 
timer or stop the timer. Any combination of these events may be enabled. In addition, each match channel has 
an associated match pin which can be modified when a match event occurs. As with the capture pins, you must 
first use the pin connect block to connect the external pin to the match channel. The match pins are then 
controlled by the first four bits in the external match register. 
 

  
 
The external match register contains a configuration field for each match channel. Programming this field 
decides the action to be carried out on the match pin when a match event occurs. In addition, each match pin 
has a bit that can be directly programmed to change the logic level on the pin.  
 
The example below demonstrates how to perform simple pulse width modulation using two match channels. 
Match channel zero is used to generate the period of the PWM signal. When the match event occurs the timer is 
reset and an interrupt is generated. The interrupt is used to set the Match 1 pin high. Match channel 1 is used to 
control the duty cycle. When the match 1 event occurs the Match 1 pin is cleared to zero. So by changing the 
value in the Match 1 register it is possible to modulate the PWM signal 
 
int main(void) 
{ 
 VPBDIV = 0x00000002; // Configure the  VPB divi 
 PINSEL0 |= 0x00000800; // Match1 as output 
 T0PR  = 0x0000001E; // Load presaler 
 T0TCR  = 0x00000002; // Reset counter and presale 
 T0MCR  = 0x00000003; // On match reset the counter and generate an  
      // interrupt 
 T0MR0 = 0x00000010; // Set the cycle time 
 T0MR1 = 0x00000008; // Set 50% duty cycle 
 T0EMR  = 0x00000042; // On match clear MAT1 and set MAT1 pin high for  
      // first cycle 
 T0TCR  = 0x00000001; // Enable timer 
 VICVectAddr4 = (unsigned)T0isr; // Set the timer ISR vector address 
 VICVectCntl4 = 0x00000024;      // Set channel 
 VICIntEnable |= 0x00000010;    //Enable the interrupt 
 
 while(1); 
} 
 

The EMR register defines the action 
applied to the match pin when a match 
is made on its channel. The CPU can 
also directly control the logic level on 
the match pin by directly writing to the 
first four bits in the register 
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void T0isr (void) __irq 
{ 
 T0EMR |= 0x00000002;  // Set MAT1 high for beginning of the cycle 
 T0IR |= 0x00000001;  // Clear match 0 interrupt 
 VICVectAddr = 0x00000000; // Dummy write to signal end of interrupt 
} 
 
 
 
 

 
 

Exercise 17: Timer Match 
This second timer exercise uses two match channels to generate a PWM signal, there is some CPU
overhead in the timer interrupt routine. 
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4.4 PWM Modulator 
 
At first sight the PWM modulator looks a lot more complicated than the general purpose timers. However it is 
really an extra general purpose timer with some additional hardware. The PWM modulator is capable of 
producing six channels of single edge controlled PWM or three channels of dual edge controlled PWM. 

 
 
 
In the general purpose timers when a new value is written to a match register the new match value becomes 
effective immediately. Unless care is taken in your software this may be part way through a PWM cycle. If you 
are updating several channels, the new PWM values will take effect at different points in the cycle and may 
cause unexpected results. The PWM modulator has an additional shadow latch mechanism which allows the 
PWM values to be updated on the fly, but the new values will only take effect simultaneously at the beginning of 
a new cycle.  
 

The value in a given match register may be updated at any time but it will not become effective until the bit 
corresponding to the match channel is set in the Latch Enable register (LER). Once the LER is set, the value in 
the match register will be transferred to the shadow register at the beginning of the next cycle. This ensures that 
all updates are done simultaneously at the beginning of a cycle. Apart from the shadow latches the PWM 
modulator match channels function in the same way as the timer match registers. 
 

The PWM module is a third general 
purpose time with additional hardware 
for dedicated PWM generation 

The PWM shadow latches allow the 
match registers to be updated 
thought the PWM cycle but the new 
values will only become effective at 
the beginning of a cycle  
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The second hardware addition to the PWM modulator over the basic timers is in the output to the device pins. In 
place of the match channels directly controlling the match output pin are a series of SR flip-flops  
 
 

 
This arrangement of SR flip-flop and multiplexers allows the PWM modulator to produce either single edge or 
dual edge controlled PWM channels. The multiplexer is controlled by the PWMSEL register and can configure 
the output stage in one of two configurations. The first arrangement is for single edge modulation 
 

 
 
 
Here the multiplexer is connecting Match 0 to the S input of each flip-flop and each of the remaining channels 
are connected to the R input. With this scheme Match 0 is set up to count to total cycle period. At the end of the 
cycle it will reset the counter and set match 0 high. This causes all the flip-flops to be set at the beginning of the 
cycle. The output Q goes high raising all the output pins high. Modulation of the PWM signal is done with the 
remaining match channels. Each PWM channel has an associated match channel which is connected to the R 
input of the flip-flop. When the match is made the flip-flop is reset and the PWM pin is set low. This allows 
modulation of the PWM signal by changing the value of the dedicated match channel.  

Additional circuitry on the match output channels 
allows the generation of six channels of single edge 
PWM modulation or three channels of dual edge 
PWM modulation 

The multiplexer can be programmed to 
use Match 0 to set the external pin at the 
beginning of a cycle the remaining 
match channels are used to modulate 
each PWM channel 
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By reprogramming the multiplexer the output stage of the PWM modulator can be configured to dual edge 
controlled modulation. In this configuration Match 0 is not connected to any output and is used solely to reset 
the timer at the end of each PWM period. In this configuration the S and R inputs to each flip-flop have a 
dedicated Match channel. At the beginning of a cycle the PWM output is low. The rising edge of the pulse is 
controlled by the Match channel connected to the S input and the falling edge is controlled by the Match channel 
connected to the R input.  The example below illustrates how to configure the PWM module for dual edge PWM 
. 
 
void main(void) 
{ 
 PINSEL0 |= 0x00028000; //Enable pin 0.7   as PWM2  
 PWMPR  = 0x00000001; //Load prescaler 
 
 PWMPCR = 0x0000404;  //PWM channel 2 double edge control, output enabled 
 PWMMCR = 0x00000003; //On match with timer reset the counter 
 PWMMR0 = 0x00000010; //set cycle rate to sixteen ticks 
 PWMMR1 = 0x00000002; //set rising edge of PWM2 to 2 ticks 
 PWMMR2 = 0x00000008; //set falling edge of PWM2 to 8 ticks 
 PWMLER = 0x00000007; //enable shadow latch for match 0 - 2  
 PWMEMR = 0x00000280; //Match 1 and Match 2 outputs set high 
 PWMTCR = 0x00000002; //Reset counter and prescaler  
 PWMTCR = 0x00000009; //enable counter and PWM, release counter from reset 
 
 while(1)   // main loop 
 { 
  //........  //Modulate PWMMR1 and PWMMR2 
 } 
} 
 
One important line to note is that the PWMEMR register is used to ensure the output of the match channel is 
logic 1 when the match occurs. If this register is not programmed correctly the PWM scheme will not work. Also 
the PWM modulator does not require any interrupt to make it work unlike the basic timers. 
 
 
 
 
 
 
 
 

Match 0 controls the period of the PWM cycle. Two match channels 
are used to modulate the pulse rise and fall times for each PWM 
channel

Exercise 18: Centre-Aligned PWM 
This exercise configures the PWM unit to produce a centre aligned PWM signal without any CPU
overhead. 
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4.5 Real Time Clock 
 
The LPC2xxx Real time clock (RTC) is a clock calendar accurate up to 2099. Like all the other peripherals the 
RTC runs off the PCLK so an additional external oscillator is not required. The RTC is designed to be an ultra 
low power peripheral and through use of the LPC2xxx low power modes is suitable for running off batteries. As 
well as providing a clock calendar, the RTC has a set of alarm registers that can be used to trigger a particular 
date and time or on a specific value held in a time-count register. 
 
 
 

The RTC clock runs on a standard 32.7KHz clock crystal frequency. In order to derive this frequency the Pclk is 
connected to the reference clock divider. In effect this is a prescaler whicht can accurately divide any Pclk 
frequency to produce the required 32KHz frequency.  
 

 
 
To ensure that the RTC clock can be accurately derived from any Pclk  the prescaler is more complicated than 
the general purpose timer prescalers. The prescaler is programmed by two registers called PREINT and 
PREFRAC. As their name implies, these hold integer and fractional divisor values. The equations used to 
calculate the load values for these registers are as follows: 
 
PREINT = (int)(pclk/32768)-1 
 
PREFRAC = pclk – ((PREINT+1) x 32768) 
 
So for a 30MHz Pclk: 
 
PREINT = (int)( 30,000,000/32768)-1 = 914 
 
Then: 

The RTC is a clock calendar with 
alarm  valid up until 2099  

The RTC watch crystal frequency 
may be derived from any value of 
Pclk 
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PREFRAC = 30,000,000 – ((914+1) x 32768) = 17280 
 
These values can be programmed directly into the RTC prescaler registers and the RTC is then ready to run. 
Just enable the clock in the clock control register and the time counters will start.  
 
PREINT  = 0x00000392;  //Set RTC prescaler for 30.000 MHz Pclk 
PREFRAC = 0x00004380; 
CCR   = 0x00000001;  //Start the RTC 
 
There are eight time-counter registers, each of which contains a single time quantity which can be read at any 
time. In addition there are a set of consolidation registers which present the same time quantities in three words, 
allowing all the time information to be read in just three operations. 
 

 
 
As well as maintaining a clock, the RTC can also generate alarm events as interrupts. There are two interrupt  
mechanisms. You can program the RTC to generate an interrupt when any time-counter register is incremented, 
so you could generate an interrupt every second when the second counter is updated, or once a year when the 
year counter is incremented. The counter increment interrupt register allows you to enable an increment 
interrupt for each of the eight time-counter registers. 
 
The second method for generating an RTC interrupt is with the alarm registers. Each time- counter register has 
a matching Alarm register. If the matching Alarm register is unmasked it is compared to the time counter 
register. If all the unmasked alarm registers match the time counter registers then an interrupt is generated. So 
it is possible to set an alarm between now and 2099 with one second’s accuracy. The Alarm Mask register 
controls which alarm registers are used in the compare. As both the increment and alarm events can generate 
an RTC interrupt it is necessary to distinguish between them from within the interrupt. The Interrupt location 
register provides two flags which can be interrogated to see what caused the RTC interrupt. Again, remember 
that these flags must be cleared to cancel the interrupt. An RTC program which sets the clock and uses both 
styles of interrupt is shown below. 
 

The RTC consolidation 
registers  allow all the clock 
calendar information to be read 
in three words 
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int main(void) 
{ 
 VPBDIV = 0x00000002; 
 IODIR1 = 0x00FF0000; // set LED ports to output 
 IOSET1 = 0x00020000;   
 PREINT = 0x00000392; // Set RTC prescaler for 30MHz Pclk 
 PREFRAC = 0x00004380; 
 CIIR = 0x00000001;   // Enable seconds counter interrupt 
 ALSEC = 0x00000003;  // Set alarm register for 3 seconds 
 AMR = 0x000000FE;     // Enable seconds Alarm 
 CCR = 0x00000001;     // Start the RTC 
 
 VICVectAddr13 = (unsigned)RTC_isr; //Set the timer ISR vector address 
 VICVectCntl13 = 0x0000002D;   //Set channel 
 VICIntEnable  = 0x00002000;  //Enable the interrupt 
 
 while(1); 
 
} 
 
void RTC_isr(void) 
{ 
 unsigned led; 
 
 if(ILR&0x00000001) //Test for RTC counter interrupt  
 { 
  led = IOPIN1;  //read the current state of the IO pins 
  IOCLR1 =  led&0x00030000; //Clear the illuminated LED 
  IOSET1 = ~led&0x00030000; //Set the idle LED 
  ILR = 0x00000001;  //Clear the interrupt register 
 } 
 
 if(ILR & 0x00000002) 
 {  
  IOSET1 = 0x00100000;  //Set LED 0.7 
  ILR = 0x00000002;  //clear the interrupt register 
 } 
 
 VICVectAddr = 0x00000000;  //Dummy write to signal end of interrupt 
}  
 
 
 
 
 
 

Exercise 19: Real Time Clock 
This exercise configures the RTC and demonstrates both the alarm and increment interrupts. 
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4.6 Watchdog 
 
In common with many microcontrollers the LPC2xxx family has a watchdog system to provide a method of 
recovering control of a program that has crashed.  

 
The watchdog has four registers as shown above. The watchdog timeout period is set by a value programmed 
into the Watchdog Constant Register (WDTCR). The timeout period is determined by the following formula 
 
Wdperiod = Pclk x WDTC x 4 
 
The minimum value for WDTC is 256 and the maximum is 2^32. Hence the minimum watchdog period at 
60MHz is 17.066us and the maximum is just under 5 minutes.  
 
Once the watchdog constant is programmed the operating mode of the watchdog can be configured. The 
Watchdog mode register contains three enable bits controlling: whether the watchdog generates an interrupt, 
whether it generates a reset and a final bit which is used to enable operation of the watchdog. 
 

 
The Mode register also contains two flags, the WDTOF is set when the watchdog times out and is only cleared 
after an external hard reset. This allows your startup code to detect if the reset event was a power on reset or a 
reset due to a program error. The Mode register also contains the watchdog interrupt flag. This flag is read-only, 
but it must be read in order to clear the watchdog interrupt. If you need to debug code with the watchdog active 
you should not enable the reset option as this will trip up the JTAG debugger when the watchdog times out. 
 
Once the watchdog timer constant and mode registers have been configured, the watchdog can be kicked into 
action by writing to the feed register. This needs a feed sequence similar to the PLL. To feed the watchdog you 
must write 0xAA followed by 0x55. If this sequence is not followed, a watchdog feed error occurs and a 

The on-chip watchdog can force a 
processor reset or interrupt. In the 
case of a watchdog reset a flag is set 
so your code can stop a “soft reset”. 

The watchdog mode register allows configuration 
the watchdog action on underflow (reset or 
interrupt).  
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watchdog timeout event is generated with its resulting interrupt/reset.  It is also important to note that although 
the watchdog may be enabled via the watchdog mode register, it does not start running until the first correct 
watchdog feed sequence is encountered. Once fully started the watchdog must receive regular feed sequences 
in order to stop the watchdog counter reaching zero and timing out. 
 
The final Watchdog register is the Watchdog Timer Value Register which allows you to read the current value of 
the watchdog timer. 
 



4 – User Peripherals                                                                                                                    

© Hitex (UK) Ltd.                                                                                   Page 86 

4.7 UART 
 
The LPC2xxx devices currently have two on-chip UARTS. They are both identical to use, except UART1 has 
additional modem support. Both peripherals conform to the “550 industry standard” specification. Both have a 
built-in Baud rate generator and 16 byte transmit and receive FIFOs. 
 

 
Initialisation of the UART0 is shown below:  
 
void init_serial (void)  /* Initialize Serial Interface       */ 
{                    
  PINSEL0  = 0x00050000;  /* Enable RxD1 and TxD1              */  
  U1LCR  = 0x00000083;  /* 8 bits, no Parity, 1 Stop bit     */ 
  U1DLL  = 0x000000C2;  /* 9600 Baud Rate @ 30MHz VPB Clock  */ 
  U1LCR  = 0x00000003;  /* DLAB = 0                          */ 
}  
 
First the pinselect block must be programmed to switch the processor pins from GPIO to the UART functions. 
Next the UART line control register is used to configure the format of the transmitter data character.  
 

In our example the character format is set to 8 bits, no parity and one stop bit. In the LCR there is an additional 
bit called DLAB which is the divisor latch access bit. In order to be able to program the Baud rate generator this 
bit must be set.  The Baud rate generator is a sixteen bit prescaler which divides down Pclk to generate the 
UART clock which must run at 16 times the Baud rate. Hence the formula used to calculate the UART Baud rate 
is:  
 
 Divisor  = Pclk/16 x BAUD 
 
In our case at 30MHz: 
 
 Divisor = 30,000,000/16 x 9600 = (approx) 194 or 0xC2 
 

UART Line control register: The LCR 
configures the format of transmitted 
data. Setting the DLAB bit allows 
programming of the BAUD rate 
generators 
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This gives a true Baud rate of 9665. Often it is not possible to get an exact Baud rate for the UARTs however 
they will work with up to around a 5% error in the bit timing. So you have some leeway with the UART timings if 
you need to adjust the Pclk to get exact timings on other peripherals such as the CAN bit timings. The divisor 
value is held in two registers, Divisor latch MSB (DLM) and Divisor latch LSB (DLL). The first eight bits of both 
registers holds each half of the divisor as shown below. Finally the DLAB bit in the LCR register must be set 
back to zero to protect the contents of the divisor registers. 
 

 
Once the UART is initialised, characters can be transmitted by writing to the Transmit Holding Register. 
Similarly, characters may be received by reading from the Receive Buffer Register. In fact both these registers 
occupy the same memory location, writing a character places the character in the transmit FIFO and reading 
from this location loads a character from the Receive FIFO. The two routines shown below demonstrate 
handling of transmit and receive characters. 
 
int putchar (int ch)     /* Write character to Serial Port    */ 
{                     
 
  if (ch == '\n')  { 
    while (!(U1LSR & 0x20)); 
    U1THR = CR;                 /* output CR */ 
  } 
  while (!(U1LSR & 0x20)); 
  return (U1THR = ch); 
} 
 
int getchar (void)    /* Read character from Serial Port   */ 
{                     
 
  while (!(U1LSR & 0x01)); 
 
  return (U1RBR); 
} 
 
The putchar() and getchar functions are used to read/write a single character to the UART. These low level 
drivers are called by the Keil STDIO functions such as printf() and scanf(). So, if you want to redirect the 
standard I/O from the UART to say an LCD display and a keypad, rewrite these functions to support sending 
and receiving a single character to your desired I/O devices. Both the putchar() and getchar() functions read the 
Link Status Register ( LSR) to check on UART error conditions and to check the status of the receive and 
transmit FIFOS. 

UART baud rate: The UART clock 
frequency must be 16 times the 
required BAUD rate. This is derived 
by dividing Pclk by a 16-bit divisor 
register.  
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The UART has a single interrupt channel to the VIC,but three sources of interrupt. UART interrupts can be 
generated on a change in the Receive line status. So, if an error condition occurs, an interrupt is generated and 
the LSR can be read to see what is the cause of the error. The remaining two interrupt sources are receive and 
transmit interrupts. The receive interrupt is triggered by characters being received into the RX FIFO. The depth 
at which the interrupt is triggered is set in the UART FIFO control register. 

 
 
The receive interrupt can be set to trigger after it has received 1,4,8 or 14 characters. So, if the interrupt is set to 
trigger when eight characters are in the buffer and a total of 34 characters are sent, then four interrupts will be 
generated with two characters left in the FIFO. These remaining characters will cause a “character time out 
indication” (CTI) interrupt. The CTI interrupt occurs when there are one or more characters in the FIFO and no 
FIFO activity has occurred for 3.5- 4.5 character times.  
 

UART Line 
Status Register: 
The LSR 
contains flags 
which indicate 
events within the 
UART. It may be 
polled or should 
be read after a 
UART interrupt is 
generated. 

UART RX FIFO: Each UART has a sixteen byte 
receive FIFO which can be programmed to 
generate an UART interrupt at various trigger 
levels. The character timeout interrupt can be 
used to read bytes which do not reach a trigger 
level. 
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The transmit FIFO will also generate interrupts when the transmit holding register is empty and when the 
transmit shift register is empty. 
 

 
 
UART1 has the same basic structure as UART0, however it has additional support for modem control. This 
consists of additional external pins to support the full modem interface (CTS,DCD,DSR,DTR,RI,RTS), there are 
two additional registers the modem control register and the modem status register and an additional interrupt 
source to provide a modem status interrupt. 
 

 
 
 
 
These additional features allow optimal connection to a modem with an interrupt generated each time there is a 
change in the modem status register. 
 
 

UART Transmit FIFO: Like the RX FIFO, the 
TX FIFO is 16 bytes deep and can generate an 
interrupt when empty and when it has 
finished transmitting 

UART1 Modem registers: 

UART1 has additional 
support for modem 
interfacing. The DTR and 
RTS signals may be directly 
controlled. Changes in 
modem status can also 
generate a UART interrupt 

Exercise 20: UART 
In Exercise 4 we saw how to use the STDIO library with the UARTs. In this example  we look at how the
UARTs are initialised to run at a specific baud rate.  
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4.8 I2C Interface 
 
As Philips were the original inventors of the I2C bus standard, it is not surprising to find the LPC2000 equipped 
with a fully featured I2C interface. The I2C interface can operate in master or slave mode up to 400K bits per 
second and in master mode it will automatically arbitrate in a multi-master system.  
 

 
A typical I2C system is shown above where the LPC2000 is connected to two external port expander chips. As 
with the other peripherals the Serial Clock (SCL) and Data (SDA) lines must be converted from GPIO pins to 
I2C pins via the pin connect block. 
 

 
 
The I2C peripheral interface is composed of seven registers. The control register has two separate registers 
which are used to set and clear bits in the control register (I2CONSET, I2CONCLR). The bit rate is also 
determined by two registers (I2SCLH, I2SCLL). The status register returns control codes which relate to 
different events on the bus. The data register is used to supply each byte to be transmitted, or as data is 
received it will be transferred to this register. Finally, when the LPC2000 is configured as a slave device its 
network address is set by programming the I2ADR register.  
 
In order to initialise the I2C interface we need to run the following lines of code: 
 
VICVectCntl1 = 0x00000029;       // select a priority slot for a given interrupt 
VICVectAddr1 = (unsigned)I2CISR // pass the address of the IRQ into the VIC slot 
VICIntEnable = 0x00000200;  // enable interrupt 
 
PINSEL0 = 0x50;       // Switch GPIO to I2C pins 
I2SCLH  = 0x08;     // Set bit rate  to 57.6KHz 
I2SCLL     = 0x08; 
 
The I2C peripheral must be programmed to respond to each event which occurs on the bus. This makes it a 
very interrupt-driven peripheral. Consequently the first thing we must do is to configure the VIC to respond to an 
I2C interrupt. Next the pinselect block is configured to connect the I2C data and clock lines to the external pins. 

I2C peripheral registers.  

The programmers’ interface includes two
timing registers, set and clear registers 
for the control register, an address 
register to hold the node address when 
in slave mode and a data register to 
send and receive bytes of data  

Typical I2C bus 
configuration. The bus 
consists of separate clock 
and data lines with a pull 
up resistor on each line. 
The two external devices 
used in the example are 
port expander chips 
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Lastly we must set the bit rate by programming I2SCLH and I2SCLL. In both of these registers only the first 16 
bits are used to hold the timing values. The formula for the I2C bit rate is given as: 
 
Bit Rate = Pclk/(I2SCLH+I2CSLL) 
 
In the above example the PLL is not enabled and the external crystal is 14.7456MHz. Hence the I2C bit rate is: 
 
Bit Rate = 14.7456/B ( 8 + 8) = 937500 
 
Once configured, the LPC2100 can initiate communication with other bus devices to read and write data as a 
bus master, or receive and reply to requests from a bus master. The contents of the I2C control register are 
shown below. Remember this register is controlled by the CONSET and CONCLR registers. 
 
 

We will first look at the bus master mode. To enter this mode the I2C peripheral must be enabled and the 
acknowledge bit must be set to zero. This prevents the I2C peripheral acknowledging any potential master and 
entering the slave mode. In the master mode the LPC2000 device is responsible for initiating any 
communication. During a I2C bus transfer a number of bus events must occur. 
 

 
The bus master must first signal a start condition.To do this the I2C clock line is pulled high and the data is 
pulled low. The address of the slave which the master wants to talk to is then written onto the bus, followed by a 
bit which states if a read or write is being requested. If the slave has received this preamble correctly, it will reply 
with an acknowledge. Then data can be transferred as a series of bytes and acknowledges, until the master 
terminates the transaction with a stop condition. The I2C peripheral on the LPC2000 series is really a I2C 
engine. It controls all the bus events but has no intelligence. This means that the ARM7 CPU has to micro-
manage the I2C bus for each transaction. Fortunately this is easy to do and is centred around the I2C interrupt. 
Once the I2C peripheral is initialised in master mode we can start a write data transfer as follows: 
 

I2C control registers: 
The control registers are used to 
enable the I2C peripheral and 
interrupt as well as controlling the 
I2C bus start, stop and ack 
conditions. 

Typical I2C transaction :A 
I2C bus transaction is 
characterised by a start 
condition, slave address 
data exchange and stop 
condition with 
acknowledge handshaking
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void I2CTransferByte(unsigned Addr,unsigned Data) 
{ 
 
 I2CAddress = Addr; // Place address and data in Globals to be used by  
      // the interrupt 
 I2CData = Data; 
 I2CONCLR = 0x000000FF; // Clear all I2C settings 
 I2CONSET = 0x00000040; // Enable the I2C interface 
 I2CONSET = 0x00000020; // Start condition 
} 
 
The slave address and data to be sent are placed in global variables so that they can be used by the I2C 
interrupt routine. The address is a seven-bit address with the LSB set for write and cleared for read. The routine 
next clears the I2C control flags, enables the I2C peripheral and asserts a start condition. Once the start 
condition has been written onto the bus an interrupt is generated and a result code can be read from the I2C 
status register. 

 
 
If the start condition has been successful, this code will be 0x08. Next the application software must write the 
slave address and the R/W bit into the I2Cdata register. This will be written on to the bus and will be 
acknowledged by the slave. When the acknowledge is received, another interrupt is generated and the status 
register will contain the code 0x18 if the transfer was successful. Now that the slave has been addressed and is 
ready to receive data, we can write a string of bytes into the I2C data register. As each byte is written it will be 
transmitted and acknowledged. When it is acknowledged an interrupt is generated and 0x28 will be in the status 
register if the transfer was successful. If it failed and had a NACK the code will be 0x20 and the byte must be 
sent again. So, as each byte is transferred an interrupt is generated, the status code can be checked and the 
next byte can be sent. Once all the bytes have been sent the stop condition can be asserted by writing to the 
I2C control register and the transaction is finished. The I2C interrupt is really a state machine which examines 
the status register on each interrupt and performs the necessary action. This is easy to implement as a switch 
statement as shown below. 
 

I2C status Register: For each bus 
event an interrupt is generated, a 
condition code is returned in the 
status register. This code is used to 
determine the next action to 
perform within the I2C peripheral  
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void I2CISR (void) // I2C interrupt routine 
{ 
 
switch (I2STAT) // Read result code and switch to next action 
{ 
     
 case ( 0x08):  // Start bit 
  I2CONCLR = 0x20;    // Clear start bit 
  I2DAT = I2CAddress; // Send address and  
     // write bit 
 break; 
 
 case (0x18):  // Slave address+W, ACK 
  I2DAT = I2Cdata; // Write data to tx register 
 break; 
 
 case (0x20):  // Slave address +W, Not ACK 
  I2DAT = I2CAddress; // Resend address and write bit 
 break; 
 
 case (0x28):  // Data sent, Ack 
  I2CONSET = 0x10; // Stop condition 
 break; 
 
 default : 
 break; 
 } 
 
 I2CONCLR = 0x08;    // Clear I2C interrupt flag 
 VICVectAddr = 0x00000000; // Clear interrupt in  
} 
 
This example sends a single byte but could be easily modified to send multiple bytes. Additional case 
statements may be added to handle a master request for data. 
 

 
In the case of a master receive, the start condition will be the same but this time the address written on to the 
bus will have the R/W bit cleared. When the acknowledge is received after the slave address is sent, it will be 
followed by the first byte of data from the slave so the master does not have to do anything. However, in the 
case statement we can set the acknowledge bit so that an ACK is generated as soon as the byte has been 
transferred. As each byte is transferred, the data can be read from I2CDAT. When all the bytes have been 
received, the stop condition can be asserted and the transaction ends.  

I2C master TX: This bus 
transaction demonstrates 
a master to slave write 
transaction 
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The same I2CtransferByte() function can be used to start a read transaction and the additional case statements 
required in the interrupt are shown below. 
 
case (0x40) :  // Slave Address +R, ACK 
 I2CONSET = 0x04; // Enable ACK for data byte 
break; 
 
case (0x48) :  // Slave Address +R, Not Ack 
 I2CONSET = 0x20; // Resend Start condition 
break; 
 
case (0x50) :  // Data Received, ACK  
 message = I2DAT; 
 I2CONSET = 0x10; // Stop condition 
 lock = 0;         // Signal end of I2C activity      
break; 
 
case (0x58):  // Data Received, Not Ack 
 I2CONSET = 0x20; // Resend Start condition 
break; 
 
 
 
 
 
 
 
 
 
 
 
 
 

Exercise 21: I2C 
This exercise demonstrates how to use the I2C interface to communicate to an I2C EEROM. 
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4.9 SPI Interface 
 
Like the I2C interface the SPI interface is a simple peripheral “engine” which can write and read data to the SPI 
bus, but is not intelligent enough to manage the bus. It is up to your code to initialise the SPI interface and then 
manage the bus transfers.  

 
The SPI peripheral has four external pins: a serial clock pin, slave select pin and two data pins master in/slave 
out and master out/slave in. The serial clock pin provides a clock source of up to 400Kbits/sec when in master 
mode, or will accept an external clock source when in slave mode. The SPI bus is purely a serial data 
connection for high-speed data transfer and unlike I2C does not have any addressing scheme built into the 
serial transfer. An external peripheral is selected by a slave select pin which is a separate pin. Typically, if the 
LPC2000 is acting in master mode, it could use a GPIO pin to act as slave select (chip enable) for the desired 
SPI peripheral. When the SPI peripheral is in slave mode, it has its own slave select input which must be pulled 
low to allow an SPI master to communicate with it. The two data transfer pins master in / slave out and master 
out / slave in are connected to the remote SPI device and their orientation depends on whether the device is 
operating in master or slave mode. The diagram below shows a typical configuration for connecting to an 
EEROM device. 
 
The programmers’ interface for the SPI peripheral has five registers. The clock counter register determines the 
Baud rate. Pclk is simply divided by the value in the clock counter to give the SPI bit rate. This register must 

hold a minimum value of eight. The control register is used to configure the operation of the SPI bus. Because 
of the simple nature of the SPI data transfer and the wide range of SPI peripherals available, the SPI clock and 
data lines can be configured to operate in several different configurations. Firstly the polarity and phase of the 
clock must be defined. The polarity can be active high or active low as shown below and the clock phase can be 
edge or centre aligned.  

 

SPI EEROM peripheral: 
This diagram shows how to 
interface an external EEROM onto 
the SPI bus of the LPC2000. It 
should be noted that pins P0.7 and 
P0.20 must be pulled high to enable 
the SPI peripheral as a master 
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Finally the data orientation may also be defined as the most significant bit transferred first or the least significant 
bit transferred first. 
 

 
Each of these configuration features has a configuration bit in the control register and you must program these 
bits to match the SPI peripheral you are trying to communicate with. Once the bit rate has been set and the 
control register configured, then communication can begin. To communicate with the SPI memory shown above, 
first set the GPIO pin to enable the memory for communication. Then writing to the SPI data register will send a 
byte of data and reading from the register will collect any data sent from the external peripheral. The actual data 
format used in the transaction will depend on the SPI device you are trying to communicate with. 
 
 
 
 

The SPI data transmission can be 
configured to match the 
characteristics of any SPI device 

Exercise 22: SPI 
This exercise demonstrates how to configure the SPI peripheral and communicate with an external
EEROM on the SPI bus 
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4.10  Analog To Digital Converter 
 
The A/D converter present on some LPC2000 variants is a 10-bit successive approximation converter, with a 
conversion time of 2.44 uSec or just shy of 410 KSps. The A/D converter has either 4 or 8 multiplexed inputs 
depending on the variant. The programming interface for the A/D converter is shown below. 

 
 
The A/D control register establishes the configuration of the converter and controls the start of conversion. The 
first step in configuring the converter is to set up the peripheral clock. As with all the other peripherals, the A/D 
clock is derived from the PCLK. This PCLK must be divided down to equal 4.5MHz. This is a maximum value 
and if PCLK cannot be divided down to equal 4.5MHz then the nearest value below 4.5MHz which can be 
achieved should be selected. 
 

PCLK is divided by the value stored in the CLKDIV field plus one. Hence the equation for the A/D clock is as 
follows: 
 
CLKDIV = (PCLK/Adclk) - 1  
 
As well as being able to stop the clock to the A/D converter in the peripheral power down register, the A/D has 
the ability to fully power down. This reduces the overall power consumption and the on-chip noise created by 
the A/D. On reset, the A/D is in power down mode, so as well as setting the clock rate the A/D must be switched 
on. This is controlled by the PDN bit in ADCR. Logic one in this field enables the converter. Unlike other 
peripherals the A/D converter can make measurements of the external pins when they are configured as GPIO 
pins. However, by using the pinselect block to make the external pins dedicated to the A/D converter the overall 
conversion accuracy is increased. 
 
Prior to a conversion the resolution of the result may be defined by programming the CLKS field. The A/D has a 
maximum resolution of 10 bits but can be programmed to give any resolution down to 3 bits. The conversion 
resolution is equal to the number of clock cycles per conversion minus one. Hence for a 10-bit result the A/D 
requires 11 ADCLK cycles and four for a 3-bit result. Once you have configured the A/D resolution, a conversion 
can be made. The A/D has two conversion modes, hardware and software. The hardware mode allows you to 
select a number of channels and then set the A/D running. In this mode a conversion is made for each channel 
in turn until the converter is stopped. At the end of each conversion the result is available in the A/D data 
register.  
 

A/D Analogue to digital converter: The 
converter is available with 4 or 8 channels of 
10-bit resolution 

AD Control register: 
The control register determines the 
conversion mode, channel and 
resolution 

AD data register:The data register 
contains the conversion result, 
channel overrun error and 
conversion done flag. 
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At the end of a conversion the Done bit is set and an interrupt may also be generated. The conversion result is 
stored in the V/Vdda field as a ratio of the voltage on the analogue channel divided by the voltage on the 
analogue power supply pin. The number of the channel for which the conversion was made is also stored 
alongside the result. This value is stored in the CHN field. Finally, if the result of a conversion is not read before 
the next result is due, it will be overwritten by the fresh result and the OVERUN bit is set to one. The example 
below demonstrates use of the A/D converter in hardware mode. 
 
int main(void) 
{ 
 VPBDIV = 0x00000002;  //Set the Pclk to 30 MHz 
 IODIR1 = 0x00FF0000;      // P1.16..23 defined as Outputs   
 ADCR   = 0x00270607;      // Setup A/D: 10-bit AIN0 @ 3MHz  
 
 VICVectCntl0 = 0x00000032;    // connect A/D to slot 0 
 VICVectAddr0 = (unsigned)AD_ISR;   // pass the address of the IRQ into the VIC  
            // slot 
 VICIntEnable = 0x00040000;  // enable interrupt 
 
 while(1) 
 { 
  ;     
 } 
} 
  
void AD_ISR (void) 
{ 
 unsigned val,chan; 
 static unsigned result[4]; 
 
 val = ADCR; 
 val = ((val >> 6) & 0x03FF);   // Extract the A/D result  
 chan = ((ADCR >>0x18) & 0x07); 
 result[chan] = val; 
} 
 
The A/D has a second software conversion mode. In this case, a channel is selected for conversion using the 
SEL bits and the conversion is started under software control by writing 0x01 to the START field. This causes 
the A/D to perform a single conversion and store the results in the ADDR in the same fashion as the hardware 
mode. The end of conversion can be signalled by an interrupt, or by polling the done bit in the ADDR. In the 
software conversion mode it is possible to start a conversion when a match event occurs on timer zero or timer 
one. Or when a selected edge occurs on P0.16 or P0.22, the edge can be rising or falling, as selected by the 
EDGE field in the ADCR. 
 
 

The A/D may be started by a 
software event  or it may be started 
by several hardware triggers 
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The simplest method of using the A/D converter is shown below. 
 
VPBDIV = 0x02;  //Set the Pclk to 30 MHz 
IODIR1 = 0x00FF0000;    // P1.16..23 defined as Outputs   
ADCR   = 0x00270601;     // Setup A/D: 10-bit AIN0 @ 3MHz  
ADCR  |= 0x01000000;     // Start A/D Conversion  
 
while(1) 
{ 
     
do 
{ 
    val = ADDR;      // Read A/D Data Register  
}         
 
 
 
 
 
 

Exercise 23 : Analog To Digital Converter 
This exercise uses the A/D to convert an external voltage source and modulate a bank of LEDs with
the result. 
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4.11  Digital To Analog Converter 
 
The LPC2132/2138 variants have a 10-bit Digital to Analogue converter. This is an easy-to-use peripheral as it 
only has a single register. 
 
The DAC is enabled by writing to bits 18 and 19 of PINSEL1 and converting pin 0.25 from GPIO to the AOUT 
function. It should also be noted that a channel of the analogue to digital converter also shares this pin. 

Once enabled a conversion can be started by writing to the VALUE bits in the control register. The conversion 
time is dependant on the value of the BIAS bit. If it is set to one the conversion time is 2.5uSec but it can drive 
700 uA. If it is zero the conversion time is 1 uSec but it is only able to deliver 350 uA. However, the total settling 
time is also dependent on the external impedance. Figures for the impedance of the DAC have not yet been 
released. 
 
 
 
 
 
 
 
 
 
 

Exercise 24: Digital to Analog converter 
This exercise simulates a sine wave which is sampled by the Analogue to digital converter. These
values are loaded straight into the Digital to Analogue converter to regenerate the sine wave. The two
sine waves can be compared in the logic analyzer window. 
 

The DAC is controlled by a single 
register. The value to be converted is 
written here along with the bias value 
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4.12  CAN Controller 
 
Variants of the LPC2000 are available with up to 4 independent CAN controllers on board the chip. The CAN 
controllers are one of the more complicated peripherals on the LPC2000. In this section we will have a look at 
the CAN protocol and the LPC2000 CAN peripherals. 
 
The Controller Area Network (CAN) Protocol was developed by Robert Bosch for Automotive Networking in 
1982. Over the last 22 Years CAN has become a standard for Automotive Networking and has had a wide 
uptake in non-automotive systems where it is required to network together a few embedded nodes. CAN has 
many attractive features for the embedded developer. It is a low-cost, easy-to-implement, peer to peer network 
with powerful error checking and a high transmission rate of up to 1 Mbit/sec. Each CAN packet is quite short 
and may hold a maximum of eight bytes of data. This makes CAN suitable for small embedded networks which 
have to reliably transfer small amounts of critical data between nodes. 
 

4.12.1.1 ISO 7 Layer Model 
 
In the ISO seven layer model the CAN protocol covers the layer two ‘data link layer’, i.e.  
forming the message packet, error containment, acknowledgement and arbitration. 
 

 
 
CAN does not rigidly define the layer 1 ‘Physical layer’ so CAN messages may be run over many different 
physical mediums. However, the most common physical layer is a twisted pair and standard line drivers are 
available. The other layers in the IOS model are effectively empty and the application code directly addresses 
the registers of the CAN peripheral. In effect, the CAN peripheral can be used as a glorified UART without the 
need for an expensive and complex protocol stack. Since CAN is also used in Industrial Automation there are a 
number of software standards that define how the CAN messages are used to transfer data between different 
manufacturers’ equipment. The most popular of these application layer standards are CANopen and Device net. 
The sole purpose of these standards is to provide interoperability between different OEM equipment. If you are 
developing your own closed system you do not need these application layer protocols and are free to implement 
you own proprietary protocol, which is what most people do. 
 

4.12.2 CAN Node Design 
 
A typical CAN node is shown below. Each node consists of a microcontroller and a separate CAN controller. 
The CAN controller may, as in the case of the LPC2000, be fabricated on the same silicon as the 
microcontroller or it may be a stand-alone controller in a separate chip to the microcontroller. The CAN 
controller is interfaced to the twisted pair by a line driver and the twisted pair is terminated at either end by a 120 
Ohm resistor. The most common mistake with a first CAN network is to forget the terminating resistors and then 
nothing works. 
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One important feature about the CAN node design is that the CAN controller has separate transmit and receive 
paths to and from the physical layer device. So, as the node is writing on to the bus it is also listening back at 
the same time. This is the basis of the message arbitration and for some of the error detection. 
 
The two logic levels are written onto the twisted pair as follows, a logic one is represented by bus idle with both 
wires held half way between 0 and Vcc. A logic Zero is represented by both wires being differentially driven.  
 

 
In “CAN speak” a logic one is called a recessive bit and a logic zero is called a dominant bit. In all cases a 
dominant bit will overwrite a recessive bit. So, if ten nodes write recessive and one writes dominant, then each 
node will read back a dominant bit. The CAN bus can achieve bit rates up to a maximum of 1 Mbit/sec. Typically 
this can be achieved over about 40 metres of cable. By dropping the bit rate, longer cable runs may be 
achieved. In practice you can get at least 1500 metres with the standard drivers at 10 Kbit/sec.  
 
 

CAN node hardware: A typical CAN node 
has a microcontroller, CAN controller, 
physical layer and is connected to a 
twisted pair terminated by 120 Ohm 
resistors. 

CAN Physical layer signals: 
On the CAN bus, logic zero is 
represented by a maximum voltage 
difference called “Dominant” and logic 
one by a bus idle state called 
“recessive”.  A dominant bit will 
overwrite a recessive bit. 
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4.12.3 CAN Message Objects 
 
The CAN bus has two message objects which may be generated by the application software. The message 
object is used to transfer data around the network. The message packet is shown below. 
 

 
The message packet starts with a dominant bit to mark the start of frame. Next comes the message identifier 
which may be up to 29 bits long. The message identifier is used to label  the data being sent in the message 
packet. CAN is a producer / consumer protocol. A given message is produced from one unique node and then 
may be consumed by any number of nodes on the network simultaneously. It is also possible to do point-to-
point communication by making only one node interested in a given identifier. Then a message can be sent from 
the producer node to one given consumer node on the network. In the message packet the RTR bit is always 
set to zero. (This field will be discussed shortly.) The DLC field is the data length code and contains an integer 
between 0 and 8 which indicates the number of data bytes being sent in this message packet.  
 
So, although you can send a maximum of 8 bytes in the message payload it is possible to truncate the message 
packet in order to save bandwidth on the CAN bus. After the 8 bytes of data there is a 15-bit cyclic redundancy 
check. This provides error detection and correction  from the start of frame up to the beginning of the CRC field. 
After the CRC there is an acknowledge slot. The transmitting node expects the receiving nodes to assert an 
acknowledge in this slot within the transmitting CAN packet. In practice the transmitter sends a recessive bit and 
any node which has received the CAN message up to this point will assert a dominant bit on the bus, thus 
generating the acknowledge. This means that the transmitter will be happy if just one node acknowledges its 
message, or if 100 nodes generate the acknowledge. So when developing your application layer care must be 
taken to treat the acknowledge as a weak acknowledge, rather than confirmation that the message has reached 
all its destination nodes. After the acknowledge slot there is an end of frame message delimiter. 
 
It is also possible to operate the CAN bus in a master / slave mode. A CAN node may make a remote request 
onto the network by sending a message packet which contains no data, but has the RTR bit set. The remote 
frame is requesting a message packet to be transmitted with a matching identifier. On receiving a remote frame, 
the node which generates the matching message will transmit the corresponding message frame. 
 

CAN message packet : The message packet is formed by the CAN controller, the application 
software provides the data bytes, the message identifier and the RTR bit 

Remote Transmit request: The RTR frame 
is used to request message packets from 
the network as a master / slave transaction
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As previously mentioned, the CAN message identifier can be up to 29 bits long. There are two standards of 
CAN protocol, the only difference being the length of the message identifier. 
 
2.0A   Has an 11-bit identifier 
 
2.0B Passive  Has an 11-bit identifier 
 
2.0B Active  Has a 29-bit identifier 
 
It is possible to mix the two protocol standards on the same bus but you must not send a 29- bit message to an 
2.0A device 
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4.12.4 CAN Bus Arbitration 
 
If a message is scheduled to be transmitted on to the bus and the bus is idle, it will be transmitted and may be 
picked up by any interested node. If a message is scheduled and the bus is active, it will have to wait until the 
bus is idle before it can be transmitted. If several messages are scheduled while the bus is active, they will start 
transmission simultaneously once the bus becomes idle, being synchronised by the start of frame bit. When this 
happens, the CAN bus arbitration will take place to determine which message wins the bus and is transmitted. 
 
CAN arbitrates its messages by a method called “non-destructive bit-wise arbitration”. In the diagram above, 
three messages are pending transmission. Once the bus is idle and they are synchronised by the start bit, they 
will start to write their identifiers onto the bus. For the first two bits, all three messages write the same logic and 

hence read back the same logic so each node continues transmission. However on the third bit, node A and C 
write dominant bits and node B writes recessive. At this point, node B wrote recessive but reads back dominant. 
In this case it will back off the bus and start listening. Node A and C will continue transmission until node C write 
recessive and node A writes dominant. Now node C stops transmission and starts listening. Now node A has 
won the bus and will send its message. Once A has finished, nodes B and C will transmit and node C will win 
and send its message. Finally node B will send its message. If node A is scheduled again, it will win the bus 
even though the node B and C messages have been waiting. In practice the CAN bus will transmit the message 
with the lowest value identifier. 
 

CAN arbitration: 
Message arbitration guarantees 
that the most important 
message will win the bus and 
be sent without any delay. 
Stalled messages will then be 
sent in order of priority, lowest 
value identifier first. 
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4.12.5 Bit Timing 
 
Unlike many other serial protocols, the CAN bit rate is not just defined by a Baud rate prescaler. The CAN 
peripheral contains a Baud rate prescaler but it is used to generate a time quanta i.e. a time slice. A number of 
these time quanta are added together to get the overall bit timing. 
 
The bit period is split into three segments. First is the sync segment, which is fixed at one time quanta long. The 
next two segments are Tseg1 and Tseg2 where the user defines the number of time quanta in each region. The 
minimum number of time quanta in a bit period is 8 and the maximum is 25. The receiving sample point is at the 

end of Tseg1 so changing the ratio of Tseg1 to Tseg2 adjusts the sample point. This allows the CAN protocol to 
be tuned to the transmission channel. If you are using long transmission lines, the sample point can be moved 
backwards. If you have drifting oscillators you can bring the sample point forward. In addition, the receivers can 
adjust their bit rate to lock onto the transmitter. This allows the receivers to compensate for small variations in 
the transmitter bit rate. The amount that each bit can be adjusted is called the “synchronous jump width” and 
may be set to between 1 – 4 time quanta and is again user definable. 
 
To calculate the bit timing, the formula is given by 
  
Bit rate = Pclk/(BRP x ( 1 + Tseg1 + Tseg2)) 
 
Where: BRP = Baud rate prescaler 
 
This calculation has a lot of unknowns. If we assume that we want to reach a bit rate of 125K with a 60 MHz 
Pclk and a sample point of about 70%, here is how the BRP calculation is performed. 
 
The total number of time quanta in a bit period is given by (1+Tseg1+Tseg2) . If we call this term QUANTA and 
rearrange the equation in terms of the Baud rate prescaler:  
 
BRP = Pclk/(Bit rate x QUANTA) 
 
Using our known values: 
 
BRP = 60 MHz/(125K x QUANTA) 
 
Now we know that we can have between 8 and 25 time quanta in the bit period, so using a spreadsheet we can 
substitute in integer values between 8 and 25 for QUANTA until we get an integer value for BRP. 
 
In this case when QUANTA = 16 BRP = 30; 
 
Then 16 = Quanta = ( 1+Tseg1+Tseg2) 
 

CAN bit timing: 
Unlike other serial protocols 
the CAN bit period is 
constructed as a number of 
segments that allow you to 
tune the CAN data 
transmission to the channel 
being used. 
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So we can adjust the ratio between Tseg1 and Tseg2 to give us the desired sample point. 
 
Sample point = (QUANTA x 70)/100 
 
Hence 16 *0.7 = 11.2.  This gives Tseg 1 = 10, Tseg2 = 5 and the sample point = 68.8% 
 
The value for the synchronous jump width may be calculated via the following rule of thumb. 
 
Tseg2 >= 5 Tq then program SJW to 4 
Tseg2 < 5 Tq then program SJW to (Tseg2 - 1) Tq 
 
In this case SJW = 4. 
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4.12.6 CAN Message Transmission 
 
In the LPC2000, each CAN controller has a number of status and control registers plus three transmit buffers 
and a receive buffer. 
 

 
 
In order to configure CAN controller we must program the bit timing register. However the bit timing register is a 
protected register and may only be written to when the CAN controller is in reset. Bit zero of the mode register is 
used to place the CAN controller into reset. 
 

 
 
We can use the values calculated above to initialise one of the CAN controllers to 125Kbit/sec. It is important to 
note that the values stored in the register are the calculated values minus 1. This ensures that no timing 
segment is set to zero. Once the CAN controller has been initialised, it is possible to transmit a message by 
writing to a transmit buffer. Each transmit buffer is made up of four words.  
 

The CAN bit timing is defined by 
5 separate parameters 
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Two words are used to hold the 8 bytes of data and one word holds the message identifier. The final register is 
the frame information register.  
 
 

 
This register holds the values of the DLC and the RTR bit. In addition, there is a frame format (FF) bit that 
defines whether the message has an  11-bit or 29-bit identifier. As there are three TX buffers it is possible to 
define an internal priority for each TX buffer. If several buffers are scheduled simultaneously, the CAN controller 
will use internal arbitration to decide which is transmitted first. This can be done in one of two ways; if the TPM 
bit in the MODE register is Zero, the transmit buffer with the lowest value identifier will be sent first. If TPM is 
high, then arbitration will use the values stored in the PRIO field in the Tx Frame Information register and the 
buffer with the lowest PRIO value is sent first. Once the buffer has been filled with a message, transmission can 
be started by setting the Transmit request bit (TR) in the COMMAND register. The code below shows some 
code fragments to initialise the CAN peripheral and transmit a message. 
 
 
C2MOD = 0x00000001;   // Set CAN controller into reset 
C2BTR = 0x001C001D;   // Set bit timing to 125k 
C2MOD = 0x00000000;   // Release CAN controller 
 
if(C2SR & 0x00000004) // See if Tx Buffer 1 is free 
{ 
 C2TFI1 = 0x00040000;  // Set DLC to 4 bytes   
 C2TID1 = 0x00000022;  // Set address to 0x22 Standard Frame 
 C2TDA1 = NetworkData;  // Copy some data into first four bytes 
 C2CMR  = 0x00000001;  // Transmit the message 
} 
 
 
 
 
 

Exercise 25: CAN Transmit 
This exercise configures the second CAN channel for 125K bits\second and repeatedly transmits a
CAN message frame. 

The parameters of each CAN message 
are defined in each message buffer 
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4.12.7 CAN Error Containment 
 
The CAN protocol has five methods of error containment built into the silicon. If any error is detected, it will 
cause the transmitter to resend the message so the CPU does not need to intervene unless there is a gross 
error on the bus. There are three error detection methods at the packet level; form check, CRC, and 
acknowledge plus two at the bit level; bit check error and bit stuffing error. Within the CAN message there are a 
number of fields that are added to the basic message. On reception, the message telegram is checked to see if 
all these fields are present.  If not, the message is rejected and an error frame is generated. This ensures that a 
full, correctly formatted message has been received. 
 
 

 
Each message must be acknowledged by having a dominant bit inserted in the acknowledge field. If no 
acknowledge is received, the transmitter will continue to send the message until an acknowledge is received.  
 

 
 

Frame Check: 
The frame check tests that 
a correctly formatted CAN 
message has been 
received. 

Acknowledge: 

All CAN frames must be 
acknowledged. If there is no 
handshake, the message will 
be re-sent  
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The CAN message packet also contains a 15 bit CRC which is automatically generated by the transmitter and 
checked by the receiver. This CRC can detect and correct 4 bits of error in the region from the start-of-frame to 
the beginning of the CRC field. If the CRC fails and the message is rejected, an error frame is placed onto the 
bus. 
 

 
 
Once a node has won arbitration it will start to write its message onto the bus. As during arbitration as each bit 
is written onto the bus, the CAN controller is reading back the level written onto the bus. As the node has won 
arbitration nothing else should be transmitting so each bit level written onto the bus must match the level read 
back. If the wrong level is read back, the transmitter generates an error frame and reschedules the message. 
The message is sent in the next message slot but must still go through the arbitration process with any other 
scheduled message.  
 

 
 
This leads to one of the golden rules in developing a CAN network. In a CAN network, every identifier must be 
uniquely generated. So you must not have the same identifier sent from two different nodes. If this happens, it is 
possible that two messages with the same ID are scheduled together, both messages will fight for arbitration 
and both will win as they have the same ID.  Once they have won arbitration they will both start to write their 
data onto the bus.  At some point this data will be different and this will cause a bit check error. Both messages 
will be rescheduled, win arbitration and go into error again. Potentially this ‘deadly embrace’ can lock up the 
network, so beware! 
 

CRC: A 15 bit CRC is 
automatically generated 
which is a weighted 
polynomial checksum that 
provides error detection and 
correction across the 
message packet 

Bit check error: 
Once the arbitration has 
finished the write and read 
back mechanism is use for 
bitwise error checking 
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At the bit level, CAN also implements a bit stuffing scheme. For every five dominant bits in a row, a recessive bit 
is inserted.  

 
 
This helps to break up DC levels on the bus and provides plenty of edges in the bit stream which are used for 
resynchronisation. An error frame in the CAN protocol is simply six dominant bits in a row. This allows any CAN 
controller to assert an error onto the bus as soon as the error is detected, without having to wait until the end of 
a message. Internally each CAN controller has two counters.  
 

These are a receive error counter and a transmit error counter. These counters will count up when receiving or 
transmitting an error frame. If either counter reaches 128, then the CAN controller will enter an ‘error passive’ 
mode. In this mode it still responds to error frames but if it generates an error frame, it writes recessive bits in 
place of dominant bits. If the transmit error counter reaches 255 then the CAN controller will go into a bus-off 
condition and take no further part in CAN communication. To restart communication, the CPU must intervene to 
reinitialise the controller and put it back onto the bus. Both these mechanisms are to ensure that if a node goes 
faulty, it will fail gracefully and not block the bus by continually generating error frames. 
 
The LPC2000 CAN controllers have a number of error detection mechanisms. First of all, the current count of 
the transmit and receive error counters can be read in the Global Status Register.  
 
Also in this register are two error flags, the Bus Status flag will be set when the maximum error count is reached 
and the CAN controller is removed from the bus. The second error flag is the Error Status flag, which is set 
when the CAN error counters reach a warning limit. This warning limit is an arbitrary value that is set by writing a 
value into the Error Warning limit register.  The default value in this register is 96. Like the bit timing registers, 
the EWL register may only be modified when the CAN controller is in reset. In addition, the Interrupt Capture 
Register provides extensive diagnostics for managing events on the CAN bus. 
 

Bit Stuffing: 
For every five bits of one 
logic in a row a stuff bit of 
the opposite logic is 
inserted. The error frame 
breaks this rule by being six 
dominant bits in a row 

Error counters: 
The CAN controller moves between a 
number of error states that allow a node 
to fail in an elegant fashion, without 
blocking the bus 
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The CAN controller has the following interrupt sources, 
 

1. Transmit interrupt (one for each buffer) 
2. Receive interrupt 
3. Error Warning 
4. Data overrun 
5. Wake up 
6. Error Passive 
7. Arbitration lost 
8. Bus error 
9. ID ready  

 

4.12.8 CAN Message Reception 
 
Once initialised, the CAN controller is able to receive messages into its receive buffer. This is similar in layout to 
the transmit buffers 
 

 
 
The Rx Frame Status register is analogous to the Tx Frame information register.  However it has two additional 
values. These are the ID Index and the BP bit and these will be explained in the next section.   
 
The code below demonstrates how to receive a CAN message:  
 
int main(void) 
{ 
 VPBDIV = 0x00000001;  //Set PClk to 60MHz 
 IODIR1 = 0x00FF0000;  // set all ports to output 
 PINSEL1|= 0x00040000;  //Enable Pin 0.25 as CAN1 RX 
 C1MOD = 0x00000001;  //Set CAN controller into reset 
 C1BTR = 0x001C001D;  //Set bit timing to 125k 
 C1IER =0x00000001;  //Enable the Receive interrupt  
 VICVectCntl0 = 0x0000003A;  //select a priority slot for a given interrupt 
 VICVectAddr0 = (unsigned)CAN1IRQ;  //pass the address of the IRQ  
         //into the VIC slot 
 VICIntEnable = 0x04000000;   //enable interrupt 
 AFMR = 0x00000001;   //Disable the Acceptance filters  
 C1MOD = 0x00000000;   //Release CAN controller 
 
 while(1){;} 
} 
 
void CAN1IRQ (void)   __irq 
{ 
 IOCLR1 = ~C1RDA;  // clear output pins 
 IOSET1 = C1RDA; // set output pins 
 C1CMR = 0x00000004;  // release the receive buffer 
 VICVectAddr = 0x00000000; // Signal the end of interrupt 
} 
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4.12.9 Acceptance Filtering 
While the receive example shown above will work perfectly well, it suffers from two problems. Firstly, it receives 
every message transmitted on the bus. In a fully loaded CAN bus this could mean a message would be received 
every 72us. As the LPC2000 has up to 4 CAN controllers, the CPU would have to spend a lot of time just 
managing the CAN busses. Secondly, once the message has been received the CAN controller would have to 
read and decode the message identifier in order to decide what to do with the message. In order to overcome 
these problems, the LPC2000 CAN controllers have a sophisticated acceptance filtering scheme. The 
acceptance filter is used to screen messages as they come in from the CAN bus. The acceptance filter can be 
programmed to pass or block message identifiers before they enter the CAN controller for processing. This 
prevents unwanted messages entering the CAN receive buffer and consequently greatly reduces the overhead 
on the CPU.  

 
 
 
 
 

 
 
 
 
 
 

 
The acceptance filter has 2K of RAM (512 x 32), which may be allocated into tables of identifiers. This allows 
ranges of messages and individual messages to be able to enter into the CAN receive buffer.  
 
As a message passes through the acceptance filter, it is assigned an ID Index.  This is an integer number that 
relates to the message ID’s offset in the acceptance filter table. This number is stored in the RX Frame Status 
register. So rather than decode the raw message ID, it is easier and faster to use the index value to decide what 
message has been received. 

Acceptance filters: 
The CAN modules one 2K block of 
RAM which is used to set up filter 
tables to efficiently handle high bus 
loadings without overloading the CPU

Full CAN mode: 
In full CAN mode the 
CAN RAM may also be 
configured as additional 
receive buffers which 
store incoming data for 
the CPU to read as 
required 
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The acceptance filter also has a full CAN mode. In this mode the messages are received and scanned against 
the table of permissible identifiers.  If a match is made, the message is stored not in the CAN controller receive 
buffer but in a dedicated message buffer within the acceptance filter memory. In this mode, each message has 
its own unique message buffer at a fixed location, making all the CAN data easily accessible from the CPU. 
 

4.12.9.1 Configuring The Acceptance Filter 
 
The acceptance filter is configured by seven registers. Control of the filter is via the mode register. The various 
ID tables are configured by the next five registers and the seventh register is an error reporting register. 
 
Before configuration of the acceptance filter can start it must be disabled. This is done by setting the AccOff bit 
and clearing the AccBP bit in the acceptance filter mode register. If the CAN controller is run with this 
configuration, then all messages on the bus will be received.  
 

 
Once the acceptance filter is disabled, each of the four filter tables may be configured. The four tables are as 
follows: 
 
Individual standard identifiers  (11 bit ID) 
Groups of standard identifiers  (11 bit ID) 
Individual Extended identifiers  (29 bit ID) 
Groups of extended identifiers  (29 bit ID) 
 
The acceptance filter RAM starts at 0xE0038000.  Each of the tables must be defined and fixed at absolute 
locations in the filter RAM. The start address of each table should then be written into the relevant acceptance 
filter register. The tables should start at the beginning of RAM and use the memory contiguously.  Finally, the 
address of the last used location of RAM should be written into the End of Table register. To enable the 
Acceptance filter, set the ACCoff bit to logic one and AccBP bits to zero.  
 
Each of the tables is constructed as follows; 
 

 
 
The Individual Standard identifier table allows you to define individual 11-bit identifiers that will pass through the 
acceptance filter. Each definition takes two bytes, the first 11 bits contains the message identifier to be passed. 
This is followed by a bit to dynamically enable or disable this filter entry. Finally, the top three bits associates 
this filter entry with a particular CAN controller. 
 

The Acceptance filter mode 
register provides global control 
of the acceptance filter 
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The group standard identifier table uses the same format but two entries are used to define the upper and lower 
identifier address range for messages that are allowed to pass through the acceptance filter 
 

 
The individual extended identifier table uses four bytes per entry, as shown above.  The first 29 bits define the 
message identifier to be passed through the acceptance filter and the top three bits associates the filter entry 
with a particular CAN controller. The group extended identifier table uses two words in the same format as the 
individual extended table to build up a start and end identifier values in the same fashion as the standard 
message group table  
 
The following code shows how the acceptance filters may be configured for the basic CAN mode.  
 
unsigned  int StandardFilter[2]  _at_ 0xE0038000;   //Declare the standard  
                                            //acceptance filter table  
unsigned  int GroupStdFilter[2]  _at_ 0xE0038008;   //Next the standard Group  
               //filter table  
unsigned  int IndividualExtFilter[2] _at_ 0xE0038010; //Now the extended filter  
                                                      //table 
unsigned  int GroupExtFilter[2] _at_ 0xE0038018;  //Finally the Group extended  
          //filter table 
 
 
AFMR = 0x00000001;          // Disable the Acceptance filters 
StandardFilter[0] = 0x20012002; // Setup the standard filter table 
StandardFilter[1] = 0x20032004; // Allow Ids  1,2,3 & 4 
SFF_sa = 0x00000000; // Set start address of Standard table 
SFF_GRP_sa = 0x00000008; // Set start address of Standard group table 
EFF_sa = 0x00000008;  // Set start address of Extended table 
EFF_GRP_sa = 0x00000008; // Set start address of Extended group table 
ENDofTable = 0x00000008; // Set end of table address 
AFMR = 0x00000000;  // Enable Acceptance filters 
C1MOD = 0x00000000;  // Release CAN controller 
 
 
 
 
 
 
 
 
 

4.13  Summary 
 
This chapter is a bit of a moving target! The LPC2000 is a rapidly growing family with new variants being 
released on a regular basis. Check the CD that came with this book for a .PDF update to this chapter or keep an 
eye on the web at http://www.hitex.co.uk/arm/lpcbook 
 
If you have worked through this and the proceeding chapters, you should now have a firm grasp of the LPC2000 
family the ARM7 CPU and the necessary development tools. Appendix B lists further reading and web 
resources for the ARM7 and the LPC2000 in particular. 

Exercise 26: CAN Receive 
Like the last exercise this example configures the CAN peripheral for 125Kbits/sec and sets the
acceptance filters to receive one of three message frames. 
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6 Chapter 6: Keil Tutorial With GNU Tools 
 
6.1 Intoduction 
 
The following tutorial demonstrates how to setup a project in uVision for the GNU compiler. Exercises 1 – 6 are 
repeated to show the non-ANSI aspects of the GNU compiler. Once you are familiar with these exercises, you 
can rejoin the main tutorial but use the exercise examples in the GCC directory. 
 

6.2 GCC Startup Code 
 
The startup code used in the GNU project is different in that the Keil Assembler has different directives and 
naming conventions. However, it is performing the same operations. It is up to the programmer to edit the vector 
table as discussed in the section on the Keil compiler startup code. The graphical editor allows you to configure 
the processor stacks and system peripherals in the same way as the Keil compiler startup code. 
 

6.3 Interworking ARM/THUMB Code 
 
The GCC compiler also supports the ARM procedure calling standard and allows interworking between the 
ARM and THUMB instruction sets. However, unlike the Keil compiler, it is not possible to select individual 
functions as ARM or THUMB. In the GCC compiler all ARM code must be in one module or modules and the 
THUMB code must be in separate modules. These modules are compiled as ARM or THUMB as required and 
then linked together. This process is described in example 3 in this section. 
 

6.4 Accessing Peripherals 
 
The Keil and GNU compilers can use the same include files to access the on-chip SFR registers. 
 

6.5 Interrupt Service Routines 
 
The GCC compiler has a set of non-ANSI extensions which allow functions to be declared as interrupt routines. 
The general form of the declaration is shown below 
 
void IRQ_Routine (void)  __attribute__ ((interrupt("IRQ"))); 
 
The following keywords are available to define the exception source required:   
 
 FIQ,IRQ,SWI,UNDEF. 
 
This function declaration is only required on the function prototype and should not be used on the main body of 
the function. An interrupt service routine is shown in example 5. 
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6.5.1 Software Interrupt 
 
There is no real software interrupt support in the GCC compiler.  To generate a software interrupt you must use 
inline Assembler as shown below: 
 
#define SoftwareInterrupt2 asm (" swi #02")  
 
This will place a SWI instruction encoded with the value 2 in your code. Next it is possible to declare a pointer to 
a CPU register using the non-ANSI register keyword as shown below: 
 
register unsigned * link_ptr asm ("r14"); 
 
This allows us to read the contents of the link register when we enter the ISR. When the SWI instruction is 
executed, the CPU will enter supervisor mode and jump to the SWI vector. The address of the SWI instruction 
plus four will be stored in the link register. On entry to the software interrupt ISR the following line of code is 
executed: 
 
temp = *(link_ptr-1) & 0x00FFFFFF; 
 
The address stored in the link register is rolled back by one instruction (word-wide pointer i.e. four bytes) so that 
it is pointing at the address of the SWI instruction which generated the exception. The top eight bits of the SWI 
instruction are masked off and bits 0-23 are copied into the temp variable. This in effect loads the number 2 into 
the temp variable. A switch statement can now be used to run the desired code. This method of handling 
software interrupts is shown in example 6. 
 

6.6 Inline Functions 
 
Within the GNU compiler functions may be declared as inline functions as follows: 
 
 inline int fast_function(char param1) 
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6.7 Exercise 1: Using The Keil Toolset With The GNU Compiler 
 
This example is based on the source code which can be found in:  
 
C:\Exercise\Work\EX1 first program 
 
In this first exercise we will spend some time defining a first project, building the code and downloading it into 
the Simulator for debugging. We will then cover the basic debugging functions of the Keil simulator. 
 
The Keil uVision IDE is designed to support several compilers: the GNU C compiler, the ARM development 
suite and the Keil ARM compiler. Before compiling, make sure you have the GNU compiler selected. This is 
done by activating the project workspace, right-clicking and selecting ‘manage components’. In this dialog, 
select the Folders/extensions tab and make sure the GNU tools box is selected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Double-click on the Keil UVision3 icon to start the IDE.  
 
 

 
From the menu bar select Project\New Project. 
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In the New Project dialog navigate to your desired project directory. 
 

 
In the New Project dialog name the project first.uv2 and select Save. 
 
A ‘select new device for target’ dialog will appear. Navigate through the device data base and select the 
Philips\LPC2129 folder and select OK. 
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In the project browser highlight the ‘Target1’ root folder and select the local menu by pressing the right mouse 
button. In this menu select ‘Options for Target’. 
 

 
In the ‘Target’ tab set the simulation frequency to 12.000 MHz. 
 

 
In the Linker tab select the linker file flash.ld and tick the “Garbage collection” and do not use “standard startup 
files” boxes 
 

Note: To build the project so it will run within the on-chip RAM of the LPC2100 device, configure the Text start 
as select the linker file RAM.ld 
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In the debug tab make sure the “Use Simulator” radio button is active. Also make sure “Load Application at 
Startup” and “Go till main()” are checked. 
 

 
Select OK to complete the target options. 
 
 In the project browser expand the ‘Target1’ root node to show the Source group 1 folder. 
 

 
 Highlight the ‘Source Group 1’ folder, open the local menu with a right click and select ‘Add Files to group 
Source Group1’. 
 

 
In the ‘Add files to Group’ dialog add the file blinky.c and serial.c. 
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Change the ‘Type of file’ filter to ASM and add the file startup.s 
 
These are all the source files necessary for the project so select close. 
 
You can view the source code contained in a file by double-clicking on the file name in the project browser 
window. 
 
Once you have added all the source files the project can be built via the program menu or by the build button on 
the toolbar. 
 

 
Once the code is built, you can start the simulator by pressing the debugger button. The use of the simulator 
and JTAG debugger are detailed in Exercise One in the Tutorial and are the same for the GNU compiler. 
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6.8 Exercise 2: Startup Code 
 
In this exercise we will configure the compiler startup code to configure the stack for each operating mode of the 
ARM7.   We will also ensure that the interrupts are switched on and that our program is correctly located on the 
interrupt vector. 
 
Open the project in EX2 Startup\work 
 
Open the file Startup.s and using the graphical editor configure the operating mode stacks as follows: 

 
Compile the code 
 
Start the simulator and when the PC reaches main, examine the contents of each R13  register. 
 

  

6.9  Exercise 3: Using THUMB Code 

Start of stack space at the top of on-chip memory 

Each stack is allocated a space of 0x80. The user stack is 
0x400 bytes so user data will start at 0x40003d80 – 0x400 
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In this example we will build a very simple program to run in the ARM 32-bit instruction set and call a 16-bit 
THUMB function and then return to the 32-bit ARM mode. 
 
Open the project in EX3 THUMB code\work 
 
In the files browser select thumb.c open the local menu (right-click) and select “options for thumb.c” 
 

 
 
Select the CC tab and in the misc controls add –mthumb or tick the “compile  thumb code” box and click OK 
 

 
Again in the file browser select the root target (FLASH) and in the local menu “options for target” 
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In the CC tab tick the “enable APCS option and the “support calls between THUMB and ARM” 
 

 
 
Compile and download the code into the debugger  
 
Open the disassembly window and single step through the code using the F11 key 
 
 
Observe the switch from 32-bit to 16-bit code and the THUMB flag in the CPSR 
 

 

 
 

The processor is running in ARM (32-bit ) mode, the T-bit is clear and the instructions are 4 bytes long. A call to 
the THUMB function is made which executes a BX instruction forcing the processor into THUMB mode (16-bit). 
 
The THUMB bit is set and on entry to the THUMB function a PUSH instruction is used to preserve registers on 
to the stack. 
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6.10  Exercise 4: Using The GNU Libraries 
 
In this exercise we will look at tailoring the GNU Printf function to work with the LPC2100 UART. We will look at 
the registers of the UARTs in more detail later. 
 
Open the project in EX4 printf\work 
 
In main.c add   a message for transmission to the printf statement 
 
while(1) 
{ 
 
 printf("Your Message Here \n"); //Call the prinfF function 
 
} 
 
Add the file syscalls.c  in the work directory to the project. 

In syscalls.c add modify the write function as follows: 
 
Complete the for loop statement so it runs for the length of the printf string (len ) 
Inside the for loop add the putchar statement to write a single character to the stdio channel ( putchar (*ptr)) 
 
Increment the pointer to the character string ptr++ 
 
int write (int file, char * ptr, int len)  
{ 
  int i; 
 
  for (i = 0; i < len; i++) putchar (*ptr++); 
    
 return len; 
} 
 
Compile the code and download it to the development board 
 
Run the code and observe the output within hyper terminal 
 
If you are using the simulator, select view/serial window #1. This opens a terminal window within the simulator 
which displays the UART0 output. 
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6.11  Exercise 5: Simple Interrupt 
 
In this exercise we will setup a basic FIQ interrupt and see it serviced. 
 
Open the project in EX5-Interrupt\work 
 
In main.c complete the definition of the EXTintFIQ function prototype to define it as the FIQ interrupt service 
routine 
 
void EXTintFIQ (void) __attribute__ ((interrupt("FIQ"))); 
 
In startup.s complete the vector  constants table to define EXTintFIQ as the FIQ ISR. 
 
     .global EXTintFIQ  Declare the name of the C ISR function as a 
global 
     .global _startup 
     .func   _startup 
_startup: 
 
Vectors:  LDR     PC, Reset_Addr          
          LDR     PC, Undef_Addr 
          LDR     PC, SWI_Addr 
          LDR     PC, PAbt_Addr  Vector Table 
          LDR     PC, DAbt_Addr 
  
          .long 0xB8A06F58                          
          LDR     PC, [PC, #-0xFF0] 
          LDR     PC, FIQ_Addr 
 
Reset_Addr:     .word   Reset_Handler 
Undef_Addr:     .word   Undef_Handler 
SWI_Addr:       .word   SWI_Handler Constants table 
PAbt_Addr:      .word   PAbt_Handler 
DAbt_Addr:      .word   DAbt_Handler 
                .word   0                      
IRQ_Addr:       .word   IRQ_Handler 
FIQ_Addr:       .word   EXTintFIQ          
 
Insert the name of the C ISR function in the constants table 
 
Compile the code and download it onto the board. 
 
Step through the code and observe the following using the disassembly window and        the registers window.    
 
Step through the code until you reach the while loop 
 
Set a breakpoint in the EXTintFIQ function 
 
Press F5 to set the program running 
On the MCB2100 board press the INT button to generate the interrupt. 
 
If you want to see the entry and exit mechanisms to the exception, it is best to use the simulator and single step 
in the disassembly window. This way you can watch the program flow and the actions on the CPU registers.  
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To control the interrupt in the simulator, open the peripherals/GPIO port 0 window. Pin 0.14 is set high by the 
map.ini startup script. If you set the program running unchecking, the Pin1.4 box will generate the interrupt. You 
must raise the pin high again to stop interrupts. 
 

  
Alternatively in the toolbox there is a “Generate EINT1” button. This button will generate a simulated pulse on to 
the interrupt pin. 

 
 
Within uVision there is a full scripting language which allows you to simulate external events. These scripts are 
based on the C language and are stored in text files. The script used to simulate the pulse is shown below: 
 
signal void Toggle(void)   
{ 
  PORT0 = (PORT0 ^ 0x4000); 
  twatch (200); 
  PORT0 = (PORT0 ^ 0x4000); 
} 
 
KILL BUTTON * 
DEFINE BUTTON "GenerateEINT1","Toggle()" 
 
This script is stored in the file signal.ini and is added to the project in the debug window. For more details on the 
scripting language see the uVision documentation. 
 

Toolbox button Toolbox with user 
configurable scripts 
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6.12  Exercise 6: Software Interrupt 
 
In this exercise we will define an inline Assembler function to call a software interrupt and place the value 0x02 
in the calling instruction. In the software interrupt SWI we will decode the instruction to see which SWI function 
has been called and then use a case statement to run the appropriate code. 
 
Open the project in EX6 SWI\work 
 
In main.c add the following code 
As the first instruction in main add the assembler define which calls the swi instruction 
 
#define SoftwareInterrupt2 asm (" swi #02") 
 
In the SWI ISR complete the register definition to access R14 
 
register unsigned * link_ptr asm ("r14"); 
 
Complete the code to pass value of the SWI ordinal into the temp variable 
 
temp = *(link_ptr-1) & 0x00FFFFFF; 
 
Compile and download the code into the debugger 
 
Step the code and observe the SWI being serviced 
  
In the disassembly window the first SWI instruction has been encoded with the value 1 at location 0x0000015C 
 

 
 
On entry to the ISR the supervisor link register contains the value 0x00000160 
 

 
The calculation for temp is temp = *(link_ptr-1) & 0x00FFFFFF  or 0x164 – 4 ( word-wide pointer, remember) 
which is 0x15C which points to the instruction which generated the SWI. The top 8 bits are masked off which 
yields a value of 1. This is used in the case statement to run the required code. 
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7 Chapter 7: Hitex Tutorial (With Keil Or GNU Compiler) 
 
This chapter describes, how to use the Hitex tools with the Keil or GNU compiler for the tutorial examples. The 
debugging can be done with the HiSIMARM instruction set simulator, as long as no peripherals of the LPC2000 
microcontroller are used. For examining the peripherals, a starter kit from Hitex or the full Tantino or Tanto 
system is recommended. 
 

7.1  Installation 
 
All the necessary software for the practical examples is on the Hitex CD that comes with this book.  
 

1. First it is necessary to install the HiTOP IDE. Please install the options “HiSIM for ARM” and if you are 
using a starter kit, the “Tantino7/9 for ARM” option also. For high-end system users, please install the 
option “Tanto for ARM” as well. 

 
2. Depending which compiler is to be used, please install the Keil or the GNU compíler for ARM 

 
3. Finally install the StartEasy for ARM software. This is a CASE tool for the LPC2000 which will allow 

you to easily configure the LPC2000 devices. 
 
 
Once the software has been installed you are ready to start the tutorial exercises. 
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7.2 Creating The First Project 
 
This section will cover the Hitex development tools that can be used to develop code for the LPC2000. The 
generation of the startup and initialization code and the creation of the project is done by StartEasy. The 
difference between using the Keil or the GNU compiler is only the compiler setting is made in StartEasy. The 
debugging tool is HiTOP, with the instruction set simulator HiSIM, the Tantino for ARM 7/9 or Tanto for ARM - 
the last two are for debugging in the real hardware. If you are using a Hitex starterkit, the Tantino for ARM7/9 is 
included with a MCP2100 or an MCB2130 board. Most of these examples run on both boards. 
 
Free versions of HiTOP with HiSIM, the GNU compiler and StartEasy are available at http://www.hitex.com in 
the download area. 
 
Before we begin to look at the compiler in detail, we will run through a step-by-step tutorial on how to set up a 
project, compile the code and run the debugger. This does not cover all the features of HiTOP but once you 
have a basic understanding of the IDE, feel free to explore.  
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7.3 Exercise 1: Creating The First Project 
 
In this first exercise we will spend some time defining an initial project with StartEasy, then opening the project 
in HiTOP, which can be used to invoke the compiler to build  the code and then download it into the simulator 
for debugging. We will then cover the basic debugging functions of the simulator. 
 

1. Double click on the StartEasy icon to start the StartEasy.  
 

 
 

2. First of all the general project settings have to be done. Please click on the yellow folder picture of 
Project Settings to expand this folder.  

 
3. Please click on project settings and insert the settings and 

description of this project. The entries Path and Project 
name are mandatory. To browse your disks please use the 
icon.  

 
The project name is also used for the file names of some project elements. 

 
4. Next click on Tool Path to select the desired compiler, either Keil or GNU and the correct tool path, 

i.e. the path for the executables. For the Keil compiler it ends normally with \keil\arm\bin, for GNU 
with \bin. The HiTOP path is the location of the HiTOP.exe, normally in the HiTOP-ARM folder.  

 
5. The next step  is to set the compiler options.  We now choose them by clicking on Compiler 

options. An important setting for the application is the setting of the correct global compiler 
switches. Some switches are mandatory so these  cannot be changed. The optimization level and 
the warning output can be defined by selecting the desired list entry. Other options can be found in 
the compiler manual (Keil: Compiler Directives, GNU: ). If you want to combine ARM and THUMB 
code, the global compiler switch INTERWORK is necessary.  

 
6. Next click on linker options. Here only the correct path to the compiler library has to be defined. 
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7. Experienced users may now click on Stack Size to adjust the stacks for the different ARM 
operating modes. For our examples these settings are ok. If larger stacks are needed i.e. if you 
are using nested  IRQs,then the IRQ and user stack  may be adjusted here. 

 
8. Click on CPU to define the current derivative. When working with the MCB2100 board please 

select here Philips as vendor, LPC2129 as Type and 12MHz as frequency. With the MCP2130 
board please select the LPC2138 

 
9. Next we click on Debug tool and select HiSIM ,this will allow you to become familiar with the basic 

features of the HiTOP user interface. 
 

The item Build Logfile can be used to review the actions during the project build process. 
 
All other settings are not necessary for the first steps and now the first LPC application can be created by 
selecting the menu “File” followed by the entry “Write Code…” The Build log window displays the actions of the 
compiler. Please look for possible error messages which may occur when the paths to the tools or libraries are 
not correct. 
 
When you have a clean build, we can start debugging with HiTOP. 
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7.4 Using HiTOP 
 
1. Launch the HiTOP IDE by double clicking on the desktop icon  . 

 
 
 

2. To open the new project please use the menu Project and the item Open and please remember 
the project path and the project name used in StartEasy. Browse to this directory and open the 
project <project name>.htp. 

 
3. If you have only a 16k code size limited licence 

(included in a starter kit or the free HDS), the 
following dialog appears. Please click on “I want to 
continue evaluation”. 

 
 
 
 
 
 
 
 
 
 
 
 
Now the created application is opened with the debug tool you selected in StartEasy, in this case the instruction 
set simulator. 
 

4. When the download dialog appears please press “OK”. 
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The code is now loaded and the PC is at the reset vector at address 0. 
 
To walk through the application use the menu Debug or the function keys: 
 

F9  to step an instruction 
F10 to step over a line 
F11 to step into a function 
Ctrl F11 to step out of a function to the caller 
 

To set breakpoints move the cursor to the desired line and in the grey column on the left 
hand edge the cursor will then change shape to show the breakpoint icon.  
 
 
 
A click with the left mouse button will now set or clear the breakpoint. A click with the 
right mouse button opens a context window to change the properties of the breakpoint. 
 
Breakponts can be only set in lines which have produced corresponding code. These lines 
are marked with a blue rectangle in the lefthand side grey column. 
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5. To execute the code up to an arbitrary point in the program, select the line of code you wish to run 
to and place the cursor into its blue rectangle, the cursor will change shape to 

 
6. Now left click and the program will run until it reaches this point. 

 
7. To run the application until a desired function is reached such as  main use the command Debug 

Go until (or Shift F10) and insert main in the dialog. 
 

8. Now the application was executed until the function main and the C source is displayed. 
 

9. In the Module view tab of the workspace window, all modules of this application are listed. Clicking 
on the + sign of a module (i.e. main) opens this module and shows all the functions and if present 
also the variables. 

 

 
 
10. Clicking with the right mouse button on a symbol opens a context window to show the source or 

set breakpoints for functions and labels or to “quick watch” the values for variables. These 
symbols may also be dragged and dropped into other debug windows such as the variable watch 
window or the breakpoint window. Once you have mastered the basic functionality of HiTOP 
explore the following windows: 

 
The memory window   -  Allows a raw view of the contents of any area of memory 
 
Watch Window           -  Allows you to view and modify symbolic variables and complex C objects such  

    as arrays unions and structures 
 
Register Window       - Allows you access to the CPU registers  
 
SFR Window      - Presents the LPC2000 peripherals in a “data book” format so you can easily  

  see and modify a peripherals configuration. 
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7.5  Exercise 2: Startup Code 
 
In this example we will configure the startup code to adapt the stack sizes for the different modes to the needs 
of the application. Also we have to initialize the stack pointers for all the modes.   
 

1. Please go to StartEasy with the last project click on the yellow folder beside “Project Settings” and 
select “Stack Sizes”. Here the values for the stacks for the different ARM modes can be adjusted.  

 

 
 

2. Now we create the changes code with the menu “File” and the item “Update code”. After the 
successful creation of the code we can now debug this application with HiTOP. Please open 
HiTOP select menu “Project” item “Open” and browse for the file project file (it was created in the 
folder defined in StartEasy in “Project Path” with the name “<project name>.htp”). 

 
3. Now the connection to Tantino is established and with click on “ok” in the download dialog, the 

application is programmed into the FLASH. We let run  the application behind the startup code 
with the command Go Until main (menu “Debug” item “Go until..” insert “main” and click “ok”). 

 
The initialized values of the stack pointers can be read out with the SFR window (open it with menu “View” item 
“SFR window” and select “ARM Processor Register”). For each mode the set of registers is displayed and all the 
SP registers of the modes are initialized with the correct values. 
 
When you open the disassembly window and change the address display to address 0 (double click in the 
address column and insert 0), you see the vector table with ‘ldr pc’ instructions. Only at address 0x14 there is a 
strange instruction. Please remember that this is the reserved vector, where the LPC controller assumes a 
correct checksum to indicate that there is a valid FLASH program and which causes the Memory Map Controller 
to switch to “user flash” mode. This checksum is automatically inserted by StartEasy. 
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7.6 Exercise 3: Using THUMB code 
 
In this example we add an additional module to the application which is compiled in THUMB mode. 
 
We open start easy and open any of the previos projects. With any editor we write a small new module like: 
 
void func(void) 
{ 
 // this is a thumb function 
 int i; 
 i = 0; 
 for (i = 100; i < 0; i--) 
 {} 
} 
 
We save it into the directory of our StartEasy project tith the name “module.c”. 
 
To call this function from main() we have to edit the main.c file which was vreated by StartEasy. Please open it 
with an editor and insert the declaration of this function and the call to this function. In main.c there are prepared 
sections to insert user code: 
 
Go to the beginning of main() and search for the section where user code includes can be made. Here we insert 
the external declaration of func. 
 
/* BEGIN USER CODE INCLUDE */ 
 
extern void func(void); 
 
/* END USER CODE INCLUDE */ 
 
In the while() loop we insert the call to func: 
 
    while(1) 
    { 
/* BEGIN USER CODE MAIN LOOP */ 
    func(); 
/* END USER CODE MAIN LOOP */ 
 
We save this file and go back to StartEasy. Here we click on the yellow folder “Project Files” and click on 
“custom files” with the right mouse button.  
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Now select ‘add file’. In the file dialog we select the created file “module.c”. Click with the left mouse button on 
the new file entry “module.c” and change the “code type” settings to “THUMB” 
 

 
 
Now create the new application but since there are now changes in the HiTOP project file, we have to close 
HiTOP first. Click on the menu “File” and select “update code”. The changed project and application are now 
created and when we open it with HiTOP and step through the code until the function “func()”, we see that this 
function is now in THUMB mode. This is indicated by the T-bit in the register window and in the disassembly 
window, all THUMB code addresses have the prefix “T:”. 
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7.7 Using The Tantino Hardware Debugger 
 
The debugger system included with the Hitex starter kit is called the Tantino. This connects to the JTAG port on 
MCB2100 (P5) and then connects to the PC via USB. To switch from using the simulator to using the Tantino, 
follow the steps below. 
 

7.8  Setting Up The Tantino JTAG hardware Debugger 
 
Connect the Tantino to the MCB2100 and plug the USB connection into the PC. Power should also be 
connected to the MCB2100 (6.5V). The Tantino needs a running LPC2000 processor to work correctly. 
 
The green ON LED of the Tantino must blink. If the green and the yellow LED are on, the USB power of the Hub 
is not enough and the Tantino has to be connected to a USB port delivering more than 100mA. 
 
To select the Tantino instead of the HiSIM, please go back to Start Easy, select Debug tool in Project Setting. 
Change (here the Tool to TantinoARM7-9) and insert the serial number of the Tantino below. The serial number 
is written on the bottom side of the Tantino. 
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