

Introduction to the LPC2000 Introduction

© Hitex (UK) Ltd. Page 3

1 Chapter 1: The ARM7 CPU Core 9
1.1 Outline ..9
1.2 The Pipeline..9
1.3 Registers ..10
1.4 Current Program Status Register ...11
1.5 Exception Modes ..12
1.6 The ARM 7 Instruction Set..15
1.6.1 Branching ...17
1.6.2 Data Processing Instructions ..18
1.6.2.1 Copying Registers ..19
1.6.2.2 Copying Multiple Registers ...19
1.7 Swap Instruction ...20
1.8 Modifying The Status Registers..20
1.9 Software Interrupt ...20
1.10 MAC Unit ..22
1.11 THUMB Instruction Set ...23
1.12 Summary ..25

2 Chapter 2: Software Development 26
2.1 Outline ..26
2.2 Which Compiler? ..26
2.2.1 uVision IDE...27
2.2.2 HiTOP IDE..27
2.2.3 Tutorial..27
2.3 Startup Code ..28
2.4 Interworking ARM/THUMB Code..30
2.5 STDIO Libraries..32
2.6 Accessing Peripherals ..32
2.7 Interrupt Service Routines ..33
2.7.1 Software Interrupt ...34
2.8 Locating Code In RAM..34
2.9 Inline Functions ..35
2.10 Operating System Support ...36
2.11 Fixing Objects At Absolute Locations ...36
2.12 Inline Assembler ...36
2.13 Hardware Debugging Tools ..37
2.13.1.1 Important! ...38
2.13.1.2 Even More Important ..38
2.14 Summary ..38

3 Chapter 3: System Peripherals 39
3.1 Outline ..39
3.2 Bus Structure..39
3.3 Memory Map...40
3.4 Register Programming..41
3.5 Memory Accelerator Module...41
3.5.1 Example MAM Configuration ..44

Introduction to the LPC2000 Introduction

© Hitex (UK) Ltd. Page 4

3.6 FLASH Memory Programming..45
3.6.1 Memory Map Control ..45
3.6.2 Bootloader ..46
3.6.3 Philips ISP Utility ..46
3.6.4 In-Application Programming ...48
3.7 External Bus Interface ..49
3.7.1 External Memory Interface..49
3.7.2 Using The External Bus Interface ...52
3.8 Booting From ROM...54
3.9 Phase Locked Loop..56
3.10 VLSI Peripheral Bus Divider ...58
3.10.1.1 Example Code: PLL And VPB Configuration ..58
3.11 Power Control ...59
3.12 LPC2000 Interrupt System ...61
3.12.1 Pin Connect Block ..61
3.12.2 External Interrupt Pins ..61
3.12.3 Interrupt Structure...62
3.12.4 FIQ interrupt ...63
3.12.5 Leaving An FIQ Interrupt ..63
3.12.5.1 Example Program: FIQ Interrupt..64
3.12.6 Vectored IRQ..65
3.12.7 Leaving An IRQ Interrupt ..66
3.12.7.1 Example Program: IRQ interrupt ..67
3.12.8 Non-Vectored Interrupts ...67
3.12.9 Leaving A Non-Vectored IRQ Interrupt ...68
3.12.9.1 Example Program: Non-Vectored Interrupt...68
3.12.10 Nested Interrupts ..69
3.13 Summary ..70

4 Chapter 4: User Peripherals 72
4.1 Outline ..72
4.2 General Purpose I/O...72
4.3 General Purpose Timers...74
4.4 PWM Modulator ..78
4.5 Real Time Clock ...81
4.6 Watchdog ...84
4.7 UART..86
4.8 I2C Interface ...90
4.9 SPI Interface...95
4.10 Analog To Digital Converter..97
4.11 Digital To Analog Converter..100
4.12 CAN Controller ...101
4.12.1.1 ISO 7 Layer Model..101
4.12.2 CAN Node Design ..101
4.12.3 CAN Message Objects ...103
4.12.4 CAN Bus Arbitration..105
4.12.5 Bit Timing..106
4.12.6 CAN Message Transmission ..108
4.12.7 CAN Error Containment..110

Introduction to the LPC2000 Introduction

© Hitex (UK) Ltd. Page 5

4.12.8 CAN Message Reception ...113
4.12.9 Acceptance Filtering ...114
4.12.9.1 Configuring The Acceptance Filter ...115
4.13 Summary ..116

6 Chapter 6: Keil Tutorial With GNU Tools 172
6.1 Intoduction ..172
6.2 GCC Startup Code..172
6.3 Interworking ARM/THUMB Code..172
6.4 Accessing Peripherals ..172
6.5 Interrupt Service Routines ..172
6.5.1 Software Interrupt ...173
6.6 Inline Functions ..173
6.7 Exercise 1: Using The Keil Toolset With The GNU Compiler174
6.8 Exercise 2: Startup Code..179
6.9 Exercise 3: Using THUMB Code ..179

Introduction to the LPC2000 Introduction

© Hitex (UK) Ltd. Page 6

6.10 Exercise 4: Using The GNU Libraries ...182
6.11 Exercise 5: Simple Interrupt..183
6.12 Exercise 6: Software Interrupt ..185

7 Chapter 7: Hitex Tutorial (With Keil Or GNU Compiler) 187
7.1 Installation ..187
7.2 Creating The First Project...188
7.3 Exercise 1: Creating The First Project ..189
7.4 Using HiTOP...191
7.5 Exercise 2: Startup Code..194
7.6 Exercise 3: Using THUMB code ...195
7.7 Using The Tantino Hardware Debugger ...197
7.8 Setting Up The Tantino JTAG hardware Debugger197

9 Appendices 212
9.1 Appendix A ...212
9.1.1 Bibliography..212
9.1.2 Webliography..212
9.1.2.1 Reference Sites ..212
9.1.3 Tools and Software Development...212
9.2 Evaluation Boards And Modules...212

Introduction to the LPC2000 Introduction

© Hitex (UK) Ltd. Page 7

Introduction

This book is intended as a hands-on guide for anyone planning to use the Philips LPC2000 family of
microcontrollers in a new design. It is laid out both as a reference book and as a tutorial. It is assumed that you
have some experience in programming microcontrollers for embedded systems and are familiar with the C
language. The bulk of technical information is spread over the first four chapters, which should be read in order if
you are completely new to the LPC2000 and the ARM7 CPU.

The first chapter gives an introduction to the major features of the ARM7 CPU. Reading this chapter will give you
enough understanding to be able to program any ARM7 device. If you want to develop your knowledge further,
there are a number of excellent books which describe this architecture and some of these are listed in the
bibliography. Chapter Two is a description of how to write C programs to run on an ARM7 processor and, as
such, describes specific extensions to the ISO C standard which are necessary for embedded programming. In
this book a commercial compiler is used in the main text, however the GCC tools have also been ported to ARM.

Appendix A details the ARM-specific features of the GCC tools. Having read the first two chapters you should
understand the processor and its development tools. Chapter Three then introduces the LPC2000 system
peripherals. This chapter describes the system architecture of the LPC2000 family and how to set the chip up for
its best performance. In Chapter Four we look at the on-chip user peripherals and how to configure them for our
application code.

Throughout these chapters various exercises are listed. Each of these exercises are described in detail in
Chapter Five, the Tutorial section. The Tutorial contains a worksheet for each exercise which steps you through
an important aspect of the LPC2000. All of the exercises can be done with the evaluation compiler and simulator
which come on the CD provided with this book. A low-cost starter kit is also available which allows you to
download the example code on to some real hardware and “prove” that it does in fact work. It is hoped that by
reading the book and doing the exercises you will quickly become familiar with the LPC2000.

Introduction to the LPC2000 Introduction

© Hitex (UK) Ltd. Page 8

Introduction to the LPC2000 Introduction

© Hitex (UK) Ltd. Page 9

1 Chapter 1: The ARM7 CPU Core

1.1 Outline

The CPU at the heart of the LPC2000 family is an ARM7. You do not need to be an expert in ARM7
programming to use the LPC2000, as many of the complexities are taken care of by the C compiler. You do
need to have a basic understanding of how the CPU is working and its unique features in order to produce a
reliable design.

In this chapter we will look at the key features of the ARM7 core along with its programmers’ model and we will
also discuss the instruction set used to program it. This is intended to give you a good feel for the CPU used in
the LPC2000 family. For a more detailed discussion of the ARM processors, please refer to the books listed in
the bibliography.

The key philosophy behind the ARM design is simplicity. The ARM7 is a RISC computer with a small instruction
set and consequently a small gate count. This makes it ideal for embedded systems. It has high performance,
low power consumption and it takes a small amount of the available silicon die area.

1.2 The Pipeline

At the heart of the ARM7 CPU is the instruction pipeline. The pipeline is used to process instructions taken from
the program store. On the ARM 7 a three-stage pipeline is used.

A three-stage pipeline is the simplest form of pipeline and does not suffer from the kind of hazards such as
read-before-write seen in pipelines with more stages. The pipeline has hardware independent stages that
execute one instruction while decoding a second and fetching a third. The pipeline speeds up the throughput of
CPU instructions so effectively that most ARM instructions can be executed in a single cycle. The pipeline works
most efficiently on linear code. As soon as a branch is encountered, the pipeline is flushed and must be refilled
before full execution speed can be resumed. As we shall see, the ARM instruction set has some interesting
features which help smooth out small jumps in your code in order to get the best flow of code through the
pipeline. As the pipeline is part of the CPU, the programmer does not have any exposure to it. However, it is
important to remember that the PC is running eight bytes ahead of the current instruction being executed, so
care must be taken when calculating offsets used in PC relative addressing.

For example, the instruction:

0x4000 LDR PC,[PC,#4]

will load the contents of the address PC+4 into the PC. As the PC is running eight bytes ahead then the
contents of address 0x400C will be loaded into the PC and not 0x4004 as you might expect on first inspection.

The ARM7 three-stage pipeline
has independent fetch, decode
and execute stages

1 - The ARM7 CPU Core

© Hitex (UK) Ltd. Page 10

1.3 Registers

The ARM7 is a load-and-store architecture, so in order to perform any data processing instructions the data has
first to be moved from the memory store into a central set of registers, the data processing instruction has to be
executed and then the data is stored back into memory.

The central set of registers are a bank of 16 user registers R0 – R15. Each of these registers is 32 bits wide and
R0 – R12 are user registers in that they do not have any specific other function. The Registers R13 – R15 do
have special functions in the CPU. R13 is used as the stack pointer (SP). R14 is called the link register (LR).
When a call is made to a function the return address is automatically stored in the link register and is
immediately available on return from the function. This allows quick entry and return into a ‘leaf’ function (a
function that is not going to call further functions). If the function is part of a branch (i.e. it is going to call other
functions) then the link register must be preserved on the stack (R13). Finally R15 is the program counter (PC).
Interestingly, many instructions can be performed on R13 - R15 as if they were standard user registers.

The ARM7 CPU is a load-and-
store architecture. All data
processing instructions may
only be carried out on a central
register file

The central register file has 16 word wide registers plus
an additional CPU register called the current program
status register. R0 – R12 are user registers R13 – R15
have special functions.

1 - The ARM7 CPU Core

© Hitex (UK) Ltd. Page 11

1.4 Current Program Status Register

In addition to the register bank there is an additional 32 bit wide register called the ‘current program status
register’ (CPSR). The CPSR contains a number of flags which report and control the operation of the ARM7
CPU.

The top four bits of the CPSR contain the condition codes which are set by the CPU. The condition codes report
the result status of a data processing operation. From the condition codes you can tell if a data processing
instruction generated a negative, zero, carry or overflow result. The lowest eight bits in the CPSR contain flags
which may be set or cleared by the application code. Bits 7 and 8 are the I and F bits. These bits are used to
enable and disable the two interrupt sources which are external to the ARM7 CPU. All of the LPC2000
peripherals are connected to these two interrupt lines as we shall see later. You should be careful when
programming these two bits because in order to disable either interrupt source the bit must be set to ‘1’ not ‘0’
as you might expect. Bit 5 is the THUMB bit.

The ARM7 CPU is capable of executing two instruction sets; the ARM instruction set which is 32 bits wide and
the THUMB instruction set which is 16 bits wide. Consequently the T bit reports which instruction set is being
executed. Your code should not try to set or clear this bit to switch between instruction sets. We will see the
correct entry mechanism a bit later. The last five bits are the mode bits. The ARM7 has seven different
operating modes. Your application code will normally run in the user mode with access to the register bank R0 –
R15 and the CPSR as already discussed. However in response to an exception such as an interrupt, memory
error or software interrupt instruction the processor will change modes. When this happens the registers R0 –
R12 and R15 remain the same but R13 (LR) and R14 (SP) are replaced by a new pair of registers unique to
that mode. This means that each mode has its own stack and link register. In addition the fast interrupt mode
(FIQ) has duplicate registers for R7 – R12. This means that you can make a fast entry into an FIQ interrupt
without the need to preserve registers onto the stack.

The Current Program Status Register contains condition code flags which indicate the result of
data processing operations and User flags which set the operating mode and enable interrupts.
The T bit is for reference only

1 - The ARM7 CPU Core

© Hitex (UK) Ltd. Page 12

Each of the modes except user mode has an additional register called the “saved program status register”. If
your application is running in user mode when an exception occurs the mode will change and the current
contents of the CPSR will be saved into the SPSR. The exception code will run and on return from the exception
the context of the CPSR will be restored from the SPSR allowing the application code to resume execution. The
operating modes are listed below.

1.5 Exception Modes

When an exception occurs, the CPU will change modes and the PC be forced to an exception vector. The
vector table starts from address zero with the reset vector and then has an exception vector every four bytes.

The ARM7 CPU has six operating modes
which are used to process exceptions. The
shaded registers are banked memory that
is “switched in” when the operating mode
changes. The SPSR register is used to
save a copy of the CPSR when the switch
occurs

Each operating mode has an
associated interrupt vector. When
the processor changes mode the
PC will jump to the associated
vector.

NB. there is a missing vector at
0x00000014

1 - The ARM7 CPU Core

© Hitex (UK) Ltd. Page 13

NB: There is a gap in the vector table because there is a missing vector at 0x00000014. This location was used
on an earlier ARM architecture and has been preserved on ARM7 to ensure software compatibility between
different ARM architectures. However in the LPC2000 family these four bytes are used for a very special
purpose as we shall see later.

If multiple exceptions occur then there is a fixed priority as shown below.

When an exception occurs, for example an IRQ exception, the following actions are taken: First the address of
the next instruction to be executed (PC + 4) is saved into the link register. Then the CPSR is copied into the
SPSR of the exception mode that is about to be entered (i.e. SPSR_irq). The PC is then filled with the address
of the exception mode interrupt vector. In the case of the IRQ mode this is 0x00000018. At the same time the
mode is changed to IRQ mode, which causes R13 and R14 to be replaced by the IRQ R13 and R14 registers.
On entry to the IRQ mode, the I bit in the CPSR is set, causing the IRQ interrupt line to be disabled. If you need
to have nested IRQ interrupts, your code must manually re-enable the IRQ interrupt and push the link register
onto the stack in order to preserve the original return address. From the exception interrupt vector your code will
jump to the exception ISR. The first thing your code must do is to preserve any of the registers R0-R12 that the
ISR will use by pushing them onto the IRQ stack. Once this is done you can begin processing the exception.

Once your code has finished processing the exception it must return back to the user mode and continue where
it left off. However the ARM instruction set does not contain a “return” or “return from interrupt” instruction so
manipulating the PC must be done by regular instructions. The situation is further complicated by there being a
number of different return cases. First of all, consider the SWI instruction. In this case the SWI instruction is
executed, the address of the next instruction to be executed is stored in the Link register and the exception is
processed. In order to return from the exception all that is necessary is to move the contents of the link register
into the PC and processing can continue. However in order to make the CPU switch modes back to user mode,
a modified version of the move instruction is used and this is called MOVS (more about this later). Hence for a
software interrupt the return instruction is

MOVS R15,R14 ; Move Link register into the PC and switch modes.

Each of the exception sources has a fixed priority. The
on chip peripherals are served by FIQ and IRQ
interrupts. Each peripheral’s priority may be assigned
within these groups

When an exception occurs the CPU will change
modes and jump to the associated interrupt
vector

1 - The ARM7 CPU Core

© Hitex (UK) Ltd. Page 14

However, in the case of the FIQ and IRQ instructions, when an exception occurs the current instruction being
executed is discarded and the exception is entered. When the code returns from the exception the link register
contains the address of the discarded instruction plus four. In order to resume processing at the correct point we
need to roll back the value in the Link register by four. In this case we use the subtract instruction to deduct four
from the link register and store the results in the PC. As with the move instruction, there is a form of the subtract
instruction which will also restore the operating mode. For an IRQ, FIQ or Prog Abort, the return instruction is:

SUBS R15, R14,#4

In the case of a data abort instruction, the exception will occur one instruction after execution of the instruction
which caused the exception. In this case we will ideally enter the data abort ISR, sort out the problem with the
memory and return to reprocess the instruction that caused the exception. In this case we have to roll back the
PC by two instructions i.e. the discarded instruction and the instruction that caused the exception. In other
words subtract eight from the link register and store the result in the PC. For a data abort exception the return
instruction is

SUBS R15, R14,#8

Once the return instruction has been executed, the modified contents of the link register are moved into the PC,
the user mode is restored and the SPSR is restored to the CPSR. Also, in the case of the FIQ or IRQ
exceptions, the relevant interrupt is enabled. This exits the privileged mode and returns to the user code ready
to continue processing.

At the end of the exception the CPU returns to
user mode and the context is restored by
moving the SPSR to the CPSR

1 - The ARM7 CPU Core

© Hitex (UK) Ltd. Page 15

1.6 The ARM 7 Instruction Set

Now that we have an idea of the ARM7 architecture, programmers model and operating modes we need to take
a look at its instruction set or rather sets. Since all our programming examples are written in C there is no need
to be an expert ARM7 assembly programmer. However an understanding of the underlying machine code is
very important in developing efficient programs. Before we start our overview of the ARM7 instructions it is
important to set out a few technicalities. The ARM7 CPU has two instruction sets: the ARM instruction set which
has 32-bit wide instructions and the THUMB instruction set which has 16-bit wide instructions. In the following
section the use of the word ARM means the 32-bit instruction set and ARM7 refers to the CPU.

The ARM7 is designed to operate as a big-endian or little-endian processor. That is, the MSB is located at the
high order bit or the low order bit. You may be pleased to hear that the LPC2000 family fixes the endianess of
the processor as little endian (i.e. MSB at highest bit address), which does make it a lot easier to work with.
However the ARM7 compiler you are working with will be able to compile code as little endian or big endian.
You must be sure you have it set correctly or the compiled code will be back to front.

One of the most interesting features of the ARM instruction set is that every instruction may be conditionally
executed. In a more traditional microcontroller the only conditional instructions are conditional branches and
maybe a few others like bit test and set. However in the ARM instruction set the top four bits of the operand are
compared to the condition codes in the CPSR. If they do not match then the instruction is not executed and
passes through the pipeline as a NOP (no operation).

The ARM7 CPU is designed to support code
compiler in big endian or little endian format. The
Philips silicon is fixed as little endian.

Every ARM (32 bit) instruction is conditionally executed. The
top four bits are ANDed with the CPSR condition codes. If they
do not match the instruction is executed as a NOP

1 - The ARM7 CPU Core

© Hitex (UK) Ltd. Page 16

So it is possible to perform a data processing instruction, which affects the condition codes in the CPSR. Then
depending on this result, the following instructions may or may not be carried out. The basic assembler
instructions such as MOV or ADD can be prefixed with sixteen conditional mnemonics, which define the
condition code states to be tested for.

So for example:

EQMOV R1, #0x00800000

will only move 0x00800000 into the R1 if the last result of the last data processing instruction was equal and
consequently set the Z flag in the CPSR. The aim of this conditional execution of instructions is to keep a
smooth flow of instructions through the pipeline. Every time there is a branch or jump the pipeline is flushed and
must be refilled and this causes a dip in overall performance. In practice there is a break-even point between
effectively forcing NOP instructions through the pipeline and a traditional conditional branch and refill of the
pipeline. This break-even point is three instructions, so a small branch such as:

if(x<100)
{
 x++;
}

would be most efficient when coded using conditional execution of ARM instructions.

The main instruction groups of the ARM instruction set fall into six different categories, Branching, Data
Processing, Data Transfer, Block Transfer, Multiply and Software Interrupt.

Each ARM (32- bit) instruction can
be prefixed by one of 16 condition
codes. Hence each instruction has
16 different variants.

1 - The ARM7 CPU Core

© Hitex (UK) Ltd. Page 17

1.6.1 Branching

The basic branch instruction (as its name implies) allows a jump forwards or backwards of up to 32 MB. A
modified version of the branch instruction, the branch link, allows the same jump but stores the current PC
address plus four bytes in the link register.

So the branch link instruction is used as a call to a function storing the return address in the link register and the
branch instruction can be used to branch on the contents of the link register to make the return at the end of the
function. By using the condition codes we can perform conditional branching and conditional calling of functions.
The branch instructions have two other variants called “branch exchange” and “branch link exchange”. These
two instructions perform the same branch operation but also swap instruction operation from ARM to THUMB
and vice versa.

This is the only method you should use to swap instruction sets, as directly manipulating the “T” bit in the CPSR
can lead to unpredictable results.

The branch instruction has several forms. The
branch instruction will jump you to a destination
address. The branch link instruction jumps to the
destination and stores a return address in R14.

The branch exchange and branch link exchange
instructions perform the same jumps as branch and
branch link but also swap instruction sets from ARM to
THUMB and vice versa.

1 - The ARM7 CPU Core

© Hitex (UK) Ltd. Page 18

1.6.2 Data Processing Instructions

The general form for all data processing instructions is shown below. Each instruction has a result register and
two operands. The first operand must be a register, but the second can be a register or an immediate value.

In addition, the ARM7 core contains a barrel shifter which allows the second operand to be shifted by a full 32-
bits within the instruction cycle. The “S” bit is used to control the condition codes. If it is set, the condition codes
are modified depending on the result of the instruction. If it is clear, no update is made. If, however, the PC
(R15) is specified as the result register and the S flag is set, this will cause the SPSR of the current mode to be
copied to the CPSR. This is used at the end of an exception to restore the PC and switch back to the original
mode. Do not try this when you are in the USER mode as there is no SPSR and the result would be
unpredictable.

Mnemonic Meaning
AND Logical bitwise AND
EOR Logical bitwise exclusive OR
SUB Subtract
RSB Reverse Subtract
ADD Add
ADC Add with carry
SBC Subtract with carry
RSC Reverse Subtract with carry
TST Test
TEQ Test Equivalence
CMP Compare
CMN Compare negated
ORR Logical bitwise OR
MOV Move
BIC Bit clear
MVN Move negated

These features give us a rich set of data processing instructions which can be used to build very efficiently-
coded programs, or to give a compiler-designer nightmares. An example of a typical ARM instruction is shown
below.

if(Z ==1)R1 = R2+(R3x4)

Can be compiled to: EQADDS R1,R2,R3,LSL #2

The general structure of the data
processing instructions allows for
conditional execution, a logical shift of up
to 32 bits and the data operation all in the
one cycle

1 - The ARM7 CPU Core

© Hitex (UK) Ltd. Page 19

1.6.2.1 Copying Registers

The next group of instructions are the data transfer instructions. The ARM7 CPU has load-and-store register
instructions that can move signed and unsigned Word, Half Word and Byte quantities to and from a selected
register.

Mnemonic Meaning
LDR Load Word
LDRH Load Half Word
LDRSH Load Signed Half Word
LDRB Load Byte
LRDSB Load Signed Byte

STR Store Word
STRH Store Half Word
STRSH Store Signed Half Word
STRB Store Byte
STRSB Store Signed Half Word

Since the register set is fully orthogonal it is possible to load a 32-bit value into the PC, forcing a program jump
anywhere within the processor address space. If the target address is beyond the range of a branch instruction,
a stored constant can be loaded into the PC.

1.6.2.2 Copying Multiple Registers

In addition to load and storing single register values, the ARM has instructions to load and store multiple
registers. So with a single instruction, the whole register bank or a selected subset can be copied to memory
and restored with a second instruction

The load and store multiple instructions allow
you to save or restore the entire register file
or any subset of registers in the one
instruction

1 - The ARM7 CPU Core

© Hitex (UK) Ltd. Page 20

1.7 Swap Instruction

The ARM instruction set also provides support for real time semaphores with a swap instruction. The swap
instruction exchanges a word between registers and memory as one atomic instruction. This prevents crucial
data exchanges from being interrupted by an exception.
This instruction is not reachable from the C language and is supported by intrinsic functions within the compiler
library.

1.8 Modifying The Status Registers

As noted in the ARM7 architecture section, the CPSR and the SPSR are CPU registers, but are not part of the
main register bank. Only two ARM instructions can operate on these registers directly. The MSR and MRS
instructions support moving the contents of the CPSR or SPSR to and from a selected register. For example, in
order to disable the IRQ interrupts the contents of the CPSR must be moved to a register, the “I” bit must be set
by ANDing the contents with 0x00000080 to disable the interrupt and then the CPSR must be reprogrammed
with the new value.

The MSR and MRS instructions will work in all processor modes except the USER mode. So it is only possible
to change the operating mode of the process, or to enable or disable interrupts, from a privileged mode. Once
you have entered the USER mode you cannot leave it, except through an exception, reset, FIQ, IRQ or SWI
instruction.

1.9 Software Interrupt

The swap instruction allows you to exchange the
contents of two registers. This takes two cycles
but is treated as a single atomic instruction so the
exchange cannot be corrupted by an interrupt.

The CPSR and SPSR are not memory-mapped or
part of the central register file. The only instructions
which operate on them are the MSR and MRS
instructions. These instructions are disabled when
the CPU is in USER mode.

1 - The ARM7 CPU Core

© Hitex (UK) Ltd. Page 21

The Software Interrupt Instruction generates an exception on execution, forces the processor into supervisor
mode and jumps the PC to 0x00000008. As with all other ARM instructions, the SWI instruction contains the
condition execution codes in the top four bits followed by the op code. The remainder of the instruction is empty.
However it is possible to encode a number into these unused bits. On entering the software interrupt, the
software interrupt code can examine these bits and decide which code to run. So it is possible to use the SWI
instruction to make calls into the protected mode, in order to run privileged code or make operating system calls.

The Assembler Instruction:

SWI #3

Will encode the value 3 into the unused bits of the SWI instruction. In the SWI ISR routine we can examine the
SWI instruction with the following code pseudo code:

switch(*(R14-4) & 0x00FFFFFF) // roll back the address stored in link reg
 // by 4 bytes
{ // Mask off the top 8 bits and switch

// on result
 case (SWI-1)
 ……

Depending on your compiler, you may need to implement this yourself, or it may be done for you in the compiler
implementation.

The Software Interrupt Instruction forces the CPU into SUPERVISOR mode and jumps the PC to
the SWI vector. Bits 0-23 are unused and user defined numbers can be encoded into this space.

1 - The ARM7 CPU Core

© Hitex (UK) Ltd. Page 22

1.10 MAC Unit

In addition to the barrel shifter, the ARM7 has a built-in Multiply Accumulate Unit (MAC). The MAC supports
integer and long integer multiplication. The integer multiplication instructions support multiplication of two 32-bit
registers and place the result in a third 32-bit register (modulo32). A multiply-accumulate instruction will take the
same product and add it to a running total. Long integer multiplication allows two 32-bit quantities to be
multiplied together and the 64-bit result is placed in two registers. Similarly a long multiply and accumulate is
also available.

Mnemonic Meaning Resolution
MUL Multiply 32 bit result
MULA Multiply accumulate 32 bit result
UMULL Unsigned multiply 64 bit result
UMLAL Unsigned multiply accumulate 64 bit result
SMULL Signed multiply 64 bit result
SMLAL Signed multiply accumulate 64 bit result

1 - The ARM7 CPU Core

© Hitex (UK) Ltd. Page 23

1.11 THUMB Instruction Set

Although the ARM7 is a 32-bit processor, it has a second 16-bit instruction set called THUMB. The THUMB
instruction set is really a compressed form of the ARM instruction set.

This allows instructions to be stored in a 16-bit format, expanded into ARM instructions and then executed.
Although the THUMB instructions will result in lower code performance compared to ARM instructions, they will
achieve a much higher code density. So, in order to build a reasonably-sized application that will fit on a small
single chip microcontroller, it is vital to compile your code as a mixture of ARM and THUMB functions. This
process is called interworking and is easily supported on all ARM compilers. By compiling code in the THUMB
instruction set you can get a space saving of 30%, while the same code compiled as ARM code will run 40%
faster.

The THUMB instruction set is much more like a traditional microcontroller instruction set. Unlike the ARM
instructions THUMB instructions are not conditionally executed (except for conditional branches). The data
processing instructions have a two-address format, where the destination register is one of the source registers:

ARM Instruction THUMB Instruction
ADD R0, R0,R1 ADD R0,R1 R0 = R0+R1

The THUMB instruction set does not have full access to all registers in the register file. All data processing
instructions have access to R0 –R7 (these are called the “low registers”.)

However access to R8-R12 (the “high registers”) is restricted to a few instructions:

MOV, ADD, CMP

The THUMB instruction set does not contain MSR and MRS instructions, so you can only indirectly affect the
CPSR and SPSR. If you need to modify any user bits in the CPSR you must change to ARM mode. You can

The THUMB instruction set is
essential for archiving the
necessary code density to
make small single chip ARM7
micros usable

In the THUMB programmers’ model all
instructions have access to R0-R7. Only a
few instructions may access R8-R12

1 - The ARM7 CPU Core

© Hitex (UK) Ltd. Page 24

change modes by using the BX and BLX instructions. Also, when you come out of RESET, or enter an
exception mode, you will automatically change to ARM mode.

The THUMB instruction set has the more traditional PUSH and POP instructions for stack manipulation. They
implement a fully descending stack, hardwired to R13.

Finally, the THUMB instruction set does contain a SWI instruction which works in the same way as in the ARM
instruction set, but it only contains 8 unused bits, to give a maximum of 255 SWI calls.

The THUMB instruction set has dedicated
PUSH and POP instructions which implement
a descending stack using R13 as a stack
pointer

1 - The ARM7 CPU Core

© Hitex (UK) Ltd. Page 25

1.12 Summary

At the end of this chapter you should have a basic understanding of the ARM7 CPU. Please see the
bibliography for a list of books that address the ARM7 in more detail. Also included on the CD is a copy of the
ARM7 user manual.

2 – Software Development

© Hitex (UK) Ltd. Page 26

2 Chapter 2: Software Development

2.1 Outline

In this book we will be using an Integrated Development Environment from Hitex Development tools and from
Keil Electronik. The Keil IDE is called uVision (pronounced “MicroVision”) and versions already exist for other
popular microcontrollers including the 8051 and the Infineon C16X family. uVision successfully integrates
project management, editor, compiler and debugger in one seamless front-end. The Hitex IDE is called HiTOP
which controls instruction set simulators, JTAG debuggers and also high-end in-circuit emulators for various
microcontroller architectures. HiTOP works with different compilers, in the case of ARM especially with the Keil
and the GNU compiler. Although we are concentrating on the LPC2000 family in this book, the Hitex and Keil
ARM tools can be used for any other ARM7 based microcontroller.

2.2 Which Compiler?

Both, the uVision and the HiTOP development environment can be used with several different compiler tools.
These include the commonly used ARM ADS compiler, the GNU compiler and Keil’s own ARM compiler. In this
book the examples are based on the Keil CA-ARM compiler. However, a parallel set of examples is also
included for the GNU compiler and Appendix A details the differences between the Keil and GNU compilers.
This does beg the question of which compiler to use. First of all the GNU compiler is free, can be downloaded
from the internet and is also included on the CD which comes with this book. So why use an expensive
commercial compiler? Well, before you embark on a full project, it is worth looking at the table of benchmarks
comparing some of the most popular C compilers available for the ARM CPU.

We can see from this simple analysis that the commercial compilers are streets ahead of the GNU tools in terms
of code density and speed of execution. The reasons to use each of the given compilers can be summed up as
follows: if you want the fastest code and standard tools use the ARM compiler, for best code density use the

Keil, if you have no budget or a simple project use the GNU. Since we are writing code for a small single-chip
microcontroller with limited on-chip resources, the obvious choice for us is the Keil ARM compiler. When
deciding on a toolset it is also important to examine how much support is given to a specific ARM7

2 – Software Development

© Hitex (UK) Ltd. Page 27

implementation. Although a toolset may generate code for an ARM7, it may not understand how the ARM7 is
being used in a specific system i.e. LPC2000. Using a “raw” ARM7 will generate code, which will run on the
LPC2000, but you will have to spend time writing the start-up code and struggle with a debugger, which will not
understand the LPC peripherals. This can lead to “fighting” the development tools, which needless to say can be
very frustrating.

2.2.1 uVision IDE

uVision also includes two debug tools. Once the code has been compiled and linked, it can be loaded into the
uVision simulator. This debugger simulates the ARM7 core and peripherals of the supported micro. Using the
simulator is a very good way of becoming familiar with the LPC2000 devices. Since the simulator gives cycle-
accurate simulation of the peripherals, as well as the CPU, it can be a very useful tool for verifying that the chip
has been correctly initialised and that the correct values for things such as timer prescaler values have been
calculated.

However, the simulator can only take you so far and sooner or later you will need to take some inputs from the
real world. This can be done to a certain extent with the simulator scripting language, but eventually you will
need to run your code on the real target. The simulator front end can be connected to your hardware by the Keil
ULINK interface. The ULINK interface connects to the PC via USB and connects to the development hardware
by the LPC2000 JTAG interface. The JTAG interface is a separate peripheral on the ARM7 which supports
debug commands from a host. By using the JTAG you can use the uVision simulator to have basic run control
of the LPC2000 device. The JTAG allows you to download code onto the target, to single step, run code at full
speed, to set breakpoints and view memory locations.

2.2.2 HiTOP IDE

HiTOP supports several different debug tools. You can test generic ARM7 code with the instruction set
simulator and for standard debugger functions in the real hardware, the Tantino system can be used. Unlike the
Keil ULINK, the Tantino supports ARM9 and ARM11 in addition to ARM7. If you are working with large images,
it also has a shorter download time when programming FLASH and there are some more sophisticated
debugging functions such as being able to set and clear breakpoints “on-the-fly”.

The Tantino is connected via USB to the HiTOP IDE and to the LPC2000 microcontroller through a JTAG
connector. Download, FLASH programming and the basic run control of the LPC2000 device can be performed.
In addition to the JTAG connector, the LPC2000 devices have a second debug port called the “Embedded
Trace Module” (ETM). With this ETM connection, an external Trace tool can record the execution of the
microcontroller and the trace recording can be displayed in the HiTOP IDE as high-level language lines,
executed instructions or as executed cycles. The ETM also allows tracing a data flow within the application.
READs and WRITEs to RAM and SFR’s can be recorded in the trace buffer for later analysis. A basic JTAG
cannot access the ETM information so a more complex system called Tanto is used. The features of this
system are discussed in the exercises section but one big advantage is that both the Tantino and Tanto use the
same HiTOP IDE. A CASE tool called StartEasy is supplied with the Hitex tools that allows you to define a
LPC2000 project and generate a project skeleton containing the startup code and initialisation functions for the
peripherals you are going to use. Even if you are not using the Hitex tools, you can download the full version of
StartEasy from the Hitex website.

2.2.3 Tutorial

Included with this book is a demonstration version of the Keil uVision IDE. The installation comes with two
compilers; the Keil ARM compiler and the GNU tools. The tutorial section talks you through example programs
illustrating the major features of the LPC2000. These examples can be run on the simulator, or if you have a
starter kit from Hitex or Keil, they can be downloaded and run on the MCB2100 evaluation board. There are two
sets of examples on the CD, one for the Keil compiler and one for the GNU. The main text concentrates on the

2 – Software Development

© Hitex (UK) Ltd. Page 28

Keil compiler. However, Appendix A describes how to use the GNU compiler and also describes the GNU
version of the exercises up to exercise 6. After exercise 6 you can use the exercise descriptions in the main
text.

As you read through the rest of the book, at the end of each section there will be an exercise described in the
tutorial section which illustrates what has been discussed. The best way to use this book is to read each
section, then jump to the tutorial and do the exercise. This way, by the time you have worked through the book
you will have a firm grasp of the ARM7, its tools and the LPC2000 microcontroller.

2.3 Startup Code

There are multiple ways to write correct startup code. Here we describe the Keil variant, The Hitex variant is
described in the Hitex, Tutorial Exercise 2. In our example project we have a number of source files. In practice
the .C files are your source code, but the file STARTUP.S is an assembler module provided by Keil. As its name
implies, the start-up code is located to run from the reset vector. It provides the exception vector table as well as
initialising the stack pointer for the different operating modes. It also initialises some of the on-chip system
peripherals and the on-chip RAM before it jumps to the main function in your C code. The start-up code will
vary, depending on which ARM7 device you are using and which compiler you have, so for your own project it is
important to make sure that you are using the correct file. The start-up code for the Keil compiler may be found
in C:\keil\ARM\startup and for the GNU use the files in C:\keil\GNU\startup.

First of all the startup code provides the exception vector table as shown below

The vector table is located at 0x00000000 and provides a jump to interrupt service routines (ISR) on each
vector. To ensure that the full address range of the processor is available, the LDR (Load Register) instruction is
used. This loads a constant from a table stored immediately above the vector table. The vector table and the
constants table take up the first 64 bytes of memory. On the LPC2000 this first 64 bytes can be mapped from
several sources, depending on the operating mode of the LPC2000. (This is discussed more fully later on.) The
NOP instruction is used to pad out the vector table at location 0x00000014 which is the location of the ‘missing’
vector. Again this location is used by the LPC2000 bootloader (discussed again later.) You are responsible for
managing the vector table in the startup code as it is not done automatically by the compiler.

Exercise 1: Configuring A New Project
The first exercise covers installing the uVISION (Keil tutorial) or installing StartEasy and HiTOP
(Hitex tutorial) and setting up a first project.

2 – Software Development

© Hitex (UK) Ltd. Page 29

The startup code is also responsible for configuring the stack pointers for each of the operating modes.

Since each operating mode has a unique R13 there are effectively six stacks in the ARM7. The strategy used by
the compiler is to locate user variables from the start of the on-chip RAM and grow upwards. The stacks are
located at the top of memory and grow downwards. The startup code enters each different mode of the ARM7
and loads each R13 with the starting address of the stack

Like the vector table you are responsible for configuring the
stack size. This can be done by editing the startup code
directly, however Keil provide a graphical editor that allows
you to more easily configure the stack spaces. In addition the
graphical editor allows you to configure some of the LPC2000
system peripherals. We will see these in more detail later but
remember that they can be configured directly in the startup
code.

The six on chip stack pointers (R13) are
initialised at the top of on chip memory. Care
must be taken to allocate enough memory for
the maximum size of each stack

Exercise 2: Startup code
The second exercise in the Keil or Hitex tutorial takes you through allocating space for each
processor stack and examines the vector table.

2 – Software Development

© Hitex (UK) Ltd. Page 30

2.4 Interworking ARM/THUMB Code

One of the most important things that we need to do in our application code is to interwork the ARM and
THUMB instruction sets. In order to allow this interoperability, ARM have defined a standard called the ARM
THUMB Procedure Call Standard (ATPCS). The ATPCS defines among other things how functions call one
another, how parameters are passed and how stacks are handled. The APCS adds a veneer of assembler code
to support various compiler features. The more you use, the larger these veneers get. In theory the APCS
allows code built in different toolsets to work together so that you can take a library compiled by a different
compiler and use it with the Keil toolset.

The APCS splits the register file into a number of regions: R0 to R3 are used for parameter passing between
functions. If you need to pass more than 16 bytes then spilled parameters are passed via the stack. Local
variables are allocated R4 – R11 and R12 is reserved as a memory location for the intra-call veneer code. In the
Keil compiler all code is built for interworking and the global instruction set is the THUMB, so all code will be
compiled as THUMB instructions (except for interrupt code which defaults to ARM.) This global default can be
changed in the “Options for Target” menu. In the CC tab uncheck the “use THUMB code” box and the default
instruction set will be ARM. In addition the programmer can force a given function to be compiled as ARM or

THUMB code. This is done with the two
programming directives #Pragma ARM
and #pragma THUMB as shown below.
The main function is compiled as ARM
code and calls a function called
THUMB_function, (No prizes for
guessing that this function is compiled in
the 16 bit instruction set.)

The ARM procedure call standard defines how the
user CPU registers should be used by compilers.
Adhering to this standard allows interworking
between different manufacturers tools

2 – Software Development

© Hitex (UK) Ltd. Page 31

#pragma ARM // Switch to ARM instructions

int main(void)
{
 while(1)
 {
 THUMB_function(); //Call THUMB function
 }
}

#pragma THUMB //Switch to THUMB instructions

void THUMB_function(void)
{
 unsigned long i,delay;

 for (i = 0x00010000;i < 0x01000000 ;i = i<<1) //LED FLASHer
 {
 for (delay = 0;delay<0x000100000;delay++) //simple delay loop
 {
 ;
 }
 IOSET1 = i; //Set the next led
 }
 }

It is also possible to declare individual functions as either ARM or THUMB functions by using the following
declarations on the function prototype:

int ARM_FUNCTION (int my_var) __THUMB
{
 ….
}

int THUMB_FUNCTION (int my_var) __THUMB
{
 ….
}

Exercise 3: Interworking
The next exercise demonstrates setting up a project which interworks ARM and THUMB code.

2 – Software Development

© Hitex (UK) Ltd. Page 32

2.5 STDIO Libraries

The high-level, formatted IO functions in the STDIO library, such as printf and scanf, are directed at UART0 on
the LPC2000. It is up to the programmer to initialise the UART to the correct BAUD rate. Once this is done it is
possible to use these high- level functions to stream data to a terminal program on a PC for example. The
STDIO functions use two low-level drivers to send and receive a single character to the conio, the UART in this
case. The two functions are called putchar and getchar and the source for them is available in serial.c in the Keil
lib directory. By adding this file to your project the default library version is ignored and the code in serial.c is
used in its place. So, by rewriting the putchar and getchar routines, the high level printf and scanf function can
be redirected to any IO device you want to use, such as an LCD and keypad. Bear in mind that the high level
STDIO functions are quite bulky and should only be used if your application is very I/O driven.

2.6 Accessing Peripherals

Once we have built some code and got it running on an LPC2000 device, it will at some point be necessary to
access the special function registers (SFR) in the peripherals. As all the peripherals are memory-mapped, they
can be accessed as normal memory locations. Each SFR location can be accessed by ‘hardwiring’ a volatile
pointer to its memory location as shown below.

#define SFR (*((volatile unsigned long *) 0xFFFFF000))

The Keil compiler comes with a set of include files which define all the SFR’s in the different LPC2000 variants.
Just include the correct file and you can directly access
the peripheral SFR’s from your C code. The names of the include files are:

LPC21xx.h
LPC22xx.h
LPC210x.h

Exercise 4: STDIO
This exercise demonstrates the low-level routines used by printf and scanf and configures
them to read and write to the on-chip UART.

2 – Software Development

© Hitex (UK) Ltd. Page 33

2.7 Interrupt Service Routines

In addition to accessing the on-chip peripherals, your C code will have to service interrupt requests. It is
possible to convert a standard function into an ISR, as shown below:

void fiqint (void) __fiq
{
 IOSET1 = 0x00FF0000; // Set the LED pins
 EXTINT = 0x00000002; // Clear the peripheral interrupt flag
}

The keyword __fiq defines the function as a fast interrupt request service routine and so will use the correct
return mechanism. Other types of interrupt are supported by the keywords __IRQ, __SWI, __ABORT. As well
as declaring a C function as an interrupt routine, you must link the interrupt vector to the function.

Vectors: LDR PC,Reset_Addr
 LDR PC,Undef_Addr
 LDR PC,SWI_Addr
 LDR PC,PAbt_Addr
 LDR PC,DAbt_Addr
 NOP /* Reserved Vector */
; LDR PC,IRQ_Addr
 LDR PC,[PC, #-0x0FF0] /* Vector from VicVectAddr */
 LDR PC,FIQ_Addr

Reset_Addr: DD Reset_Handler
Undef_Addr: DD Undef_Handler?A
SWI_Addr: DD SWI_Handler?A
PAbt_Addr: DD PAbt_Handler?A
DAbt_Addr: DD DAbt_Handler?A
 DD 0 /* Reserved Address */
IRQ_Addr: DD IRQ_Handler?A
FIQ_Addr: DD FIQ_Handler?A

The vector table is in two parts. First there is the physical vector table, which has a Load Register Instruction
(LDR) on each vector. This loads the contents of a 32-bit wide memory location into the PC, forcing a jump to
any location within the processor’s address space. These values are held in the second half of the vector table,
or the constants table which follows immediately after the vector table. This means that the complete vector
table takes the first 64 bytes of memory. The Keil startup code contains predefined names for the Interrupt
Service Routines (ISR). You can link your ISR functions to each interrupt vector by using the same name as
your C function name. The table below shows the constants table symbols and the corresponding C function
prototypes which should be used.

Exception source Constants table C function prototype
Undefined Instruction Undef_Handler?A void Undef_Handler (void) __abort
Prefetch Abort PAbt_Handler?A void Pabt_Handler (void) __abort
Data Abort DAbt_Handler?A void Dabt_Handler (void) __abort
Fast Interrupt FIQ_Handler?A void FIQ_Handler (void) __fiq

The SWI and IRQ exceptions are special cases, as we will see later. The ?A is used to tell the linker that the
corresponding function should be compiled with the ARM instruction set ?T is used for the THUMB instruction
set. Only the IRQ and FIQ interrupt sources can be disabled. The protection exceptions (Undefined instruction,
Prefetch Abort, and Data abort) are always enabled. Consequently these exceptions must always be trapped. If
you do not declare a corresponding C function for these interrupt sources, then the compiler will default to using
a tight loop to trap any entry to these exceptions.

 Pabt_Handler: B Pabt Handler ; Branch self!

Default handling of exceptions
for which no C function has
been declared

Exercise 5: Exception Handling
In this exercise we configure a C routine to be a simple interrupt and see it working in the debugger. Later
on we will see how the LPC2000 hardware is configured to service interrupts.

2 – Software Development

© Hitex (UK) Ltd. Page 34

2.7.1 Software Interrupt

The Software Interrupt exception is a special case. As we have seen, it is possible to encode an integer into the
unused portion of the SWI opcode.

#define SWIcall2 asm{ swi#2}

However, in the Keil CA ARM compiler, there is a more elegant method of handling software interrupts. A
function can be defined as a software interrupt by using the following non ANSI keyword adjacent to the function
prototype:

int Syscall2 (int pattern) __swi(2)
{
 ……….
}

In addition the assembler file SWI_VEC.S must be included as part of the project.

Now when a call is made to the function an SWI instruction is used, causing the processor to enter the
supervisor privileged mode and execute the code in the SWI_VEC.S file. This code determines which function
has been called and handles the necessary parameter passing. This mechanism makes it very easy to take
advantage of the exception structure of the ARM7 processor and to partition code which is non-critical code
running in user mode, or privileged code such as a BIOS or operating system. In the tutorial section we will take
a closer look at how this works.

2.8 Locating Code In RAM

As we shall see later, the main performance bottleneck for the ARM7 CPU is fetching the instructions to execute
from the FLASH memory. The LPC2000 has special hardware to solve this problem for the on-chip FLASH.
However if you are running from external FLASH you are stuck with the access time of the external FLASH.
One trick is to boot the executable code into fast RAM and then run from this RAM. This means that you need to
compile position-independent code which can be copied into the RAM, or compile code so that it runs in the
RAM and is loaded by a separate bootloader program. Both of these solutions will work, but require extra effort
to develop. Fortunately the Keil compiler has a directive which defines a function as a RAM function. The startup
code will copy the function into RAM and the linker will resolve all calls to it as being located in the defined RAM
area. The function declaration is shown below

 int RAM_FUNCTION (int my_VAR) __ram
 {
 ….
 }

It is also necessary to define which section of memory will be used to hold these functions. This is done by
declaring a section of the RAM as executable RAM or ERAM. This declaration makes use of the classes
directive to allocate a region of RAM to contain all the executable RAM functions.

Exercise 6: Software Interrupt
The SWI support in the Keil compiler is demonstrated in this example. You can easily partition code
to run in either the user mode or in supervisor mode.

2 – Software Development

© Hitex (UK) Ltd. Page 35

The basic syntax is shown below:

ERAM (0x40000000 – 0x40000FFF)

This entry should be made in the LA Locate dialogue of the options for target menu.

The compiler does not check if your RAM function is calling functions or library functions which are not also
stored in the RAM. So if your “fast “RAM function makes calls to a maths routine stored in the FLASH memory,
you may not get the performance you were expecting. This method of locating functions in RAM is not only
simple and easy to use, it has the added advantage that the linker knows where the function will finally end up
and can place the debug symbols at the correct address. This will give you not only a ROMable image which will
run standalone, but also an image which can be debugged.

2.9 Inline Functions

It is also possible to increase the performance of your code by inlining your functions. The inline keyword can be
applied to any function as shown below

 void NoSubroutine (void) __inline
 {
 …
 }

When the inline keyword is used the function will not be coded as a subroutine, but the function code will be
inserted at the point where the function is called, each time it is called. This removes the prologue and epilogue
code which is necessary for a subroutine, making its execution time faster. However, you are duplicating the
function every time it is called, so it is expensive in terms of your FLASH memory.

2 – Software Development

© Hitex (UK) Ltd. Page 36

2.10 Operating System Support

If you are using an operating system for the LPC2000, the OS is likely to take care of the system stacks and
context switching. To avoid duplicating this by the compiler, it is possible to declare a function as a task within
the operating system. This causes the compiler to just translate the code within the function and not to add the
normal prologue and epilogue code which saves and restores registers to the stack. A function may be declared
as a task as shown below

 void AnalogueSample(void) __task
 {
 ….
 }

2.11 Fixing Objects At Absolute Locations

The compiler also allows you to fix any C object, such as a variable or a function at any absolute memory
location. The compiler has an extension to the C language as shown below

 int checksum __at 0x40000000;

Variables declared using this keyword cannot be initialised by the startup code. You must also be careful to fix
variables on the correct boundaries, or you will get a memory abort. (For example if an integer is located at an
uneven memory address.)

2.12 Inline Assembler

The compiler also allows you to use ARM or THUMB Assembler instructions within a C file. This can be done as
shown below:

__asm { mov r15,r2; }

This can be useful if you need to use features which are not supported by the C language, for example the MRS
and MSR instructions.

2 – Software Development

© Hitex (UK) Ltd. Page 37

2.13 Hardware Debugging Tools

Philips have designed the LPC2000 to have the maximum on-chip debug support. There are several levels of
support. The simplest is a JTAG debug port. This port allows you to connect to the LPC2000 from the PC for a
debug session. The JTAG interface allows you to have basic run control of the chip. That is, you can single step
lines of code, run halt and set breakpoints and also view variables and memory locations once the code is
halted.

In addition, Philips has included the ARM embedded trace module. The embedded trace module provides much
more powerful debugging options and real time trace, code coverage, triggering and performance analysis
toolsets. In addition to more advanced debug tools, the ETM allows extensive code verification and software
testing which is just not possible with a simple JTAG interface. If you are designing for safety critical
applications, this is a very important consideration.

The final on-chip debug feature is the Real Time Monitor. This is a kernel of code which is resident in a reserved
area of memory. During a debug session the debugger can start the real monitor via the JTAG port. The real
monitor can be used to provide “on the fly” updates as your code is running. This process is pseudo real time in
that the real monitor code interrupts your code and uses some processor time to read and communicate debug
information to the PC.

Debug support on the LPC2000 includes a JTAG port for Flash programming and basic run control
debugging.

In addition to the JTAG port Philips have included the ARM ETM
module for high end debugging tools

2 – Software Development

© Hitex (UK) Ltd. Page 38

2.13.1.1 Important!

The JTAG and ETM tools simply provide a fairly “dumb” serial debug connection to the ARM7 core. A generic
ARM JTAG tool does not have any understanding of the overall LPC2000 architecture. This means that a
generic tool will always enter the bootloader after reset because it does not write the “program signature” into
the FLASH (this feature is discussed later) and consequently will never run your code. If you are new to the
LPC2000 this is likely to catch you out and be very frustrating. Since the Keil tools are developed for ARM7
based general purpose microcontrollers MicroVision (“uVision”) understands the LPC2000 memory architecture
and will debug the device seamlessly.

2.13.1.2 Even More Important

As mentioned above, the JTAG port is a simple serial debug connection to the ARM7 device. It is very important
to understand its behaviour during reset. If the ARM7 CPU is reset, all of the peripherals including the JTAG are
reset. When this happens the ULINK debugger loses control of the chip and has to re-establish control once the
LPC2000 device comes out of reset. This will take a finite number of clock cycles. While this is happening, any
code which is on the chip will be run as normal. Once the ULINK gets back control of the chip, it performs a soft
reset by forcing the PC back to address zero. However, the on-chip peripherals are no longer in the reset
condition ie peripherals will be initialised, interrupt enabled etc. You must bear this in mind if the application you
are developing could be adversely affected by this. A quick solution is to place a simple delay loop in the startup
code or at the beginning of main(). After a reset occurs, the CPU will be trapped in this loop until the ULINK
regains control of the chip. None of the application code will have run, leaving the LPC2000 in its initialised
condition.

2.14 Summary

So, by the end of this section you should be able to set up a project in the Keil uVision IDE, select the compiler
and LPC2000 variant you want to use, configure the startup code, be able to interwork the ARM and THUMB
instruction sets, access the LPC2000 peripherals and write C functions to handle exceptions. With this
grounding we can now have a look at the LPC2000 system peripherals.

3 – System Peripherals

© Hitex (UK) Ltd. Page 39

3 Chapter 3: System Peripherals

3.1 Outline

Now that we have some familiarity with the ARM7 core and the necessary development tools, we can begin to
look at the LPC2000 devices themselves. In this section we will concentrate on the system peripherals, that is to
say the features which are used to control the performance and functional features of the device. This includes
the on-chip flash and SRAM memory, the external bus interface which is present on the LPC22xx devices, the
phase locked loop which is used to multiply the external oscillator in order to provide a maximum of 60MHz
processor clock and the power control features. Finally, we will take a look at the simplest user interrupt source,
the external interrupt pins, before going on to look at the exception system in detail in the next section.

3.2 Bus Structure

To the programmer, the memory of all LPC2100 devices is one contiguous 32 bit address range. However, the
device itself is made up of a number of buses. The ARM7 core is connected to the Advanced High performance
Bus (AHB) defined by ARM. As its name implies, this is the fastest way of connecting peripheral devices to the
ARM7 core. Connected to the AHB is the vector interrupt controller and a bridge to a second bus called the
VLSI peripheral bus (VPB). Since the Interrupt vector controller is responsible for managing all the device
interrupt sources, it is connected to the ARM7 core by the fastest bus.

All the remaining user peripherals are connected to the VPB. The VBP bridge contains a clock divider, so the
VPB bus can be run at a slower speed than the ARM7 core and the AHB. This is useful for two reasons. Firstly,
we can run the user peripherals at a slower clock rate than the main processor to conserve power. Secondly it
gives Philips the option of adding a slower peripheral to the LPC2000 family without it becoming a bottleneck on
the AHB bus. Currently all the on-chip peripherals are capable of running at 60MHz so the VPB bus can be set
to the same speed as the AHB bus. It is important to note that after reset the VPB divider is set to divide down
the AHB clock by four, so all the on-chip peripherals will be running at ¼ the CPU clock frequency.

Finally, there is a third local bus which is used to connect the on-chip Flash and RAM to the CPU. Connection of
the program code and data store to the ARM7 CPU via the AHB bus is possible, but this introduces some
execution stalls because of contention on the bus. Using a separate local bus removes the possibility of these
stalls to give the best processor performance.

Although the LPC2000 has a linear
address space there are several
internal buses. It is important to be
aware of the difference between them
and how the performance of the
processor is affected

3 – System Peripherals

© Hitex (UK) Ltd. Page 40

3.3 Memory Map

Despite the number of internal buses, the LPC2000 has a completely linear memory map. The general layout is
shown below.

The on-chip flash is fixed at 0x00000000 upwards with the user RAM fixed at 0x4000000 upwards. The
LPC2000 is pre-programmed at manufacture with a FLASH bootloader and the ARM real monitor debug
program. These programs are placed in the region 0x7FFFFFF – 0x8000000. The region between 0x8000000
and 0xE000000 is reserved for external memory. Currently the LPC22xx devices are capable of addressing
external memory via four chipselects each with a 16 Mbyte page.

The user peripherals located on the VPB are all mapped into the region between 0xE000000 and 0xE020000
and each peripheral is allocated a 16K memory page. Finally the Vector Interrupt Unit is located at the top of the
address range at 0xFFFFF000.

If your user code tries to access memory outside these regions, or non-existent memory within them, an abort
exception will be produced by the CPU. This mechanism is hardwired into the design of the processor and
cannot be changed or switched off.

The memory map of the LPC2000 includes
regions for on chip flash memory user SRAM, a
pre- programmed bootloader, external bus and
user peripherals.

All the user peripherals are located on
the VLSI peripheral bus. Each
peripheral has a 16K address range
for its registers.

3 – System Peripherals

© Hitex (UK) Ltd. Page 41

3.4 Register Programming

Before we start our tour through the system block, it is worth noting how Special Function Registers (SFR) are
programmed on ARM7 chips.

Each underlying SFR is controlled by three user registers. A Set register which is used to set bits, a Clear
register which is used to clear bits by writing a logic 1 to the bits you wish to clear and a Status register which is
used to read the current contents of the register. The most common mistake made when new to the LPC2100 is
to write zero into the Clear register which has no effect.

3.5 Memory Accelerator Module

The Memory Accelerator Module (MAM) is the key to the high instruction execution rate of the LPC2100 family.
The MAM is present on the local bus and sits between the FLASH memory and the ARM7 CPU.

One of the main constraints in designing a high performance, single-chip microcontroller based on the ARM7 is
the access time to the on-chip FLASH memory. The ARM CPU is capable of running up to 80MHz, however the
on-chip FLASH has an access time of 50ns. Consequently, just running out of the FLASH would limit the
execution speed to 20MHz (a quarter of the possible clock rate of the processor.) There are a number of ways
round this problem. The simplest is to load the critical sections of your program into RAM and run out of RAM.
As the RAM has a much faster access time, our overall performance will be greatly increased. The down side is
that on-chip RAM is a finite and precious resource. Using it to hold program instructions greatly limits the size of
application code which we could run. Another approach would be to have an on-chip cache. A cache is a small
region of memory placed between the processor and memory store, which stores regions of recently referenced
main memory. In a well-designed cache, the processor will use the cache memory whenever possible, thus
reducing the bottleneck imposed by slow memory. However, a full cache is a complex peripheral that demands

As a general rule all Special
Function Registers originating from
ARM are controlled by three
registers: a Set, Clear and Status
register.

NB To clear bits you must write a
logic 1 to the relevant bit in the
clear register.

Running from on chip FLASH is a performance
bottleneck for all ARM7 implementations. Philips
have added a Memory Accelerator Module which
greatly enhances the performance of the ARM7 CPU

3 – System Peripherals

© Hitex (UK) Ltd. Page 42

a high number of gates and consequently a large portion of the LPC2000 die area. This flies in the face of the
ARM7 design, which has simplicity as its watchword. Another downside of a full cache is that the runtime of
code using the cache is no longer deterministic and could not be used by any application that required
predictability and repeatability.

The Memory Accelerator Module is a compromise between the complexity of a full cache and the simplicity of
allowing the processor to directly access the FLASH memory.

Like a cache, the MAM attempts to have the next ARM instruction in its local memory in time for the CPU to
execute. First of all the FLASH memory is split into two banks which are 128 bits wide and can be independently
accessed . This means that a single FLASH access can load four ARM instructions or eight THUMB
instructions. User code is interleaved between the two banks, so during sequential code execution the code
fetched from one bank into the MAM is being executed, while the next 128 bits of instructions from the second
bank is being perfected. This ensures that it will be ready for execution once the last 128 bits has been
executed. This technique works particularly well with the ARM instructions, which can use the condition codes to
iron out small branches in order to keep the code-flow largely linear. In the case of small loops and jumps the
MAM has branch and trail buffers that hold recently loaded instructions which can be re-executed if required.

The complexities of the MAM are transparent to the user and it is configured by two registers, the timing register
and the control register. There are some additional registers to provide runtime information on the effectiveness
of the MAM. The timing register is used to control to relationship between the CPU clock and the FLASH access
time. By writing to the first three bits of the timing register you can specify the number of CPU clock cycles
required by the MAM to access the FLASH. As the FLASH has an access time of 20 MHz and the CPU clock
can be set to a maximum of 60MHz, the number of cycles required to access the FLASH is 3. So, for each three
CPU cycles, we can load four instructions which keep the MAM ahead of the game. The MAM configuration
register is used to define the operating mode of the MAM.

The FLASH memory is arranged as two
interleaved banks of 128 bit wide memory.
One flash access from the MAM loads four
ARM instructions or eight THUMB
instructions which can be executed by the
ARM7 CPU

3 – System Peripherals

© Hitex (UK) Ltd. Page 43

On reset the MAM is disabled and all access to code and constant data are made directly to the FLASH. It is
possible to partially enable the MAM so that all sequential code is fetched from it, but branches and constant
data stored in the FLASH are accessed directly from the FLASH. Finally, the MAM may be fully enabled so that
it fetches all FLASH memory accesses from the MAM. The reason for these modes is that, like a cache code,
running from the MAM is not deterministic, so we have the option to switch it off or reduce its impact if we need
to guarantee the run time of our application code. However, even in its full operating mode the impact of the
MAM is not as great as a cache. It is possible to predict runtime performance particularly with the ‘use
performance analysis’ features in development tools.

To help with this analysis and also to gauge the effectiveness of the MAM, there are a group of statistical
registers which can be used to measure the MAM’s performance.

The Statistics registers are based around two counters which record the accesses made to the FLASH and the
accesses made to the MAM buffers. The statistical control register can further refine the type of access which
will cause the counters to increment. By configuring the statistical control register we can differentiate between
code constant and instruction fetches, so it is possible to determine the instruction or data hit rate or the
combined instruction and data hit rate. These metrics can give us some information on the efficacy of the MAM
with our application. On the CD there is a simple example which demonstrates the use of the MAM, its statistical
registers and demonstrates how vital it is to the overall performance of the LPC2000 family.

The MAM has some statistics
registers which show the number of
accesses to the FLASH and the
number of accesses to the MAM so
the effectiveness of the MAM can be
calculated

3 – System Peripherals

© Hitex (UK) Ltd. Page 44

3.5.1 Example MAM Configuration

The example code shown below starts the LPC2000 with the PLL set to 60MHz and the MAM disabled. The
code FLASHes each LED in sequence with a delay loop between each increment. An A/D conversion is also
done and if the result is above 0x00000080, the code enables the MAM for maximum execution speed. The
effect of the MAM can be seen on the update rate of the LEDs. In the next section we will look at burning the
code into the FLASH to observe its operation.

int main(void)
{
 unsigned int delay;
 unsigned int FLASHer = 0x00010000; // define locals

 IODIR1 = 0x00FF0000; // set all ports to output
 VPBDIV = 0x02;
 ADCR = 0x00270601; // Setup A/D: 10-bit AIN0 @ 3MHz
 ADCR |= 0x01000000; // Start A/D Conversion

 while(1)
 {
 do
 {
 val = ADDR; // Read A/D Data Register
 }

 while ((val & 0x80000000) == 0);
 val = ((val >> 6) & 0x03FF);

 if (val <0x80)
 {
 MAMCR = 0;
 MAMTIM = 0x03;
 MAMCR = 0x02;
 }
 else
 {
 MAMCR = 0x0;
 }
 for(delay = 0;delay<0x100000;delay++) //simple delay loop
 {
 ;
 }

 ChangeGPIOPinState(FLASHer); //set the state of the ports
 FLASHer = FLASHer <<1; //shift the active led

 if(FLASHer&0x01000000)
 {
 FLASHer = 0x00010000;//Increment FLASHer led and test for
 // overflow
 }
 }
}

void ChangeGPIOPinState(unsigned int state)
{

IOCLR1 = ~state; //clear output pins
IOSET1 = state; //set output pins

}

3 – System Peripherals

© Hitex (UK) Ltd. Page 45

3.6 FLASH Memory Programming

Although the internal FLASH is arranged as two interleaved banks, you will be relieved to know that, to the user,
it can be treated as one contiguous memory space and no special tools are required to prepare the code prior to
programming the chip. In terms of programming the FLASH, to the user it appears as a series of 8K sectors
which can be individually erased and programmed. There are several methods which can be used to program
the on-chip FLASH. The easiest is by the built-in bootloader which allows your code to be downloaded via
UART 0 into RAM and then be programmed into the FLASH. It is also possible to use a JTAG development tool
to program the memory. This is useful during development because it can be done from the debugging
environment without the need to keep switching between debugger and bootloader. Also, the JTAG connection
can be very fast, up to 400Kbytes/sec download, so in large applications, particularly those using external
FLASH memory, it can be the best method of production programming. Finally it is also possible to reprogram
sections of the FLASH memory under command of the application already on the chip. This, in application
programming, can use any method to load the new code onto the chip (SPI CAN I2C) and then load it into a
given section of FLASH. So there is an easy to use mechanism which allows field updates to your application.

3.6.1 Memory Map Control

Before looking at the operation of the bootloader we must first understand the different memory modes available
on the LPC2100. As we have seen, the ARM7 interrupt vector table and its constants table take up the first 64
bytes of memory. In the LPC2000 these first 64 bytes may be mapped from a number of locations, depending
on the mode set in the MEMMAP register. It is important to note that these modes have nothing to do with the
ARM7 operating modes. The MEMMAP register allows you to select between boot mode, FLASH mode, RAM
mode and External memory mode. When selected, a new vector table will be mapped into the first 64 bytes of
memory. So for the RAM mode the contents of 0x4000000- 0x400003F will be mapped to the start of memory.
This allows a program to be loaded into RAM starting at 0x4000000 and the vector table can then be redirected,
thus allowing the program and its interrupts to run in RAM. This mode is normally only used for debugging small
programs. FLASH mode leaves the first 64 bytes of user FLASH unchanged and is the normal mode for user
applications. Boot mode replaces the first 64 bytes of FLASH with the vector table for the bootloader and places
a jump to the on-chip bootloader on the reset vector.

The MEMMAP register maps the first 64 bytes of memory
from one of four regions,

3 – System Peripherals

© Hitex (UK) Ltd. Page 46

3.6.2 Bootloader

Every time the LPC2000 comes out of reset its memory map will be in boot mode, so the instruction on the reset
vector will cause it to jump into the bootloader code entry point at 0x7FFFFFFF. This can be the bane of new
users if they load their code into FLASH with a JTAG, reset and single step the first instruction only to find that
the program counter is at some wild high address. If this happens, you need to program the MEMMAP register
to 0x00000002, to force the chip into FLASH mode and return the user vector table.

Once the bootloader code has been entered, it will perform a number of checks to see if the FLASH needs to be
programmed. First the watchdog is checked to see if the processor has had a hard reset of a soft reset. If it is a
hard reset, the logic level on pin0.14 will be tested. If it is low, then the bootloader command handler will be
entered. If it is a soft reset (ie watchdog timeout) or pin 0.14 is high, then there is no external request to
reprogram the FLASH. However, before handing over to the user application, the bootloader will check to see if
there is a valid user program in FLASH. In order to detect if a valid program is present, every user program must
have a program signature. This signature is a word-wide number that is stored in the unused location in the
ARM7 vector table at 0x00000014. The program signature is the two’s compliment of the checksum of the
ARM7 vector table

When this value is summed with the program signature the result will be zero for a valid program. If a valid
program is detected, the memory operating mode is switched to FLASH, which restores the user vector table,
the program counter is forced to zero and the user application starts execution. If there is no valid program, then
the bootloader enters its command handler. So, without the program signature your code will never run! The
program signature can be added to your startup code as shown below:

 LDR PC, Reset_Addr
 LDR PC, Undefined_Addr
 LDR PC, SWI_Addr
 LDR PC, Prefetch_Addr
 LDR PC, Abort_Addr

 .long 0xB8A06F58 /* Program signature */
 LDR PC, IRQ_Addr
 LDR PC, FIQ_Addr

3.6.3 Philips ISP Utility

If there is a valid program signature, or pin 0.14 is held low after reset, the LPC2000 will start the bootloader.
Before handing over to the command handler it enters an auto-Baud routine. This routine listens on UART 0 for
a synchronisation character. When this is sent by the host, the LPC2000 measures the bit period and adjusts
the UART 0 Baud rate generator to match the host. Once this is done some further handshaking and
configuration takes place and then control is passed to the command handler.

The Bootloader command handler takes commands from UART0 in ASCII format. The command set is shown
below and allows you full programming control of the FLASH. In addition the GO command is a simple

The program signature is calculated as
the two’s compliment of the checksum
of the vector table. This signature must
be stored in the unused vector at
0x00000014 or your program will not run

3 – System Peripherals

© Hitex (UK) Ltd. Page 47

debugging command which can be used to start execution of code loaded into RAM. A full description of the
bootloader communication protocol is given in the LPC2000 datasheet.

Philips provide a ready made FLASH In System Programming utility for the PC which can be used to program
the development board. This tool automatically calculates and adds the program signature to your code, to
ensure that your program will run. If you are using this tool to program the FLASH, your code should have a
NOP instruction on the unused vector for this tool to work correctly.

Exercise 7: Memory Accelerator Module and Flash Programming Utility
This exercise describes the use of the Philips Flash programming tool to load a simple program into
the LPC2000. This program runs without the MAM switched on. By adjusting the A/D value the MAM
is enabled so we can see the performance increase caused by this important peripheral.

3 – System Peripherals

© Hitex (UK) Ltd. Page 48

3.6.4 In-Application Programming

It is also possible to reprogram the FLASH memory from within your program. All of the bootloader commands
are available as an on-chip API and can be called by your code. To access the bootloader functions you must
set up a table in RAM which contains a command code for the function you want to use followed by its
parameters. The start address of this table is stored in R0. The start address of a second table which contains
the status code and function results is stored in R1.

The IAP entry point is at 0x7FFFFFF0 if you wish to call the functions from a THUMB function or at
0x7FFFFFF1 if you wish to enter from an ARM function. The return address is expected to be stored in the link
register. This convention is designed to work within the ARM procedure call standard. A method of calling the
IAP routines through function pointers is detailed in the datasheet. An alternative method is shown below and
both methods are used in the example program. If you are short of program space you can experiment with both
methods to see which is the most efficient in your compiler.

If we define a THUMB function with three parameters as shown below.

void iap (unsigned *cmd, unsigned *rslt, unsigned entry)
{
 asm("mov r15,r2");
}

We can pass the start address of a command and result array and by the APCS convention these values will be
stored in R0 and R1. We can also store the address of the entry point to the IAP routines in the next available
parameter register R2. In THUMB mode we cannot program the high registers directly, but we can move low
registers to high registers, hence we can move the contents of R2 directly into the program counter and initiate
the requested In Application Programming routine. When the IAP routine has finished, it will return to your
application code using the value stored in the link register, which is the next instruction in the function which
called our void IAP (…) function. You should also note that the In Application functions return in ARM mode not
THUMB. The IAP functions require the top 32 bytes of on-chip RAM, so you must either locate the stacks to
start below this region so it is unused, or, if you need all the RAM, place the IRQ stack at the top of memory and
disable interrupts before you enter the IAP routines. Using a pointer you can now copy the top 32 bytes of on-
chip SRAM into a temporary array and then restore them once you return from the IAP functions. This way you
will not risk corrupting any stacked data.

The bootloader functions can be
accessed to perform In application
programming. Commands are passed
via two tables in memory. The start
addresses for each table are stored in R0
and R1

3 – System Peripherals

© Hitex (UK) Ltd. Page 49

3.7 External Bus Interface

The LPC22xx variants have an External Memory Controller (EMC). When enabled, the EMC provides four
chipselects from 0x80000000. Each chipselect has a fixed 16Mbyte address range and a programmable wait
state generation and can be programmed as an 8,16 or 32-bit wide bus. As well as allowing additional memory
and peripheral devices to be interfaced to the LPC22xx devices, it is possible to boot the chip from external
FLASH memory located on chip select zero.

3.7.1 External Memory Interface

The External Memory Interface of the LPC22xx devices is shown below.

The data bus uses port 2 GPIO pins 2.0 – 2.31 and the address bus uses Port 3 GPIO pins 3.0 – 3.23. The
remainder of port 3 is used for the Chipselects 1 – 3, the bytelane select pins and the write enable signal. The
remaining signal Chipselect 0 and output enable are on port 1. The two boot pins are multiplexed with the
databus pins D26 and D27. Depending on the state of these pins at reset, the LPC22xx variants can boot from
internal FLASH or any width of memory connected to Chipselect zero. The table below shows the states the
pins should be held in to boot from a particular device. These two pins are fitted with weak internal pull up
resistors which ensure the device will boot from internal FLASH in its default condition.

The LPC22xx datasheet shows basic schematics for the most common memory interfacing options. However,

we will consider a practical example of interfacing external FLASH and static RAM onto a 32-bit bus. The
FLASH memory we will use is the AMD AM29LV320DT. This is a 32 megabit FLASH memory which can be
arranged as 4M by 8 bits, or 2M by 16 bits. For the RAM we will use a K6F1616U6A which is a 1M by 16 bit
static RAM. Both these devices are designed for low power applications and the programming algorithm is
supported by the ULINK JTAG interface. The FLASH is connected to Chipselect 0 and the RAM is connected to
Chipselect 1. The schematic for each Chipselect is shown below.

3 – System Peripherals

© Hitex (UK) Ltd. Page 50

Two of the 29LV320DT devices are arranged as 16-bit wide memories to give a 2M page of 32-bit wide FLASH
memory. The byte# pin is pulled high on each device to enable the 16-bit mode. The FLASH device is designed
to be a boot sector device and consequently has an option to protect the top and bottom sectors so that they
cannot be corrupted. This feature is enabled by pulling the |WP/ACC pin low. Since we do not want this feature,
the pin is pulled high allowing us to reprogram any sector of the FLASH memory. We are also not using the
Ready/Busy output, so this is also tied high. The remaining control signals reset, Output enable (OE), Write
Enable (WE) and Chip Enable are connected directly to the processor. As the memory is to be arranged word-
wide (32 bits) we need to be able to address it every quad bytes, hence A0 and A1 are not used. If it is
necessary to add more memory onto this chipselect the 29LV320 can be replaced with a XXX to give a 4M
page of word-wide memory. To access the full 16 Mbyte address range, a duplicate pair of devices can be
added and the chipselect gated with A23 to provide a chipselect for each half of the memory page.

3 – System Peripherals

© Hitex (UK) Ltd. Page 51

The RAM is interfaced to the address bus in a similar fashion using Chipselect1 except the devices are 1 Mbyte
in size so we are using A2 to A21. Further devices can be mapped in by multiplexing A22 and A23 with the
chipselect line. As this is a RAM device and we may want to access it word, half-word or byte wide we can use
the byte lane pins to allow access to the upper and lower bytes in each device

Finally the boot pins D26 and D27 must be pulled low if we want to boot from the external device.

Four devices with 2 M x16-bit can be arranged as a
linear 4M x 32-bit address space. The address line A23
and CS0 are used to decode between the two different
banks.

3 – System Peripherals

© Hitex (UK) Ltd. Page 52

3.7.2 Using The External Bus Interface

Each chipselect has a fixed address range and has a dedicated bus configuration register BCFG0 –
BCFG3.The address range of each chipselect is shown below.

In our hardware example above we have mapped the FLASH onto chip select 0 at 0x80000000 and the ram
onto chipselect 1 at 0x81000000. Before we can use the external memory we must setup the chipselect
configuration registers.

Each of the chipselects in use must be programmed with the correct parameters to match the external device
connected on to it. In the case of the FLASH memory, it has a 90ns read cycle so at 60MHz with a cycle time of
16 ns we need 6 Cclk read waitstates with one idle cycle. The FLASH is accessed word-wide, so RBLE is set to
zero to disable the byte laning. During normal operation the FLASH will not be written to, so WST2 is set to
zero. Also, the write protect may be set to detect accidental writes to the FLASH bank, but during development it

may be wise to set it to zero and disable write protect in case it interferes with the FLASH programming
algorithm of the ULINK. Finally the bus width is set to 32 bits. This gives a configuration value for Chipselect
zero of 0x20000060.

Each Chipselect may be configured
with a buswidth of 8,16 or 32 bits

3 – System Peripherals

© Hitex (UK) Ltd. Page 53

In the case of the RAM it has a 70ns read and write time. Consequently at 60MHz the read and write waitstate
(WST1 and WST2) should be set to 5 Cclk cycles with IDCY set to one cycle. As the RAM is a byte-partitioned
device, the byte lane control must be enabled by setting RBLE to one. And again the bus width must be set to
32 bits. This gives us a chipselect configuration value of 0x20001440.

These values can be configured with the graphical editor in the Keil startup code.

3 – System Peripherals

© Hitex (UK) Ltd. Page 54

3.8 Booting From ROM

By default the LPC22xx devices will boot from their internal FLASH memory and can access the external
memory once the chipselects are configured. However, if the external bootpins are pulled low, the chip will boot
from external memory. In this case Chipselect zero will be enabled in the bus width selected by the boot pins. Its
waitstate parameters will default to 34 Cclk cycles for WST1 and WST2 and 16 Cclk cycles for the IDCY. This
ensures that the accesses on Chipselect zero will be slow enough to interface with any external device. When
booting from an external device is selected, the value in the MEMMAP register will be set to 0x3 (boot from
external FLASH) and the first 64 bytes of external memory on Chipselect 0 will appear at Zero. This means that
you must build your code so that the interrupt vector table and the constants table are located from address
0x80000000. In practice this means changing the start address to 0x80000000 instead of 0x0000000. In the Keil
startup code this is done by an assembler directive, which is used to relocate the CODE_BASE segment
containing the vector table.

$IF (EXTERNAL_MODE)
 CODE_BASE EQU 0x80000000
$ELSE
 CODE_BASE EQU 0x00000000
$ENDIF

AREA STARTUPCODE, CODE, AT CODE_BASE // READONLY, ALIGN=4
 PUBLIC__startup

The define EXTERNAL_MODE is declared in the assembler local options menu as shown below:

Once we have our program ready to run from external FLASH, there is a slight chicken and egg situation. In
order to be able to program the external FLASH the chipselect must be configured, but to do this we must have
code running on the chip. One solution would be to place a configuration program into the on-chip FLASH, boot
from this and use it to configure the chipselects. However, some LPC variants are available without on-chip
FLASH. Fortunately the ULINK JTAG can run a script file to setup the chipselects as required and then program
the external memory.

In addition it is possible to use the on-chip FLASH in conjunction with the external FLASH on chipselect 0. In
this case you can make best use of the on chip flash by placing your interrupt functions in it. Since these will be
coded in the ARM instruction set you will want them to run as fast as possible. However you must be careful
when locating code into the on-chip FLASH. If you are booting from external FLASH, the interrupt vector table
will be mapped into the first 64 bytes of internal memory. This means that you must locate any on-chip code
from location 0x00000040 upwards. Anything located below 0x00000040 will be programmed into the FLASH

3 – System Peripherals

© Hitex (UK) Ltd. Page 55

memory but will be mapped out during normal program operation. As a result your code will crash, probably in
quite a spectacular fashion. In the Keil compiler this can be achieved by reserving the vector table bytes as
shown below

Exercise 9: External Bus Interface
This exercise shows the necessary changes to the project we set up in Exercise 1 so that it will boot and
run from external memory.

The RESERVE
command makes sure
the first 64 bytes of on
chip flash are unused,
allowing the external
vector table to be
mapped in. The user
segments table allows
specific routines to be
mapped on chip

3 – System Peripherals

© Hitex (UK) Ltd. Page 56

3.9 Phase Locked Loop

The Phase Locked Loop is used to take an external oscillator frequency from between 10 MHz – 25MHz from a
fundamental crystal and multiply this frequency up to a maximum of 60MHz to provide the on-chip clocks for the
ARM7 CPU and peripherals. This allows the LPC2000 to run at its maximum frequency with a low value
external oscillator, thus minimising the EMC emissions of the LPC2000. The PLL output frequency can also be
changed dynamically, allowing the device to throttle back its execution speed in order to conserve power when it
is idling.

Within the PLL are two constants which must be programmed in order to determine the clock for the CPU and

AHB. This clock is called Cclk. The first constant is a straightforward multiplier of the external crystal. The output
frequency of the PLL is given by:

 Cclk = M x Osc

In the feedback path of the PLL is a current-controlled oscillator which must operate in the range 156MHz – 320
MHz.. The second constant acts as a programmable divider which ensures that the CCO is kept in specification.
The operating frequency of the CCO is defined as:

 Fcco = Cclk x 2 x P

On our development board there is a 12MHz oscillator so to reach the maximum CPU frequency of 60MHz

 M = Cclk/Osc = 60/12 = 5

And then for P:

156< Fcco <320 = 60 x 2 x P

By inspection, P = 2

The programming interface for the PLL is shown below.

The PLL is used to
multiply the external
crystal frequency up to
the maximum 60 MHz. It
is controlled by the
constants M and P

The PLL control registers can be
programmed at any time but the new
values will not take effect until a correct
feed sequence has been written to PLL
FEED

3 – System Peripherals

© Hitex (UK) Ltd. Page 57

The values written to the user SFRs are not transferred to the internal PLL registers until a feed sequence is
written to the PLL feed register. Once you have updated the PLLCON and PLLCFG registers, you must write
0x000000AA followed by 0x00000055 (the PLLFEED register). These values must be written on consecutive
cycles. If you program the PLL with interrupts enabled, it is conceivable that an interrupt could occur after the
first word of the sequence is written and the new PLL settings would not become effective. To set up the PLL
you must write the values for P and M to the PLLCFG register. Then, using the PLLCON register, the PLL is
enabled. This starts up the PLL but there is a finite startup time before it is stable enough to be used as the Cclk
source. The startup of the PLL can be monitored by reading the LOCK bit in the PLLSTATUS register. Once the
lock bit is set, the PLL can be used as the main clock source. Alternatively an interrupt can be generated when
the PLL locks, so that you can carry out other tasks while the PLL starts. Once the PLL has locked as a stable
clock source, it can replace the external oscillator as the source for Cclk. This is done via the PLLC bit in the
PLLCON register.

Care should be taken with the values stored for the constants in the PLLCFG register. The values written to the
register for the constants are P-1 and M-1, which ensures that the values of P and M in the PLL are never zero.
Also the value for M is 5 bits long, so the value for P is not on an even nibble boundary. If you make a simple
mistake setting up the PLL the whole chip may be running out of specification. If the chip enters power down
mode, the PLL is switched off and disconnected. A wakeup from power down does not restore the PLL so the
sme startup sequence must be followed each time the chip exits the power down setting.

The PLL setup sequence is performed by the Keil compiler startup
code and you just need to provide values for M and P. An interrupt is
also generated when the PLL locks. This can be used to replace the
polling of the lock bit to achieve maximum startup performance.

3 – System Peripherals

© Hitex (UK) Ltd. Page 58

3.10 VLSI Peripheral Bus Divider

The external oscillator or the output of the PLL is used as the source for the Cclk which is the clock source for
the ARM7 CPU and the AHB bus. The peripherals are on the separate VPB bus.

The clock on the VPB bus is called Pclk. This clock is derived from Cclk via the VPB bridge. The VPB bridge
contains a divider which can divide down the Cclk by a factor of 1,2 or 4. The VPB divider register can be
programmed by your application at any time. At reset it is set to the maximum value of four, so the Pclk is
running at a quarter of the Cclk value at startup. Currently all the peripherals on the LPC2000 derivatives can
run at the full 60MHz, so the VPB divider is principally used for power-saving by running the VPB clock at the
slowest speed acceptable for your application.

3.10.1.1 Example Code: PLL And VPB Configuration

The code below demonstrates how to configure the PLL to give 60MHz Cclk and 30 MHz Pclk with an external
crystal of 12MHz.

void init_PLL(void)
{
 PLLCFG = 0x00000024; // Set multiplier and divider of PLL to
 // give 60.00 MHz
 PLLCON = 0x00000001; // Enable the PLL

 PLLFEED = 0x000000AA; // Update PLL registers with feed sequence
 PLLFEED = 0x00000055;

 while (!(PLLSTAT & 0x00000400)); // test Lock bit

 PLLCON = 0x00000003; // Connect the PLL

 PLLFEED = 0x000000AA; // Update PLL registers
 PLLFEED = 0x00000055;

 VPBDIV = 0x00000002; // Set the VLSI peripheral bus to 30.000MHz
}

The Output from the PLL is called
Cclk and provides the clock for
the CPU and AHB bus. The VLSI
bus clock is called Pclk and is
derived from Cclk by the VPB
divider.

Exercise 10: Phase Locked Loop
In this exercise we configure the PLL to generate a Cclk of 60MHz and a Pclk of 30MHz

3 – System Peripherals

© Hitex (UK) Ltd. Page 59

3.11 Power Control

Power consumption on all (well-designed) microcontrollers is a direct relationship with the number of gates and
the switching speed. The LPC2000 is no exception, The simplicity and low gate count of the ARM7 core
contributes to its low power consumption. Intelligent use of the PLL and VPB divider can contribute to reducing
the runtime switching speed. In addition, the LPC2000 has additional dedicated power control features. The
ARM7 CPU has two power down modes controlled by the first two bits of the PCON register. The CPU may be
placed into Idle mode where the CPU is halted, but the peripherals are still operational. Any interrupt from a
peripheral will wake up the CPU and processing will resume.

Idle mode stops the clock to the CPU
but the peripherals are still running
and any interrupt will restart the CPU.

3 – System Peripherals

© Hitex (UK) Ltd. Page 60

The ARM7 can also be placed into a power down mode which halts both the CPU and the peripherals. In this
mode only a reset or an interrupt generated by the external interrupt pins will cause the chip to wake up. In
power down mode the oscillator is shut down. All the internal states of the processor registers and on-chip
SRAM are preserved, as are the static logic levels on the I/O pins. On wake up from power down the clock
source is the external oscillator and the PLL must be reconfigured.

The LPC2000 has an internal wake up timer which ensures the external oscillator is stable and the on chip
memory and peripherals have initialised before the CPU starts to execute instructions. From wake up the
oscillator will start to resonate. When its cycles become strong enough to drive the chip, the wake up timer will
count 4096 cycles before initialising the FLASH memory and resuming program execution. This ensures the
minimum restart delay after a power down or chip reset. It is also possible to power down an individual
peripheral if it is not being used via its power control bit in the PCONP register. A few peripherals cannot be
powered down: these are the Watchdog, GPIO, pin connect block and the system control block. Your code can
optimise the configuration of the LPC2000 for minimum power consumption for a given application. Some
unofficial power consumption figures are given below.

 LPC2106 @60MHz 30mA
 Power down 10 – 15uA

 LPC2129 @60MHz 55mA
 @60MHz VPBDIV = 4 40mA

During development it is likely you will be using a JTAG development tool connected to the ARM7 via a
dedicated serial link. If you place the CPU into Idle or Power Down mode no further debugging will be possible
until the CPU is woken up.

Power down mode halts the processor and the
peripheral clocks. The external interrupts can
be used to restart the processor and
peripherals.

3 – System Peripherals

© Hitex (UK) Ltd. Page 61

3.12 LPC2000 Interrupt System

In the C code section we saw how to deal with ARM7 exceptions for an undefined instruction, a memory abort
and a SWI instruction. In this section we will look at the remaining two exception sources: the General Purpose
Interrupt (IRQ) and Fast Interrupt (FIQ). These two exceptions are used to handle all the interrupt sources
external to the ARM7 CPU. In the case of the LPC2100 these are the user peripherals. In order to examine the
LPC interrupt structure, we need a simple interrupt source. For this we can use the external interrupt pins which
are the easiest peripheral to configure and EINT1 is connected to a switch on the development board which
allows us to trigger an interrupt at will and observe the results with the debugger.

3.12.1 Pin Connect Block
All of the I/O pins on the LPC2000 are connected to a number of internal functions via a multiplexer called the
pin select block. The pin select block allows a user to configure a pin as GPIO or select up to three other
functions.

On reset all the I/O pins are configured as GPIO. The secondary functions are selected through the PINSEL
registers. The EINT1 interrupt line shares the same I/O pin as GPIO 0.14 and a UART1 control line. So, in order
to use EINT1 we must configure the pin select register to switch from the GPIO function to EINT1.

3.12.2 External Interrupt Pins

The external interrupts are controlled by the four registers shown below. The EXMODE register can select
whether the interrupt is level or edge sensitive. If an external interrupt is configured as edge sensitive, the
EXPOL register is used to qualify whether the interrupt is triggered on the rising or falling edge. In the case of
level-sensitive triggering, the external interrupts can only trigger on a logic zero level. If the power down mode is
being used, the EXWAKE register can enable an interrupt to wake up the CPU. So to set up a simple interrupt
source program configure the EINT1 interrupt to be level sensitive and then connect it to the processor pin via
the pinsel0 register.

The Pinselect module allows each I/O pin to
be multiplexed between one of four
peripherals

3 – System Peripherals

© Hitex (UK) Ltd. Page 62

3.12.3 Interrupt Structure

The ARM7 CPU has two external interrupt lines for the fast interrupt request (FIQ) and general purpose interrupt
IRQ request modes. As a generalisation, in an ARM7 system there should only be one interrupt source which
generates an FIQ interrupt so that the processor can enter this mode and start processing the interrupt as fast
as possible. This means that all the other interrupt sources must be connected to the IRQ interrupt. In a simple
system they could be connected through a large OR gate. This would mean that when an interrupt was asserted
the CPU would have to check each peripheral in order to determine the source of the interrupt. This could take
many cycles. Clearly a more sophisticated approach is required. In order to handle the external interrupts
efficiently an on-chip module called the Vector Interrupt Controller (VIC) has been added.

 The VIC is a component from the ARM prime cell range of modules and as such is a highly optimised interrupt
controller. The VIC is used to handle all the on-chip interrupt sources from peripherals. Each of the on-chip
interrupt sources is connected to the VIC on a fixed channel: your application software can connect each of
these channels to the CPU interrupt lines (FIQ, IRQ) in one of three ways. The VIC allows each interrupt to be
handled as an FIQ interrupt, a vectored IRQ interrupt, or a non vectored IRQ interrupt. The interrupt response
time varies between these three handling methods. FIQ is the fastest followed by vectored IRQ with non-
vectored IRQ being the slowest. We will look at each or these interrupt handling methods in turn.

The VIC provides additional hardware support
for the on-chip peripheral interrupts. Without
the VIC the interrupt response time would be
very slow.

The VIC provides three levels of
interrupt service and on chip interrupt
sources may be allocated into each
group

The external interrupt pins are an easy to
configure interrupt source when first
experimenting with the LPC2000
interrupt structure

3 – System Peripherals

© Hitex (UK) Ltd. Page 63

3.12.4 FIQ interrupt

Any interrupt source may be assigned as the FIQ interrupt. The VIC interrupt select register has a unique bit for
each interrupt. Setting this bit connects the selected channel to the FIQ interrupt. In an ideal system we will only
have one FIQ interrupt. However setting multiple bits in the Interrupt Select Register will enable multiple FIQ
interrupt sources. If this is the case, on entry the interrupt source can be determined by examining the VIC FIQ
Status register and the appropriate code executed. Clearly having several FIQ sources slows entry into the ISR
code. Once you have selected an FIQ source the interrupt can be enabled in the VIC interrupt enable register.
As well as configuring the VIC, the peripheral generating the interrupt must be configured and its own interrupt
registers enabled. Once an FIQ interrupt is generated, the processor will change to FIQ mode and vector to
0x0000001C, the FIQ vector. You must place a jump to your ISR routine at this location in order to serve the
interrupt.

3.12.5 Leaving An FIQ Interrupt

As we have seen, declaring a C function as an FIQ interrupt will make the compiler use the correct return
instructions to resume execution of the background code at the point at which it was interrupted. However,
before you exit the ISR code you must make sure that any interrupt status flags in the peripheral have been
cleared. If this is not done you will get continuous interrupts until the flag is cleared. Again, be careful, as to
clear the flag you will have to write a logic 1 not a logic 0.

At the end of an interrupt the interrupt status flag
must be cleared . Failure to do this will result in
continuous interrupts

3 – System Peripherals

© Hitex (UK) Ltd. Page 64

3.12.5.1 Example Program: FIQ Interrupt

This function sets up the external interrupt as an FIQ interrupt then sits in a loop.

void main (void)
{

 IODIR1 = 0x00FF0000; // Set the LED pins as outputs
 PINSEL0 = 0x20000000; // Select the EINT1 function in the pin connect block
 VICIntSelect = 0x00008000; // Enable a Vic Channel as FIQ
 VICIntEnable = 0x00008000; // Enable the EINT1 interrupt in the VIC

 IOCLR1 = 0x00FF0000; // Clear the LED's

 while(1); //Loop here forever
}

In the startup code the FIQ interrupt routine must be added to the vector table. The address of the FIQ interrupt
routine is suffixed with ?A to demote the routine as an ARM (32 Bit instruction set) routine.

 EXTERN CODE32 (fiqint?A)
__startup PROC CODE32

Vectors: LDR PC,=Reset_Addr
 LDR PC,Undef_Addr
 LDR PC,SWI_Addr
 LDR PC,PAbt_Addr
 LDR PC,DAbt_Addr
 NOP /* Reserved Vector */
 LDR PC,[PC, #-0x0FF0]
 LDR PC,FIQ_Addr // Load the address of the FIQ routine into
 // the PC from the constants table

Reset_Addr: DD Reset_Handler
Undef_Addr: DD Undef_Handler
SWI_Addr: DD SWI_Handler
PAbt_Addr: DD PAbt_Handler
DAbt_Addr: DD DAbt_Handler
 DD 0 /* Reserved Address */
IRQ_Addr: DD IRQ_Handler
FIQ_Addr: DD fiqint?A // The address of the FIQ routine is
stored here

When the INT1 button is pressed on the MCB2100 the FIQ interrupt is generated and the code will vector to the
fiqint routine. The routine is declared as an interrupt routine by using the __fiq language extension. Before
exiting the ISR the peripheral flag is cleared.

void fiqint (void) __fiq
{
 IOSET1 = 0x00FF0000; // Set the LED pins
 EXTINT = 0x00000002; // Clear the peripheral interrupt flag

}

Exercise 11: FIQ interrupt
This exercise sets up the VIC to respond to an external interrupt line as a FIQ exception

3 – System Peripherals

© Hitex (UK) Ltd. Page 65

3.12.6 Vectored IRQ

If we have one interrupt source defined as an FIQ interrupt all the remaining interrupt sources must be
connected to the remaining IRQ line. To ensure efficient and timely processing of these interrupts, the VIC
provides a programmable hardware lookup table which delivers the address of the C function to run for a given
interrupt source. The VIC contains 16 slots for vectored addressing. Each slot contains a vector address register
and a vector control register.

The Vector Control Register contains two fields: a channel field and an enable bit. By programming the channel
field, any interrupt channel may be connected to any given slot and then activated using the enable bit. The
priority of a vectored interrupt is given by its slot number, the lower the slot number, the more important the
interrupt.

The other register in the VIC slot is the Vector Address Register. As its name suggests, this register must be
initialised with the address of the appropriate C function to run when the interrupt associated with the slot
occurs. In practice, when a vectored interrupt is generated the interrupt channel is routed to a specific slot and
the address of the ISR in the slot’s Vector Address Register is loaded into a new register called the Vector
Address Register. So whenever an interrupt configured as a vectored interrupt is generated, the address of it’s
ISR will be loaded into a fixed memory location called the Vector Address Register.

For a Vectored IRQ the VIC provides a hardware
lookup table for the address of each ISR. The
interrupt priority of each peripheral may also be
controlled.

Each vector address “slot” may be
assigned to any peripheral interrupt
channel: the lower the number of
the vector address the higher its
priority

When an interrupt occurs the vector
address slot associated with the
interrupt channel will transfer its
contents to the vector address
register.

3 – System Peripherals

© Hitex (UK) Ltd. Page 66

While this is happening in the VIC unit, the ARM7 CPU is going through its normal entry into the IRQ mode and
will vector the 0x00000018 the IRQ interrupt vector. In order to enter the appropriate ISR, the address in the
VIC Vector Address Register must be loaded into the PC. The assembly instruction shown below does this in a
single cycle.

LDA PC,[PC,#-0xFF0]

As we are on the IRQ we know the address is 0x00000018 + 8 (for the pipeline). If we deduct 0xFF0 from this,
it wraps the address round the top of the 32-bit address space and loads the contents of address 0xFFFFFF020
(the Vector Address Register.)

3.12.7 Leaving An IRQ Interrupt

As in the FIQ interrupt, you must ensure that the interrupt status flags are cleared in the peripheral which
generated the request. In addition, at the end of the interrupt you must do a dummy write to the Vector Address
Register. This signals the end of the interrupt to the VIC and any pending IRQ interrupt will be asserted.

When an IRQ exception occurs the CPU
executes the instruction LDA PC[PC,#-
0xFF0] which loads the contents of the
vector address register into the PC forcing
a jump to the ISR

At the end of a vectored IRQ interrupt you
must make a dummy write to the Vector
Address Register in addition to clearing the
peripheral flag to clear the interrupt.

3 – System Peripherals

© Hitex (UK) Ltd. Page 67

3.12.7.1 Example Program: IRQ interrupt

This example is a repeat of the FIQ example but demonstrates how to set up the VIC for a vectored IRQ
interrupt.

The vector table should contain the instruction to read the VIC vector address as follows:

Vectors: LDR PC,Reset_Addr
 LDR PC,Undef_Addr
 LDR PC,SWI_Addr
 LDR PC,PAbt_Addr
 LDR PC,DAbt_Addr
 NOP
 LDR PC,[PC, #-0x0FF0] /* Vector from VicVectAddr */
 LDR PC,FIQ_Addr

The C routines to enable the VIC and sever the interrupt are shown below:

void main (void)
{

 IODIR1 = 0x000FF000; //Set the LED pins as outputs
 PINSEL0 = 0x20000000; //Enable the EXTINT1 interrupt
 VICVectCntl0 = 0x0000002F; //select a priority slot for a
 // given interrupt
 VICVectAddr0 = (unsigned)EXTINTVectoredIRQ; // pass the address
 // of the IRQ into
 // the VIC slot
 VICIntEnable = 0x00008000; //enable interrupt

 while(1);

}

void EXTINTVectoredIRQ (void) __irq
{

 IOSET1 = 0x000FF000; // Set the LED pins
 EXTINT = 0x00000002; // Clear the peripheral interrupt flag
 VICVectAddr = 0x00000000; // Dummy write to signal end
 // of interrupt
}

3.12.8 Non-Vectored Interrupts

The VIC is capable of handling 16 peripherals as vectored interrupts and at least one as an FIQ interrupt. If
there are more than 17 interrupt sources on the chip, any extra interrupts can be serviced as non-vectored
interrupts. The non-vectored interrupt sources are served by a single ISR. The address of this ISR is stored in
an additional vector address register called the default vector address register. If an interrupt is enabled in the
VIC and is not configured as an FIQ or does not have a vectored interrupt slot associated with it, then it will act
as a non-vectored interrupt. When such an interrupt is asserted the address in the default vector address is

Exercise 12: Vectored interrupt
This exercise uses the same interrupt source as in exercise 11 but this time the VIC is
configured to respond to it as a vectored IRQ exception.

3 – System Peripherals

© Hitex (UK) Ltd. Page 68

loaded into the vector address register, causing the processor to jump to this routine. On entry the CPU must
read the IRQ status register to see which of the non-vectored interrupt sources has generated the exception.

3.12.9 Leaving A Non-Vectored IRQ Interrupt

As with the vectored IRQ interrupt, you must clear the peripheral flag and write to the vector address register.

3.12.9.1 Example Program: Non-Vectored Interrupt

void main (void)
{
 IODIR1 = 0x000FF000; //Set the LED pins as outputs
 PINSEL0 = 0x20000000; //Enable the EXTINT0 interrupt
 VICDefVectAddr = (unsigned)NonVectoredIRQ; //pass the address of the IRQ
 //into the VIC slot
 VICIntEnable = 0x8000; //Enable EXTINT0 in the VIC
 while(1);
}

Vectors: LDR PC,Reset_Addr
 LDR PC,Undef_Addr
 LDR PC,SWI_Addr
 LDR PC,PAbt_Addr
 LDR PC,DAbt_Addr
 NOP
 LDR PC,[PC, #-0x0FF0] /* Vector from VicVectAddr */
 LDR PC,FIQ_Addr

void NonVectoredIRQ (void) __irq
{

if(VICIRQStatus&0x00008000) //Test for the interrupt source
{
 IOSET1 = 0x00FF0000; //Set the LED pins
 EXTINT = 0x00000002; //Clear the peripheral interrupt flag
 update++;
}

VICVectAddr = 0x00000000; //Dummy write to signal end of interrupt
}

Within the VIC it is possible for the application software to generate an interrupt on any given channel through
the VIC software interrupt registers. These registers are nothing to do with the software interrupt instruction
(SWI), but allow interrupt sources to be tested either for power-on testing or for simulation during development.

The non-vectored interrupt has one
vector address slot that will jump all
non-vectored interrupt sources to
one default ISR

Exercise 13 : Non Vectored Interrupt
This final exercise with the VIC demonstrates how to handle a non-vectored interrupt. It is
included for completeness since this mode will not normally be required.

3 – System Peripherals

© Hitex (UK) Ltd. Page 69

In addition the VIC has a protected mode which prevents any of the VIC registers from being accessed in USER
mode. If the application code wishes to access the VIC, it has to enter a privileged mode. This can be in an FIQ
or IRQ interrupt, or by running a SWI instruction.

Typical latencies for interrupt sources using the VIC are shown below. In the case of the non-vectored interrupts
use the latency for the vectored interrupt plus the time taken to read the IRQstatus register and decide which
routine to run.

•FIQ
 Interrupt Sync

+ Worst Case Instruction execution
+ Entry to first Instruction
= FIQ Latency = 12 cycles = 200 nS @ 60MHz

•IRQ
 Interrupt sync

 + worst case instruction execution
 + Entry to first instruction
 + Nesting
 = IRQ Latency = 25 cycles = 416nS @ 60MHz

3.12.10 Nested Interrupts

The interrupt structure within the ARM7 CPU and the VIC does not support nested interrupts. If your application
requires interrupts to be able to interrupt ISRs then you must provide support for this in software. Fortunately
this is easy to do with a couple of macros. Before discussing how nested interrupts work, it is important to
remember that the IRQ interrupt is disabled when the ARM7 CPU responds to an external interrupt. Also, on
entry to a C function that has been declared as an IRQ interrupt routine, the LR_isr is pushed onto the stack.

Once
the

processor has entered the IRQ interrupt
routine, we need to execute a few

instructions to enable nested interrupt handling. First of all the SPSR_irq must be preserved by placing it on the

It is possible to simulate an
interrupt source via the
software interrupt set and clear
registers in the VIC

Two macros can be
used to allow nested
interrupt processing in
the LPC2000 for a very
small code and time
overhead

3 – System Peripherals

© Hitex (UK) Ltd. Page 70

stack. This allows us to restore the CPSR correctly when we return to user mode. Next we must enable the IRQ
interrupt to allow further interrupts and switch to the system mode (remember system mode is user mode but
the MSR and MRS instructions work). In system mode the new link register must again be preserved because it
may have values which are being used by the background (user mode) code so this register is pushed onto the
system stack (also the user stack). Once this is done we can run the ISR code and then execute a second
macro that reverses this process. The second macro restores the state of the link register, Disables the IRQ
interrupts and switches back to IRQ mode finally restores the SPSR_irq and then the interrupt can be ended.
The two macros that perform these operations are shown below.

#define IENABLE /* Nested Interrupts Entry */
 __asm { MRS LR, SPSR } /* Copy SPSR_irq to LR */
 __asm { STMFD SP!, {LR} } /* Save SPSR_irq */
 __asm { MSR CPSR_c, #0x1F } /* Enable IRQ (Sys Mode) */
 __asm { STMFD SP!, {LR} } /* Save LR */

#define IDISABLE /* Nested Interrupts Exit */
 __asm { LDMFD SP!, {LR} } /* Restore LR */
 __asm { MSR CPSR_c, #0x92 } /* Disable IRQ (IRQ Mode) */
 __asm { LDMFD SP!, {LR} } /* Restore SPSR_irq to LR */
 __asm { MSR SPSR_cxsf, LR } /* Copy LR to SPSR_irq */

The total code overhead is 8 instructions or 32 Bytes for ARM code and execution of both macros takes a total
of 230 nSec. This scheme allows any interrupt to interrupt any other interrupt. If you need to prioritise interrupt
nesting then the macros would need to block low priority interrupts by disabling the lower priority interrupt
sources in the VIC.

3.13 Summary

This is the most important chapter in this book as it describes the system architecture of the LPC2000 family.
You must be familiar with all the topics in this chapter in order to be able to successfully configure the LPC2000
for its best performance and to avoid many of the common pitfalls which trap people new to this family of
devices.

Exercise 14: Nested Interrupts
OK, one last interrupt exercise. This exercise demonstrates setting a timer to generate a regular
periodic interrupt which must run. It also configures an interrupt which is triggered by Eint1. The
external interrupt uses the above technique to allow the timer interrupt to run even if the external
interrupt routine is active.

4 – User Peripherals

© Hitex (UK) Ltd. Page 71

4 – User Peripherals

© Hitex (UK) Ltd. Page 72

4 Chapter 4: User Peripherals

4.1 Outline

This chapter presents each of the user peripherals in turn. The examples show how to configure and operate
each peripheral. Once you are familiar with how the peripherals work the example code can be used as the
basis for a set of low-level drivers.

4.2 General Purpose I/O

On reset the pin connect block configures all the peripheral pins to be general purpose I/O (GPIO) input pins.
The GPIO pins are controlled by four registers, as shown below.

The IODIR pin allows each pin to be individually configured as an input (0) or an output (1). If the pin is an
output the IOSET and IOCLR registers allow you to control the state of the pin. Writing a ‘1’ to these registers
will set or clear the corresponding pin. Remember you write a ‘1’ to the IOCLR register to clear a pin not a ‘0’.
The state of the GPIO pin can be read at any time by reading the contents of the IOPIN register. A simple
program to flash the LED on the evaluation board is shown below.

Each GPIO pin is controlled by a bit in each of the four
GPIO registers. These bits are data direction, set and
clear and pin status.

4 – User Peripherals

© Hitex (UK) Ltd. Page 73

int main(void)
{
 unsigned int delay;
 unsigned int flasher = 0x00010000; // define locals

 IODIR1 = 0x00FF0000; // set all ports to output

 while(1)
 {
 for(delay = 0;delay<0x10000;delay++) //simple delay loop
 {
 ;
 }

 IOCLR1 = ~flasher; //clear output pins
 IOSET1 = flasher; //set the state of the ports

 flasher = flasher <<1; //shift the active led
 if(flasher&0x01000000) flasher = 0x00010000; //Increment flasher
 //led and test for
 } //overflow
}

Exercise 15: GPIO
This simple exercise demonstrates using the GPIO as an LED chaser program.

4 – User Peripherals

© Hitex (UK) Ltd. Page 74

4.3 General Purpose Timers

The LPC2000 have a number of general purpose timers. The exact number will vary depending on the variant,
but there are at least two timers. All of the general purpose timers are identical in structure but vary slightly in
the number of features supported. The timers are based around a 32-bit timer counter with a 32-bit prescaler.
The clock source for all of the timers is the VLSI peripheral clock PCLK

The tick rate of the timer is controlled by the value stored in the prescaler register. The prescale counter will
increment on each tick of Pclk until it reaches the value stored in the prescaler register. When it hits the
prescale value the timer counter is incremented by one and the prescale counter resets to zero and starts
counting again. The Timer control register contains only two bits which are used to enable/disable the timer and
reset its count.

In addition to the basic counter each timer has up to four capture channels. The capture channels allow you to
capture the value of the timer counter when an input signal makes a transition.

Each capture channel has an associated capture pin which can be enabled via the pin connect block. The
Capture control register can configure if a rising or falling edge, or both, on this pin will trigger a capture event.
When the capture event occurs, the current value in the timer counter will be transferred into the associated
capture register and if necessary an interrupt can be generated. The code below demonstrates how to configure
a capture channel. This example sets up a capture event on a rising edge on pin 0.2 (Capture 0.0) and
generates an interrupt.

The two timers and the PWM
module have the same basic timer
structure. A 32-bit timer counter
with a 32-bit prescaler

Each capture channel has a capture
pin. This pin can trigger a capture
event on a rising or falling edge.
When an event occurs the value in
the timer counter is latched into an
associated capture register

4 – User Peripherals

© Hitex (UK) Ltd. Page 75

int main(void)
{
 VPBDIV = 0x00000002; // Set pclk to 30 MHz
 PINSEL0 = 0x00000020; // Enable pin 0.2 as capture channel0
 T0PR = 0x00007530; // Load prescaler for 1 Msec tick
 T0TCR = 0x00000002; // Reset counter and prescaler
 T0CCR = 0x00000005; // Capture on rising edge of channel0
 T0TCR = 0x00000001; // enable timer

 VICVectAddr4 = (unsigned)T0isr; // Set the timer ISR vector address
 VICVectCntl4 = 0x00000024; // Set channel
 VICIntEnable = 0x00000010; // Enable the interrupt

 while(1);
}

void T0isr (void) __irq
{
 static int value;
 value = T0CR0; // read the capture value
 T0IR |= 0x00000001; // Clear match 0 interrupt
 VICVectAddr = 0x00000000; // Dummy write to signal end of
 // interrupt
}

Each timer also has up to four match channels. Each match channel has a match register which stores a 32-bit
number. The current value of the timer counter is compared against the match register. When the values match
an event is triggered. This event can perform an action to the timer (reset, stop or generate interrupt) and also
affect an external pin (set, clear,toggle).

When the timer counter equals
the value stored in the match
register it can trigger a timer
event and also affect an
external match pin

Exercise 16: Timer Capture.
This exercise configures a general purpose timer with a capture event to measure the width of a
pulse applied to a capture pin.

4 – User Peripherals

© Hitex (UK) Ltd. Page 76

To configure the timer for a match event, load the match register with the desired value. The internal match
event can now be configured through the Match Control Register. In this register each channel has a group of
bits which can be used to enable the following actions on a match event: generate a timer interrupt, reset the
timer or stop the timer. Any combination of these events may be enabled. In addition, each match channel has
an associated match pin which can be modified when a match event occurs. As with the capture pins, you must
first use the pin connect block to connect the external pin to the match channel. The match pins are then
controlled by the first four bits in the external match register.

The external match register contains a configuration field for each match channel. Programming this field
decides the action to be carried out on the match pin when a match event occurs. In addition, each match pin
has a bit that can be directly programmed to change the logic level on the pin.

The example below demonstrates how to perform simple pulse width modulation using two match channels.
Match channel zero is used to generate the period of the PWM signal. When the match event occurs the timer is
reset and an interrupt is generated. The interrupt is used to set the Match 1 pin high. Match channel 1 is used to
control the duty cycle. When the match 1 event occurs the Match 1 pin is cleared to zero. So by changing the
value in the Match 1 register it is possible to modulate the PWM signal

int main(void)
{
 VPBDIV = 0x00000002; // Configure the VPB divi
 PINSEL0 |= 0x00000800; // Match1 as output
 T0PR = 0x0000001E; // Load presaler
 T0TCR = 0x00000002; // Reset counter and presale
 T0MCR = 0x00000003; // On match reset the counter and generate an
 // interrupt
 T0MR0 = 0x00000010; // Set the cycle time
 T0MR1 = 0x00000008; // Set 50% duty cycle
 T0EMR = 0x00000042; // On match clear MAT1 and set MAT1 pin high for
 // first cycle
 T0TCR = 0x00000001; // Enable timer
 VICVectAddr4 = (unsigned)T0isr; // Set the timer ISR vector address
 VICVectCntl4 = 0x00000024; // Set channel
 VICIntEnable |= 0x00000010; //Enable the interrupt

 while(1);
}

The EMR register defines the action
applied to the match pin when a match
is made on its channel. The CPU can
also directly control the logic level on
the match pin by directly writing to the
first four bits in the register

4 – User Peripherals

© Hitex (UK) Ltd. Page 77

void T0isr (void) __irq
{
 T0EMR |= 0x00000002; // Set MAT1 high for beginning of the cycle
 T0IR |= 0x00000001; // Clear match 0 interrupt
 VICVectAddr = 0x00000000; // Dummy write to signal end of interrupt
}

Exercise 17: Timer Match
This second timer exercise uses two match channels to generate a PWM signal, there is some CPU
overhead in the timer interrupt routine.

4 – User Peripherals

© Hitex (UK) Ltd. Page 78

4.4 PWM Modulator

At first sight the PWM modulator looks a lot more complicated than the general purpose timers. However it is
really an extra general purpose timer with some additional hardware. The PWM modulator is capable of
producing six channels of single edge controlled PWM or three channels of dual edge controlled PWM.

In the general purpose timers when a new value is written to a match register the new match value becomes
effective immediately. Unless care is taken in your software this may be part way through a PWM cycle. If you
are updating several channels, the new PWM values will take effect at different points in the cycle and may
cause unexpected results. The PWM modulator has an additional shadow latch mechanism which allows the
PWM values to be updated on the fly, but the new values will only take effect simultaneously at the beginning of
a new cycle.

The value in a given match register may be updated at any time but it will not become effective until the bit
corresponding to the match channel is set in the Latch Enable register (LER). Once the LER is set, the value in
the match register will be transferred to the shadow register at the beginning of the next cycle. This ensures that
all updates are done simultaneously at the beginning of a cycle. Apart from the shadow latches the PWM
modulator match channels function in the same way as the timer match registers.

The PWM module is a third general
purpose time with additional hardware
for dedicated PWM generation

The PWM shadow latches allow the
match registers to be updated
thought the PWM cycle but the new
values will only become effective at
the beginning of a cycle

4 – User Peripherals

© Hitex (UK) Ltd. Page 79

The second hardware addition to the PWM modulator over the basic timers is in the output to the device pins. In
place of the match channels directly controlling the match output pin are a series of SR flip-flops

This arrangement of SR flip-flop and multiplexers allows the PWM modulator to produce either single edge or
dual edge controlled PWM channels. The multiplexer is controlled by the PWMSEL register and can configure
the output stage in one of two configurations. The first arrangement is for single edge modulation

Here the multiplexer is connecting Match 0 to the S input of each flip-flop and each of the remaining channels
are connected to the R input. With this scheme Match 0 is set up to count to total cycle period. At the end of the
cycle it will reset the counter and set match 0 high. This causes all the flip-flops to be set at the beginning of the
cycle. The output Q goes high raising all the output pins high. Modulation of the PWM signal is done with the
remaining match channels. Each PWM channel has an associated match channel which is connected to the R
input of the flip-flop. When the match is made the flip-flop is reset and the PWM pin is set low. This allows
modulation of the PWM signal by changing the value of the dedicated match channel.

Additional circuitry on the match output channels
allows the generation of six channels of single edge
PWM modulation or three channels of dual edge
PWM modulation

The multiplexer can be programmed to
use Match 0 to set the external pin at the
beginning of a cycle the remaining
match channels are used to modulate
each PWM channel

4 – User Peripherals

© Hitex (UK) Ltd. Page 80

By reprogramming the multiplexer the output stage of the PWM modulator can be configured to dual edge
controlled modulation. In this configuration Match 0 is not connected to any output and is used solely to reset
the timer at the end of each PWM period. In this configuration the S and R inputs to each flip-flop have a
dedicated Match channel. At the beginning of a cycle the PWM output is low. The rising edge of the pulse is
controlled by the Match channel connected to the S input and the falling edge is controlled by the Match channel
connected to the R input. The example below illustrates how to configure the PWM module for dual edge PWM
.

void main(void)
{
 PINSEL0 |= 0x00028000; //Enable pin 0.7 as PWM2
 PWMPR = 0x00000001; //Load prescaler

 PWMPCR = 0x0000404; //PWM channel 2 double edge control, output enabled
 PWMMCR = 0x00000003; //On match with timer reset the counter
 PWMMR0 = 0x00000010; //set cycle rate to sixteen ticks
 PWMMR1 = 0x00000002; //set rising edge of PWM2 to 2 ticks
 PWMMR2 = 0x00000008; //set falling edge of PWM2 to 8 ticks
 PWMLER = 0x00000007; //enable shadow latch for match 0 - 2
 PWMEMR = 0x00000280; //Match 1 and Match 2 outputs set high
 PWMTCR = 0x00000002; //Reset counter and prescaler
 PWMTCR = 0x00000009; //enable counter and PWM, release counter from reset

 while(1) // main loop
 {
 //........ //Modulate PWMMR1 and PWMMR2
 }
}

One important line to note is that the PWMEMR register is used to ensure the output of the match channel is
logic 1 when the match occurs. If this register is not programmed correctly the PWM scheme will not work. Also
the PWM modulator does not require any interrupt to make it work unlike the basic timers.

Match 0 controls the period of the PWM cycle. Two match channels
are used to modulate the pulse rise and fall times for each PWM
channel

Exercise 18: Centre-Aligned PWM
This exercise configures the PWM unit to produce a centre aligned PWM signal without any CPU
overhead.

4 – User Peripherals

© Hitex (UK) Ltd. Page 81

4.5 Real Time Clock

The LPC2xxx Real time clock (RTC) is a clock calendar accurate up to 2099. Like all the other peripherals the
RTC runs off the PCLK so an additional external oscillator is not required. The RTC is designed to be an ultra
low power peripheral and through use of the LPC2xxx low power modes is suitable for running off batteries. As
well as providing a clock calendar, the RTC has a set of alarm registers that can be used to trigger a particular
date and time or on a specific value held in a time-count register.

The RTC clock runs on a standard 32.7KHz clock crystal frequency. In order to derive this frequency the Pclk is
connected to the reference clock divider. In effect this is a prescaler whicht can accurately divide any Pclk
frequency to produce the required 32KHz frequency.

To ensure that the RTC clock can be accurately derived from any Pclk the prescaler is more complicated than
the general purpose timer prescalers. The prescaler is programmed by two registers called PREINT and
PREFRAC. As their name implies, these hold integer and fractional divisor values. The equations used to
calculate the load values for these registers are as follows:

PREINT = (int)(pclk/32768)-1

PREFRAC = pclk – ((PREINT+1) x 32768)

So for a 30MHz Pclk:

PREINT = (int)(30,000,000/32768)-1 = 914

Then:

The RTC is a clock calendar with
alarm valid up until 2099

The RTC watch crystal frequency
may be derived from any value of
Pclk

4 – User Peripherals

© Hitex (UK) Ltd. Page 82

PREFRAC = 30,000,000 – ((914+1) x 32768) = 17280

These values can be programmed directly into the RTC prescaler registers and the RTC is then ready to run.
Just enable the clock in the clock control register and the time counters will start.

PREINT = 0x00000392; //Set RTC prescaler for 30.000 MHz Pclk
PREFRAC = 0x00004380;
CCR = 0x00000001; //Start the RTC

There are eight time-counter registers, each of which contains a single time quantity which can be read at any
time. In addition there are a set of consolidation registers which present the same time quantities in three words,
allowing all the time information to be read in just three operations.

As well as maintaining a clock, the RTC can also generate alarm events as interrupts. There are two interrupt
mechanisms. You can program the RTC to generate an interrupt when any time-counter register is incremented,
so you could generate an interrupt every second when the second counter is updated, or once a year when the
year counter is incremented. The counter increment interrupt register allows you to enable an increment
interrupt for each of the eight time-counter registers.

The second method for generating an RTC interrupt is with the alarm registers. Each time- counter register has
a matching Alarm register. If the matching Alarm register is unmasked it is compared to the time counter
register. If all the unmasked alarm registers match the time counter registers then an interrupt is generated. So
it is possible to set an alarm between now and 2099 with one second’s accuracy. The Alarm Mask register
controls which alarm registers are used in the compare. As both the increment and alarm events can generate
an RTC interrupt it is necessary to distinguish between them from within the interrupt. The Interrupt location
register provides two flags which can be interrogated to see what caused the RTC interrupt. Again, remember
that these flags must be cleared to cancel the interrupt. An RTC program which sets the clock and uses both
styles of interrupt is shown below.

The RTC consolidation
registers allow all the clock
calendar information to be read
in three words

4 – User Peripherals

© Hitex (UK) Ltd. Page 83

int main(void)
{
 VPBDIV = 0x00000002;
 IODIR1 = 0x00FF0000; // set LED ports to output
 IOSET1 = 0x00020000;
 PREINT = 0x00000392; // Set RTC prescaler for 30MHz Pclk
 PREFRAC = 0x00004380;
 CIIR = 0x00000001; // Enable seconds counter interrupt
 ALSEC = 0x00000003; // Set alarm register for 3 seconds
 AMR = 0x000000FE; // Enable seconds Alarm
 CCR = 0x00000001; // Start the RTC

 VICVectAddr13 = (unsigned)RTC_isr; //Set the timer ISR vector address
 VICVectCntl13 = 0x0000002D; //Set channel
 VICIntEnable = 0x00002000; //Enable the interrupt

 while(1);

}

void RTC_isr(void)
{
 unsigned led;

 if(ILR&0x00000001) //Test for RTC counter interrupt
 {
 led = IOPIN1; //read the current state of the IO pins
 IOCLR1 = led&0x00030000; //Clear the illuminated LED
 IOSET1 = ~led&0x00030000; //Set the idle LED
 ILR = 0x00000001; //Clear the interrupt register
 }

 if(ILR & 0x00000002)
 {
 IOSET1 = 0x00100000; //Set LED 0.7
 ILR = 0x00000002; //clear the interrupt register
 }

 VICVectAddr = 0x00000000; //Dummy write to signal end of interrupt
}

Exercise 19: Real Time Clock
This exercise configures the RTC and demonstrates both the alarm and increment interrupts.

4 – User Peripherals

© Hitex (UK) Ltd. Page 84

4.6 Watchdog

In common with many microcontrollers the LPC2xxx family has a watchdog system to provide a method of
recovering control of a program that has crashed.

The watchdog has four registers as shown above. The watchdog timeout period is set by a value programmed
into the Watchdog Constant Register (WDTCR). The timeout period is determined by the following formula

Wdperiod = Pclk x WDTC x 4

The minimum value for WDTC is 256 and the maximum is 2^32. Hence the minimum watchdog period at
60MHz is 17.066us and the maximum is just under 5 minutes.

Once the watchdog constant is programmed the operating mode of the watchdog can be configured. The
Watchdog mode register contains three enable bits controlling: whether the watchdog generates an interrupt,
whether it generates a reset and a final bit which is used to enable operation of the watchdog.

The Mode register also contains two flags, the WDTOF is set when the watchdog times out and is only cleared
after an external hard reset. This allows your startup code to detect if the reset event was a power on reset or a
reset due to a program error. The Mode register also contains the watchdog interrupt flag. This flag is read-only,
but it must be read in order to clear the watchdog interrupt. If you need to debug code with the watchdog active
you should not enable the reset option as this will trip up the JTAG debugger when the watchdog times out.

Once the watchdog timer constant and mode registers have been configured, the watchdog can be kicked into
action by writing to the feed register. This needs a feed sequence similar to the PLL. To feed the watchdog you
must write 0xAA followed by 0x55. If this sequence is not followed, a watchdog feed error occurs and a

The on-chip watchdog can force a
processor reset or interrupt. In the
case of a watchdog reset a flag is set
so your code can stop a “soft reset”.

The watchdog mode register allows configuration
the watchdog action on underflow (reset or
interrupt).

4 – User Peripherals

© Hitex (UK) Ltd. Page 85

watchdog timeout event is generated with its resulting interrupt/reset. It is also important to note that although
the watchdog may be enabled via the watchdog mode register, it does not start running until the first correct
watchdog feed sequence is encountered. Once fully started the watchdog must receive regular feed sequences
in order to stop the watchdog counter reaching zero and timing out.

The final Watchdog register is the Watchdog Timer Value Register which allows you to read the current value of
the watchdog timer.

4 – User Peripherals

© Hitex (UK) Ltd. Page 86

4.7 UART

The LPC2xxx devices currently have two on-chip UARTS. They are both identical to use, except UART1 has
additional modem support. Both peripherals conform to the “550 industry standard” specification. Both have a
built-in Baud rate generator and 16 byte transmit and receive FIFOs.

Initialisation of the UART0 is shown below:

void init_serial (void) /* Initialize Serial Interface */
{
 PINSEL0 = 0x00050000; /* Enable RxD1 and TxD1 */
 U1LCR = 0x00000083; /* 8 bits, no Parity, 1 Stop bit */
 U1DLL = 0x000000C2; /* 9600 Baud Rate @ 30MHz VPB Clock */
 U1LCR = 0x00000003; /* DLAB = 0 */
}

First the pinselect block must be programmed to switch the processor pins from GPIO to the UART functions.
Next the UART line control register is used to configure the format of the transmitter data character.

In our example the character format is set to 8 bits, no parity and one stop bit. In the LCR there is an additional
bit called DLAB which is the divisor latch access bit. In order to be able to program the Baud rate generator this
bit must be set. The Baud rate generator is a sixteen bit prescaler which divides down Pclk to generate the
UART clock which must run at 16 times the Baud rate. Hence the formula used to calculate the UART Baud rate
is:

 Divisor = Pclk/16 x BAUD

In our case at 30MHz:

 Divisor = 30,000,000/16 x 9600 = (approx) 194 or 0xC2

UART Line control register: The LCR
configures the format of transmitted
data. Setting the DLAB bit allows
programming of the BAUD rate
generators

4 – User Peripherals

© Hitex (UK) Ltd. Page 87

This gives a true Baud rate of 9665. Often it is not possible to get an exact Baud rate for the UARTs however
they will work with up to around a 5% error in the bit timing. So you have some leeway with the UART timings if
you need to adjust the Pclk to get exact timings on other peripherals such as the CAN bit timings. The divisor
value is held in two registers, Divisor latch MSB (DLM) and Divisor latch LSB (DLL). The first eight bits of both
registers holds each half of the divisor as shown below. Finally the DLAB bit in the LCR register must be set
back to zero to protect the contents of the divisor registers.

Once the UART is initialised, characters can be transmitted by writing to the Transmit Holding Register.
Similarly, characters may be received by reading from the Receive Buffer Register. In fact both these registers
occupy the same memory location, writing a character places the character in the transmit FIFO and reading
from this location loads a character from the Receive FIFO. The two routines shown below demonstrate
handling of transmit and receive characters.

int putchar (int ch) /* Write character to Serial Port */
{

 if (ch == '\n') {
 while (!(U1LSR & 0x20));
 U1THR = CR; /* output CR */
 }
 while (!(U1LSR & 0x20));
 return (U1THR = ch);
}

int getchar (void) /* Read character from Serial Port */
{

 while (!(U1LSR & 0x01));

 return (U1RBR);
}

The putchar() and getchar functions are used to read/write a single character to the UART. These low level
drivers are called by the Keil STDIO functions such as printf() and scanf(). So, if you want to redirect the
standard I/O from the UART to say an LCD display and a keypad, rewrite these functions to support sending
and receiving a single character to your desired I/O devices. Both the putchar() and getchar() functions read the
Link Status Register (LSR) to check on UART error conditions and to check the status of the receive and
transmit FIFOS.

UART baud rate: The UART clock
frequency must be 16 times the
required BAUD rate. This is derived
by dividing Pclk by a 16-bit divisor
register.

4 – User Peripherals

© Hitex (UK) Ltd. Page 88

The UART has a single interrupt channel to the VIC,but three sources of interrupt. UART interrupts can be
generated on a change in the Receive line status. So, if an error condition occurs, an interrupt is generated and
the LSR can be read to see what is the cause of the error. The remaining two interrupt sources are receive and
transmit interrupts. The receive interrupt is triggered by characters being received into the RX FIFO. The depth
at which the interrupt is triggered is set in the UART FIFO control register.

The receive interrupt can be set to trigger after it has received 1,4,8 or 14 characters. So, if the interrupt is set to
trigger when eight characters are in the buffer and a total of 34 characters are sent, then four interrupts will be
generated with two characters left in the FIFO. These remaining characters will cause a “character time out
indication” (CTI) interrupt. The CTI interrupt occurs when there are one or more characters in the FIFO and no
FIFO activity has occurred for 3.5- 4.5 character times.

UART Line
Status Register:
The LSR
contains flags
which indicate
events within the
UART. It may be
polled or should
be read after a
UART interrupt is
generated.

UART RX FIFO: Each UART has a sixteen byte
receive FIFO which can be programmed to
generate an UART interrupt at various trigger
levels. The character timeout interrupt can be
used to read bytes which do not reach a trigger
level.

4 – User Peripherals

© Hitex (UK) Ltd. Page 89

The transmit FIFO will also generate interrupts when the transmit holding register is empty and when the
transmit shift register is empty.

UART1 has the same basic structure as UART0, however it has additional support for modem control. This
consists of additional external pins to support the full modem interface (CTS,DCD,DSR,DTR,RI,RTS), there are
two additional registers the modem control register and the modem status register and an additional interrupt
source to provide a modem status interrupt.

These additional features allow optimal connection to a modem with an interrupt generated each time there is a
change in the modem status register.

UART Transmit FIFO: Like the RX FIFO, the
TX FIFO is 16 bytes deep and can generate an
interrupt when empty and when it has
finished transmitting

UART1 Modem registers:

UART1 has additional
support for modem
interfacing. The DTR and
RTS signals may be directly
controlled. Changes in
modem status can also
generate a UART interrupt

Exercise 20: UART
In Exercise 4 we saw how to use the STDIO library with the UARTs. In this example we look at how the
UARTs are initialised to run at a specific baud rate.

4 – User Peripherals

© Hitex (UK) Ltd. Page 90

4.8 I2C Interface

As Philips were the original inventors of the I2C bus standard, it is not surprising to find the LPC2000 equipped
with a fully featured I2C interface. The I2C interface can operate in master or slave mode up to 400K bits per
second and in master mode it will automatically arbitrate in a multi-master system.

A typical I2C system is shown above where the LPC2000 is connected to two external port expander chips. As
with the other peripherals the Serial Clock (SCL) and Data (SDA) lines must be converted from GPIO pins to
I2C pins via the pin connect block.

The I2C peripheral interface is composed of seven registers. The control register has two separate registers
which are used to set and clear bits in the control register (I2CONSET, I2CONCLR). The bit rate is also
determined by two registers (I2SCLH, I2SCLL). The status register returns control codes which relate to
different events on the bus. The data register is used to supply each byte to be transmitted, or as data is
received it will be transferred to this register. Finally, when the LPC2000 is configured as a slave device its
network address is set by programming the I2ADR register.

In order to initialise the I2C interface we need to run the following lines of code:

VICVectCntl1 = 0x00000029; // select a priority slot for a given interrupt
VICVectAddr1 = (unsigned)I2CISR // pass the address of the IRQ into the VIC slot
VICIntEnable = 0x00000200; // enable interrupt

PINSEL0 = 0x50; // Switch GPIO to I2C pins
I2SCLH = 0x08; // Set bit rate to 57.6KHz
I2SCLL = 0x08;

The I2C peripheral must be programmed to respond to each event which occurs on the bus. This makes it a
very interrupt-driven peripheral. Consequently the first thing we must do is to configure the VIC to respond to an
I2C interrupt. Next the pinselect block is configured to connect the I2C data and clock lines to the external pins.

I2C peripheral registers.

The programmers’ interface includes two
timing registers, set and clear registers
for the control register, an address
register to hold the node address when
in slave mode and a data register to
send and receive bytes of data

Typical I2C bus
configuration. The bus
consists of separate clock
and data lines with a pull
up resistor on each line.
The two external devices
used in the example are
port expander chips

4 – User Peripherals

© Hitex (UK) Ltd. Page 91

Lastly we must set the bit rate by programming I2SCLH and I2SCLL. In both of these registers only the first 16
bits are used to hold the timing values. The formula for the I2C bit rate is given as:

Bit Rate = Pclk/(I2SCLH+I2CSLL)

In the above example the PLL is not enabled and the external crystal is 14.7456MHz. Hence the I2C bit rate is:

Bit Rate = 14.7456/B (8 + 8) = 937500

Once configured, the LPC2100 can initiate communication with other bus devices to read and write data as a
bus master, or receive and reply to requests from a bus master. The contents of the I2C control register are
shown below. Remember this register is controlled by the CONSET and CONCLR registers.

We will first look at the bus master mode. To enter this mode the I2C peripheral must be enabled and the
acknowledge bit must be set to zero. This prevents the I2C peripheral acknowledging any potential master and
entering the slave mode. In the master mode the LPC2000 device is responsible for initiating any
communication. During a I2C bus transfer a number of bus events must occur.

The bus master must first signal a start condition.To do this the I2C clock line is pulled high and the data is
pulled low. The address of the slave which the master wants to talk to is then written onto the bus, followed by a
bit which states if a read or write is being requested. If the slave has received this preamble correctly, it will reply
with an acknowledge. Then data can be transferred as a series of bytes and acknowledges, until the master
terminates the transaction with a stop condition. The I2C peripheral on the LPC2000 series is really a I2C
engine. It controls all the bus events but has no intelligence. This means that the ARM7 CPU has to micro-
manage the I2C bus for each transaction. Fortunately this is easy to do and is centred around the I2C interrupt.
Once the I2C peripheral is initialised in master mode we can start a write data transfer as follows:

I2C control registers:
The control registers are used to
enable the I2C peripheral and
interrupt as well as controlling the
I2C bus start, stop and ack
conditions.

Typical I2C transaction :A
I2C bus transaction is
characterised by a start
condition, slave address
data exchange and stop
condition with
acknowledge handshaking

4 – User Peripherals

© Hitex (UK) Ltd. Page 92

void I2CTransferByte(unsigned Addr,unsigned Data)
{

 I2CAddress = Addr; // Place address and data in Globals to be used by
 // the interrupt
 I2CData = Data;
 I2CONCLR = 0x000000FF; // Clear all I2C settings
 I2CONSET = 0x00000040; // Enable the I2C interface
 I2CONSET = 0x00000020; // Start condition
}

The slave address and data to be sent are placed in global variables so that they can be used by the I2C
interrupt routine. The address is a seven-bit address with the LSB set for write and cleared for read. The routine
next clears the I2C control flags, enables the I2C peripheral and asserts a start condition. Once the start
condition has been written onto the bus an interrupt is generated and a result code can be read from the I2C
status register.

If the start condition has been successful, this code will be 0x08. Next the application software must write the
slave address and the R/W bit into the I2Cdata register. This will be written on to the bus and will be
acknowledged by the slave. When the acknowledge is received, another interrupt is generated and the status
register will contain the code 0x18 if the transfer was successful. Now that the slave has been addressed and is
ready to receive data, we can write a string of bytes into the I2C data register. As each byte is written it will be
transmitted and acknowledged. When it is acknowledged an interrupt is generated and 0x28 will be in the status
register if the transfer was successful. If it failed and had a NACK the code will be 0x20 and the byte must be
sent again. So, as each byte is transferred an interrupt is generated, the status code can be checked and the
next byte can be sent. Once all the bytes have been sent the stop condition can be asserted by writing to the
I2C control register and the transaction is finished. The I2C interrupt is really a state machine which examines
the status register on each interrupt and performs the necessary action. This is easy to implement as a switch
statement as shown below.

I2C status Register: For each bus
event an interrupt is generated, a
condition code is returned in the
status register. This code is used to
determine the next action to
perform within the I2C peripheral

4 – User Peripherals

© Hitex (UK) Ltd. Page 93

void I2CISR (void) // I2C interrupt routine
{

switch (I2STAT) // Read result code and switch to next action
{

 case (0x08): // Start bit
 I2CONCLR = 0x20; // Clear start bit
 I2DAT = I2CAddress; // Send address and
 // write bit
 break;

 case (0x18): // Slave address+W, ACK
 I2DAT = I2Cdata; // Write data to tx register
 break;

 case (0x20): // Slave address +W, Not ACK
 I2DAT = I2CAddress; // Resend address and write bit
 break;

 case (0x28): // Data sent, Ack
 I2CONSET = 0x10; // Stop condition
 break;

 default :
 break;
 }

 I2CONCLR = 0x08; // Clear I2C interrupt flag
 VICVectAddr = 0x00000000; // Clear interrupt in
}

This example sends a single byte but could be easily modified to send multiple bytes. Additional case
statements may be added to handle a master request for data.

In the case of a master receive, the start condition will be the same but this time the address written on to the
bus will have the R/W bit cleared. When the acknowledge is received after the slave address is sent, it will be
followed by the first byte of data from the slave so the master does not have to do anything. However, in the
case statement we can set the acknowledge bit so that an ACK is generated as soon as the byte has been
transferred. As each byte is transferred, the data can be read from I2CDAT. When all the bytes have been
received, the stop condition can be asserted and the transaction ends.

I2C master TX: This bus
transaction demonstrates
a master to slave write
transaction

4 – User Peripherals

© Hitex (UK) Ltd. Page 94

The same I2CtransferByte() function can be used to start a read transaction and the additional case statements
required in the interrupt are shown below.

case (0x40) : // Slave Address +R, ACK
 I2CONSET = 0x04; // Enable ACK for data byte
break;

case (0x48) : // Slave Address +R, Not Ack
 I2CONSET = 0x20; // Resend Start condition
break;

case (0x50) : // Data Received, ACK
 message = I2DAT;
 I2CONSET = 0x10; // Stop condition
 lock = 0; // Signal end of I2C activity
break;

case (0x58): // Data Received, Not Ack
 I2CONSET = 0x20; // Resend Start condition
break;

Exercise 21: I2C
This exercise demonstrates how to use the I2C interface to communicate to an I2C EEROM.

4 – User Peripherals

© Hitex (UK) Ltd. Page 95

4.9 SPI Interface

Like the I2C interface the SPI interface is a simple peripheral “engine” which can write and read data to the SPI
bus, but is not intelligent enough to manage the bus. It is up to your code to initialise the SPI interface and then
manage the bus transfers.

The SPI peripheral has four external pins: a serial clock pin, slave select pin and two data pins master in/slave
out and master out/slave in. The serial clock pin provides a clock source of up to 400Kbits/sec when in master
mode, or will accept an external clock source when in slave mode. The SPI bus is purely a serial data
connection for high-speed data transfer and unlike I2C does not have any addressing scheme built into the
serial transfer. An external peripheral is selected by a slave select pin which is a separate pin. Typically, if the
LPC2000 is acting in master mode, it could use a GPIO pin to act as slave select (chip enable) for the desired
SPI peripheral. When the SPI peripheral is in slave mode, it has its own slave select input which must be pulled
low to allow an SPI master to communicate with it. The two data transfer pins master in / slave out and master
out / slave in are connected to the remote SPI device and their orientation depends on whether the device is
operating in master or slave mode. The diagram below shows a typical configuration for connecting to an
EEROM device.

The programmers’ interface for the SPI peripheral has five registers. The clock counter register determines the
Baud rate. Pclk is simply divided by the value in the clock counter to give the SPI bit rate. This register must

hold a minimum value of eight. The control register is used to configure the operation of the SPI bus. Because
of the simple nature of the SPI data transfer and the wide range of SPI peripherals available, the SPI clock and
data lines can be configured to operate in several different configurations. Firstly the polarity and phase of the
clock must be defined. The polarity can be active high or active low as shown below and the clock phase can be
edge or centre aligned.

SPI EEROM peripheral:
This diagram shows how to
interface an external EEROM onto
the SPI bus of the LPC2000. It
should be noted that pins P0.7 and
P0.20 must be pulled high to enable
the SPI peripheral as a master

4 – User Peripherals

© Hitex (UK) Ltd. Page 96

Finally the data orientation may also be defined as the most significant bit transferred first or the least significant
bit transferred first.

Each of these configuration features has a configuration bit in the control register and you must program these
bits to match the SPI peripheral you are trying to communicate with. Once the bit rate has been set and the
control register configured, then communication can begin. To communicate with the SPI memory shown above,
first set the GPIO pin to enable the memory for communication. Then writing to the SPI data register will send a
byte of data and reading from the register will collect any data sent from the external peripheral. The actual data
format used in the transaction will depend on the SPI device you are trying to communicate with.

The SPI data transmission can be
configured to match the
characteristics of any SPI device

Exercise 22: SPI
This exercise demonstrates how to configure the SPI peripheral and communicate with an external
EEROM on the SPI bus

4 – User Peripherals

© Hitex (UK) Ltd. Page 97

4.10 Analog To Digital Converter

The A/D converter present on some LPC2000 variants is a 10-bit successive approximation converter, with a
conversion time of 2.44 uSec or just shy of 410 KSps. The A/D converter has either 4 or 8 multiplexed inputs
depending on the variant. The programming interface for the A/D converter is shown below.

The A/D control register establishes the configuration of the converter and controls the start of conversion. The
first step in configuring the converter is to set up the peripheral clock. As with all the other peripherals, the A/D
clock is derived from the PCLK. This PCLK must be divided down to equal 4.5MHz. This is a maximum value
and if PCLK cannot be divided down to equal 4.5MHz then the nearest value below 4.5MHz which can be
achieved should be selected.

PCLK is divided by the value stored in the CLKDIV field plus one. Hence the equation for the A/D clock is as
follows:

CLKDIV = (PCLK/Adclk) - 1

As well as being able to stop the clock to the A/D converter in the peripheral power down register, the A/D has
the ability to fully power down. This reduces the overall power consumption and the on-chip noise created by
the A/D. On reset, the A/D is in power down mode, so as well as setting the clock rate the A/D must be switched
on. This is controlled by the PDN bit in ADCR. Logic one in this field enables the converter. Unlike other
peripherals the A/D converter can make measurements of the external pins when they are configured as GPIO
pins. However, by using the pinselect block to make the external pins dedicated to the A/D converter the overall
conversion accuracy is increased.

Prior to a conversion the resolution of the result may be defined by programming the CLKS field. The A/D has a
maximum resolution of 10 bits but can be programmed to give any resolution down to 3 bits. The conversion
resolution is equal to the number of clock cycles per conversion minus one. Hence for a 10-bit result the A/D
requires 11 ADCLK cycles and four for a 3-bit result. Once you have configured the A/D resolution, a conversion
can be made. The A/D has two conversion modes, hardware and software. The hardware mode allows you to
select a number of channels and then set the A/D running. In this mode a conversion is made for each channel
in turn until the converter is stopped. At the end of each conversion the result is available in the A/D data
register.

A/D Analogue to digital converter: The
converter is available with 4 or 8 channels of
10-bit resolution

AD Control register:
The control register determines the
conversion mode, channel and
resolution

AD data register:The data register
contains the conversion result,
channel overrun error and
conversion done flag.

4 – User Peripherals

© Hitex (UK) Ltd. Page 98

At the end of a conversion the Done bit is set and an interrupt may also be generated. The conversion result is
stored in the V/Vdda field as a ratio of the voltage on the analogue channel divided by the voltage on the
analogue power supply pin. The number of the channel for which the conversion was made is also stored
alongside the result. This value is stored in the CHN field. Finally, if the result of a conversion is not read before
the next result is due, it will be overwritten by the fresh result and the OVERUN bit is set to one. The example
below demonstrates use of the A/D converter in hardware mode.

int main(void)
{
 VPBDIV = 0x00000002; //Set the Pclk to 30 MHz
 IODIR1 = 0x00FF0000; // P1.16..23 defined as Outputs
 ADCR = 0x00270607; // Setup A/D: 10-bit AIN0 @ 3MHz

 VICVectCntl0 = 0x00000032; // connect A/D to slot 0
 VICVectAddr0 = (unsigned)AD_ISR; // pass the address of the IRQ into the VIC
 // slot
 VICIntEnable = 0x00040000; // enable interrupt

 while(1)
 {
 ;
 }
}

void AD_ISR (void)
{
 unsigned val,chan;
 static unsigned result[4];

 val = ADCR;
 val = ((val >> 6) & 0x03FF); // Extract the A/D result
 chan = ((ADCR >>0x18) & 0x07);
 result[chan] = val;
}

The A/D has a second software conversion mode. In this case, a channel is selected for conversion using the
SEL bits and the conversion is started under software control by writing 0x01 to the START field. This causes
the A/D to perform a single conversion and store the results in the ADDR in the same fashion as the hardware
mode. The end of conversion can be signalled by an interrupt, or by polling the done bit in the ADDR. In the
software conversion mode it is possible to start a conversion when a match event occurs on timer zero or timer
one. Or when a selected edge occurs on P0.16 or P0.22, the edge can be rising or falling, as selected by the
EDGE field in the ADCR.

The A/D may be started by a
software event or it may be started
by several hardware triggers

4 – User Peripherals

© Hitex (UK) Ltd. Page 99

The simplest method of using the A/D converter is shown below.

VPBDIV = 0x02; //Set the Pclk to 30 MHz
IODIR1 = 0x00FF0000; // P1.16..23 defined as Outputs
ADCR = 0x00270601; // Setup A/D: 10-bit AIN0 @ 3MHz
ADCR |= 0x01000000; // Start A/D Conversion

while(1)
{

do
{
 val = ADDR; // Read A/D Data Register
}

Exercise 23 : Analog To Digital Converter
This exercise uses the A/D to convert an external voltage source and modulate a bank of LEDs with
the result.

4 – User Peripherals

© Hitex (UK) Ltd. Page 100

4.11 Digital To Analog Converter

The LPC2132/2138 variants have a 10-bit Digital to Analogue converter. This is an easy-to-use peripheral as it
only has a single register.

The DAC is enabled by writing to bits 18 and 19 of PINSEL1 and converting pin 0.25 from GPIO to the AOUT
function. It should also be noted that a channel of the analogue to digital converter also shares this pin.

Once enabled a conversion can be started by writing to the VALUE bits in the control register. The conversion
time is dependant on the value of the BIAS bit. If it is set to one the conversion time is 2.5uSec but it can drive
700 uA. If it is zero the conversion time is 1 uSec but it is only able to deliver 350 uA. However, the total settling
time is also dependent on the external impedance. Figures for the impedance of the DAC have not yet been
released.

Exercise 24: Digital to Analog converter
This exercise simulates a sine wave which is sampled by the Analogue to digital converter. These
values are loaded straight into the Digital to Analogue converter to regenerate the sine wave. The two
sine waves can be compared in the logic analyzer window.

The DAC is controlled by a single
register. The value to be converted is
written here along with the bias value

4 – User Peripherals

© Hitex (UK) Ltd. Page 101

4.12 CAN Controller

Variants of the LPC2000 are available with up to 4 independent CAN controllers on board the chip. The CAN
controllers are one of the more complicated peripherals on the LPC2000. In this section we will have a look at
the CAN protocol and the LPC2000 CAN peripherals.

The Controller Area Network (CAN) Protocol was developed by Robert Bosch for Automotive Networking in
1982. Over the last 22 Years CAN has become a standard for Automotive Networking and has had a wide
uptake in non-automotive systems where it is required to network together a few embedded nodes. CAN has
many attractive features for the embedded developer. It is a low-cost, easy-to-implement, peer to peer network
with powerful error checking and a high transmission rate of up to 1 Mbit/sec. Each CAN packet is quite short
and may hold a maximum of eight bytes of data. This makes CAN suitable for small embedded networks which
have to reliably transfer small amounts of critical data between nodes.

4.12.1.1 ISO 7 Layer Model

In the ISO seven layer model the CAN protocol covers the layer two ‘data link layer’, i.e.
forming the message packet, error containment, acknowledgement and arbitration.

CAN does not rigidly define the layer 1 ‘Physical layer’ so CAN messages may be run over many different
physical mediums. However, the most common physical layer is a twisted pair and standard line drivers are
available. The other layers in the IOS model are effectively empty and the application code directly addresses
the registers of the CAN peripheral. In effect, the CAN peripheral can be used as a glorified UART without the
need for an expensive and complex protocol stack. Since CAN is also used in Industrial Automation there are a
number of software standards that define how the CAN messages are used to transfer data between different
manufacturers’ equipment. The most popular of these application layer standards are CANopen and Device net.
The sole purpose of these standards is to provide interoperability between different OEM equipment. If you are
developing your own closed system you do not need these application layer protocols and are free to implement
you own proprietary protocol, which is what most people do.

4.12.2 CAN Node Design

A typical CAN node is shown below. Each node consists of a microcontroller and a separate CAN controller.
The CAN controller may, as in the case of the LPC2000, be fabricated on the same silicon as the
microcontroller or it may be a stand-alone controller in a separate chip to the microcontroller. The CAN
controller is interfaced to the twisted pair by a line driver and the twisted pair is terminated at either end by a 120
Ohm resistor. The most common mistake with a first CAN network is to forget the terminating resistors and then
nothing works.

4 – User Peripherals

© Hitex (UK) Ltd. Page 102

One important feature about the CAN node design is that the CAN controller has separate transmit and receive
paths to and from the physical layer device. So, as the node is writing on to the bus it is also listening back at
the same time. This is the basis of the message arbitration and for some of the error detection.

The two logic levels are written onto the twisted pair as follows, a logic one is represented by bus idle with both
wires held half way between 0 and Vcc. A logic Zero is represented by both wires being differentially driven.

In “CAN speak” a logic one is called a recessive bit and a logic zero is called a dominant bit. In all cases a
dominant bit will overwrite a recessive bit. So, if ten nodes write recessive and one writes dominant, then each
node will read back a dominant bit. The CAN bus can achieve bit rates up to a maximum of 1 Mbit/sec. Typically
this can be achieved over about 40 metres of cable. By dropping the bit rate, longer cable runs may be
achieved. In practice you can get at least 1500 metres with the standard drivers at 10 Kbit/sec.

CAN node hardware: A typical CAN node
has a microcontroller, CAN controller,
physical layer and is connected to a
twisted pair terminated by 120 Ohm
resistors.

CAN Physical layer signals:
On the CAN bus, logic zero is
represented by a maximum voltage
difference called “Dominant” and logic
one by a bus idle state called
“recessive”. A dominant bit will
overwrite a recessive bit.

4 – User Peripherals

© Hitex (UK) Ltd. Page 103

4.12.3 CAN Message Objects

The CAN bus has two message objects which may be generated by the application software. The message
object is used to transfer data around the network. The message packet is shown below.

The message packet starts with a dominant bit to mark the start of frame. Next comes the message identifier
which may be up to 29 bits long. The message identifier is used to label the data being sent in the message
packet. CAN is a producer / consumer protocol. A given message is produced from one unique node and then
may be consumed by any number of nodes on the network simultaneously. It is also possible to do point-to-
point communication by making only one node interested in a given identifier. Then a message can be sent from
the producer node to one given consumer node on the network. In the message packet the RTR bit is always
set to zero. (This field will be discussed shortly.) The DLC field is the data length code and contains an integer
between 0 and 8 which indicates the number of data bytes being sent in this message packet.

So, although you can send a maximum of 8 bytes in the message payload it is possible to truncate the message
packet in order to save bandwidth on the CAN bus. After the 8 bytes of data there is a 15-bit cyclic redundancy
check. This provides error detection and correction from the start of frame up to the beginning of the CRC field.
After the CRC there is an acknowledge slot. The transmitting node expects the receiving nodes to assert an
acknowledge in this slot within the transmitting CAN packet. In practice the transmitter sends a recessive bit and
any node which has received the CAN message up to this point will assert a dominant bit on the bus, thus
generating the acknowledge. This means that the transmitter will be happy if just one node acknowledges its
message, or if 100 nodes generate the acknowledge. So when developing your application layer care must be
taken to treat the acknowledge as a weak acknowledge, rather than confirmation that the message has reached
all its destination nodes. After the acknowledge slot there is an end of frame message delimiter.

It is also possible to operate the CAN bus in a master / slave mode. A CAN node may make a remote request
onto the network by sending a message packet which contains no data, but has the RTR bit set. The remote
frame is requesting a message packet to be transmitted with a matching identifier. On receiving a remote frame,
the node which generates the matching message will transmit the corresponding message frame.

CAN message packet : The message packet is formed by the CAN controller, the application
software provides the data bytes, the message identifier and the RTR bit

Remote Transmit request: The RTR frame
is used to request message packets from
the network as a master / slave transaction

4 – User Peripherals

© Hitex (UK) Ltd. Page 104

As previously mentioned, the CAN message identifier can be up to 29 bits long. There are two standards of
CAN protocol, the only difference being the length of the message identifier.

2.0A Has an 11-bit identifier

2.0B Passive Has an 11-bit identifier

2.0B Active Has a 29-bit identifier

It is possible to mix the two protocol standards on the same bus but you must not send a 29- bit message to an
2.0A device

4 – User Peripherals

© Hitex (UK) Ltd. Page 105

4.12.4 CAN Bus Arbitration

If a message is scheduled to be transmitted on to the bus and the bus is idle, it will be transmitted and may be
picked up by any interested node. If a message is scheduled and the bus is active, it will have to wait until the
bus is idle before it can be transmitted. If several messages are scheduled while the bus is active, they will start
transmission simultaneously once the bus becomes idle, being synchronised by the start of frame bit. When this
happens, the CAN bus arbitration will take place to determine which message wins the bus and is transmitted.

CAN arbitrates its messages by a method called “non-destructive bit-wise arbitration”. In the diagram above,
three messages are pending transmission. Once the bus is idle and they are synchronised by the start bit, they
will start to write their identifiers onto the bus. For the first two bits, all three messages write the same logic and

hence read back the same logic so each node continues transmission. However on the third bit, node A and C
write dominant bits and node B writes recessive. At this point, node B wrote recessive but reads back dominant.
In this case it will back off the bus and start listening. Node A and C will continue transmission until node C write
recessive and node A writes dominant. Now node C stops transmission and starts listening. Now node A has
won the bus and will send its message. Once A has finished, nodes B and C will transmit and node C will win
and send its message. Finally node B will send its message. If node A is scheduled again, it will win the bus
even though the node B and C messages have been waiting. In practice the CAN bus will transmit the message
with the lowest value identifier.

CAN arbitration:
Message arbitration guarantees
that the most important
message will win the bus and
be sent without any delay.
Stalled messages will then be
sent in order of priority, lowest
value identifier first.

4 – User Peripherals

© Hitex (UK) Ltd. Page 106

4.12.5 Bit Timing

Unlike many other serial protocols, the CAN bit rate is not just defined by a Baud rate prescaler. The CAN
peripheral contains a Baud rate prescaler but it is used to generate a time quanta i.e. a time slice. A number of
these time quanta are added together to get the overall bit timing.

The bit period is split into three segments. First is the sync segment, which is fixed at one time quanta long. The
next two segments are Tseg1 and Tseg2 where the user defines the number of time quanta in each region. The
minimum number of time quanta in a bit period is 8 and the maximum is 25. The receiving sample point is at the

end of Tseg1 so changing the ratio of Tseg1 to Tseg2 adjusts the sample point. This allows the CAN protocol to
be tuned to the transmission channel. If you are using long transmission lines, the sample point can be moved
backwards. If you have drifting oscillators you can bring the sample point forward. In addition, the receivers can
adjust their bit rate to lock onto the transmitter. This allows the receivers to compensate for small variations in
the transmitter bit rate. The amount that each bit can be adjusted is called the “synchronous jump width” and
may be set to between 1 – 4 time quanta and is again user definable.

To calculate the bit timing, the formula is given by

Bit rate = Pclk/(BRP x (1 + Tseg1 + Tseg2))

Where: BRP = Baud rate prescaler

This calculation has a lot of unknowns. If we assume that we want to reach a bit rate of 125K with a 60 MHz
Pclk and a sample point of about 70%, here is how the BRP calculation is performed.

The total number of time quanta in a bit period is given by (1+Tseg1+Tseg2) . If we call this term QUANTA and
rearrange the equation in terms of the Baud rate prescaler:

BRP = Pclk/(Bit rate x QUANTA)

Using our known values:

BRP = 60 MHz/(125K x QUANTA)

Now we know that we can have between 8 and 25 time quanta in the bit period, so using a spreadsheet we can
substitute in integer values between 8 and 25 for QUANTA until we get an integer value for BRP.

In this case when QUANTA = 16 BRP = 30;

Then 16 = Quanta = (1+Tseg1+Tseg2)

CAN bit timing:
Unlike other serial protocols
the CAN bit period is
constructed as a number of
segments that allow you to
tune the CAN data
transmission to the channel
being used.

4 – User Peripherals

© Hitex (UK) Ltd. Page 107

So we can adjust the ratio between Tseg1 and Tseg2 to give us the desired sample point.

Sample point = (QUANTA x 70)/100

Hence 16 *0.7 = 11.2. This gives Tseg 1 = 10, Tseg2 = 5 and the sample point = 68.8%

The value for the synchronous jump width may be calculated via the following rule of thumb.

Tseg2 >= 5 Tq then program SJW to 4
Tseg2 < 5 Tq then program SJW to (Tseg2 - 1) Tq

In this case SJW = 4.

4 – User Peripherals

© Hitex (UK) Ltd. Page 108

4.12.6 CAN Message Transmission

In the LPC2000, each CAN controller has a number of status and control registers plus three transmit buffers
and a receive buffer.

In order to configure CAN controller we must program the bit timing register. However the bit timing register is a
protected register and may only be written to when the CAN controller is in reset. Bit zero of the mode register is
used to place the CAN controller into reset.

We can use the values calculated above to initialise one of the CAN controllers to 125Kbit/sec. It is important to
note that the values stored in the register are the calculated values minus 1. This ensures that no timing
segment is set to zero. Once the CAN controller has been initialised, it is possible to transmit a message by
writing to a transmit buffer. Each transmit buffer is made up of four words.

The CAN bit timing is defined by
5 separate parameters

4 – User Peripherals

© Hitex (UK) Ltd. Page 109

Two words are used to hold the 8 bytes of data and one word holds the message identifier. The final register is
the frame information register.

This register holds the values of the DLC and the RTR bit. In addition, there is a frame format (FF) bit that
defines whether the message has an 11-bit or 29-bit identifier. As there are three TX buffers it is possible to
define an internal priority for each TX buffer. If several buffers are scheduled simultaneously, the CAN controller
will use internal arbitration to decide which is transmitted first. This can be done in one of two ways; if the TPM
bit in the MODE register is Zero, the transmit buffer with the lowest value identifier will be sent first. If TPM is
high, then arbitration will use the values stored in the PRIO field in the Tx Frame Information register and the
buffer with the lowest PRIO value is sent first. Once the buffer has been filled with a message, transmission can
be started by setting the Transmit request bit (TR) in the COMMAND register. The code below shows some
code fragments to initialise the CAN peripheral and transmit a message.

C2MOD = 0x00000001; // Set CAN controller into reset
C2BTR = 0x001C001D; // Set bit timing to 125k
C2MOD = 0x00000000; // Release CAN controller

if(C2SR & 0x00000004) // See if Tx Buffer 1 is free
{
 C2TFI1 = 0x00040000; // Set DLC to 4 bytes
 C2TID1 = 0x00000022; // Set address to 0x22 Standard Frame
 C2TDA1 = NetworkData; // Copy some data into first four bytes
 C2CMR = 0x00000001; // Transmit the message
}

Exercise 25: CAN Transmit
This exercise configures the second CAN channel for 125K bits\second and repeatedly transmits a
CAN message frame.

The parameters of each CAN message
are defined in each message buffer

4 – User Peripherals

© Hitex (UK) Ltd. Page 110

4.12.7 CAN Error Containment

The CAN protocol has five methods of error containment built into the silicon. If any error is detected, it will
cause the transmitter to resend the message so the CPU does not need to intervene unless there is a gross
error on the bus. There are three error detection methods at the packet level; form check, CRC, and
acknowledge plus two at the bit level; bit check error and bit stuffing error. Within the CAN message there are a
number of fields that are added to the basic message. On reception, the message telegram is checked to see if
all these fields are present. If not, the message is rejected and an error frame is generated. This ensures that a
full, correctly formatted message has been received.

Each message must be acknowledged by having a dominant bit inserted in the acknowledge field. If no
acknowledge is received, the transmitter will continue to send the message until an acknowledge is received.

Frame Check:
The frame check tests that
a correctly formatted CAN
message has been
received.

Acknowledge:

All CAN frames must be
acknowledged. If there is no
handshake, the message will
be re-sent

4 – User Peripherals

© Hitex (UK) Ltd. Page 111

The CAN message packet also contains a 15 bit CRC which is automatically generated by the transmitter and
checked by the receiver. This CRC can detect and correct 4 bits of error in the region from the start-of-frame to
the beginning of the CRC field. If the CRC fails and the message is rejected, an error frame is placed onto the
bus.

Once a node has won arbitration it will start to write its message onto the bus. As during arbitration as each bit
is written onto the bus, the CAN controller is reading back the level written onto the bus. As the node has won
arbitration nothing else should be transmitting so each bit level written onto the bus must match the level read
back. If the wrong level is read back, the transmitter generates an error frame and reschedules the message.
The message is sent in the next message slot but must still go through the arbitration process with any other
scheduled message.

This leads to one of the golden rules in developing a CAN network. In a CAN network, every identifier must be
uniquely generated. So you must not have the same identifier sent from two different nodes. If this happens, it is
possible that two messages with the same ID are scheduled together, both messages will fight for arbitration
and both will win as they have the same ID. Once they have won arbitration they will both start to write their
data onto the bus. At some point this data will be different and this will cause a bit check error. Both messages
will be rescheduled, win arbitration and go into error again. Potentially this ‘deadly embrace’ can lock up the
network, so beware!

CRC: A 15 bit CRC is
automatically generated
which is a weighted
polynomial checksum that
provides error detection and
correction across the
message packet

Bit check error:
Once the arbitration has
finished the write and read
back mechanism is use for
bitwise error checking

4 – User Peripherals

© Hitex (UK) Ltd. Page 112

At the bit level, CAN also implements a bit stuffing scheme. For every five dominant bits in a row, a recessive bit
is inserted.

This helps to break up DC levels on the bus and provides plenty of edges in the bit stream which are used for
resynchronisation. An error frame in the CAN protocol is simply six dominant bits in a row. This allows any CAN
controller to assert an error onto the bus as soon as the error is detected, without having to wait until the end of
a message. Internally each CAN controller has two counters.

These are a receive error counter and a transmit error counter. These counters will count up when receiving or
transmitting an error frame. If either counter reaches 128, then the CAN controller will enter an ‘error passive’
mode. In this mode it still responds to error frames but if it generates an error frame, it writes recessive bits in
place of dominant bits. If the transmit error counter reaches 255 then the CAN controller will go into a bus-off
condition and take no further part in CAN communication. To restart communication, the CPU must intervene to
reinitialise the controller and put it back onto the bus. Both these mechanisms are to ensure that if a node goes
faulty, it will fail gracefully and not block the bus by continually generating error frames.

The LPC2000 CAN controllers have a number of error detection mechanisms. First of all, the current count of
the transmit and receive error counters can be read in the Global Status Register.

Also in this register are two error flags, the Bus Status flag will be set when the maximum error count is reached
and the CAN controller is removed from the bus. The second error flag is the Error Status flag, which is set
when the CAN error counters reach a warning limit. This warning limit is an arbitrary value that is set by writing a
value into the Error Warning limit register. The default value in this register is 96. Like the bit timing registers,
the EWL register may only be modified when the CAN controller is in reset. In addition, the Interrupt Capture
Register provides extensive diagnostics for managing events on the CAN bus.

Bit Stuffing:
For every five bits of one
logic in a row a stuff bit of
the opposite logic is
inserted. The error frame
breaks this rule by being six
dominant bits in a row

Error counters:
The CAN controller moves between a
number of error states that allow a node
to fail in an elegant fashion, without
blocking the bus

4 – User Peripherals

© Hitex (UK) Ltd. Page 113

The CAN controller has the following interrupt sources,

1. Transmit interrupt (one for each buffer)
2. Receive interrupt
3. Error Warning
4. Data overrun
5. Wake up
6. Error Passive
7. Arbitration lost
8. Bus error
9. ID ready

4.12.8 CAN Message Reception

Once initialised, the CAN controller is able to receive messages into its receive buffer. This is similar in layout to
the transmit buffers

The Rx Frame Status register is analogous to the Tx Frame information register. However it has two additional
values. These are the ID Index and the BP bit and these will be explained in the next section.

The code below demonstrates how to receive a CAN message:

int main(void)
{
 VPBDIV = 0x00000001; //Set PClk to 60MHz
 IODIR1 = 0x00FF0000; // set all ports to output
 PINSEL1|= 0x00040000; //Enable Pin 0.25 as CAN1 RX
 C1MOD = 0x00000001; //Set CAN controller into reset
 C1BTR = 0x001C001D; //Set bit timing to 125k
 C1IER =0x00000001; //Enable the Receive interrupt
 VICVectCntl0 = 0x0000003A; //select a priority slot for a given interrupt
 VICVectAddr0 = (unsigned)CAN1IRQ; //pass the address of the IRQ
 //into the VIC slot
 VICIntEnable = 0x04000000; //enable interrupt
 AFMR = 0x00000001; //Disable the Acceptance filters
 C1MOD = 0x00000000; //Release CAN controller

 while(1){;}
}

void CAN1IRQ (void) __irq
{
 IOCLR1 = ~C1RDA; // clear output pins
 IOSET1 = C1RDA; // set output pins
 C1CMR = 0x00000004; // release the receive buffer
 VICVectAddr = 0x00000000; // Signal the end of interrupt
}

4 – User Peripherals

© Hitex (UK) Ltd. Page 114

4.12.9 Acceptance Filtering
While the receive example shown above will work perfectly well, it suffers from two problems. Firstly, it receives
every message transmitted on the bus. In a fully loaded CAN bus this could mean a message would be received
every 72us. As the LPC2000 has up to 4 CAN controllers, the CPU would have to spend a lot of time just
managing the CAN busses. Secondly, once the message has been received the CAN controller would have to
read and decode the message identifier in order to decide what to do with the message. In order to overcome
these problems, the LPC2000 CAN controllers have a sophisticated acceptance filtering scheme. The
acceptance filter is used to screen messages as they come in from the CAN bus. The acceptance filter can be
programmed to pass or block message identifiers before they enter the CAN controller for processing. This
prevents unwanted messages entering the CAN receive buffer and consequently greatly reduces the overhead
on the CPU.

The acceptance filter has 2K of RAM (512 x 32), which may be allocated into tables of identifiers. This allows
ranges of messages and individual messages to be able to enter into the CAN receive buffer.

As a message passes through the acceptance filter, it is assigned an ID Index. This is an integer number that
relates to the message ID’s offset in the acceptance filter table. This number is stored in the RX Frame Status
register. So rather than decode the raw message ID, it is easier and faster to use the index value to decide what
message has been received.

Acceptance filters:
The CAN modules one 2K block of
RAM which is used to set up filter
tables to efficiently handle high bus
loadings without overloading the CPU

Full CAN mode:
In full CAN mode the
CAN RAM may also be
configured as additional
receive buffers which
store incoming data for
the CPU to read as
required

4 – User Peripherals

© Hitex (UK) Ltd. Page 115

The acceptance filter also has a full CAN mode. In this mode the messages are received and scanned against
the table of permissible identifiers. If a match is made, the message is stored not in the CAN controller receive
buffer but in a dedicated message buffer within the acceptance filter memory. In this mode, each message has
its own unique message buffer at a fixed location, making all the CAN data easily accessible from the CPU.

4.12.9.1 Configuring The Acceptance Filter

The acceptance filter is configured by seven registers. Control of the filter is via the mode register. The various
ID tables are configured by the next five registers and the seventh register is an error reporting register.

Before configuration of the acceptance filter can start it must be disabled. This is done by setting the AccOff bit
and clearing the AccBP bit in the acceptance filter mode register. If the CAN controller is run with this
configuration, then all messages on the bus will be received.

Once the acceptance filter is disabled, each of the four filter tables may be configured. The four tables are as
follows:

Individual standard identifiers (11 bit ID)
Groups of standard identifiers (11 bit ID)
Individual Extended identifiers (29 bit ID)
Groups of extended identifiers (29 bit ID)

The acceptance filter RAM starts at 0xE0038000. Each of the tables must be defined and fixed at absolute
locations in the filter RAM. The start address of each table should then be written into the relevant acceptance
filter register. The tables should start at the beginning of RAM and use the memory contiguously. Finally, the
address of the last used location of RAM should be written into the End of Table register. To enable the
Acceptance filter, set the ACCoff bit to logic one and AccBP bits to zero.

Each of the tables is constructed as follows;

The Individual Standard identifier table allows you to define individual 11-bit identifiers that will pass through the
acceptance filter. Each definition takes two bytes, the first 11 bits contains the message identifier to be passed.
This is followed by a bit to dynamically enable or disable this filter entry. Finally, the top three bits associates
this filter entry with a particular CAN controller.

The Acceptance filter mode
register provides global control
of the acceptance filter

4 – User Peripherals

© Hitex (UK) Ltd. Page 116

The group standard identifier table uses the same format but two entries are used to define the upper and lower
identifier address range for messages that are allowed to pass through the acceptance filter

The individual extended identifier table uses four bytes per entry, as shown above. The first 29 bits define the
message identifier to be passed through the acceptance filter and the top three bits associates the filter entry
with a particular CAN controller. The group extended identifier table uses two words in the same format as the
individual extended table to build up a start and end identifier values in the same fashion as the standard
message group table

The following code shows how the acceptance filters may be configured for the basic CAN mode.

unsigned int StandardFilter[2] _at_ 0xE0038000; //Declare the standard
 //acceptance filter table
unsigned int GroupStdFilter[2] _at_ 0xE0038008; //Next the standard Group
 //filter table
unsigned int IndividualExtFilter[2] _at_ 0xE0038010; //Now the extended filter
 //table
unsigned int GroupExtFilter[2] _at_ 0xE0038018; //Finally the Group extended
 //filter table

AFMR = 0x00000001; // Disable the Acceptance filters
StandardFilter[0] = 0x20012002; // Setup the standard filter table
StandardFilter[1] = 0x20032004; // Allow Ids 1,2,3 & 4
SFF_sa = 0x00000000; // Set start address of Standard table
SFF_GRP_sa = 0x00000008; // Set start address of Standard group table
EFF_sa = 0x00000008; // Set start address of Extended table
EFF_GRP_sa = 0x00000008; // Set start address of Extended group table
ENDofTable = 0x00000008; // Set end of table address
AFMR = 0x00000000; // Enable Acceptance filters
C1MOD = 0x00000000; // Release CAN controller

4.13 Summary

This chapter is a bit of a moving target! The LPC2000 is a rapidly growing family with new variants being
released on a regular basis. Check the CD that came with this book for a .PDF update to this chapter or keep an
eye on the web at http://www.hitex.co.uk/arm/lpcbook

If you have worked through this and the proceeding chapters, you should now have a firm grasp of the LPC2000
family the ARM7 CPU and the necessary development tools. Appendix B lists further reading and web
resources for the ARM7 and the LPC2000 in particular.

Exercise 26: CAN Receive
Like the last exercise this example configures the CAN peripheral for 125Kbits/sec and sets the
acceptance filters to receive one of three message frames.

4 – User Peripherals

© Hitex (UK) Ltd. Page 117

6 – Keil Tutorial With GNU Tools

© Hitex (UK) Ltd. Page 172

6 Chapter 6: Keil Tutorial With GNU Tools

6.1 Intoduction

The following tutorial demonstrates how to setup a project in uVision for the GNU compiler. Exercises 1 – 6 are
repeated to show the non-ANSI aspects of the GNU compiler. Once you are familiar with these exercises, you
can rejoin the main tutorial but use the exercise examples in the GCC directory.

6.2 GCC Startup Code

The startup code used in the GNU project is different in that the Keil Assembler has different directives and
naming conventions. However, it is performing the same operations. It is up to the programmer to edit the vector
table as discussed in the section on the Keil compiler startup code. The graphical editor allows you to configure
the processor stacks and system peripherals in the same way as the Keil compiler startup code.

6.3 Interworking ARM/THUMB Code

The GCC compiler also supports the ARM procedure calling standard and allows interworking between the
ARM and THUMB instruction sets. However, unlike the Keil compiler, it is not possible to select individual
functions as ARM or THUMB. In the GCC compiler all ARM code must be in one module or modules and the
THUMB code must be in separate modules. These modules are compiled as ARM or THUMB as required and
then linked together. This process is described in example 3 in this section.

6.4 Accessing Peripherals

The Keil and GNU compilers can use the same include files to access the on-chip SFR registers.

6.5 Interrupt Service Routines

The GCC compiler has a set of non-ANSI extensions which allow functions to be declared as interrupt routines.
The general form of the declaration is shown below

void IRQ_Routine (void) __attribute__ ((interrupt("IRQ")));

The following keywords are available to define the exception source required:

 FIQ,IRQ,SWI,UNDEF.

This function declaration is only required on the function prototype and should not be used on the main body of
the function. An interrupt service routine is shown in example 5.

6 – Keil Tutorial With GNU Tools

© Hitex (UK) Ltd. Page 173

6.5.1 Software Interrupt

There is no real software interrupt support in the GCC compiler. To generate a software interrupt you must use
inline Assembler as shown below:

#define SoftwareInterrupt2 asm (" swi #02")

This will place a SWI instruction encoded with the value 2 in your code. Next it is possible to declare a pointer to
a CPU register using the non-ANSI register keyword as shown below:

register unsigned * link_ptr asm ("r14");

This allows us to read the contents of the link register when we enter the ISR. When the SWI instruction is
executed, the CPU will enter supervisor mode and jump to the SWI vector. The address of the SWI instruction
plus four will be stored in the link register. On entry to the software interrupt ISR the following line of code is
executed:

temp = *(link_ptr-1) & 0x00FFFFFF;

The address stored in the link register is rolled back by one instruction (word-wide pointer i.e. four bytes) so that
it is pointing at the address of the SWI instruction which generated the exception. The top eight bits of the SWI
instruction are masked off and bits 0-23 are copied into the temp variable. This in effect loads the number 2 into
the temp variable. A switch statement can now be used to run the desired code. This method of handling
software interrupts is shown in example 6.

6.6 Inline Functions

Within the GNU compiler functions may be declared as inline functions as follows:

 inline int fast_function(char param1)

6 – Keil Tutorial With GNU Tools

© Hitex (UK) Ltd. Page 174

6.7 Exercise 1: Using The Keil Toolset With The GNU Compiler

This example is based on the source code which can be found in:

C:\Exercise\Work\EX1 first program

In this first exercise we will spend some time defining a first project, building the code and downloading it into
the Simulator for debugging. We will then cover the basic debugging functions of the Keil simulator.

The Keil uVision IDE is designed to support several compilers: the GNU C compiler, the ARM development
suite and the Keil ARM compiler. Before compiling, make sure you have the GNU compiler selected. This is
done by activating the project workspace, right-clicking and selecting ‘manage components’. In this dialog,
select the Folders/extensions tab and make sure the GNU tools box is selected.

Double-click on the Keil UVision3 icon to start the IDE.

From the menu bar select Project\New Project.

6 – Keil Tutorial With GNU Tools

© Hitex (UK) Ltd. Page 175

In the New Project dialog navigate to your desired project directory.

In the New Project dialog name the project first.uv2 and select Save.

A ‘select new device for target’ dialog will appear. Navigate through the device data base and select the
Philips\LPC2129 folder and select OK.

6 – Keil Tutorial With GNU Tools

© Hitex (UK) Ltd. Page 176

In the project browser highlight the ‘Target1’ root folder and select the local menu by pressing the right mouse
button. In this menu select ‘Options for Target’.

In the ‘Target’ tab set the simulation frequency to 12.000 MHz.

In the Linker tab select the linker file flash.ld and tick the “Garbage collection” and do not use “standard startup
files” boxes

Note: To build the project so it will run within the on-chip RAM of the LPC2100 device, configure the Text start
as select the linker file RAM.ld

6 – Keil Tutorial With GNU Tools

© Hitex (UK) Ltd. Page 177

In the debug tab make sure the “Use Simulator” radio button is active. Also make sure “Load Application at
Startup” and “Go till main()” are checked.

Select OK to complete the target options.

 In the project browser expand the ‘Target1’ root node to show the Source group 1 folder.

 Highlight the ‘Source Group 1’ folder, open the local menu with a right click and select ‘Add Files to group
Source Group1’.

In the ‘Add files to Group’ dialog add the file blinky.c and serial.c.

6 – Keil Tutorial With GNU Tools

© Hitex (UK) Ltd. Page 178

Change the ‘Type of file’ filter to ASM and add the file startup.s

These are all the source files necessary for the project so select close.

You can view the source code contained in a file by double-clicking on the file name in the project browser
window.

Once you have added all the source files the project can be built via the program menu or by the build button on
the toolbar.

Once the code is built, you can start the simulator by pressing the debugger button. The use of the simulator
and JTAG debugger are detailed in Exercise One in the Tutorial and are the same for the GNU compiler.

6 – Keil Tutorial With GNU Tools

© Hitex (UK) Ltd. Page 179

6.8 Exercise 2: Startup Code

In this exercise we will configure the compiler startup code to configure the stack for each operating mode of the
ARM7. We will also ensure that the interrupts are switched on and that our program is correctly located on the
interrupt vector.

Open the project in EX2 Startup\work

Open the file Startup.s and using the graphical editor configure the operating mode stacks as follows:

Compile the code

Start the simulator and when the PC reaches main, examine the contents of each R13 register.

6.9 Exercise 3: Using THUMB Code

Start of stack space at the top of on-chip memory

Each stack is allocated a space of 0x80. The user stack is
0x400 bytes so user data will start at 0x40003d80 – 0x400

6 – Keil Tutorial With GNU Tools

© Hitex (UK) Ltd. Page 180

In this example we will build a very simple program to run in the ARM 32-bit instruction set and call a 16-bit
THUMB function and then return to the 32-bit ARM mode.

Open the project in EX3 THUMB code\work

In the files browser select thumb.c open the local menu (right-click) and select “options for thumb.c”

Select the CC tab and in the misc controls add –mthumb or tick the “compile thumb code” box and click OK

Again in the file browser select the root target (FLASH) and in the local menu “options for target”

6 – Keil Tutorial With GNU Tools

© Hitex (UK) Ltd. Page 181

In the CC tab tick the “enable APCS option and the “support calls between THUMB and ARM”

Compile and download the code into the debugger

Open the disassembly window and single step through the code using the F11 key

Observe the switch from 32-bit to 16-bit code and the THUMB flag in the CPSR

The processor is running in ARM (32-bit) mode, the T-bit is clear and the instructions are 4 bytes long. A call to
the THUMB function is made which executes a BX instruction forcing the processor into THUMB mode (16-bit).

The THUMB bit is set and on entry to the THUMB function a PUSH instruction is used to preserve registers on
to the stack.

6 – Keil Tutorial With GNU Tools

© Hitex (UK) Ltd. Page 182

6.10 Exercise 4: Using The GNU Libraries

In this exercise we will look at tailoring the GNU Printf function to work with the LPC2100 UART. We will look at
the registers of the UARTs in more detail later.

Open the project in EX4 printf\work

In main.c add a message for transmission to the printf statement

while(1)
{

 printf("Your Message Here \n"); //Call the prinfF function

}

Add the file syscalls.c in the work directory to the project.

In syscalls.c add modify the write function as follows:

Complete the for loop statement so it runs for the length of the printf string (len)
Inside the for loop add the putchar statement to write a single character to the stdio channel (putchar (*ptr))

Increment the pointer to the character string ptr++

int write (int file, char * ptr, int len)
{
 int i;

 for (i = 0; i < len; i++) putchar (*ptr++);

 return len;
}

Compile the code and download it to the development board

Run the code and observe the output within hyper terminal

If you are using the simulator, select view/serial window #1. This opens a terminal window within the simulator
which displays the UART0 output.

6 – Keil Tutorial With GNU Tools

© Hitex (UK) Ltd. Page 183

6.11 Exercise 5: Simple Interrupt

In this exercise we will setup a basic FIQ interrupt and see it serviced.

Open the project in EX5-Interrupt\work

In main.c complete the definition of the EXTintFIQ function prototype to define it as the FIQ interrupt service
routine

void EXTintFIQ (void) __attribute__ ((interrupt("FIQ")));

In startup.s complete the vector constants table to define EXTintFIQ as the FIQ ISR.

 .global EXTintFIQ Declare the name of the C ISR function as a
global
 .global _startup
 .func _startup
_startup:

Vectors: LDR PC, Reset_Addr
 LDR PC, Undef_Addr
 LDR PC, SWI_Addr
 LDR PC, PAbt_Addr Vector Table
 LDR PC, DAbt_Addr

 .long 0xB8A06F58
 LDR PC, [PC, #-0xFF0]
 LDR PC, FIQ_Addr

Reset_Addr: .word Reset_Handler
Undef_Addr: .word Undef_Handler
SWI_Addr: .word SWI_Handler Constants table
PAbt_Addr: .word PAbt_Handler
DAbt_Addr: .word DAbt_Handler
 .word 0
IRQ_Addr: .word IRQ_Handler
FIQ_Addr: .word EXTintFIQ

Insert the name of the C ISR function in the constants table

Compile the code and download it onto the board.

Step through the code and observe the following using the disassembly window and the registers window.

Step through the code until you reach the while loop

Set a breakpoint in the EXTintFIQ function

Press F5 to set the program running
On the MCB2100 board press the INT button to generate the interrupt.

If you want to see the entry and exit mechanisms to the exception, it is best to use the simulator and single step
in the disassembly window. This way you can watch the program flow and the actions on the CPU registers.

6 – Keil Tutorial With GNU Tools

© Hitex (UK) Ltd. Page 184

To control the interrupt in the simulator, open the peripherals/GPIO port 0 window. Pin 0.14 is set high by the
map.ini startup script. If you set the program running unchecking, the Pin1.4 box will generate the interrupt. You
must raise the pin high again to stop interrupts.

Alternatively in the toolbox there is a “Generate EINT1” button. This button will generate a simulated pulse on to
the interrupt pin.

Within uVision there is a full scripting language which allows you to simulate external events. These scripts are
based on the C language and are stored in text files. The script used to simulate the pulse is shown below:

signal void Toggle(void)
{
 PORT0 = (PORT0 ^ 0x4000);
 twatch (200);
 PORT0 = (PORT0 ^ 0x4000);
}

KILL BUTTON *
DEFINE BUTTON "GenerateEINT1","Toggle()"

This script is stored in the file signal.ini and is added to the project in the debug window. For more details on the
scripting language see the uVision documentation.

Toolbox button Toolbox with user
configurable scripts

6 – Keil Tutorial With GNU Tools

© Hitex (UK) Ltd. Page 185

6.12 Exercise 6: Software Interrupt

In this exercise we will define an inline Assembler function to call a software interrupt and place the value 0x02
in the calling instruction. In the software interrupt SWI we will decode the instruction to see which SWI function
has been called and then use a case statement to run the appropriate code.

Open the project in EX6 SWI\work

In main.c add the following code
As the first instruction in main add the assembler define which calls the swi instruction

#define SoftwareInterrupt2 asm (" swi #02")

In the SWI ISR complete the register definition to access R14

register unsigned * link_ptr asm ("r14");

Complete the code to pass value of the SWI ordinal into the temp variable

temp = *(link_ptr-1) & 0x00FFFFFF;

Compile and download the code into the debugger

Step the code and observe the SWI being serviced

In the disassembly window the first SWI instruction has been encoded with the value 1 at location 0x0000015C

On entry to the ISR the supervisor link register contains the value 0x00000160

The calculation for temp is temp = *(link_ptr-1) & 0x00FFFFFF or 0x164 – 4 (word-wide pointer, remember)
which is 0x15C which points to the instruction which generated the SWI. The top 8 bits are masked off which
yields a value of 1. This is used in the case statement to run the required code.

7 – Tutorial With Hitex, Keil & GNU Tools

© Hitex (UK) Ltd. Page 186

7 – Tutorial With Hitex, Keil & GNU Tools

© Hitex (UK) Ltd. Page 187

7 Chapter 7: Hitex Tutorial (With Keil Or GNU Compiler)

This chapter describes, how to use the Hitex tools with the Keil or GNU compiler for the tutorial examples. The
debugging can be done with the HiSIMARM instruction set simulator, as long as no peripherals of the LPC2000
microcontroller are used. For examining the peripherals, a starter kit from Hitex or the full Tantino or Tanto
system is recommended.

7.1 Installation

All the necessary software for the practical examples is on the Hitex CD that comes with this book.

1. First it is necessary to install the HiTOP IDE. Please install the options “HiSIM for ARM” and if you are
using a starter kit, the “Tantino7/9 for ARM” option also. For high-end system users, please install the
option “Tanto for ARM” as well.

2. Depending which compiler is to be used, please install the Keil or the GNU compíler for ARM

3. Finally install the StartEasy for ARM software. This is a CASE tool for the LPC2000 which will allow

you to easily configure the LPC2000 devices.

Once the software has been installed you are ready to start the tutorial exercises.

7 – Tutorial With Hitex, Keil & GNU Tools

© Hitex (UK) Ltd. Page 188

7.2 Creating The First Project

This section will cover the Hitex development tools that can be used to develop code for the LPC2000. The
generation of the startup and initialization code and the creation of the project is done by StartEasy. The
difference between using the Keil or the GNU compiler is only the compiler setting is made in StartEasy. The
debugging tool is HiTOP, with the instruction set simulator HiSIM, the Tantino for ARM 7/9 or Tanto for ARM -
the last two are for debugging in the real hardware. If you are using a Hitex starterkit, the Tantino for ARM7/9 is
included with a MCP2100 or an MCB2130 board. Most of these examples run on both boards.

Free versions of HiTOP with HiSIM, the GNU compiler and StartEasy are available at http://www.hitex.com in
the download area.

Before we begin to look at the compiler in detail, we will run through a step-by-step tutorial on how to set up a
project, compile the code and run the debugger. This does not cover all the features of HiTOP but once you
have a basic understanding of the IDE, feel free to explore.

7 – Tutorial With Hitex, Keil & GNU Tools

© Hitex (UK) Ltd. Page 189

7.3 Exercise 1: Creating The First Project

In this first exercise we will spend some time defining an initial project with StartEasy, then opening the project
in HiTOP, which can be used to invoke the compiler to build the code and then download it into the simulator
for debugging. We will then cover the basic debugging functions of the simulator.

1. Double click on the StartEasy icon to start the StartEasy.

2. First of all the general project settings have to be done. Please click on the yellow folder picture of
Project Settings to expand this folder.

3. Please click on project settings and insert the settings and

description of this project. The entries Path and Project
name are mandatory. To browse your disks please use the
icon.

The project name is also used for the file names of some project elements.

4. Next click on Tool Path to select the desired compiler, either Keil or GNU and the correct tool path,

i.e. the path for the executables. For the Keil compiler it ends normally with \keil\arm\bin, for GNU
with \bin. The HiTOP path is the location of the HiTOP.exe, normally in the HiTOP-ARM folder.

5. The next step is to set the compiler options. We now choose them by clicking on Compiler

options. An important setting for the application is the setting of the correct global compiler
switches. Some switches are mandatory so these cannot be changed. The optimization level and
the warning output can be defined by selecting the desired list entry. Other options can be found in
the compiler manual (Keil: Compiler Directives, GNU:). If you want to combine ARM and THUMB
code, the global compiler switch INTERWORK is necessary.

6. Next click on linker options. Here only the correct path to the compiler library has to be defined.

7 – Tutorial With Hitex, Keil & GNU Tools

© Hitex (UK) Ltd. Page 190

7. Experienced users may now click on Stack Size to adjust the stacks for the different ARM
operating modes. For our examples these settings are ok. If larger stacks are needed i.e. if you
are using nested IRQs,then the IRQ and user stack may be adjusted here.

8. Click on CPU to define the current derivative. When working with the MCB2100 board please

select here Philips as vendor, LPC2129 as Type and 12MHz as frequency. With the MCP2130
board please select the LPC2138

9. Next we click on Debug tool and select HiSIM ,this will allow you to become familiar with the basic

features of the HiTOP user interface.

The item Build Logfile can be used to review the actions during the project build process.

All other settings are not necessary for the first steps and now the first LPC application can be created by
selecting the menu “File” followed by the entry “Write Code…” The Build log window displays the actions of the
compiler. Please look for possible error messages which may occur when the paths to the tools or libraries are
not correct.

When you have a clean build, we can start debugging with HiTOP.

7 – Tutorial With Hitex, Keil & GNU Tools

© Hitex (UK) Ltd. Page 191

7.4 Using HiTOP

1. Launch the HiTOP IDE by double clicking on the desktop icon .

2. To open the new project please use the menu Project and the item Open and please remember
the project path and the project name used in StartEasy. Browse to this directory and open the
project <project name>.htp.

3. If you have only a 16k code size limited licence

(included in a starter kit or the free HDS), the
following dialog appears. Please click on “I want to
continue evaluation”.

Now the created application is opened with the debug tool you selected in StartEasy, in this case the instruction
set simulator.

4. When the download dialog appears please press “OK”.

7 – Tutorial With Hitex, Keil & GNU Tools

© Hitex (UK) Ltd. Page 192

The code is now loaded and the PC is at the reset vector at address 0.

To walk through the application use the menu Debug or the function keys:

F9 to step an instruction
F10 to step over a line
F11 to step into a function
Ctrl F11 to step out of a function to the caller

To set breakpoints move the cursor to the desired line and in the grey column on the left
hand edge the cursor will then change shape to show the breakpoint icon.

A click with the left mouse button will now set or clear the breakpoint. A click with the
right mouse button opens a context window to change the properties of the breakpoint.

Breakponts can be only set in lines which have produced corresponding code. These lines
are marked with a blue rectangle in the lefthand side grey column.

7 – Tutorial With Hitex, Keil & GNU Tools

© Hitex (UK) Ltd. Page 193

5. To execute the code up to an arbitrary point in the program, select the line of code you wish to run
to and place the cursor into its blue rectangle, the cursor will change shape to

6. Now left click and the program will run until it reaches this point.

7. To run the application until a desired function is reached such as main use the command Debug

Go until (or Shift F10) and insert main in the dialog.

8. Now the application was executed until the function main and the C source is displayed.

9. In the Module view tab of the workspace window, all modules of this application are listed. Clicking
on the + sign of a module (i.e. main) opens this module and shows all the functions and if present
also the variables.

10. Clicking with the right mouse button on a symbol opens a context window to show the source or

set breakpoints for functions and labels or to “quick watch” the values for variables. These
symbols may also be dragged and dropped into other debug windows such as the variable watch
window or the breakpoint window. Once you have mastered the basic functionality of HiTOP
explore the following windows:

The memory window - Allows a raw view of the contents of any area of memory

Watch Window - Allows you to view and modify symbolic variables and complex C objects such

 as arrays unions and structures

Register Window - Allows you access to the CPU registers

SFR Window - Presents the LPC2000 peripherals in a “data book” format so you can easily

 see and modify a peripherals configuration.

7 – Tutorial With Hitex, Keil & GNU Tools

© Hitex (UK) Ltd. Page 194

7.5 Exercise 2: Startup Code

In this example we will configure the startup code to adapt the stack sizes for the different modes to the needs
of the application. Also we have to initialize the stack pointers for all the modes.

1. Please go to StartEasy with the last project click on the yellow folder beside “Project Settings” and
select “Stack Sizes”. Here the values for the stacks for the different ARM modes can be adjusted.

2. Now we create the changes code with the menu “File” and the item “Update code”. After the
successful creation of the code we can now debug this application with HiTOP. Please open
HiTOP select menu “Project” item “Open” and browse for the file project file (it was created in the
folder defined in StartEasy in “Project Path” with the name “<project name>.htp”).

3. Now the connection to Tantino is established and with click on “ok” in the download dialog, the

application is programmed into the FLASH. We let run the application behind the startup code
with the command Go Until main (menu “Debug” item “Go until..” insert “main” and click “ok”).

The initialized values of the stack pointers can be read out with the SFR window (open it with menu “View” item
“SFR window” and select “ARM Processor Register”). For each mode the set of registers is displayed and all the
SP registers of the modes are initialized with the correct values.

When you open the disassembly window and change the address display to address 0 (double click in the
address column and insert 0), you see the vector table with ‘ldr pc’ instructions. Only at address 0x14 there is a
strange instruction. Please remember that this is the reserved vector, where the LPC controller assumes a
correct checksum to indicate that there is a valid FLASH program and which causes the Memory Map Controller
to switch to “user flash” mode. This checksum is automatically inserted by StartEasy.

7 – Tutorial With Hitex, Keil & GNU Tools

© Hitex (UK) Ltd. Page 195

7.6 Exercise 3: Using THUMB code

In this example we add an additional module to the application which is compiled in THUMB mode.

We open start easy and open any of the previos projects. With any editor we write a small new module like:

void func(void)
{
 // this is a thumb function
 int i;
 i = 0;
 for (i = 100; i < 0; i--)
 {}
}

We save it into the directory of our StartEasy project tith the name “module.c”.

To call this function from main() we have to edit the main.c file which was vreated by StartEasy. Please open it
with an editor and insert the declaration of this function and the call to this function. In main.c there are prepared
sections to insert user code:

Go to the beginning of main() and search for the section where user code includes can be made. Here we insert
the external declaration of func.

/* BEGIN USER CODE INCLUDE */

extern void func(void);

/* END USER CODE INCLUDE */

In the while() loop we insert the call to func:

 while(1)
 {
/* BEGIN USER CODE MAIN LOOP */
 func();
/* END USER CODE MAIN LOOP */

We save this file and go back to StartEasy. Here we click on the yellow folder “Project Files” and click on
“custom files” with the right mouse button.

7 – Tutorial With Hitex, Keil & GNU Tools

© Hitex (UK) Ltd. Page 196

Now select ‘add file’. In the file dialog we select the created file “module.c”. Click with the left mouse button on
the new file entry “module.c” and change the “code type” settings to “THUMB”

Now create the new application but since there are now changes in the HiTOP project file, we have to close
HiTOP first. Click on the menu “File” and select “update code”. The changed project and application are now
created and when we open it with HiTOP and step through the code until the function “func()”, we see that this
function is now in THUMB mode. This is indicated by the T-bit in the register window and in the disassembly
window, all THUMB code addresses have the prefix “T:”.

7 – Tutorial With Hitex, Keil & GNU Tools

© Hitex (UK) Ltd. Page 197

7.7 Using The Tantino Hardware Debugger

The debugger system included with the Hitex starter kit is called the Tantino. This connects to the JTAG port on
MCB2100 (P5) and then connects to the PC via USB. To switch from using the simulator to using the Tantino,
follow the steps below.

7.8 Setting Up The Tantino JTAG hardware Debugger

Connect the Tantino to the MCB2100 and plug the USB connection into the PC. Power should also be
connected to the MCB2100 (6.5V). The Tantino needs a running LPC2000 processor to work correctly.

The green ON LED of the Tantino must blink. If the green and the yellow LED are on, the USB power of the Hub
is not enough and the Tantino has to be connected to a USB port delivering more than 100mA.

To select the Tantino instead of the HiSIM, please go back to Start Easy, select Debug tool in Project Setting.
Change (here the Tool to TantinoARM7-9) and insert the serial number of the Tantino below. The serial number
is written on the bottom side of the Tantino.

9 - Appendices

© Hitex (UK) Ltd. Page 212

9 Appendices

9.1 Appendix A

9.1.1 Bibliography

ARM7TDMI datasheet ARM
LPC2119/2129/2194/2292/2294 User Manual Philips
ARM System on chip architecture Steve Furber
Architecture Reference Manual David Seal
ARM System developers guide Andrew N. Sloss,

Domonic Symes,
Chris Wright

MicroC/OS-II Jean J. Labrosse
GCC The complete reference Arthur Griffith

9.1.2 Webliography

9.1.2.1 Reference Sites

http://www.arm.com

http://www.philips.com

http://www.lpc2000.com

9.1.3 Tools and Software Development

http://ww.hitex.co.uk

http://www.keil.co.uk

http://www.ucos-ii.com

http://www.ristancase.com

http://gcc.GNU.org/onlinedocs/gcc/

9.2 Evaluation Boards And Modules

http://www.phytec.co.uk

http://www.embeddedartists.com

