INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4508B MSI Dual 4-bit latch

Product specification
File under Integrated Circuits, IC04

January 1995

HEF4508B MSI

DUAL 4-BIT LATCH

The HEF4508B is a dual 4-bit latch, which consists of two identical independent 4-bit latches with separate strobe (ST), master reset (MR), output-enable input (\overline{EO}) and 3-state outputs (O).

With the ST input in the HIGH state, the data on the D inputs appear at the corresponding outputs provided \overline{EO} is LOW. Changing the ST input to the LOW state locks the data into the latch. A HIGH on the reset line forces the outputs to a LOW level regardless of the state of the ST input. The 3-state outputs are controlled by the output-enable input. A HIGH on \overline{EO} causes the outputs to assume a high impedance OFF-state regardless of other input conditions. This allows the outputs to interface directly with bus orientated systems. When \overline{EO} is LOW the contents of the latches are available at the outputs.

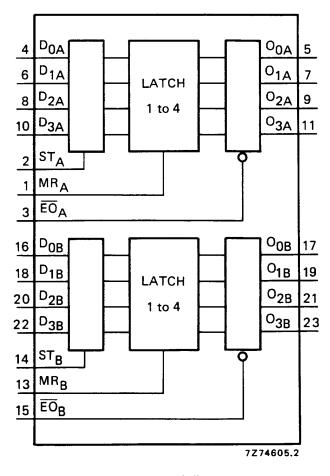


Fig. 1 Functional diagram.

FAMILY DATA

| see Family Specifications | see Family Specifications |

HEF4508B MSI

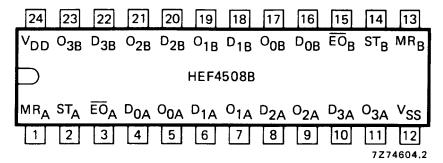


Fig. 2 Pinning diagram.

HEF4508BP(N): 24-lead DIL; plastic

(SOT101-1)

HEF4508BD(F): 24-lead DIL; ceramic (cerdip)

(SOT94)

HEF4508BT(D): 24-lead SO; plastic

(SOT137-1)

PINNING (): Package Des

(): Package Designator North America

D_{0A} to D_{3A}, D₀₃ to D_{3B} data inputs ST_A, ST_B strobe inputs

 MR_A , MR_B master reset inputs \overline{EO}_A , \overline{EO}_B output enable inputs

O_{0A} to O_{3A}, O_{0B} to O_{3B} 3-state outputs

FUNCTION TABLE

	inputs				
MR	ST	ĒΟ	D _n	On	
L	Н	L	н	Н	
L	Н	L	L	L	
L	L	L	X	latched	
Н	X	L	X	L	
X	×	Н	X	Z	
	1				

H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

Z = high impedance OFF state

HEF4508B MSI

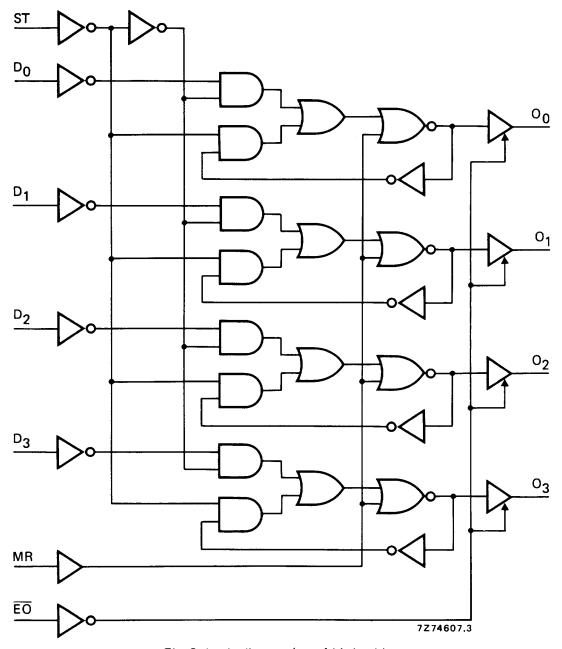


Fig. 3 Logic diagram (one 4-bit latch).

HEF4508B MSI

A.C. CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns; see also waveforms Fig. 4.

	V _{DD}	symbol	min.	typ.	max.		typical extrapolation formula
Propagation delays ST → O _n HIGH to LOW	5 10 15	^t PHL		115 50 35	230 100 70	ns ns ns	88 ns + (0,55 ns/pF) C _L 39 ns + (0,23 ns/pF) C _L 27 ns + (0,16 ns/pF) C _L
LOW to HIGH	5 10 15	^t PLH		115 50 35	230 100 70	ns ns ns	88 ns + (0,55 ns/pF) C _L 39 ns + (0,23 ns/pF) C _L 27 ns + (0,16 ns/pF) C _L
D _n → O _n HIGH to LOW	5 10 15	^t PHL		95 40 30	190 80 60	ns ns ns	68 ns + (0,55 ns/pF) C _L 29 ns + (0,23 ns/pF) C _L 22 ns + (0,16 ns/pF) C _L
LOW to HIGH	5 10 15	^t PLH		95 40 30	190 80 60	ns ns ns	68 ns + (0,55 ns/pF) C _L 29 ns + (0,23 ns/pF) C _L 22 ns + (0,16 ns/pF) C _L
MR → O _n HIGH to LOW	5 10 15	[†] PHL		100 40 30	200 80 60	ns ns ns	73 ns + (0,55 ns/pF) C _L 29 ns + (0,23 ns/pF) C _L 22 ns + (0,16 ns/pF) C _L
Output transition times HIGH to LOW	5 10 15	^t THL		60 30 20	120 60 40	ns ns ns	10 ns + (1,0 ns/pF) C _L 9 ns + (0,42 ns/pF) C _L 6 ns + (0,28 ns/pF) C _L
LOW to HIGH	5 10 15	^t TLH		60 30 20	120 60 40	ns ns ns	10 ns + (1,0 ns/pF) C _L 9 ns + (0,42 ns/pF) C _L 6 ns + (0,28 ns/pF) C _L
3-state propagation delays							
Output enable times EO → O _n HIGH	5 10 15	^t PZH		45 20 18	90 40 36	ns ns ns	
LOW	5 10 15	^t PZL		45 20 18	90 40 36	ns ns ns	
Output disable times EO - On HIGH	5 10 15	^t PHZ		35 20 18	70 40 36	ns ns ns	
LOW	5 10 15	^t PLZ		45 20 18	90 40 36	ns ns ns	

A.C. CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	symbol	min.	typ.	max.	
Minimum ST pulse width; HIGH	5 10 15	[‡] WSTH	50 30 20	25 15 10	ns ns ns	
Minimum MR pulse width; HIGH	5 10 15	^t WMRH	40 24 20	20 12 10	ns ns ns	
Recovery time for MR	5 10 15	^t RMR	20 20 15	0 0 0	ns ns ns	see also waveforms Fig. 4
Set-up times D _n → ST	5 10 15	t _{su}	35 25 20	10 5 0	ns ns ns	
Hold times D _n → ST	5 10 15	^t hold	20 20 15	0 0 0	ns ns ns	

	V _{DD} V	typical formula for P (μW)	where f _i = input freq. (MHz)
Dynamic power dissipation per package (P)	5 10 15	2 000 $f_i + \Sigma (f_0 C_L) \times V_{DD}^2$ 9 000 $f_i + \Sigma (f_0 C_L) \times V_{DD}^2$ 25 000 $f_i + \Sigma (f_0 C_L) \times V_{DD}^2$	f_O = output freq. (MHz) C_L = load capacitance (pF) $\Sigma(f_OC_L)$ = sum of outputs V_{DD} = supply voltage (V)

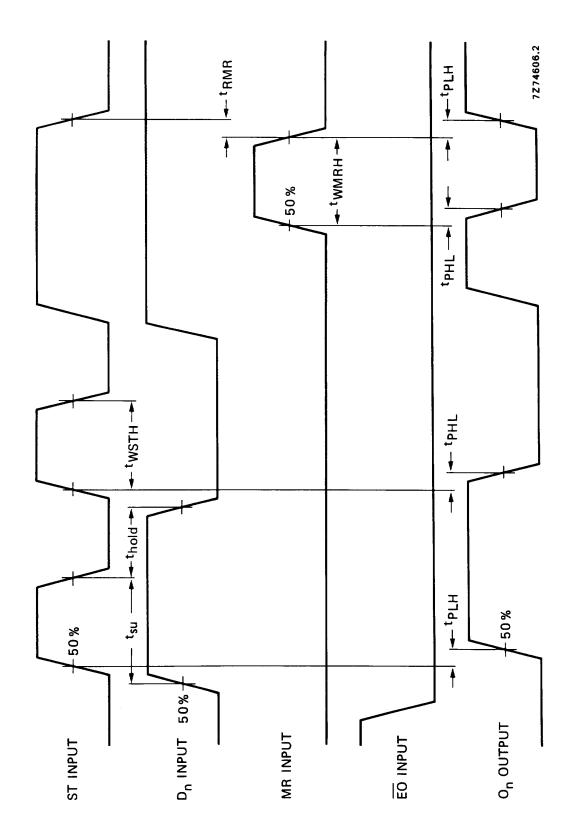


Fig. 4 Waveforms showing minimum ST and MR pulse widths, set-up and hold times for D_n to ST, recovery time for MR and propagation delays from ST to O_n , D_n to O_n and MR to O_n .

HEF4508B MSI

APPLICATION INFORMATION

Some examples of application for the HEF4508B are:

- Buffer storage
- Holding registers
- Data storage and multiplexing

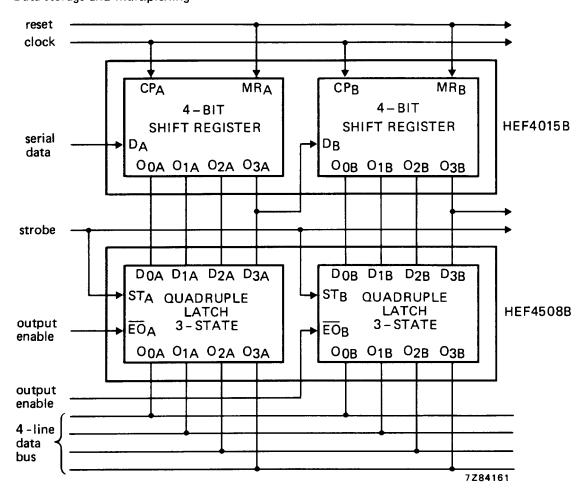


Fig. 5 Example of a bus register using HEF4508B and HEF4015B.

APPLICATION INFORMATION (continued)

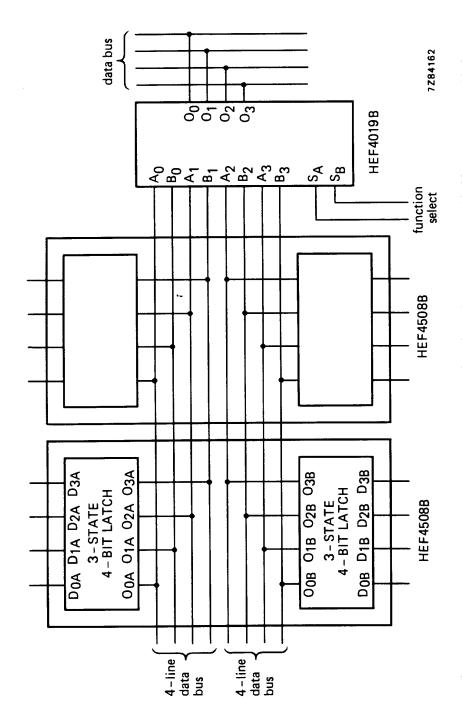


Fig. 6 Example of a dual multiplexed bus register with function select using two HEF4508B and one HEF4019B.

FUNCTION SELECT

function	inhibit (all L) select A bus select B bus A ₁ + B ₁
SB	L H
SA	コエコエ