INTEGRATED CIRCUITS

DATA SHEET

82S126A; **82S129A** 1K-bit TTL bipolar PROM (256 x 4)

Product specification

1987 Oct 14

1K-bit TTL bipolar PROM (256 x 4)

82S126A 82S129A

FEATURES

- Address access time: 35ns max
- Input loading: -150μA max
- On-chip address decoding
- Output options:
 - 82S126A: Open collector
 - 82S129A: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

DESCRIPTION

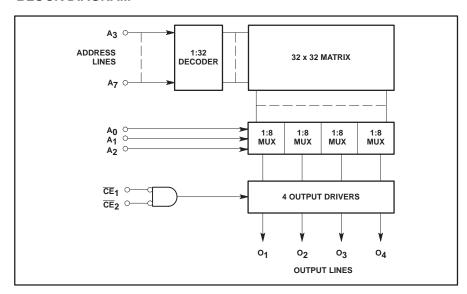
The 82S126A and 82S129A are field programmable, which means that custom patterns are immediately available by following the Philips Generic I fusing procedure. The 82S126A and 82S129A devices are supplied with all outputs at a logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

These devices includes on-chip decoding and 2 chip enable inputs for ease of memory expansion. They feature either Open collector or 3-State outputs for optimization of word expansion in bused organizations.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE	PACKAGE DESIGNATOR*
16-pin Ceramic DIP (300mil-wide)	82S126A/BEA, 82S129A/BEA	GDIP1-T16
16-pin Ceramic FlatPack	82S126A/BFA, 82S129A/BFA	GDFP2-F16

^{*} MIL-STD 1835 or Appendix A of 1995 Military Data Handbook


ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V_{DC}
VI	Input voltage	+5.5	V_{DC}
Vo	Output voltage High (82S126A)	+5.5	V_{DC}
Vo	Output voltage Off-State (82S129A)	+5.5	V _{DC}
T _A	Operating temperature range	-55 to +125	°C
T _{STG}	Storage temperature range	-65 to +150	°C

PIN CONFIGURATION

16 VCC A₆ 1 15 A₇ A₅ 2 A₄ 3 14 CE₂ 13 CE₁ A₃ 4 12 01 A₀ 5 11 02 A₁ 6 10 O₃ A₂ 7 GND 8 9 04

BLOCK DIAGRAM

1K-bit TTL bipolar PROM (256 x 4)

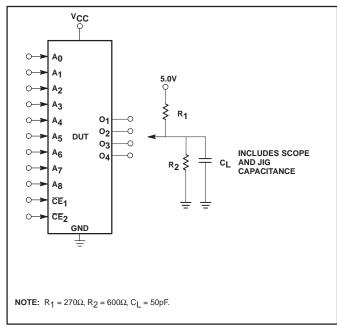
82S126A 82S129A

DC ELECTRICAL CHARACTERISTICS -55°C \leq T_A \leq +125°C, 4.5V \leq V_{CC} \leq 5.5V

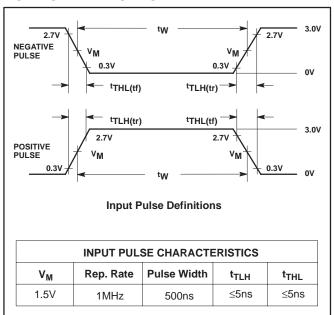
SYMBOL	PARAMETER	TEST CONDITIONS ^{1, 2}	LIMITS		TEST CONDITIONS ^{1, 2} LIMITS	EST CONDITIONS ^{1, 2} LIMITS	UNIT
			Min	Typ ⁵	Max		
Input voltag	je						
V _{IL}	Low				0.8	V	
V _{IH}	High		2.0			V	
V _{IK}	Clamp	$V_{CC} = 4.5V, I_{I} = -18mA$	1		-1.2	V	
Output volt	age						
		<u>CE</u> _{1,2} = Low					
V _{OL}	Low	$I_O = 16\text{mA}$			0.5	V	
V _{OH}	High (82S129A)	$V_{CC} = 4.5V, I_{O} = -2.0mA$	2.4			V	
Input curre	nt			•			
		V _{CC} = 5.5V					
I _{IL}	Low	$V_1 = 0.45V$			-150	μΑ	
I _{IH}	High	$V_{I} = 5.5V$			40	μΑ	
Output curr	ent						
		V _{CC} = 5.5V					
I _{OLK}	Leakage (82S126A)	\overline{CE}_1 or \overline{CE}_2 = High, V_0 = 5.5V			40	μΑ	
loz	Hi-Z state (82S129A)	\overline{CE}_1 or \overline{CE}_2 = High, V_0 = 5.5V			40	μΑ	
		\overline{CE}_1 or \overline{CE}_2 = High, V_0 = 0.4V	1		-40	μΑ	
los	Short circuit (82S129A) ³	$V_{CC} = 5.5V$, $\overline{CE}_{1,2} = Low$, $V_O = 0V$, High stored	-15		-85	mA	
Supply curr	ent ³						
Icc		\overline{CE}_1 or \overline{CE}_2 = High, V_{CC} = 5.5V			125	mA	
Capacitanc	e ⁶		-	-			
		\overline{CE}_1 or \overline{CE}_2 = High, V_{CC} = 5.0V					
C _{IN}	Input	$V_{I} = 2.0V$		5	10	pF	
C _{OUT}	Output	V _O = 2.0V		8	13	pF	

AC ELECTRICAL CHARACTERISTICS -55°C \leq T_A \leq +125°C, 4.5V \leq V_{CC} \leq 5.5V

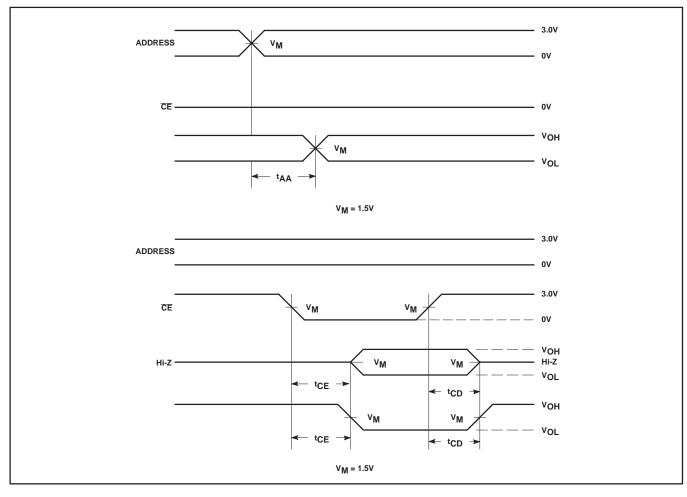
SYMBOL	PARAMETER	то	FROM	LIMITS		UNIT	
				Min	Typ ⁵	Max	
t _{AA}	Access time ⁴	Output	Address		17	35	ns
t _{CE}	Access time ⁴	Output	Chip Enable		10	20	ns
t _{CD}	Disable time	Output	Chip Disable		6	15	ns


- NOTES:

 1. Positive current is defined as into the terminal referenced.
- 2. All voltages with respect to network ground.
- Duration of short circuit should not exceed 1 second.
 Tested at an address cycle time of 1µs.
 Typical values are at V_{CC} = 5V, T_A = +25°C.
 Guaranteed, but not tested.


1K-bit TTL bipolar PROM (256 x 4)

82S126A 82S129A


TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

TIMING DIAGRAMS

Philips Semiconductors Product specification

1K-bit TTL bipolar PROM (256 x 4)

82S126A; 82S129A

DEFINITIONS			
Data Sheet Identification	Product Status	Definition	
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.	
		This data sheet contains preliminary data, and supplementary data will be published at a later date. Phillips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.	
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.	

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1997 All rights reserved. Printed in U.S.A.

Let's make things better.

