

PT6311

DESCRIPTION

PT6311 is a Vacuum Fluorescent Display (VFD) Controller driven on a 1/8 to 1/16 duty factor housed in 52-pin plastic QFP Package. Twelve segment output lines, 8 grid output lines, 8 segment/grid output drive lines, one display memory, control circuit, key scan circuit are all incorporated into a single chip to build a highly reliable peripheral device for a single chip micro computer. Serial data is fed to PT6311 via a three-line serial interface.

FEATURES

- CMOS Technology
- Low Power Consumption
- Key Scanning (12 x 4 matrix)
- Multiple Display Modes: (12 segments, 16 digits to 20 segments, 8 digits)
- 8-Step Dimming Circuitry
- LED Ports Provided (5 channels, 20 mA max.)
- 4- Bits General Purpose Input Ports Provided
- Serial Interface for Clock, Data Input, Data Output, Strobe Pins
- No External Resistors Needed for Driver Outputs
- Available in 52-pin QFP Package

APPLICATION

• Microcomputer Peripheral Device

PTC Princeton Technology Corp.

VFD Driver/Controller IC

PT6311

BLOCK DIAGRAM

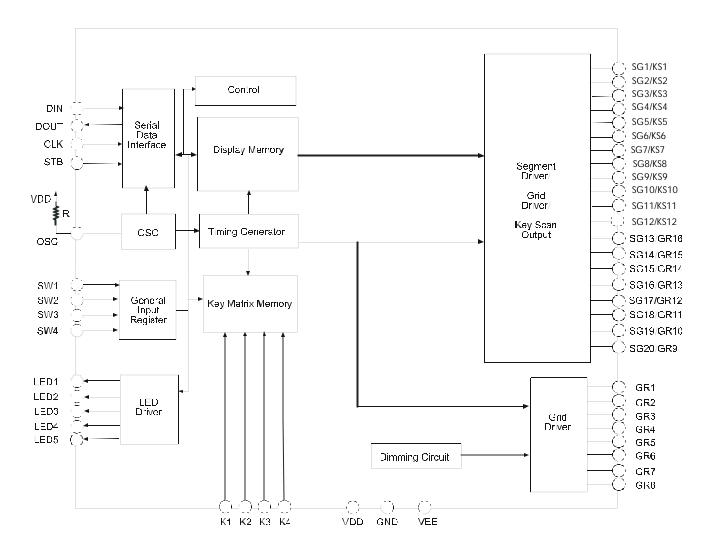


Figure 1: PT6311 Internal Block Diagram

PT6311

PIN CONFIGURATION

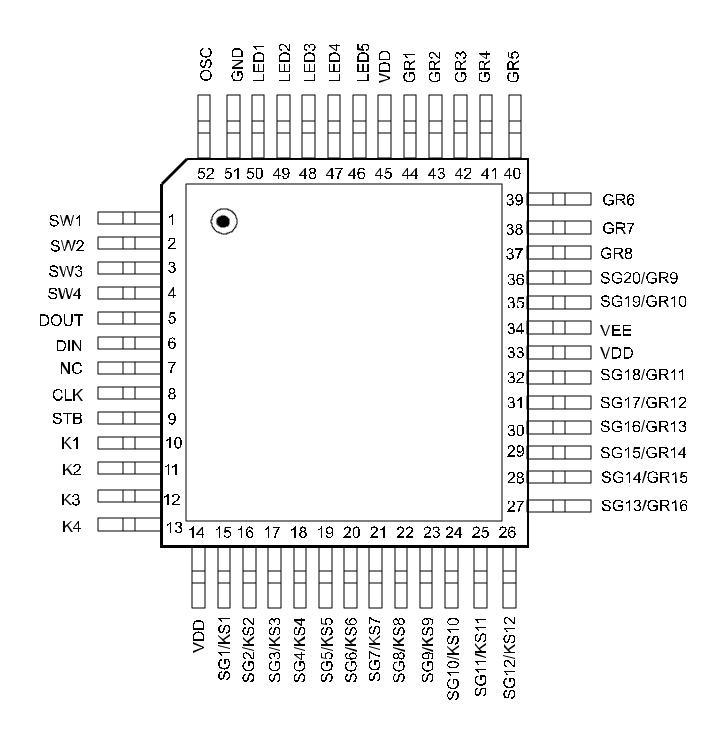


Figure 2: PT6311 Pin Configuration

PTC Princeton Technology Corp.

VFD Driver/Controller IC

PT6311

PIN DESCRIPTION

Pin Name	I/O	Description	Pin No.	
Pin Name	1/0	Description	1 III NO.	
SW1 to SW4	Ι	General Purpose Input Pins	1 to 4	
DOUT	0	Data Output Pin (N-Channel, Open-Drain) This pin outputs serial data at the falling edge of the shift clock (starting from the lower bit).	5	
DIN	Ι	Data Input Pin This pin inputs serial data at the rising edge of the shift clock (starting from the lower bit)	6	
N C	-	No Connection	7	
CLK	Ι	C lock Input Pin This pin reads serial data at the rising edge and outputs data at the falling edge.	8	
STB	Ι	Serial Interface Strobe Pin The data input after the STB has fallen is processed as a command. When this pin is "HIGH", CLK is ignored.	9	
K1 to K4	Ι	Key Data Input Pins The data inputted to these pins are latched at the end of the display cycle.	10 to 13	
VDD	-	Logic Power Supply	14,33, 45	
SG1/KS1 to SG12/KS12	0	High-Voltage Segment Output Pins Also acts as the Key Source	15 to 26	
SG20/GR9 to SG19/GR10 SG18/GR11 to SG13/GR16	0	High Voltage Segment/Grid Output Pins	36 to 35 32 to 27	
VEE	-	Pull-Down Level	34	
GR1 to GR8	0	High-Voltage Grid Output Pins	44 to 37	
LED1 to LED5	0	LED Output Pin		
GND	-	Ground Pin		
OSC	Ι	Oscillator Input Pin A resistor is connected to this pin to determine the oscillation frequency	52	

PT6311

FUNCTIONAL DESCRIPTION

Commands

Commands determine the display mode and status of PT6311. A command is the first byte (b0 to b7) inputted to PT6311 via the DIN Pin after STB Pin has changed from "HIGH" to "LOW" State. If for some reason the STB Pin is set to "HIGH" while data or commands are being transmitted, the serial communication is initialized, and the data/commands being transmitted are considered invalid.

COMMAND 1: DISPLAY MODE SETTING COMMANDS

PT6311 provides 8 display mode settings as shown in the diagram below: As stated earlier a command is the first one byte (b0 to b7) transmitted to PT6311 via the DIN Pin when STB is "LOW". However, for these commands, the bits 5 to 6 (b4 to b5) are ignored, bits 7 & 8 (b6 to b7) are given a value of "0".

The Display Mode Setting Commands determine the number of segments and grids to be used (1/8 to 1/16 duty, 20 to 12 segments). When these commands are executed, the display is forcibly turned off, the key scanning stops. A display command "ON" must be executed in order to resume display. If the same mode setting is selected, no command execution is take place, therefore, nothing happens.

When Power is turned "ON", the 16-digit, 12-segment modes is selected.

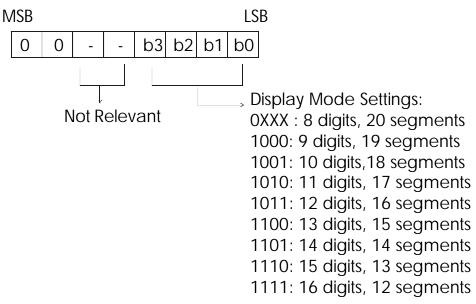
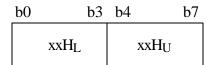


Figure 3: Display Mode Settings



PT6311

Display Mode and RAM Address

Data transmitted from an external device to PT6311 via the serial interface are stored in the Display RAM and are assigned addresses. The RAM Addresses of PT6311 are given below in 8 bits unit.

SG1	SG4	SG5	SG8	SG9	SG12	SG13	SG16	SG17	SG20	
0 0	H L	0 0	H U	0 1	H L	0 1	Ηυ	0 2 H	ΗL	DIG1
03	H L	0 3	ΗU	04	ΗL	04	H U	05 F	ΗL	DIG2
06	H L	0 6	ίΗυ	0 7	ΗL	0 7	H U	08 H	ΗL	DIG3
09	H _L	0 9	H U	0 A	H L	0 A	H U	0 B I	H L	DIG4
0 C	H L	0 0	CHU	0 E) H L	0 D	ΗU	0 E F	ΗL	DIG5
0 F	ΗL	0 F	ΤΗU	1 0	HL	1 0	H U	11F	ΗL	DIG6
1 2	H L	1 2	ΡΗυ	1 3	HL	1 3	H U	14 H	ΗL	DIG7
15	ΗL	15	σΗυ	16	HL	16	ΗU	17 H	ΗL	DIG8
18	H L	1.8	3 H U	19	ΗL	19	H U	1 A 1	ΗL	DIG9
1 B	H L	1 E	BHU	1 0	CHL	1 0	CΗU	1 D]	ΗL	DIG10
1 E	H L	1 E	ΕΗυ	1 F	FH L	1 F	ΗU	20 H	ΗL	DIG10
2 1	H L	2 1	H U	2 2	ΗL	2 2	H U	23 H	I L	DIG12
24	ΗL	2 4	ΗU	2 5	ΗL	2 5	H U	26 H	ΗL	DIG12 DIG13
2 7	H L	2 7	ΗU	2 8	ΗL	2 8	H U	29 F	ΗL	DIG13 DIG14
2 A	H L	2 A	ΗU	2 E	H L	2 B	ΗU	2 C 1	H L	DIG14 DIG15
2 D	H L	2 [ΟΗυ	2 E	LH L	2 E	H U	2 F H	ΗL	DIG15 DIG16

Lower 4 bits Higher 4 bits *Figure 4: PT6311 RAM Address*

PT6311

COMMAND 2: DATA SETTING COMMANDS

The Data Setting Commands executes the Data Write or Data Read Modes for PT6311. The data Setting Command, the bits 5 and 6 (b4, b5) are ignored, bit 7 (b6) is given the value of "1" while bit 8 (b7) is given the value of "0". Please refer to the diagram below.

When power is turned ON, bit 4 to bit 1 (b3 to b0) are given the value of "0".

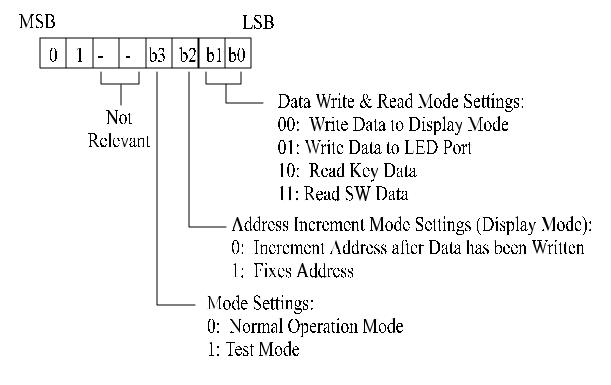


Figure 5: Data Settings

PT6311

PT6311 Key Matrix & Key Input Data Storage RAM

PT6311 Key Matrix consists of 12 x 4 array as shown below:

Figure 6: PT6311 Key Matrix

Each data inputted by each key are stored as follows. They are read by a READ Command, starting from the last significant bit. When the most significant bit of the data (SG1, b0) has been read, the least significant bit of the next data (SG12, b7) is read.

K1 K4	K1 K4	
SG1/KS1	SG2/KS2	
SG3/KS3	SG4/KS4	
SG5/KS5	SG6/KS6	
SG7/KS7	SG8/KS8	
SG9/KS9	SG10/KS10	
SG11/KS11	SG12/KS12	SEQUENCE
b0b3	b4b 7	

Figure 7: PT6311 Key Input Data Storage

PT6311

LED Display

PT6311 provides 5 LED Display Terminals, namely LED1 to LED5. Data is written to the LED Port starting from the least significant bit (b0) of the port using a WRITE Command. Each bit starting from the least significant (b0) activates a specific LED Display Terminal -- b0 corresponds LED1 Display, b1 activates LED2 and so forth. Since there are only 5 LED display terminals, bits 6 to 8 (b5 ~ b7) are not used and therefore ignored. This means that b5 to b7 does NOT in anyway activate any LED Display, they are totally ignored.

When a bit (b0 ~ b4) in the LED Port is "0", the corresponding LED is ON. Conversely, when the bit is "1", the LED Display is turned OFF. For example, Bit 1 (as designated by b0) has the value of "0", then this means that LED1 is ON. It must be noted that when power is turned ON, bit 5 to bit 1 (b4 to b0) are given the value of "1". Please refer to the diagrams below.

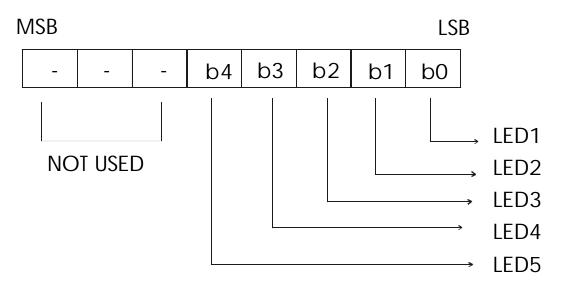
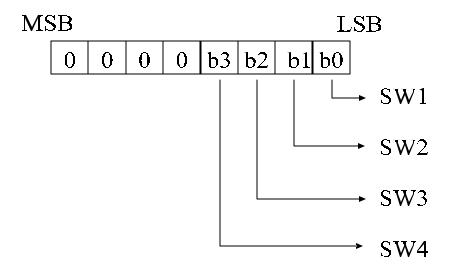
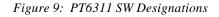


Figure 8: PT6311 LED Display Designation


PTC Princeton Technology Corp.


VFD Driver/Controller IC

PT6311

Switch Data

PT6311 provides 4 Switch Inputs, namely: SW1 to SW4. SW Data is read starting from the least significant bit (b0) using a READ Command. Each bit starting from the least significant (b0) correspond to a specific Switch Input -- b0 corresponds SW1, b1 to SW2 and so forth. Since there are only 4 Switch Inputs, Bits 5 to 8 (b4 to 7) are given the value of "0". Please refer to the diagram below.

COMMAND 3: ADDRESS SETTING COMMANDS

Address Setting Commands are used to set the address of the display memory. The address is considered valid if it has a value of "00H" to "2FH". If the address is set to 30H or higher, the data is ignored until a valid address is set. When power is turned ON, the address is set at "00H".

Please refer to the diagram below.

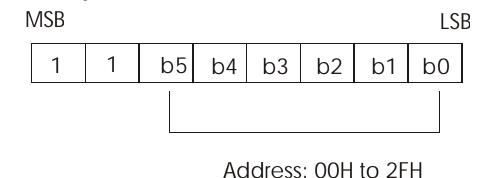


Figure 10: Address Settings

PT6311

COMMAND 4: DISPLAY CONTROL COMMANDS

The Display Control Commands are used to turn ON or OFF a display. It also used to set the pulse width. Please refer to the diagram below. When the power is turned ON, a 1/16 pulse width is selected and the displayed is turned OFF (the key scanning is stopped).

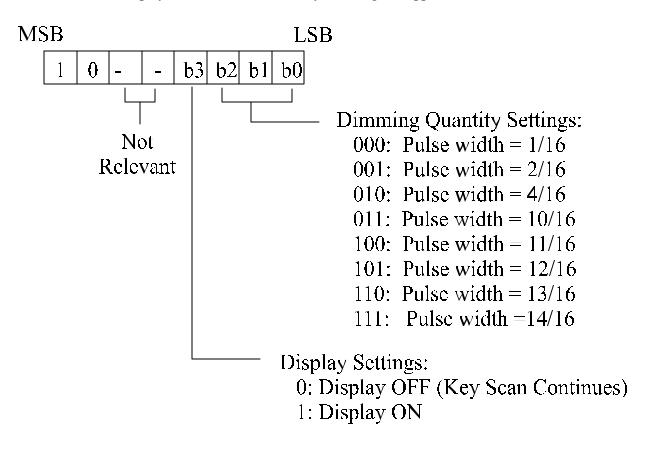


Figure 11: Display Control Settings

Princeton Technology Corp.

PT6311

SCANNING AND DISPLAY TIMING

The Key Scanning and display timing diagram is given below. One cycle of key scanning consists of 2 frames. The data of the are 12×4 matrix is stored in the RAM.

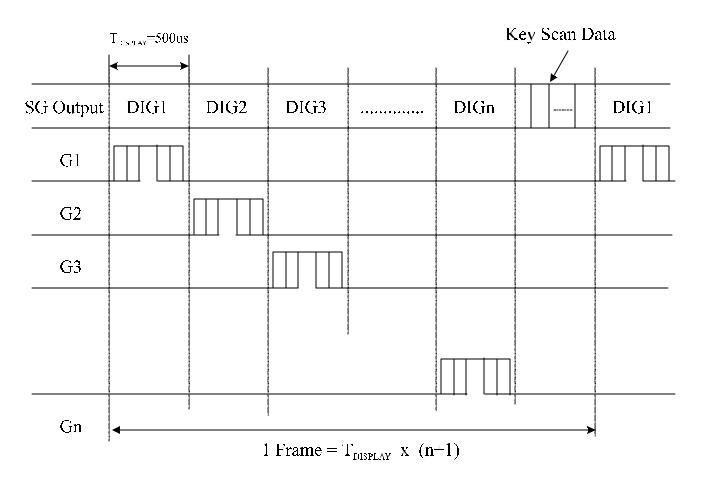


Figure 12: PT6311 Scanning & Display Timing Diagram

Princeton Technology Corp

PT6311

SERIAL COMMUNICATION FORMAT

The following diagram shows the PT6311 serial communication format. The DOUT Pin is an N-channel, open-drain output pin, therefore, it is highly recommended that an external pull-up resistor (1 KOhms to 10 KOhms) must be connected to DOUT.

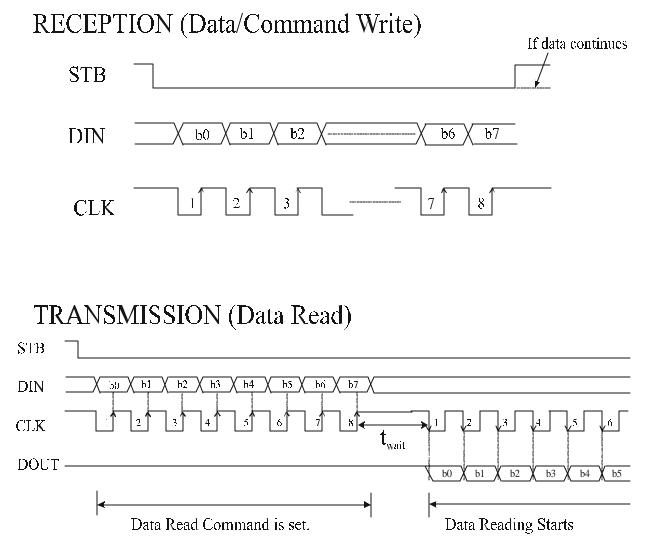
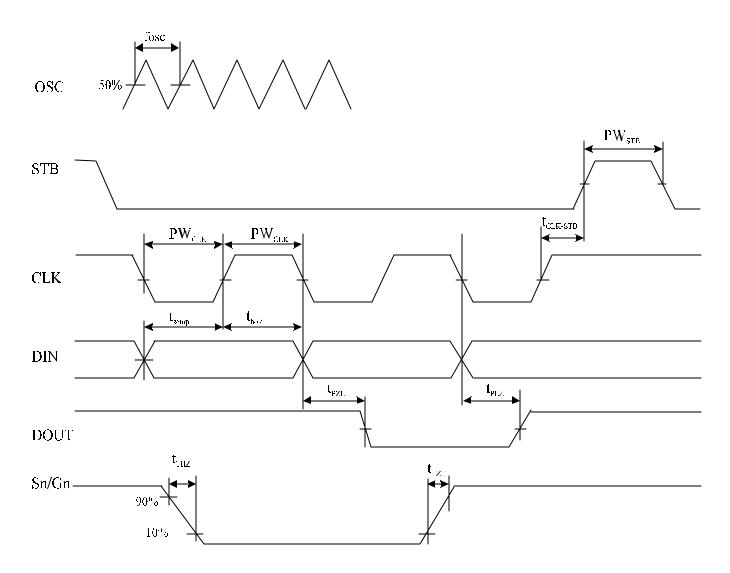
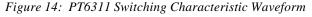


Figure 13: PT6311 Serial Communication Format

where: twait (waiting time) \geq 1µs

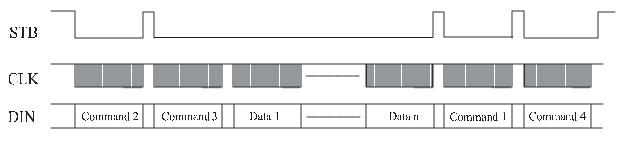

It must be noted that when the data is read, the waiting time (t_{wait}) between the rising of the eighth clock that has set the command and the falling of the first clock that has read the data is greater or equal to 1µs.


PT6311

SWITCHING CHARACTERISTIC WAVEFORM

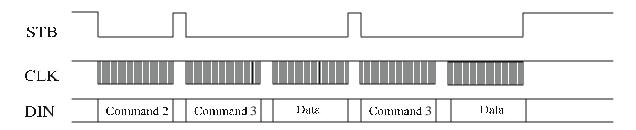
PT6311 Switching Characteristics Waveform is given below.

where: PW_{CLK} (Clock Pulse Width) \geq 4 00ns t setup (Data Setup Time) \geq 100ns $t_{CLK-STB}$ (Clock - Strobe Time) \geq 1 μ s t_{TZH} (Grid Rise Time) \leq 0.5 μ s t_{TZH} (Segment Rise Time) \leq 2 μ s fosc = Oscillation Frequency $\begin{array}{l} PW_{STB} \mbox{ (Strobe Pulse Width)} \geq 1 \mu s \\ thold \mbox{ (Data Hold Time)} \geq 100 ns \\ t_{THZ} \mbox{ (Fall Time)} \leq 120 \mu s \\ t_{PZL} \mbox{ (Propagation Delay Time)} \leq 100 ns \\ t_{PLZ} \mbox{ (Propagation Delay Time)} \leq 300 ns \\ \end{array}$



Princeton Technology Corr

PT6311


APPLICATIONS

Display memory are updated by incrementing addresses. Please refer to the following diagram.

where: Command 1: Display Mode Setting Command Command 2: Data Setting Command Command 3: Address Setting Command Data 1 to n : Transfer Display Data (48 Bytes max.) Command 4: Display Control Command

The following diagram shows the waveforms when updating specific addresses.

where: Command 2 -- Data Setting Command Command 3 -- Address Setting Command Data -- Display Data

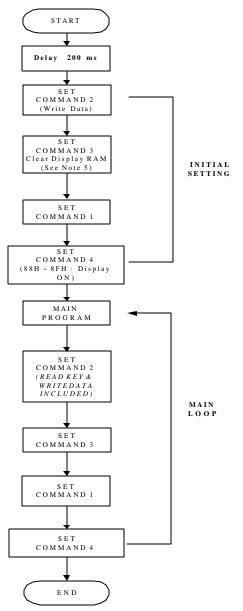

Figure 16: Address Update

Figure 15: Display Memory Updated by Address Increments

Princeton Technology Corp.

PT6311

RECOMMENDED SOFTWARE FLOWCHART

- Note: 1. Command 1: Display Mode Commands
 - 2. Command 2: Data Setting Commands
 - 3. Command 3 : Address Setting Commands
 - 4. Command 4: Display Control Commands
 - 5. When IC power is applied for the first time, the contents of the Display RAM are not defined; thus, it is strongly suggested that the contents of the Display RAM must be cleared during the initial setting.

Figure 17: Recommended Software Flowchart

PTC Princeton Technology Corp.

VFD Driver/Controller IC

PT6311

ABSOLUTE MAXIMUM RATINGS

(Unless otherwise stated, Ta=25°C, GND=0V)

Parameter	Symbol	Ratings	Unit
Logic Supply Voltage	V _{d d}	-0.5 to +7	Volts
Driver Supply Voltage	V _{E E}	$V_{DD} + 0.5$ to $V_{DD} - 40$	Volts
Logic Input Voltage	V I	-0.5 to V _{DD} +0.5	Volts
VFD Driver Output Voltage	V o	$V_{\rm EE} - 0.5$ to $V_{\rm DD} + 0.5$	Volts
LED Driver Output Current	I	+ 2 5	m A
VFD Driver Output Current	I _{ovfd}	-40 (Grid) -15 (Segment)	m A

RECOMMENDED OPERATING RANGE

(Unless otherwise stated, Ta=-20 to +70°C, GND=0V)

Parameter	Symbol	M in.	Тур.	Max.	Unit
Logic Supply Voltage	V _{dd}	4.5	5	5.5	V
High-Level Input Voltage	V _{IH}	0.7V _{DD}	-	V _{DD}	V
Low-Level Input Voltage	V _{IL}	0	-	0.3V _{DD}	V
Driver Supply Voltage	V _{EE}	V _{D D} -35	-	0	V

PT6311

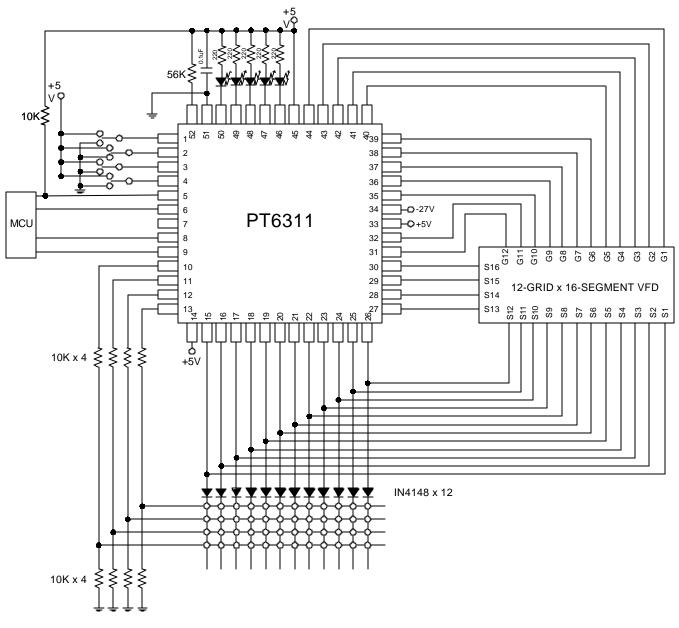
ELECTRICAL CHARACTERISTICS

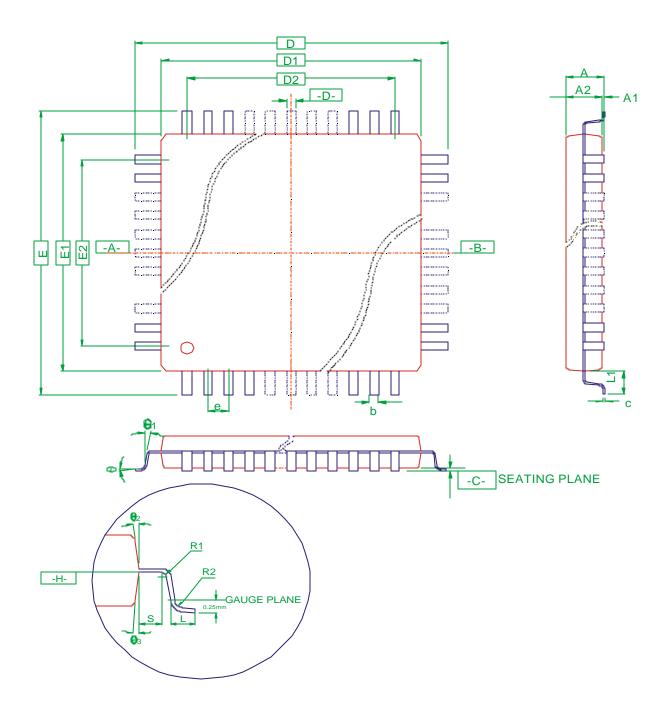
(Unless otherwise stated, $V_{_{DD}}$ =5V, GND=0V, $V_{_{EE}}$ = $V_{_{DD}}$ -35 V, Ta=25°C) μ

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
High-Level Output Voltage	V _{OHLED}	I _{OHLED} = -1 m A LED1 to LED5	0.9V _{dd}	-	-	v
Low-Level Output Voltage	V _{OLLED}	$I_{OLLED} = + 2 0 m A$ L E D 1 to L E D 5	-	-	1	V
Low-Level Output Voltage	V _{OLDOUT}	D _{OUT} , I _{OLDOUT} = 4 m A	-	-	0.4	V
High-Level Output Current	I _{o h s g}	$V o = V_{DD} - 2 V S G 1 t o S G 1 2$	- 3	-	-	А
H igh-Level Output Current	I _{ohgr}	V o = V _{DD} - 2 V G R 1 to G R 8, S G 1 3 / G R 1 1 6 to S G 2 0 / G R 9	- 1 5	-	-	m A
High-Level Input Voltage	V IH	-	0.7V _{dd}	-	-	v
Low-Level Input Voltage	V _{IL}	-	-	-	0.3V _{dd}	V
Oscillation Frequency	fosc	R = 5 6 K O h m s	350	500	650	КНz
Input current	I	$V_{I} = V_{DD} \text{ or } V_{SS}$	-	-	± 1	μΑ
Dynamic Current Consumption	I _{D D d y n}	Under no load Display OFF	-	-	5	m A

PT6311

12-GRID X 16-SEGMENT VFD APPLICATION CIRCUIT




Figure 18: PT6311 Application Circuit

PT6311

PACKAGE INFORMATION

52-Pin , QFP Package (Body Size; 14mm x 14mm, Pitch=1.00mm)

PT6311

Symbol	Min.	Nom.	Max			
А	-	-	3.15			
A1	0.00	-	0.25			
A2	2.50	2.70	2.90			
b	0.34	-	0.50			
D		17.20 BSC				
D1		14.00 BSC.				
D2		12.00 REF				
Е		17.20 BSC				
E1		14.00 BSC				
E2	12.00 REF					
e	1.00 BSC					
L	0.73 0.88 1.03					
L1	1.60 BSC					
R1	0.13					
R2	0.13 - 0.30					
θ	0° – 7°					
θ1	0° – –					
θ2	5°	16°				
θ3	5 °	_	16°			

Notes:

- 1. All dimensioning and tolerancing dimension conform to ASME Y14.5M-1994
- 2. Datum plane "H" is located at the bottom of the mold parting line coincident with where the lead exits the body.
- 3. Datums "A-B" and "D" to be determined at datum plane "H".
- 4. To be determine at seating plane "C".
- 5. Dimensions "D1" and "E1" do not include mold protrusion, allowable protrusion is 0.25 mm per side, dimensions "D1" and "E1" do include mold mismatch and are determined at datum plane "H".
- 6. Details of Pin1 identifier are optional but must be located within the zone indicated.
- 7. Regardless of the relatie size of the upper and lower body sections, dimensions "D1" and "E1" are determined at the largest feature of the body exclusive of mold flash and gate burrs but including any mismatch between the upper and lower sections of the molded body.
- 8. All dimensions are in millimeters.
- 9. Dimension "b" do not include dambar protrusion. The dambar protrusion(s) shall not cause the lead width to exceed "b" maximum by more than 0.08 mm. Dambar cannot be located on the lower radius or the lead foot.
- 10.Exact shape and size of this feature is optional.
- 11.N= the number of lead (N=52)
- 12. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 13."A1" is defined as the distance from the seating plane to the lowest point of the package body.
- 14. Please refer to JEDEC MS-022, Variation BD.

JEDEC is the trademark of JEDEC SOLID STATE TECHNOLOGY ASSOCIATION.