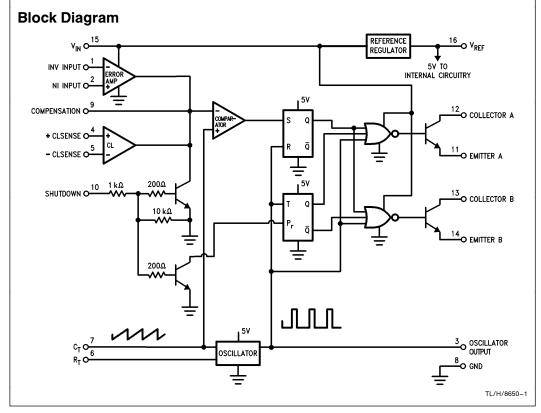
National Semiconductor

LM2524D/LM3524D Regulating Pulse Width Modulator

General Description

The LM3524D family is an improved version of the industry standard LM3524. It has improved specifications and additional features yet is pin for pin compatible with existing 3524 families. New features reduce the need for additional external circuitry often required in the original version.


The LM3524D has a $\pm1\%$ precision 5V reference. The current carrying capability of the output drive transistors has been raised to 200 mA while reducing V_{CEsat} and increasing V_{CE} breakdown to 60V. The common mode voltage range of the error-amp has been raised to 5.5V to eliminate the need for a resistive divider from the 5V reference.

In the LM3524D the circuit bias line has been isolated from the shut-down pin. This prevents the oscillator pulse amplitude and frequency from being disturbed by shut-down. Also at high frequencies (\cong 300 kHz) the max. duty cycle per output has been improved to 44% compared to 35% max. duty cycle in other 3524s.

In addition, the LM3524D can now be synchronized externally, through pin 3. Also a latch has been added to insure one pulse per period even in noisy environments. The LM3524D includes double pulse suppression logic that insures when a shut-down condition is removed the state of the T-flip-flop will change only after the first clock pulse has arrived. This feature prevents the same output from being pulsed twice in a row, thus reducing the possibility of core saturation in push-pull designs.

Features

- Fully interchangeable with standard LM3524 family
- ±1% precision 5V reference with thermal shut-down
- Output current to 200 mA DC
- 60V output capability
- Wide common mode input range for error-amp
- One pulse per period (noise suppression)
- Improved max. duty cycle at high frequencies
- Double pulse suppression
- Synchronize through pin 3

©1995 National Semiconductor Corporation TL/H/8650

RRD-B30M115/Printed in U. S. A.

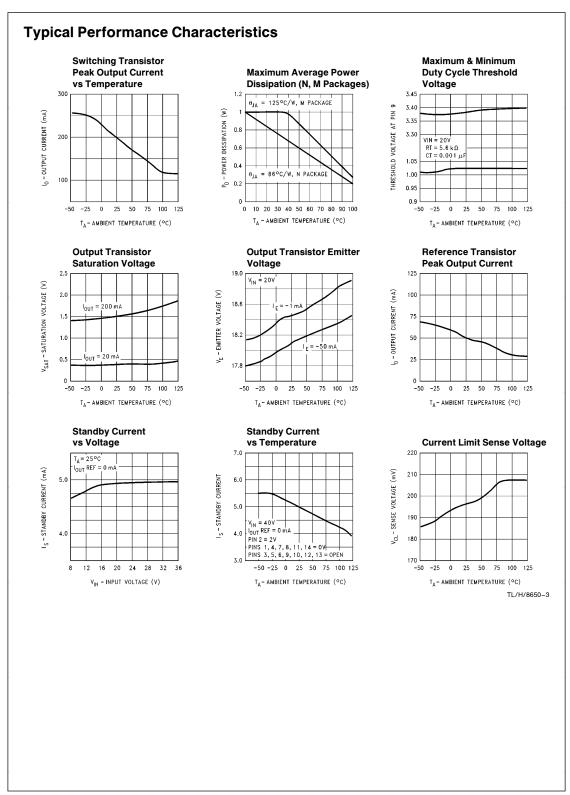
LM2524D/LM3524D Regulating Pulse Width Modulator

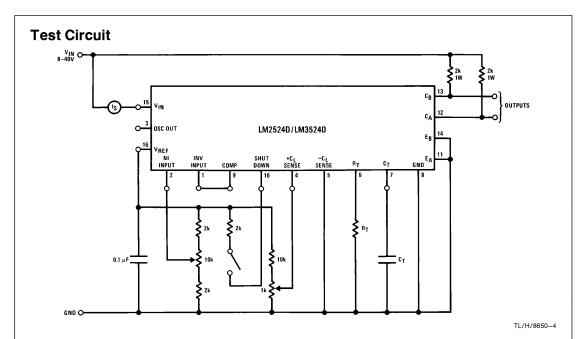
January 1995

Absolute Maximum Ratings (Note 5)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 40V

Supply Voltage	40V
Collector Supply Voltage	
(LM2524D)	55V
(LM3524D)	40V
Output Current DC (each)	200 mA
Oscillator Charging Current (Pin 7)	5 mA
Internal Power Dissipation	1W

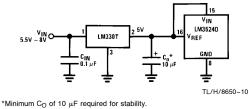

Operating Junction Temperature Range	e (Note 2)
LM2524D	-40°C to +125°C
LM3524D	0°C to +125°C
Maximum Junction Temperature	150°
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering 4 sec.) M	, N Pkg. 260°C


Electrical Characteristics (Note 1)

				LM2524	D				
Symbol	Parameter	Conditions	Тур	Tested Limit (Note 3)	Design Limit (Note 4)	Тур	Tested Limit (Note 3)	Design Limit (Note 4)	Units
REFERE	NCE SECTION								
V _{REF}	Output Voltage		5	4.85	4.80	5	4.75		V _{Min}
				5.15	5.20	J	5.25		V _{Max}
V _{RLine}	Line Regulation	$V_{IN} = 8V$ to 40V	10	15	30	10	25	50	mV _{Max}
V _{RLoad}	Load Regulation	$I_L = 0 \text{ mA to } 20 \text{ mA}$	10	15	25	10	25	50	mV _{Max}
$\frac{\Delta V_{\text{IN}}}{\Delta V_{\text{REF}}}$	Ripple Rejection	f = 120 Hz	66			66			dB
I _{OS}	Short Circuit	$V_{REF} = 0$		25			25		mA Min
	Current		50	180		50	200		m A May
NO	Output Noise	$10 \text{ Hz} \le f \le 10 \text{ kHz}$	40	160	100	40	200	100	mA Max μV _{rms Max}
NO	Long Term	$T_{A} = 125^{\circ}C$	40		100	40		100	μ v rms Ma:
	Stability	1 _A - 125 C	20			20			mV/kHr
OSCILLA	TOR SECTION			1	1		1	I	
fosc	Max. Freq.	$R_{T} = 1k, C_{T} = 0.001 \ \mu F$ (Note 7)	550		500	350			kHz _{Min}
fosc	Initial	$R_{T} = 5.6k, C_{T} = 0.01 \ \mu F$		17.5			17.5		kHz _{Min}
	Accuracy	(Note 7)	20	22.5		20	22.5		kHz _{Max}
		$R_{T} = 2.7k, C_{T} = 0.01 \ \mu F$ (Note 7)	38	34			30		kHz _{Min}
						38			
				42			46		kHz _{Max}
Δf _{OSC}	Freq. Change with V _{IN}	$V_{IN} = 8 \text{ to } 40 \text{V}$	0.5	1		0.5	1.0		[%] Max
Δf _{OSC}	Freq. Change with Temp.	$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$ at 20 kHz $R_T = 5.6k$, $C_T = 0.01 \ \mu\text{F}$	5			5			%
V _{OSC}	Output Amplitude (Pin 3) (Note 8)	$R_{T} = 5.6k, C_{T} = 0.01 \ \mu F$	3	2.4		3	2.4		V _{Min}
t _{PW}	Output Pulse Width (Pin 3)	$R_{T} = 5.6k, C_{T} = 0.01 \ \mu F$	0.5	1.5		0.5	1.5		μs _{Max}

Symbol	Parameter	Conditions		LM2524	D		LM3524	D	
			Тур	Tested Limit (Note 3)	Design Limit (Note 4)	Тур	Tested Limit (Note 3)	Design Limit (Note 4)	Units
OSCILLA	TOR SECTION (Contir	nued)							
	Sawtooth Peak Voltage	$R_T = 5.6k, C_T = 0.01 \ \mu F$	3.4	3.6	3.8		3.8		V _{Max}
	Sawtooth Valley Voltage	$R_T = 5.6k, C_T = 0.01 \ \mu F$	1.1	0.8	0.6		0.6		V _{Min}
ERROR-A	MP SECTION								
V _{IO}	Input Offset Voltage	$V_{CM} = 2.5V$	2	8	10	2	10		mV _{Max}
I ^{IB}	Input Bias Current	$V_{CM} = 2.5V$	1	8	10	1	10		μΑ _{Μα}
IIO	Input Offset Current	$V_{CM} = 2.5V$	0.5	1.0	1	0.5	1		μA _{Ma}
ICOSI	Compensation Current (Sink)	$V_{\text{IN(I)}} - V_{\text{IN(NI)}} = 150 \text{ mV}$	95	65		95	65		μA _{Mir}
				125			125		μΑ _{Μα}
ICOSO	Compensation Current (Source)	$V_{IN(NI)} - V_{IN(I)} = 150 \text{ mV}$	-95	-125 -65		-95	- 125 65		μΑ _{Mir} μΑ _{Ma:}
A _{VOL}	Open Loop Gain	$R_L = \infty, V_{CM} = 2.5 V$	80	74	60	80	70	60	dB _{Min}
VCMR	Common Mode Input Voltage Range			1.5 5.5	1.4 5.4		1.5 5.5		V _{Min} V _{Max}
CMRR	Common Mode Rejection Ratio		90	80		90	80		dB _{Min}
G _{BW}	Unity Gain Bandwidth	$A_{\text{VOL}} = 0 \text{ dB}, V_{\text{CM}} = 2.5 \text{V}$	3			2			MHz
V _O	Output Voltage Swing	$R_L = \infty$		0.5 5.5			0.5 5.5		V _{Min} V _{Max}
PSRR	Power Supply Rejection Ratio	$V_{IN} = 8 \text{ to } 40 \text{V}$	80		70	80	65		db _{Min}
COMPAR	ATOR SECTION		I						I
t _{ON} tosc	Minimum Duty Cycle	$\begin{array}{l} \text{Pin 9} = 0.8\text{V}, \\ [\text{R}_{\text{T}} = 5.6\text{k}, \text{C}_{\text{T}} = 0.01 \ \mu\text{F}] \end{array}$	0	0		0	0		%Max
t _{ON} tosc	Maximum Duty Cycle	Pin 9 = 3.9V, $[R_T = 5.6k, C_T = 0.01 \ \mu F]$	49	45		49	45		%Min
ton tosc	Maximum Duty Cycle	Pin 9 = 3.9V, [R_T = 1k, C_T = 0.001 μ F]	44	35		44	35		%Min
V _{COMPZ}	Input Threshold (Pin 9)	Zero Duty Cycle	1			1			v
V _{COMPM}	Input Threshold (Pin 9)	Maximum Duty Cycle	3.5			3.5			v
I _{IB}	Input Bias Current		-1			-1			μΑ

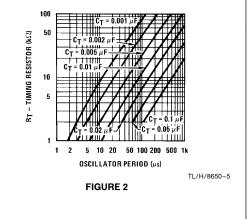
Symbol	Parameter	Conditions		LM25240	,		LM35240	,	
			Тур	Tested Limit (Note 3)	Design Limit (Note 4)	Тур	Tested Limit (Note 3)	Design Limit (Note 4)	Units
CURRENT	LIMIT SECTION								
V _{SEN}	Sense Voltage	V _(Pin 2) − V _(Pin 1) ≥ 150 mV	200	180		200	180		mV _{Mir}
TC-V _{sense}	Sense Voltage T.C.		0.2	220		0.2	220		mV _{Ma} mV/°0
10-V sense	Common Mode Voltage Range	$V_5 - V_4 = 300 \text{ mV}$	-0.2 -0.7			-0.2 -0.7			V _{Min} V _{Max}
SHUT DOV	VN SECTION	5 4							Iviax
V _{SD}	High Input Voltage	V _(Pin 2) − V _(Pin 1) ≥ 150 mV	1	0.5 1.5		1	0.5 1.5		V _{Min} V _{Max}
I _{SD}	High Input Current	l _(pin 10)	1			1			mA
OUTPUT S	ECTION (EACH OUT	PUT)							
V _{CES}	Collector Emitter Voltage Breakdown	$I_C \le 100 \ \mu A$		55			40		V _{Min}
I _{CES}	Collector Leakage Current	$V_{CE} = 60V$							
		$V_{CE} = 55V$	0.1	50					μA _{Ma}
		$V_{CE} = 40V$				0.1	50		
V _{CESAT}	Saturation	I _E = 20 mA	0.2	0.5		0.2	0.7		V _{Max}
	Voltage	I _E = 200 mA	1.5	2.2		1.5	2.5		
V _{EO}	Emitter Output Voltage	I _E = 50 mA	18	17		18	17		V _{Min}
t _R	Rise Time	$V_{\text{IN}} = 20\text{V},$ $I_{\text{E}} = -250 \ \mu\text{A}$ $R_{\text{C}} = 2\text{k}$	200			200			ns
t⊨	Fall Time	$R_{C} = 2k$	100			100			ns
SUPPLY C	HARACTERISTICS S	ECTION		I				1	
V _{IN}	Input Voltage Range	After Turn-on		8 40			8 40		V _{Min} V _{Max}
Т	Thermal Shutdown Temp.	(Note 2)	160			160			°C
I _{IN}	Stand By Current	$V_{IN} = 40V$ (Note 6)	5	10		5	10		mA
85°C and LM Note 2: For c in the M pac Note 3: Test Note 4: Desi calculate out Note 5: Absc the device bi Note 6: Pins Note 7: The	I3524D is 0°C to 70°C. $V_{ N} =$ poperation at elevated tempera- kage must be derated at 125 ed limits are guaranteed and gin limits are guaranteed (bu going quality level. olute maximum ratings indicat ayond its rated operating cor 1, 4, 7, 8, 11, and 14 are gro	tures, devices in the N packa, "C/W, junction to ambient." 100% tested in production. t not 100% production tested limits beyond which damage ditions. punded; Pin 2 = 2V. All other ry with frequency. Careful sele	ge must be I) over the e to the dev r inputs and	derated based indicated temp vice may occur. d outputs open	on a thermal reperature and su DC and AC ele	esistance o upply voltag ectrical spe	f 86°C/W, junc ge range. Thes cifications do n	tion to ambient e limits are no ot apply when	t. Devices It used to operating

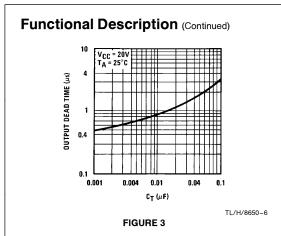


Functional Description INTERNAL VOLTAGE REGULATOR

The LM3524D has an on-chip 5V, 50 mA, short circuit protected voltage regulator. This voltage regulator provides a supply for all internal circuitry of the device and can be used as an external reference.

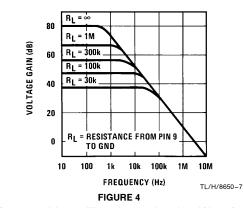
For input voltages of less than 8V the 5V output should be shorted to pin 15, V_{IN} , which disables the 5V regulator. With these pins shorted the input voltage must be limited to a maximum of 6V. If input voltages of 6V–8V are to be used, a pre-regulator, as shown in *Figure 1*, must be added.

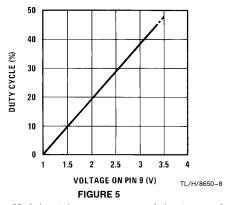

OSCILLATOR


The LM3524D provides a stable on-board oscillator. Its frequency is set by an external resistor, R_T and capacitor, C_T . A graph of R_T, C_T vs oscillator frequency is shown is *Figure 2*. The oscillator's output provides the signals for triggering an internal flip-flop, which directs the PWM information to the outputs, and a blanking pulse to turn off both outputs during transitions to ensure that cross conduction does not occur. The width of the blanking pulse, or dead time, is controlled by the value of C_T , as shown in *Figure 3*. The recommended values of R_T are 1.8 $\kappa\Omega$ to 100 $\kappa\Omega$, and for C_T , 0.001 μ F to 0.1 μ F.

If two or more LM3524D's must be synchronized together, the easiest method is to interconnect all pin 3 terminals, tie all pin 7's (together) to a single C_T , and leave all pin 6's open except one which is connected to a single R_T . This method works well unless the LM3524D's are more than 6" apart.

A second synchronization method is appropriate for any circuit layout. One LM3524D, designated as master, must have its R_TC_T set for the correct period. The other slave LM3524D(s) should each have an R_TC_T set for a 10% longer period. All pin 3's must then be interconnected to allow the master to properly reset the slave units.


The oscillator may be synchronized to an external clock source by setting the internal free-running oscillator frequency 10% slower than the external clock and driving pin 3 with a pulse train (approx. 3V) from the clock. Pulse width should be greater than 50 ns to insure full synchronization.

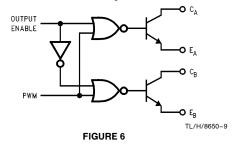

ERROR AMPLIFIER

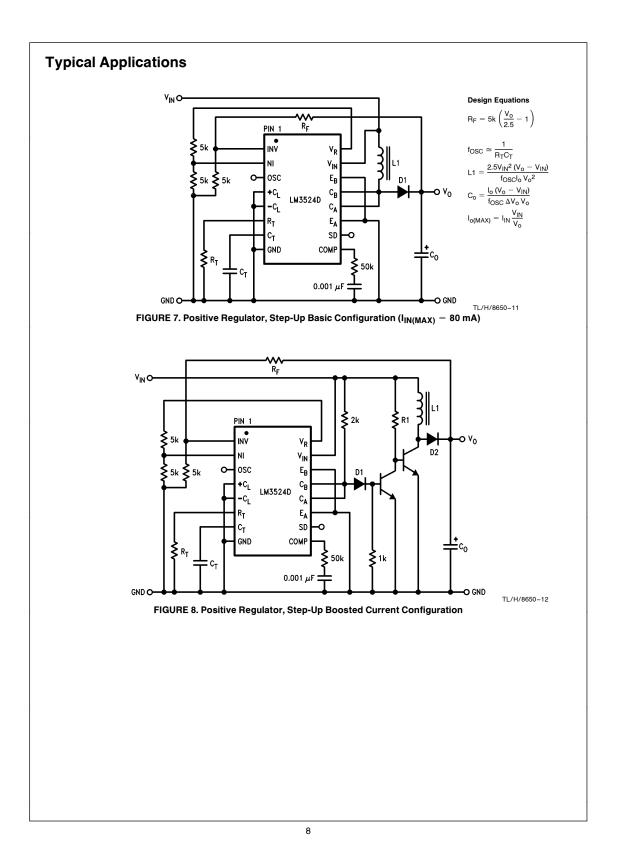
The error amplifier is a differential input, transconductance amplifier. Its gain, nominally 86 dB, is set by either feedback or output loading. This output loading can be done with either purely resistive or a combination of resistive and reactive components. A graph of the amplifier's gain vs output load resistance is shown in *Figure 4*.

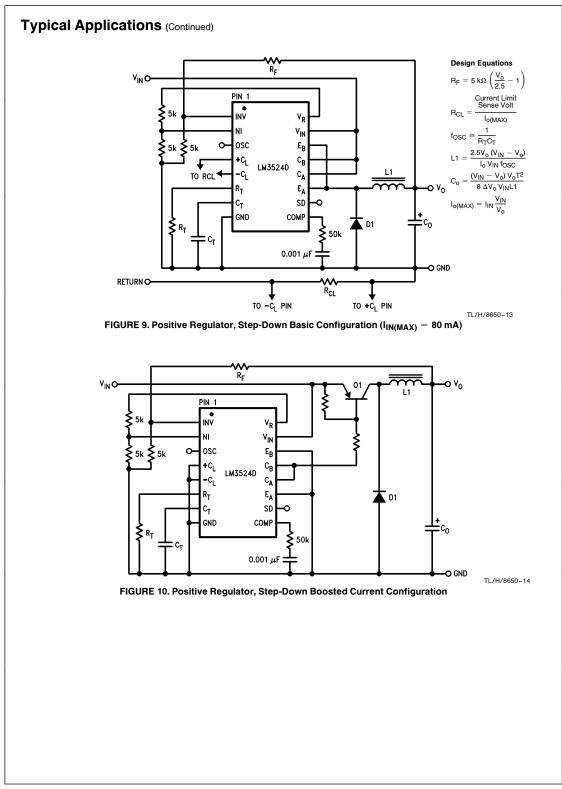
The output of the amplifier, or input to the pulse width modulator, can be overridden easily as its output impedance is very high ($Z_0 \cong 5 \text{ M}\Omega$). For this reason a DC voltage can be applied to pin 9 which will override the error amplifier and force a particular duty cycle to the outputs. An example of this could be a non-regulating motor speed control where a variable voltage was applied to pin 9 to control motor speed. A graph of the output duty cycle vs the voltage on pin 9 is shown in *Figure 5*.

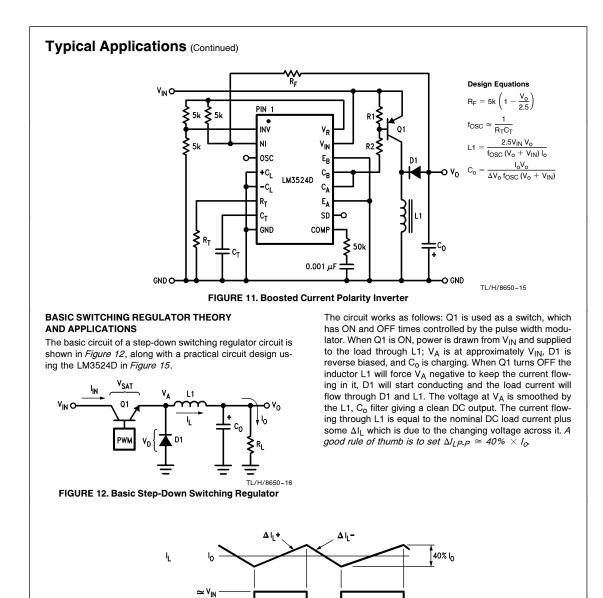
The duty cycle is calculated as the percentage ratio of each output's ON-time to the oscillator period. Paralleling the outputs doubles the observed duty cycle.

The amplifier's inputs have a common-mode input range of 1.5V-5.5V. The on board regulator is useful for biasing the inputs to within this range.


CURRENT LIMITING


The function of the current limit amplifier is to override the error amplifier's output and take control of the pulse width. The output duty cycle drops to about 25% when a current limit sense voltage of 200 mV is applied between the $+\,C_L$ and $-\,C_L$ sense terminals. Increasing the sense voltage approximately 5% results in a 0% output duty cycle. Care should be taken to ensure the -0.7V to $+\,1.0V$ input common-mode range is not exceeded.


In most applications, the current limit sense voltage is produced by a current through a sense resistor. The accuracy of this measurement is limited by the accuracy of the sense resistor, and by a small offset current, typically 100 μ A, flowing from +CL to -CL.


OUTPUT STAGES

The outputs of the LM3524D are NPN transistors, capable of a maximum current of 200 mA. These transistors are driven 180° out of phase and have non-committed open collectors and emitters as shown in *Figure 6*.

FIGURE 13

TL/H/8650-17

٧_A

<u>~</u> ٥٧

From the relation
$$V_L = L \frac{d_i}{d_t}$$
, $\Delta I_L \approx \frac{V_L T}{L1}$

$$\Delta I_{L}^{+} = \frac{(V_{IN} - V_{0}) t_{ON}}{L1}; \Delta I_{L}^{-} = \frac{V_{0} t_{OFF}}{L1}$$

Neglecting V_{SAT}, V_D, and settling $\Delta I_L^+ = \Delta I_L^-$;

$$\boxed{V_{\text{o}} \cong V_{\text{IN}}\left(\frac{t_{\text{ON}}}{t_{\text{OFF}}+t_{\text{ON}}}\right)} = V_{\text{IN}}\left(\frac{t_{\text{ON}}}{T}\right);$$

where T = Total Period

The above shows the relation between $V_{\mbox{\rm IN}},~V_{\mbox{\rm o}}$ and duty cycle.

$$I_{\text{IN(DC)}} = I_{\text{OUT(DC)}} \left(\frac{t_{\text{ON}}}{t_{\text{ON}} + t_{\text{OFF}}} \right),$$

as Q1 only conducts during t_{ON}.

$$\begin{split} \mathsf{P}_{\mathsf{IN}} &= \mathsf{I}_{\mathsf{IN}(\mathsf{DC})} \, \mathsf{V}_{\mathsf{IN}} = (\mathsf{I}_{\mathsf{o}(\mathsf{DC})}) \left(\frac{\mathsf{t}_{\mathsf{ON}}}{\mathsf{t}_{\mathsf{ON}} + \mathsf{t}_{\mathsf{OFF}}} \right) \mathsf{V}_{\mathsf{IN}} \\ \mathsf{P}_{\mathsf{o}} &= \mathsf{I}_{\mathsf{o}} \mathsf{V}_{\mathsf{o}} \end{split}$$


The efficiency, η , of the circuit is:

$$\begin{split} \eta \text{MAX} &= \frac{\text{P}_{\text{o}}}{\text{P}_{\text{IN}}} = \frac{\text{I}_{\text{o}}\text{V}_{\text{o}}}{\text{I}_{\text{o}}\frac{(\text{t}_{\text{ON}})}{\text{T}}\text{V}_{\text{IN}} + \frac{(\text{V}_{\text{SAT}}\text{t}_{\text{ON}} + \text{V}_{\text{D1}}\text{t}_{\text{OFF}})}{\text{T}}\text{I}_{\text{o}}} \\ &= \boxed{\frac{\text{V}_{\text{o}}}{\text{V}_{\text{o}} + 1}} \text{for } \text{V}_{\text{SAT}} = \text{V}_{\text{D1}} = 1\text{V}. \end{split}$$

 ηMAX will be further decreased due to switching losses in Q1. For this reason Q1 should be selected to have the maximum possible f_T, which implies very fast rise and fall times.

CALCULATING INDUCTOR L1

$$\begin{split} t_{ON} &\cong \frac{(\Delta I_L^+) \times L1}{(V_{IN} - V_0)}, t_{OFF} = \frac{(\Delta I_L^-) \times L1}{V_0} \\ t_{ON} + t_{OFF} &= T = \frac{(\Delta I_L^+) \times L1}{(V_{IN} - V_0)} + \frac{(\Delta I_L^-) \times L1}{V_0} \\ &= \frac{0.4 I_0 L1}{(V_{IN} - V_0)} + \frac{0.4 I_0 L1}{V_0} \\ \end{split}$$
 Since $\Delta I_I^{+} = \Delta I_I^{-} = 0.4 I_0$

Solving the above for L1

$$L1 = \frac{2.5 \, V_{\text{o}} \, (V_{\text{IN}} - V_{\text{o}})}{I_{\text{o}} \, V_{\text{IN}} \, f}$$

where: L1 is in Henrys

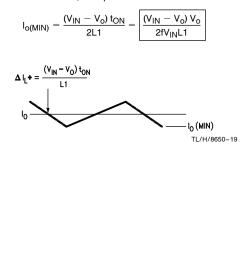
f is switching frequency in Hz

Also, see LM1578 data sheet for graphical methods of inductor selection.

CALCULATING OUTPUT FILTER CAPACITOR Co:

Figure 14 shows L1's current with respect to Q1's t_{ON} and t_{OFF} times. This current must flow to the load and C₀. C₀'s current will then be the difference between l_L , and l_0 .

$$\mathrm{Ic_{0}}=\mathrm{I_{L}}-\mathrm{I_{0}}$$

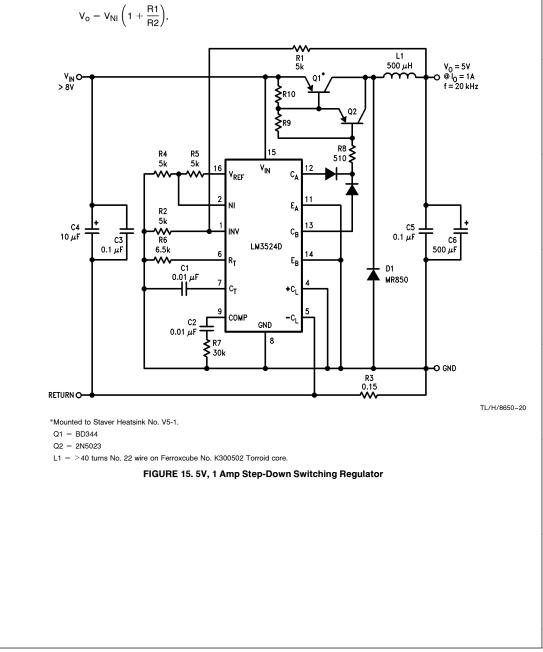

From Figure 14 it can be seen that current will be flowing into C_0 for the second half of t_{ON} through the first half of t_{OFF} , or a time, $t_{ON}/2$ + $t_{OFF}/2$. The current flowing for this time is $\Delta I_L/4$. The resulting ΔV_c or ΔV_o is described by:

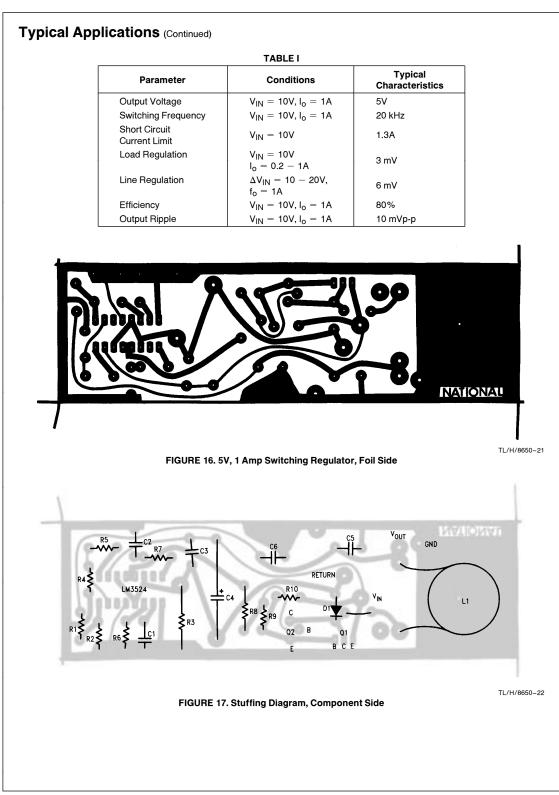
$$\begin{split} \Delta V_{op-p} &= \frac{1}{C} \times \frac{\Delta I_L}{4} \times \left(\frac{t_{ON}}{2} + \frac{t_{OFF}}{2}\right) \\ &= \frac{\Delta I_L}{4C} \left(\frac{t_{ON} + t_{OFF}}{2}\right) \\ \text{Since } \Delta I_L &= \frac{V_o(T - t_{ON})}{L1} \text{ and } t_{ON} = \frac{V_oT}{V_{IN}} \\ \Delta V_{op-p} &= \frac{V_o \left(T - \frac{V_oT}{V_{IN}}\right)}{4C \text{ L1}} \left(\frac{T}{2}\right) = \frac{(V_{IN} - V_o) V_o T^2}{8V_{IN}C_o \text{ L1}} \text{ or } \\ \hline C_o &= \frac{(V_{IN} - V_o) V_o T^2}{8\Delta V_o V_{IN} \text{ L1}} \end{split}$$

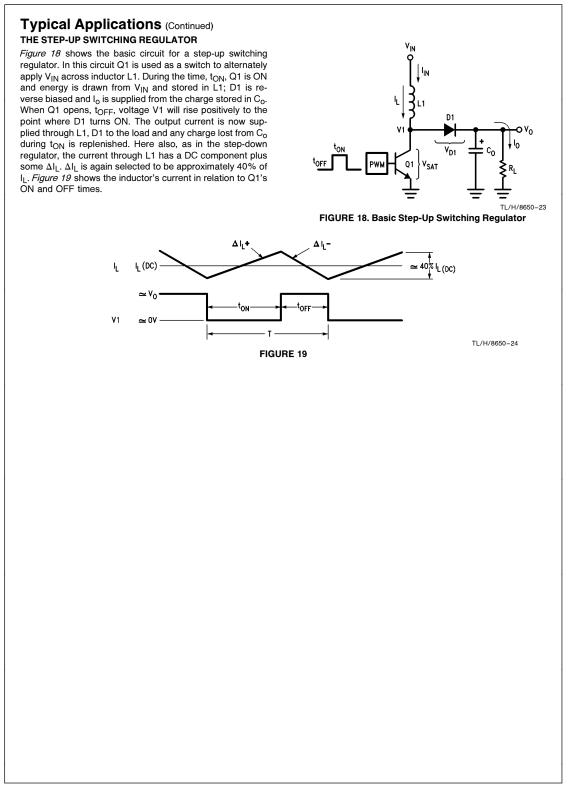
where: C is in farads, T is $\frac{1}{\text{switching frequency}}$

ΔV_0 is p-p output ripple

For best regulation, the inductor's current cannot be allowed to fall to zero. Some minimum load current $I_{\rm o},$ and thus inductor current, is required as shown below:


11


A complete step-down switching regulator schematic, using the LM3524D, is illustrated in *Figure 15.* Transistors Q1 and Q2 have been added to boost the output to 1A. The 5V regulator of the LM3524D has been divided in half to bias the error amplifier's non-inverting input to within its common-mode range. Since each output transistor is on for half the period, actually 45%, they have been paralleled to allow longer possible duty cycle, up to 90%. This makes a lower possible input voltage. The output voltage is set by: where V_{NI} is the voltage at the error amplifier's non-inverting input.


Resistor R3 sets the current limit to:

$$\frac{200 \text{ mV}}{\text{R3}} = \frac{200 \text{ mV}}{0.15} = 1.3\text{A}.$$

Figure 16 and *17* show a PC board layout and stuffing diagram for the 5V, 1A regulator of *Figure 15*. The regulator's performance is listed in Table I.

From
$$\Delta I_{L} = \frac{V_{L}T}{L}$$
, $\Delta I_{L}^{+} \approx \frac{V_{IN}t_{ON}}{L1}$
and $\Delta I_{L}^{-} \approx \frac{(V_{O} - V_{IN}) t_{OFF}}{L1}$

Since $\Delta I_L{}^+ = \Delta I_L{}^-, \, V_{IN}t_{ON} = V_o t_{OFF} - V_{IN}t_{OFF},$ and neglecting V_{SAT} and V_{D1}

$$V_{0} \cong V_{\text{IN}} \left(1 + \frac{t_{\text{ON}}}{t_{\text{OFF}}}\right)$$

The above equation shows the relationship between $V_{\text{IN}},\,V_{\text{o}}$ and duty cycle.

In calculating input current $I_{\text{IN(DC)}},$ which equals the inductor's DC current, assume first 100% efficiency:

$$P_{IN} = I_{IN(DC)} V_{IN}$$

$$P_{OUT} = I_0 V_0 = I_0 V_{IN} \left(1 + \frac{t_{ON}}{t_{OFF}}\right)$$
for $\eta = 100\%$, $P_{OUT} = P_{IN}$

$$I_0 V_{IN} \left(1 + \frac{t_{ON}}{t_{OFF}}\right) = I_{IN(DC)} V_{IN}$$

$$I_{\text{IN(DC)}} = I_{\text{o}} \left(1 + \frac{t_{\text{ON}}}{t_{\text{OFF}}} \right)$$

This equation shows that the input, or inductor, current is larger than the output current by the factor (1 $\,+\,t_{ON}/t_{OFF}$). Since this factor is the same as the relation between V_o and V_{IN}, I_{IN(DC)} can also be expressed as:

$$I_{\text{IN(DC)}} = I_{\text{O}} \left(\frac{V_{\text{O}}}{V_{\text{IN}}} \right)$$

So far it is assumed $\eta=100\%$, where the actual efficiency or η_{MAX} will be somewhat less due to the saturation voltage of Q1 and forward on voltage of D1. The internal power loss due to these voltages is the average I_L current flowing, or I_{IN}, through either V_{SAT} or V_{D1}. For V_{SAT} = V_{D1} = 1V this power loss becomes I_{IN(DC)} (1V). η_{MAX} is then:

$$\Delta_{MAX} = \frac{P_o}{P_{IN}} = \frac{V_o I_o}{V_o I_o + I_{IN} (1V)} = \frac{V_o I_o}{V_o I_o + I_o \left(1 + \frac{t_{ON}}{t_{OFF}}\right)}$$

$$\label{eq:From V_o} \begin{split} \text{From V}_o &= V_{IN} \left(1 \, + \frac{t_{ON}}{t_{OFF}}\right) \\ & \\ \hline \eta_{max} &= \frac{V_{IN}}{V_{IN} + 1} \end{split}$$

This equation assumes only DC losses, however η_{MAX} is further decreased because of the switching time of Q1 and D1.

In calculating the output capacitor C_o it can be seen that C_o supplies I_o during $t_{ON}.$ The voltage change on C_o during this time will be some $\Delta V_c = \Delta V_o$ or the output ripple of the regulator. Calculation of C_o is:

$$\begin{split} \Delta V_{o} &= \frac{I_{o} t_{ON}}{C_{o}} \text{ or } C_{o} = \frac{I_{o} t_{ON}}{\Delta V_{o}} \\ \text{m } V_{o} &= V_{IN} \left(\frac{T}{t_{OFF}} \right) \text{; } t_{OFF} = \frac{V_{IN}}{V_{o}} T \end{split}$$

where T = $t_{ON} + t_{OFF} = \frac{1}{f}$

Fro

$$\begin{split} t_{ON} &= T - \frac{V_{IN}}{V_o}T = T\left(\frac{V_o - V_{IN}}{V_o}\right) \text{ therefore:} \\ C_o &= \frac{I_o T\left(\frac{V_o - V_{IN}}{V_o}\right)}{\Delta V_o} = \boxed{\frac{I_o \left(V_o - V_{IN}\right)}{f\Delta V_o V_o}} \end{split}$$

where: C_0 is in farads, f is the switching frequency, ΔV_0 is the p-p output ripple

Calculation of inductor L1 is as follows:

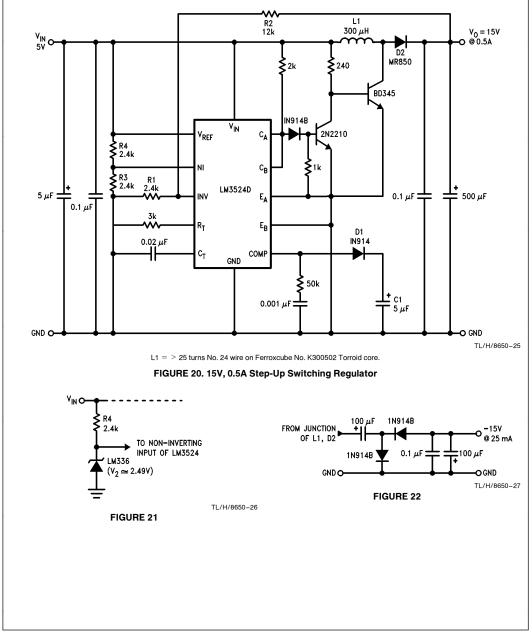
$$L1 = \frac{V_{IN}t_{ON}}{\Delta I_{L}^{+}}, \text{ since during } t_{ON},$$

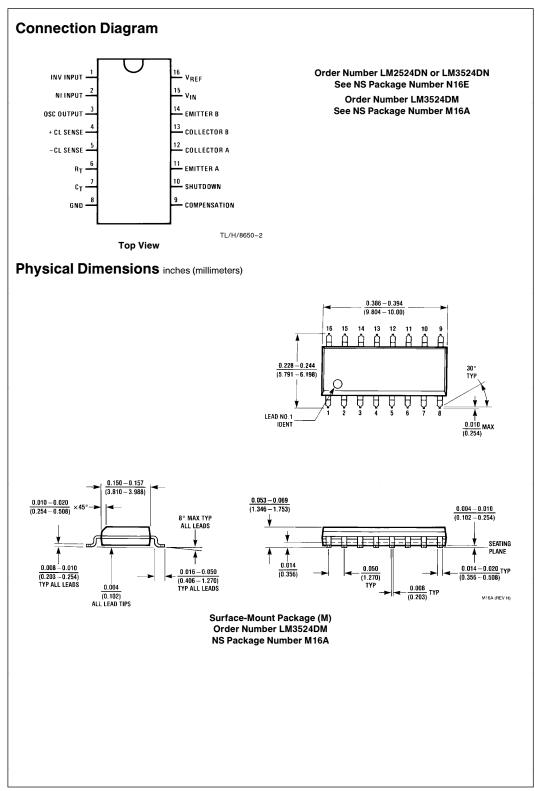
VIN is applied across L1

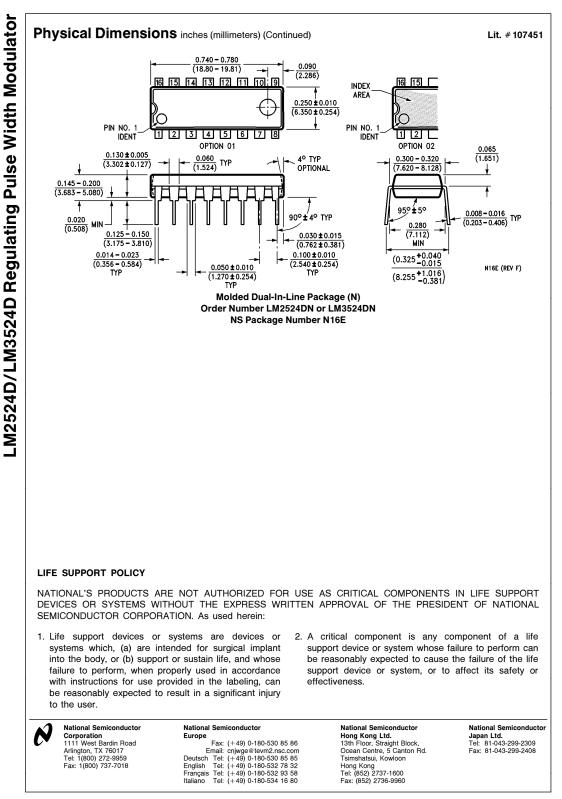
$$\begin{split} \Delta I_{Lp-p} &= 0.4 \ I_L = 0.41 \ I_{IN} = 0.4 \ I_o \left(\frac{V_o}{V_{IN}} \right) \text{, therefore:} \\ L1 &= \frac{V_{IN} t_{ON}}{0.4 \ I_o \left(\frac{V_o}{V_{IN}} \right)} \text{ and since } t_{ON} = \frac{T \left(V_o - V_{IN} \right)}{V_o} \\ & \left[L1 &= \frac{2.5 \ V_{IN}^2 \left(V_o - V_{IN} \right)}{f \ I_o V_o^2} \right] \end{split}$$

where: L1 is in henrys, f is the switching frequency in Hz

To apply the above theory, a complete step-up switching regulator is shown in *Figure 20*. Since V_{IN} is 5V, V_{REF} is tied to V_{IN}. The input voltage is divided by 2 to bias the error amplifier's inverting input. The output voltage is:


$$V_{OUT} = \left(1 + \frac{R2}{R1}\right) \times V_{INV} = 2.5 \times \left(1 + \frac{R2}{R1}\right)$$


The network D1, C1 forms a slow start circuit.


This holds the output of the error amplifier initially low thus reducing the duty-cycle to a minimum. Without the slow start

circuit the inductor may saturate at turn-on because it has to supply high peak currents to charge the output capacitor from OV. It should also be noted that this circuit has no supply rejection. By adding a reference voltage at the noninverting input to the error amplifier, see *Figure 21*, the input voltage variations are rejected.

The LM3524D can also be used in inductorless switching regulators. *Figure 22* shows a polarity inverter which if connected to *Figure 20* provides a -15V unregulated output.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications