NEC

Preliminary Application Note

Bootloader for 78K0/Kx2

8-Bit Single-Chip Microcontroller

78K0/Kx2

Documen t No. U18539EE1V0ANOO
Date published 15/02/07
© NEC Electronics 2007

Printed in Germany



The information in this document is subject to change without notice. Before
using this document, please confirm that this is the latest version.

Not all products and/or types are available in every country. Please check
with an NEC Electronics sales representative for availability and additional
information.

Preliminary Application Note U18539EE1VOANOO



Legal Notes

¢ The information contained in this document is being issued in
advance of the production cycle for the product. The parameters
for the product may change before final production or NEC
Electronics Corporation, at its own discretion, may withdraw the
product prior to its production.

¢ No part of this document may be copied or reproduced in any form or
by any means without the prior written consent of NEC Electronics.
NEC Electronics assumes no responsibility for any errors that may
appear in this document.

e NEC Electronics does not assume any liability for infringement of
patents, copyrights or other intellectual property rights of third parties
by or arising from the use of NEC Electronics products listed in this
document or any other liability arising from the use of such products.
No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC
Electronics or others.

e Descriptions of circuits, software and other related information in this
document are provided for illustrative purposes in semiconductor
product operation and application examples. The incorporation of
these circuits, software and information in the design of a customer's
equipment shall be done under the full responsibility of the customer.
NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits,
software and information.

¢ While NEC Electronics endeavors to enhance the quality, reliability
and safety of NEC Electronics products, customers agree and
acknowledge that the possibility of defects thereof cannot be
eliminated entirely. To minimize risks of damage to property or injury
(including death) to persons arising from defects in NEC Electronics
products, customers must incorporate sufficient safety measures in
their design, such as redundancy, fire-containment and anti-failure
features.

¢ NEC Electronics products are classified into the following three quality
grades: "Standard", "Special", and "Specific". The "Specific" quality
grade applies only to NEC Electronics products developed based on
a customer-designated "quality assurance program" for a specific
application. The recommended applications of an NEC Electronics
product depend on its quality grade, as indicated below. Customers
must check the quality grade of each NEC Electronics products before
using it in a particular application.
"Standard": Computers, office equipment, communications
equipment, test and measurement equipment, audio and visual
equipment, home electronic appliances, machine tools, personal
electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.),
traffic control systems, anti-disaster systems, anti-crime systems,
safety equipment and medical equipment (not specifically designed
for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters,
nuclear reactor control systems, life support systems and medical
equipment for life support, etc.

Preliminary Application Note U18539EE1VOANOO



The quality grade of NEC Electronics products is "Standard" unless otherwise
expressly specified in NEC Electronics data sheets or data books, etc. If
customers wish to use NEC Electronics products in applications not intended by
NEC Electronics, they must contact an NEC Electronics sales representative in
advance to determine NEC Electronics' willingness to support a given application.

(Note)

(1) "NEC Electronics" as used in this statement means NEC Electronics
Corporation and also includes its majority-owned subsidiaries.

(2) "NEC Electronics products" means any product developed or manufactured
by or for NEC Electronics (as defined above).

Preliminary Application Note U18539EE1VOANOO



Notes for CMOS Devices

1. VOLTAGE APPLICATION WAVEFORM AT INPUT PIN
Waveform distortion due to input noise or a reflected wave may cause
malfunction. If the input of the CMOS device stays in the area between
VIL (MAX) and VIH (MIN) due to noise, etc., the device may
malfunction. Take care to prevent chattering noise from entering the
device when the input level is fixed, and also in the transition period
when the input level passes through the area between VIL (MAX) and
VIH (MIN).

2. HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an
input pin is unconnected, it is possible that an internal input level may
be generated due to noise, etc., causing malfunction. CMOS devices
behave differently than Bipolar or NMOS devices. Input levels of
CMOS devices must be fixed high or low by using pull-up or pull-down
circuitry. Each unused pin should be connected to VDD or GND via a
resistor if there is a possibility that it will be an output pin. All handling
related to unused pins must be judged separately for each device and
according to related specifications governing the device.

3. PRECAUTION AGAINST ESD
A strong electric field, when exposed to a MOS device, can cause
destruction of the gate oxide and ultimately degrade the device
operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it when it has occurred.
Environmental control must be adequate. When it is dry, a humidifier
should be used. It is recommended to avoid using insulators that
easily build up static electricity. Semiconductor devices must be
stored and transported in an anti-static container, static shielding bag
or conductive material. All test and measurement tools including work
benches and floors should be grounded. The operator should be
grounded using a wrist strap. Semiconductor devices must not be
touched with bare hands. Similar precautions need to be taken for PW
boards with mounted semiconductor devices.

4. STATUS BEFORE INITIALIZATION
Power-on does not necessarily define the initial status of a MOS
device. Immediately after the power source is turned ON, devices with
reset functions have not yet been initialized. Hence, power-on does
not guarantee output pin levels, I/0 settings or contents of registers.
A device is not initialized until the reset signal is received. A reset
operation must be executed immediately after power-on for devices
with reset functions.

5. POWER ON/OFF SEQUENCE
In the case of a device that uses different power supplies for the
internal operation and external interface, as a rule, switch on the
external power supply after switching on the internal power supply.
When switching the power supply off, as a rule, switch off the external
power supply and then the internal power supply. Use of the reverse
power on/off sequences may result in the application of an
overvoltage to the internal elements of the device, causing
malfunction and degradation of internal elements due to the passage
of an abnormal current. The correct power on/off sequence must be
judged separately for each device and according to related
specifications governing the device.

Preliminary Application Note U18539EE1VOANOO



INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device
is not powered. The current injection that results from input of such a
signal or I/O pull-up power supply may cause malfunction and the
abnormal current that passes in the device at this time may cause
degradation of internal elements. Input of signals during the power off
state must be judged separately for each device and according to
related specifications governing the device.

Preliminary Application Note U18539EE1VOANOO



Regional Information

Some information contained in this document may vary from country tocountry. Before
using any NEC product in your application, please contact theNEC office in your country
to obtain a list of authorized representatives anddistributors. They will verify:

Device availability
Ordering information
Product release schedule

Availability of related technical literature

Development environment specifications (for example, specifications for
third-party tools and components, host computers, power plugs, AC

supply voltages, and so forth)
Network requirements

In addition, trademarks, registered trademarks, export restrictions, and otherlegal

issues may also vary from country to country.

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668, Japan
Tel: 044 4355111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.

Santa Clara, CA 95050-2554,
U.S.A.

Tel: 408 5886000
http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10

40472 Disseldorf, Germany

Tel: 0211 65030
http://www.eu.necel.com/

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.

Tel: 01908 691133

Succursale Francgaise

9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France

Tel: 01 30675800

Sucursal en Espaia
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091 5042787

Tyskland Filial

Taby Centrum
Entrance S (7th floor)
18322 Taby, Sweden
Tel: 08 6387200

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, ltaly
Tel: 02 667541

Branch The Netherlands
Steijgerweg 6

5616 HS Eindhoven,

The Netherlands

Tel: 040 2654010

Preliminary Application Note U18539EE1VOANOO

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27
ZhiChunlLu Haidian District,
Beijing 100083, P.R.China

Tel: 010 82351155
http://www.cn.necel.com/

NEC Electronics Shanghai Ltd.
Room 2511-2512, Bank of China
Tower,

200 Yincheng Road Central,
Pudong New Area,

Shanghai 200120, P.R. China
Tel: 021 58885400
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
12/F., Cityplaza 4,

12 Taikoo Wan Road, Hong Kong
Tel: 2886 9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R.O.C.

Tel: 02 27192377

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,

#12-08 Novena Square,

Singapore 307684

Tel: 6253 8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku, Seoul,
135-080, Korea Tel: 02-558-3737
http://www.kr.necel.com/



Table of Contents

Chapter1 Introduction ......................... ... 9
1.1 Definition and advantages of abootloader ......... ... ... .. .. .. ... 9
1.2 Main tasks of a Bootloader . ...... ... ... .. . 10
Chapter 2 Flash Memory Programming ................................ 11
2.1 Memory organization . ........ ... . e 11
2141 BOOt ClUSter ..o s 12
2.1.2 Difference in Representation of Memory Space .................ccciiiiiinn.. 12
22 Self programming . ...... ... . e e e e 12
2.21 Hardware environment . ... ... ... s 13
222 Software environment ... ... . e 13
Chapter3 Bootloader ............................... ... 17
3.1 Specification . ... .. .. . e e e 17
3.2 Hardware requirements . ........... .. i e 18
3.3 Bootloader concept ... ... ... e e 19
3.3.1 Bootloader vs. Application ........ ... i e 19
3.3.2 Virtual interrupt vectors ... ... i e 20
3.3.3 Update methods . ... s 21
3.4 Software architecture . ........ ... .. . . e 25
3.4.1 Time Control ModUle ... ..o e e 25
3.4.2 Communication Interface module ....... .. ... i 26
3.4.3 Data Buffer Controlmodule ........ ... i e e 26
3.4.4 File Decoder module . ...... .. .o s 26
3.5 Bootloader implementation . ...... ... ... .. 27
3.5.1 WalChdog ..o e 28
3.5.2 Timeout detection with polling ......... ... i i e 28
3.5.3 Receive flow . . ... s 28
3.54 Error handler . ... ... 30
3.6 Bootloader configuration ............ .. .. 31
3.6.1 Bootloader adaptation ....... ... e 33
Chapter 4 Application adaption .......................................... 35
4.1 Modify XCL-file ... ... e 35
4.2 Add/configure predefined files ........... ... .. ... . .. 36
Chapter 5 Applicationexample ........................................... 39
Chapter 6 Interface specification ........................................ 43
6.1 Intel Hex File format . . ... ... .. e 43
6.2 Interface specification ......... ... ... . . e 46
6.2.1 Communication interface ......... ...t e 46
6.2.2 File decoderinterface . ... e 52
6.2.3 Time control interface ... e 55

8 Preliminary Application Note U18539EE1VOANOO



Chapter 1

1.1

Figure 1-1

Introduction

This application note describes how to implement a bootloader using the
78K0/Kx2 family microcontroller. Before going into detail of the bootloader code
it is as well to explain what a bootloader is and the advantages of using one.

Definition and advantages of a bootloader

What is a bootloader? The “boot” part of the name comes from the fact that a
bootloader is a piece of code that executes when the microcontroller powers up
or “boots”. The “loader” part of the name comes from the fact that the main
function of the bootloader is to “load” new application code if requested. “Load”
in this context means getting the data into the microcontroller and writing it into
flash memory.

The following picture shows the general bootloader flow.

Power-up { Reset

————*
Load v
applicatiy a5
Mo h
Erase old application
Receive new application code
Seli-flash program new code
k]
Application

valid?

Bootloader

Yes

b 4

Execute application

General bootloader flow

The main advantage of a bootloader is the ability to update or replace your
application code without needing to use an external programmer. It opens up the
possibility of updating your code remotely over a phone line, internet connection
etc. A good example would be a micro that controls pay phones. If there were
5.000 microcontroller based pay phones in Germany and the phones needed a

Preliminary Application Note U18539EE1VOANOO 9



Chapter 1

Introduction

1.2

Signal to start the
bootloading process

Signal to execute the
bootloader

Getting the new code
into the
microcontroller

Self-flash
programming the
new code

Transferring control
to a valid application
program

10

firmware update, the phone company would have two choices of how to perform
the upgrade. One way would be for the phone company to drive around Germany
and manually reprogramming all 5.000 phones one at a time using an external
programmer. This would be a very costly time consuming effort. But if the micro
has a bootloader, all 5.000 phones could be reprogrammed remotely from one
central location.

Main tasks of a Bootloader

Let’s say you have hundreds of vending machines all connected to the Internet
and you want to update their firmware. Some signal is needed to tell the
microcontroller to start the bootloading process. This could be an interrupt, a
command byte sent over a serial channel etc. This will cause the program to reset
and to run the bootloader code.

When the microcontroller starts up, it looks for an external signal to determine
whether a new application is to be loaded, or whether it should execute the
existing application. This can be as simple as checking a port pin on power up
and making a decision based on whether the pin is high or low. It could also be
based on a character received by the UART, or the reading taken by the ADC. It
is up to the user to decide how to implement this.

The data can come in over a RS232, CAN, etc. serial port, or in parallel over a
number of port lines. The user decides how the data gets into the microcontroller.
The data coming in will typically be much larger than can be held in the
microcontroller RAM, so there must be some provision to control the flow of the
data. For an RS232 serial port, one solution would be to use a slow baud rate so
the microcontroller has time to process the data and self-flash program it without
being overrun. Another would be to use hardware handshaking using CTS and
RTS lines to control the flow of data. Another would be to use software
handshaking using the XON/XOFF protocol. The new code can be in any format
decided by the user but will need to contain addressing information as well as
checksums for error processing. Typically a standard format like Intel-Hex will be
used.

Each time the microcontroller receives a new batch of data it must self-flash
program it into the correct memory locations. If the locations are not already blank,
they must be erased before programming. Also, typically, they will be verified
during or after programming.

Once the new code has been received and programmed successfully, the
bootloader will write a checksum or other unique byte sequence to a fixed memory
location. The bootloader checks for this valid application checksum or byte
sequence. If present, it will transfer control to the application.

Preliminary Application Note U18539EE1VOANOO



Chapter 2 Flash Memory Programming

Before going into the detail of the bootloader it is essential to understand the
architecture of the memory and the usage of the self-programming. This
description will focus on the yPD78F0547 microcontroller of the 78K0/Kx2 family.

2.1

Memory organization

The following figure shows the architecture of the flash memory(uPD78F0547). All
78K0/Kx2 devices have a common flash memory area and each device differs by
the number of additional memory banks in its architecture.

ul

1

/|

i

]

' BFFFH

Bank
area

BOOOH

Flash mamaory

T 16384 x & bits

{memory bank 0)

11
..{

[ |

TFFFH

Common -

area

p DOOOH

1

L Flash memary
I 32768 = 8 hits

+ Program area

T 1FFFH ;I

Option byte
5 8 bits

Boot duster 1

Program area

1000H

CALLF entry area
2048 x 8 bits

Program area
1915 x B bits

Baat duster 0

Oiption byte
5 x 8 bits

CALLT tabla
B4 x B bits

Vector table
B4 x 8 bits

Figure 2-2 This figure shows the memory architecture of the yPD78F0547

The flash memory is divided into blocks of one kilobyte as shown in the following
table. This is the smallest amount of memory that can be blank checked, erased

or verified by the firmware.

Block

Address range

Block 00H

0000H - 03FFH

Block 01H

0400H - 07FFH

Block 02H

0800H - OBFFH

Preliminary Application Note U18539EE1VOANOO

11



Chapter 2 Flash Memory Programming

2.1.1 Boot cluster

Within the common area are two boot clusters(bootcluster 0 and bootcluster 1),
which have a size of 4 KB. The primary bootcluster(bootcluster 0) will be used for
the bootloader whereas the second bootcluster is designed to temporarily save
a new bootloader and perform a secure Boot Swap. The bootcluster 0 can be
secured by flags, for example, to avoid the user accidentally erasing the
bootcluster.

2.1.2 Difference in Representation of Memory Space

With 78K0/Kx2 products which support memory banking, addresses can be
viewed in the following two different ways.

¢ Memory bank number + CPU address

¢ Flash memory real address (for flash programming)

Memory bank number + CPU address Flash memory real address
{Application view) (self-programming view)
A 4 1FFFFH Memory bank 5
ff1 - . 16KByte
1 7 1BFFFH Memory bank 4
1 P T 18000H 1 GkByte
BFFFH T 1TFFFH ™ Mamory bank 3
_;-u.- 14000H 1ﬁKB}'[B
Flash ory T 13FFFH Memory bank 2
Bank T ieamsaxsbis ||| [ 10000H 15Be
{memary bank 0) K OFFFFH Memory bank 1
"
| OCO0OH 16KByta
3000H 17 OBFFFH Memory bank 0
DE000H 16KByte
T 7FFFH 07FFFH
Common FR Flash memory A
ares T 32768 x 8 bits T Common area
1 ooooH 00D00H

Figure 2-3 Memory addressing

The update file format must use real flash addresses which is required by the
bootloader for the self-programming, whereas for the CRC calculation, the
bootloader uses the "Memory bank number + CPU address" instead.

2.2 Self programming

As previously mentioned the microcontroller family 78K0/Kx2 supports self
programming and allow the bootloader to write new application or bootloader into
the flash memory. The write access to the flash memory will be processed by the
firmware. The following figure shows the access flow to the flash memory.

12 Preliminary Application Note U18539EE1VOANOO



Flash Memory Programming Chapter 2

Figure 2-4

2.2.1

Figure 2-5

2.2.2

Bootloader

Salfprogramming
Library

}

Firmware

¥

Flash memory

Access flow from bootloader to flash memory access

Below will be described the usage of the self-programming library.

Hardware environment

To execute self programming, a circuit that controls the voltage on the FLMDO
pin of the 78K0/Kx2 is necessary. The voltage on the FLMDO pin must be low
while an ordinary user program is being executed (in normal operation mode) and
high while self programming is being executed (in flash rewriting mode).

If the firmware and software for rewriting runs while the FLMDO pin is low, the
circuit for rewriting flash memory does not operate. Therefore, the flash memory
is not actually rewritten. To rewrite the flash memory, the FLMDO pin must be
pulled high by manipulating a general purpose port.

7T8KO/MKx2
FLMDO

10kOhm

General-purpose port

FLMDO pin must be set on high for self programming

Software environment

To control the self-flash programming process there are three operating modes
for the microcontroller which are described below.

Mode Description

- Execution of user application

Normal Mode - After RESET operation starts in this mode

- Setting up self-programming
Mode A1 - During this mode the firmware can be executed
via CALL 8100H

- The firmware functions will be executed
- This mode is not visible to the user

Mode A2

Preliminary Application Note U18539EE1VOANOO 13



Chapter 2 Flash Memory Programming

In the normal mode the application will be executed and the firmware is not visible
for the user. The firmware will be activated by the self-programming library when
an instruction CALL 8100H is performed.

I BFFFH BFFFH T BFFFH| &
- Instruction
Bank Flash memory fore
N 4 -4 4 4 4 o
el T |imemory bank 0 - 5) T 4. disabled L ' L
FIRMWARE FIRMWARE
l BODOH BO0OOH BO0OH
p— TFFEH T TFFFH
Instruction Instructi
nstruckion
fet:lhd fetch Writeferase by
Comman | enable enabled firmware enabled.
Sl I I 'y T Instructionfetch T
Flash memaory Flash memory Lt
l 0000H | 0a00H 00ooH
MNormal mode Mode A1 Mode A2

Figure 2-6 Memory access during self-programming

As you can see in the figure above, the bootloader/application(which will use the
self-programming library) must be located within the common area, otherwise an
instruction cannot be fetched in the Mode A1. The self-programming environment
will be set up by the SelfLib_Open and SelfLib_Init function.

Activities during SelfLib_Open

e  FLMDO pin will be pulled up by the user defined general purpose port.

¢  Backup all registers from the register bank 3, which will be used by
the firmwareNote

e Backup user defined interrupt controller configuration and mask out
all interruptsNote

Activities during SelfLib_Init

e |nitialization of the pointer to the user defined data-buffer. This data-
buffer will be used for data exchange between firmware and
bootloader.

The SelfLib_Close function will close the self-programming environment.
Activities during SelfLib_Close

e  FLMDO pin will be pulled down by user defined general purpose port.
¢ Restore all registers from the register bank 3
¢ Restore user defined interrupt controller configuration

Note This feature is by default disabled within the bootloader!

The following figure illustrates the complete flash erase process.

14 Preliminary Application Note U18539EE1VOANOO



Flash Memory Programming Chapter 2
SelfLib_Open() SelfLib_Close()
| /
RESET |r"
FLMDOD
PT— ——— == User Application
M Mode i3 7 :
— - — User ramming Appl
2 Far) . - prog! ng App
Y AR 7 I
Mode A1 X — - - / —— = - SelfProg.-Library
A\ L) \ !
Mode A2 il .- Firmware
initialization erasing
SelfLib_Init(} SelfLib_Erase(}
e vy

Figure 2-7 Mode transitions during self-programming

The following self-programming functions are used by the bootloader:

SelfLib_EepWrite

Write flash word on defined address.

SelfLib_Verify

Verify the voltage levels on the written block.

SelfLib_Erase

Erase flash block

SelfLib_ModeCheck

Check the voltage level on FLMDO pin.

SelfLib_BlankCheck

Specified block will be blank checked.

SelfLib_SetIinfo_SwapBootCluster

Inverts the current value of the boot flag inside the

extra areaNote

SelfLib_GetInfo_BootCluster

Read the boot flag , whether the two boot cluster

are swapped

Note Security information is located within an extra area(boot-flag, chip erase
protection, block erase protection, write protection, boot cluster protection).
Security information can only be read/written using the self-programming

functions.

Boot swap function

The self-programming environment allows the bootloader to be updated in a
secure way by the boot swap function. Even if a power failure occurs during an
update, the old bootloader can always be used until the boot swap is completed.
The following figure illustrates the boot swap steps.

Preliminary Application Note U18539EE1VOANOO

15



Chapter 2

Flash Memory Programming

16

Figure 2-8

Note

wooxH

2000H

User application

1000H

User application

D000H

Old bootloader
(boot cluster 0)

wrooxH

2000H

User application

1000H

MNew Bootloader
(boot cluster 0)

000aH

Mew bootloader
(boot cluster 1)

Boot swap states

Step 1:
Step 2:

Step 3:
Step 4:

Step 1

Salf-programming
new bootloader

ﬁ

Step 3

Copy boot cluster 1
to boot cluster 0

Step 2

User application

Boot swap by
firmaware

New boolloader
{boot cluster 1)

and reset

Qld boolloader
{boot cluster 0)

>

Step 4

User application

Boot swap by
firmaware

Mew bootloader
(boot cluster 0)

and reset

Mew bootloader
(bool cluster 1)

>

User application

Old bootloadar
(boot cluster ()

Mew bootloader
(boot cluster 1)

User application

Mew bootloader
{boot clustar 1)

Mew bootloader
{boot cluster 0)

Self-programming the new bootloader into the boot cluster 1
Execute the SelfLib_SetIinfo_SwapBootCluster function to set
the swap bit within the extra area. Force a hardware reset.

Copy the new bootloader into boot cluster 0.

Execute the SelfLib_Setinfo_SwapBootCluster function to
reset the swap bit within the extra area. Force a hardware
reset.

After the set/reset of the boot swap flag above, the microcontroller must be
reset to actively swap the physical addresses.

Preliminary Application Note U18539EE1VOANOO




Chapter 3 Bootloader

This chapter describes the features and the use of the bootloader.

3.1 Specification

Bootloader specification

Frequency 12 MHz or 20 MHz(can be adapted by user)

Data bits: 8 Bit
UART6 Stop bits: 1 Bit
Parity: No parity

Baud rate: 115200 bps or 57600 bps(can be adapted by user)

Flow control: XON/XOFF

Supported file
format

Intel-Hex-Standard or Intel-Hex-Extended Note 1

Update methods

Application or bootloader update.
User can disable the bootloader update feature.

Interrupts Interrupts are not allowed during the bootloader process Note 2

Watchdog

Will be stopped by bootloader to execute self programming
functions, but can be used by the application.

Note 1. File must be sorted by addresses from low to high and the gaps must be filled
2. Interrupts within the application will be processed by virtual interrupt table

Software environment

Software Version
IAR C/C++ Compiler for NEC 78K0 and
78K0S V4.40B (4.40.2.3)

IAR Assembler for NEC 78K0 and 78K0S

V4.40A (4.40.1.3)

IAR XLINK (Linker)

4.60C (4.60.3.0)

IAR Embedded Workbench

4.6B (4.6.2.0)

RealTerm Note

1.99.0.24

Note RealTerm is a serial terminal: http://realterm.sourceforge.net

Bootloader timing

Conditions: Baud rate is 115200 bps, Intel-Hex-File size: 349KByte, Code size: 124KByte

Receive buffer size Update time
200Byte 6:50min
400Byte 4:10min

Preliminary Application Note U18539EE1VOANOO

17



Chapter 3 Bootloader

Bootloader size for banked model(optimized for size)

Optimization level Bootloader update allowed :IcI):thg:der update is not
None 4027Bytes 3607Bytes
Low 3902Bytes 3517Bytes
Medium 3710Bytes 3350Bytes
High 3540Bytes 3186Bytes

Bootloader size for non banked model(optimized for size)

Bootloader update is not

Optimization level Bootloader update allowed allowed

None 3969Bytes 3549Bytes
Low 3847Bytes 3462Bytes
Medium 3655Bytes 3295Bytes
High 3489Bytes 3135Bytes

3.2 Hardware requirements

The following figure shows the circuit which is required by the bootloader.

12 MHz ar
20 MHz

]

General purpose port

- FLMDO
B T8K0/Kx2 § .

Yoo GHD
5V =

Figure 3-9 Hardware requirements for the bootloader

To use the bootloader, the FLMDO pin is pulled-up by the user using the general
purpose port.

18 Preliminary Application Note U18539EE1VOANOO



Bootloader

Chapter 3

3.3 Bootloader concept

3.3.1 Bootloader vs. Application

The use of a bootloader can restrict some microcontroller features(e.g. CALLT,
CALLF) for the application. As you can see in the figure below the application does
not have any access to the bootloader area(0x0000 - OxOFFF). Following features
can not be used/changed by the application:

CALLT Can only be used by the bootloader

CALLF Can only be used by the bootloader

Option byte Is predefined by the bootloader

Interrupt vector table |Is predefined by the bootloader for the application(see below)

The following figure illustrates the differences between bootloader and application

view.
' Y
Bootloader view Application view
OxFFFF OxFFFF
Application Application
1 2 3 E
0x1000 i o i s e i 0x1000

L N«NEFFE 0 0x0FFF
T L CALLF CALLF
m
£ OPTION BYTE OFTION BYTE
&
B
g CALLT CALLT

8
o

=
Interrupt vector Interrupt vectar
table table
¥ 0x0000 . 0x0000
unavailable available constant
. A

Figure 3-10 Bootlaoder vs. Application

Preliminary Application Note U18539EE1VOANOO 19



Chapter 3

Bootloader

20

3.3.2

Figure 3-11

The interrupt vector table must be constant, because an application will be
compiled and linked independently from the bootloader, the link between interrupt
vector(bootloader) and interrupt service routine(application) does not exist.

Virtual interrupt vectors
As previously described, the interrupt vector table in the bootloader area is
constant and cannot be redefined by the application. For this reason, the
bootloader runs in the polling mode with interrupts disabled and use of the
interrupts can only be enabled for the application. The reset vector is the only
vector used by the bootloader for start-up.
The interrupt handling for the application is handled by virtual interrupt vectors.
The real interrupt vector table contains predefined addresses which point to the
virtual interrupt vector table(located within the application area). Branching
instructions are located within the virtual interrupt vector table, which executes a
branch to the real interrupt service routine.
The following figure illustrates an interrupt flow for a watch timer.
s ™
OxFFFF 1 I
: __interrupt void sr_INTWT{(void) |
[
o [
Real interrupt service : } :
routine. ReallsR [ A e
Can be anywhere in ,,—r"/
application area,
T BRise NTwT |
Application  §} = 7 ————————
Predefined Virtual interrupt
branches to real ISRs vector table
Branch to app. CSTARTUP § Ox1010
CRC, valid pattarn
afc.
0x1000
OxOFFF
Start applikation:
Branch to 0x1010
Bootloader REs e
ox106D |
JESE AT |
Praedefined
addresses for Interrupt vector
applikation Branch table
ISRs
reset vector for bil, 00000
applikation bootloader ffor E;I:ghs|:?:uk:ﬁon]
\ y,
Interrupt handling with virtual interrupt vectors

Preliminary Application Note U18539EE1VOANOO



Bootloader Chapter 3

The watch timer interrupt flow will be handled within 5 steps:

Interrupt triggered by watch timer
PSW(program status word) and PC(program counter) will be saved on
the stack
3. PC will be set to the address of watch timer interrupt vector
(PC = 0x106D).
4. On the address 0x106D is a branch instruction to the real interrupt
service routine(PC = real interrupt service routine) located.
5. Real interrupt service routine is serviced and PC with PSW are
restored from the stack.

N —

As described, the reset vector points to the bootloader CSTARTUP address. The
application virtual reset vector is a branch to the application CSTARTUP, so if the
bootloader transfers control to the application, a branch to the application virtual
reset vector occurs.

3.3.3 Update methods
The bootloader supports two update methods, which are available for the user.

Application update

This update method enables the user to update their application. Before going
into the details of this update method lets look at the application header.

Do MH ™,
Application
Dx1070
Ox106F ] . : -
Yirtual interrupt This application
vector lable code Is
01010 >~ predefindad
Stored Start/End CRC App. End Address | %120 L
application 0x100C Hex file.
addresses for Ox100B
CRE calc, Oixc] 08 CRC App. Start Address
Dx1007
unused 01006
Dx1005
Stored CRC. CRC
| calculated by Dx1004 )
Linker. Ox 1003 unused
(1001 The clear pattern will
01000 | Valid byte pattern = 0xAS } be writtan by the
D=0FFF bootloader, If the app.
CRC is OK
Bootloader
|T| =000

Figure 3-12 Memory structure of the application

The first entry within the application header is the valid byte pattern. To prove the
validity of the application, the bootloader verifies this byte and starts the
application if valid, or updates this if not valid.

Preliminary Application Note U18539EE1VOANOO 21



Chapter 3

Bootloader

22

Content of the valid byte Validity of the application
0xA5 The application is valid and can be started.
other Invalid application. Update essential

The next entry within the application header is the calculated CRC located on the
addresses from 1004H to 1005H. This CRC is calculated by the Linker. The
address boundaries for the CRC calculation are stored within the next application
header entries "CRC App. Start Address" and "CRC App. End Address". The
following figure illustrates a complete application update flow.

Step 1 Step 2 Step 3
L~
A
Erase old Frogram
| ey Hew application Mew application
app application
" TBlock 05H |
s s ]
Block 04H App. valid
Bootloader Bootloader Bootloader Bootloader Bootloader

Figure 3-13 Application programming flow

Before a new application can be written into the memory, the full application area
must be erased(Step 1). An erasing procedure begins with the lowest block
number(Block 04H), due to the fact that the valid byte pattern must be cleared
first. The next step within the update flow is to program the new application into
the flash memory(Step 2). In this case the received Intel-Hex file will be decoded
and the application code will be written into the flash memory. The final procedure
is the CRC check of the application(Step 3). The CRC calculation begins from the
stored address within the application header "CRC App. Start Address" and end
at the address "CRC App. End Address". If the calculated CRC is equal to the
stored CRC within the application header the valid byte pattern will be written and
after this step the application is valid and can be started.

Bootloader update

This method allows the bootloader code to be updated in asecure way. The new
received bootloader code will be written into the boot cluster 1 and the bootloader
CRC is stored at the addresses from 0x1FFE to Ox1FFF as showing in the
following figure.

Preliminary Application Note U18539EE1VOANOO



Bootloader

Chapter 3

}Cah:ulsnad CRC

' Dx1FFF
Mew bootloader CRC Ox1EEE
x1FFD
unused
x1FFC
Boat cluster 1, 0x1FFB )
will be used for -<
bootloader updates
New Bootloader >
b vy
o
Ox0FFF
Bootlnader CRC
0x0FFE
. OxOFFD
Ox0FFC
Boat cluster Q,
contains the final .<:
bootloader
Qld Bootloader
\_ 0x0000

Figure 3-14 Memory structure of the bootloader

by Linker

Civer this range the
CRC will be
caloulated

In contrast to the application, the bootloader contains always the same address
boundaries(from 0x1000 to 0x1FFB) for the CRC calculation. Therefore the Sart-
and End-Addresses of the bootloader are not stored. The new received

bootloader will be written into the boot cluster 1. The following steps describes a

bootloader update flow:

1. Erasing the application area(boot cluster 1): The first step during
the update is to erase the application area(boot cluster 1). This area
will be blank checked and erased if necessary.

2. Receive the new bootloader and write it into the boot cluster 1:
The received bootloader will be written into the boot cluster 1. The
updated memory areas will be internal verified, whether the voltage
levels are correct. After successful write cycle, a CRC check will be
performed. If all checks was ok, the boot swap flag will be set by the
self programming library and a hardware reset will be generated.

3. Copy new bootloader into the bootcluster 0: The new bootloader
will start-up and check the boot swap flag. If the boot swap flag is set,
the bootloader will copy itself to the bootcluster 0. After this copy, the
CRC check will be performed. If all checks was ok, the boot swap flag
will be reset by the self programming library and a hardware reset will

be generated.

4. After the last reset the bootloader was successful updated.

In the following figure are this steps illustrated.

Preliminary Application Note U18539EE1VOANOO

23



Chapter 3

Bootloader
Program new _ )
Erase application bootloader and Mirco. startlI Uﬂd‘-'-‘“h
area set boot swap flag new boatioader
e Fy
LIser application
Trigger
2000H hardw. reset
Mew bootloader Qld bootloader
1000H (boot cluster 1) {boot cluster 0)
Qld bootloader Old bootloader MNew bootloader
ooooH|  (boot cluster 0) (boot cluster 0) {boot cluster 1)

Erase old bootloader and

copy new bootloader into
boot cluster 0

Mirco. start up with
new bootloader

7

Copy

Mew Bootloader
{boot cluster O)

q

Mew bootioader

(boot cluster 1)

User application

5 t
New bootloader | 0| New bootloader
{boot cluster 0) (boot cluster 1)
Mew bootloader Mew bootloader
{boot clustar 1) (boot cluster 0)

Figure 3-15 Bootloader update states

24 Preliminary Application Note U18539EE1VOANOO




Bootloader

Chapter 3

3.4 Software architecture

The software architecture is modular, so modules like communications or file
decoders can be exchanged. The following figure shows the general bootloader
concept.

~ ~\
r————1
|
/LN Data Buffer | |
Cantrol Flash |
Time Control pY [/ : i
- -
write l
| Tvertm bt g 1
et BuTers, =z -,
|
/1_|\‘- Self Lib. l Firmware |
% Il.-' |
Bootloader Control l_ —_————
Communication :_F{e-celve :
Interface | Buffer |
(UART) | |
/| File Decoder
\——7/| (Intel Hex Std. and Ex)
A A

Figure 3-16 Bootloader concept with all modules

3.4.1

Note

The bootloader control is a central connection unit between all modules, which
controls all data transfer. The bootloader control operates in the polling mode and
all interrupts are disabled. The module interface specifications are located within
the chapter "Interface specification".

Time Control module

The bootloader runs with the watchdog disabled, so all critical loops must be
controlled by the time control module. The following list shows the cases where
timeout detection is used.

e Communication interface send a message
¢ Communication interface waits for a byte
*  Communication interface send a XOFF or XON flow control byte Note

The control flow will be checked by the timeout detection, because there can be
other interfaces like CAN, where the data transfer is priority controlled. So it can
be that the priority is low and the flow control byte can not be sent. In this case
the micro will hang. On this reason the flow must be controlled by the time control
module.

XOFF and XON flow control bytes are used for UART communication. Different
flow control signals may be used for other communication interfaces.

Preliminary Application Note U18539EE1VOANOO 25



Chapter 3

Bootloader

26

3.4.2

3.4.3

3.4.4

Communication Interface module

This module receives and transmits data from/to the host. The serial interface
(UART®S) can be exchanged by the user (e.g. for CAN ). To prevent a receive
overflow the interface operates with XON/XOFF protocol. The modular concept
allows other flow controls like hardware handshake to be used.

Data Buffer Control module

The self programming library uses a data buffer for data exchange with the
firmware.

For example.

The bootloader writes 4 Bytes data into the data buffer and execute the function
SelfLib_Write(). This data will be written into flash on a defined address by the
firmware.

As you can see in the example above the data buffer must be correctly filled, so
the firmware handles the data writes into the flash. The following firmware
conditions for write process are controlled by this module:

¢ First byte address must be on modulo 4 address
¢ Data buffer content must not overlap over two flash blocks
¢ The byte count within the data buffer must be modulo 4

File Decoder module

The File Decoder module decodes the received bytes from the update-file. It
signals if there are bytes to write into the flash. The following file formats can be
decoded:

¢ Intel-Hex Standard

¢ Intel-Hex Extended
There are restrictions which must be observed:

1.  The update-file must be sorted by addresses from low to high

addresses
2. Gaps between addresses must be filled(for CRC calculation).

Preliminary Application Note U18539EE1VOANOO



Chapter 3

Bootloader

3.5 Bootloader implementation
This chapter describes how the bootloader is implemented. The following figure

shows the general bootloader flow and the interactions with the user.

Power-up | Resat

Dizable interrupts

y

— Initialisation of CPLU, UART,
U date vl Grikis modules.. .,
Only application update
wUpdate y or n“ ¥ _
Bootioader and application Jpdate v or n
update allowed ar
I pdate a orb”
¥

User pressed
a key?

I timesout?

Programming new
application/bootlioader

|5 update
Application
isn't valid,
Receive Intel Hex file pls update
¥
Prepare flash for Latart
programming application”
3 r
Start application

Do next steps for bootloader
update

Figure 3-17 General bootloader flow

Preliminary Application Note U18539EE1VOANOO

27



Chapter 3

Bootloader

28

3.5.1

3.5.2

As you can see in the figure above the user can configure the bootloader for two
update flows. The first update("Update y or n") in the figure aonly allows updates
to the application. So if the Intel-Hex file contains addresses which are located
within the bootloader area, the update will be cancelled. The second update
("Update a or b") flow allows both application and bootloader updates.

Watchdog

The bootloader is implemented without the use of the watchdog(watchdog is
stopped). The reason behind this is, because the Self-programming set info
functions(e.g. set boot swap flag) needs up to 700us execution time and the max.
overflow time for the watchdog is 500us(watchdog would reset the
microcontroller during set info functions). The watchdog can be stopped by the
internal low-speed oscillator. The configuration for the internal low speed
oscillator is set by the Option byte to enable stop/start control by software. This
allows the usage of the watchdog within the application.

Timeout detection with polling

The bootloader runs without activation of the watchdog, so that all critical loops
must be controlled by timeout detection. The following figure illustrates a timeout
detection flow.

Initialise timeout
detection{for examgple 20ms)
and start timer

F

Is process ready?
e.q. byle recaived

Reset timeout detection and
do next steps after timeout
e.g. no byte received

Resat limaout detection and
stop tirmer

Figure 3-18 General timeout detection flow

3.5.3 Receive flow

The receive flow of the Intel-Hex file will be controlled by the XON/XOFF protocol.
During the file transfer the bootloader will receive the bytes until the receive buffer
is full. Then the bootloader sends a XOFF byte and receive the last bytes(after
XOFF). Therefore the receive buffer is divided into two sections as shown in the
following figure:

Preliminary Application Note U18539EE1VOANOO



Bootloader

Chapter 3
Receive buffer size can
be defined by user
LN
. ~,

. Buffer for bytes

Mormal receive buffer after XOFF
Defined by user

must be
min. 5 byles
Figure 3-19 Buffer architecture

The following figure illustrates the complete receive flow.

Message:
o=end file”

irst byte from file
raceivad?

WEs

L

Write byte into the
receive buffer

1= timeouwt?

|5 receaive
buffer full?

Start application if
walid

F 3

Biyte received?

Wirite into

reserved
Recaive error raceive buffer
area
Transmitter
stopped to send
and the byles can
be analyzad

Figure 3-20 Receive flow controlled by XON/XOFF

Preliminary Application Note U18539EE1VOANOO 29



Chapter 3

Bootloader

3.5.4 Error handler

An error handler is implemented within the bootloader, which will send an error
message to the user terminal if an error occurs.

The following table illustrates all defined errors.

Error
Code

Error description

01

Application update is selected but the hex file is within the bootloader area.
Please check the address ranges of the application.

02

Interface does not send "XOFF". Please check the UART connection.

03

Intel-Hex file error. Please check the Intel-Hex-File.

04

Timeout during hex file receive. Please check the Intel-Hex file whether a EOF
tag is written or increase the timeout factor RX_BYTE_TIMEOUT_HEX_2MS.

05

Error during receive. Please check the UART connection.

06

Data buffer write error. Please check the Intel-Hex file whether the addresses
are sorted.

07

CRC error on written application. The calculated CRC on the written
application is not equal to the stored CRC. Please check the Intel-Hex file
whether there are address gaps between the application.

08

CRC error on written bootloader. The calculated CRC on the written
bootloader is not equal to the stored CRC. Please check the Intel-Hex file
whether there are address gaps between the bootloader.

09

Error on swap flag set. Please check whether all interrupts are disabled and
masked out. Check the application area whether it is protected.

10

Error on flash verify. Please check whether all interrupts are disabled and
masked out. Check the application area whether it is protected.

11

Error on flash write. Please check whether all interrupts are disabled and
masked out. Check the application area whether it is protected.

12

Error on flash erase. Please check whether all interrupts are disabled and
masked out. Check the application area whether it is protected.

13

Error on FLMDO check. Please check the port connection to the FLMDO pin.
Check whether the defined port is correct defined within the header file
spl78k0_kx2_user.h (FLMDO_CTRL_PORT_HIGH and
FLMDO_CTRL_PORT_LOW).

14

Error on copy boot cluster from 0 to 1. Please check the boot cluster 1 area,
whether it is protected and check whether all interrupts are disabled and
masked out.

15

Error on swap flag read.

16

The received Intel-Hex file has addresses, which are over the defined
application end block. See definition( LAST_APP_BLOCK ) within the
spl78k0_kx2_user.h file.

17

Address of the new bootloader is bigger than address 0x1000. Please check
the Intel-hex-File.

18

Bootloader update not allowed. The bootloader allows only the application
update defined within the header file spl78k0_kx2_user.h
(BOOTL_UPDATE_ALLOWED). Check the Intel-Hex file whether there are
addresses within the bootloader area.

19

User selected a bootloader update, but the Intel Hex file is within the
application area. Please check the Intel-Hex file.

30 Preliminary Application Note U18539EE1VOANOO




Bootloader Chapter 3

3.6 Bootloader configuration

There are three header files for the bootloader configuration as described below.

bl78k0_kx2_user.h

Within this header file are general definitions for the bootloader. Listed below are

defines with the functionality:

Definition

Description

BOOTLOADER_VERSION

Bootoader version as string.

BOOTL_UPDATE_ALLOWED

Defines whether the bootloader update is allowed or not.
If it is commented out the user can only update the
application update(Terminal prompt: Update y or no?).

STOP_RX_WITH_TIMEOUT

General the bootloader send a XOFF control byte if the
receive buffer is full. In the case of the UART interface the
interface cannot wait until the XOFF byte was send,
therefore the XOFF byte will be written into the send
buffer and the following bytes will be received(after
XOFF). Otherwise the interface would get a receive
overrun error. This feature can only be used at interfaces
with hardware handshake, were the stop to send signal
is very fast.

CLOCK_FREQUENCY

Clock frequency of the used oscillator. Supported are the
following frequencies: CLOCK_FREQUENCY = 12
CLOCK_FREQUENCY =20

IMS_REGISTER_VALUE

Set the value for the IMS register(internal memory size
switching register). Within the application the IMS must
not be changed.

IXS_REGISTER_VALUE

Set the value for the IXS register(internal expansion RAM
size switching register). Within the application the IXS
must not be changed.

CODEBANK_BANKS_USER

Count of memory banks. Comment it out, if non banked
model is used.
E.g. CODEBANK_BANKS_USER =5

FLASH_END_ADDR

This is an end address of the flash, if the non banked
model is chosen. Comment it out, if the banked model is
used. E.g. For (64KByte non banked)
FLASH_END_ADDR = OxEFFF

FILL_BYTE

This is a byte pattern, which will be written into the data
buffer address gaps.

LAST_APP_BLOCK

This is a define for the last application block. The
bootloader will erase the flash memory until this block
number during update.

BYTES_AFTER_RX_STOP

This is the reserved bytes count for the following bytes
after XOFF message.

RX_BUFFER_SIZE

Receive buffer size definition.

STOP_WATCHDOG

This is a macro to stop a watchdog(the internal low-
speed oscillator will be stopped). Change this macro only
if the watchdog will be stopped by other method.

START_WATCHDOG

This is a macro to start a watchdog(the internal low-
speed oscillator will be started). Change this macro only
if the watchdog will be stopped by other method.

Preliminary Application Note U18539EE1VOANOO 31



Chapter 3

Bootloader

32

The following two tables contains time factors(K x 2ms or K x 50ms) for timeout
detection within the bootloader flow.

Definition (2ms factors)

Description

RX_BYTE_TIMEOUT_HEX_2MS

This factor is for the timeout detection during file transfer.
For example: 70 * 2ms = 140ms. Timeout will be
occurred, if the bootloader does not receive any byte
within 140ms.

READY_TO_RX_TIMEOUT

This factor is for the timeout detection during XON send
(2 x 2ms = 4ms).

STOP_RX_TIMEOUT

This factor is for the timeout detection during XOFF send
(2 x 2ms = 4ms).

Definition (50ms factors)

Description

ILLEGAL_BYTE_TIMEOUT

At the start-up the bootloader send a XON byte to the
host. After this the bootloader wait for this timeout

(2 x 50ms = 100ms) whether a file transfer is active. If a
byte is received during 100ms the bootloader wait on
illegal bytes(see ILLEGAL_SEND_TIMEOUT).

ILLEGAL_SEND_TIMEOUT

If an illegal file transfer is detected(see
ILLEGAL_BYTE_TIMEOUT) the bootloader will receive
illegal bytes until the file transfer has finished(no byte may
received until 14 x 50ms = 700ms).

MESSAGE_TIMEOUT_K_50MS

Within this timeout the interface must send a message
otherwise a timeout will be occurred(40 x 50ms = 2s).

RECEIVE_TIMEOUT_K_50MS

This timeout factor(60 x 50ms = 3s) is for the user prompt
('y' or 'n'). If the user does not press a key a timeout will
be occurred(application will be started).

FIRST_BYTE_HEX_TIMEOUT

This timeout factor(200 x 50ms = 10s) is for the wait loop
on the Intel-Hex file.

bl78k0_kx2_uart.h

Within this header file are definitions for the for the UART.

Definition Description
This is a define for the Baud rate. Supported are following
BAUDRATE baud rates:

Baud rate = 115200
Baud rate = 57600

spl78k0_kx2_user.h

Within this header file are definitions for self-programming.

Definition

Description

DATA_BUFFER_SIZE

This is a definition buffer size definition, which will be
used for data exchange between firmware and
bootloader.

FLMDO_CTRL_PORT_HIGH

Definition of the port, which will pull-up the FLMDO pin.

FLMDO_CTRL_PORT_LOW

Definition of the port, which will pull-down the FLMDO
pin.

Preliminary Application Note U18539EE1VOANOO




Bootloader

Chapter 3

3.6.1

bl78k0_kx2_main.c

The OPTION BYTE must be configured for application requirements(e.g. the
watchdog timer interval).

Attention: The Internal low-speed oscillator must be configured in the
following mode: Can be stopped by software.

Example:

#pragma location = "OPTBYTE"
__root const u08 opbyte[]={0x7E,0x00,0x00,0x00,0x00};

Bootloader adaptation

The XCL and header files of the bootloader are configured for the yPD78F0547
microcontroller. The following entries within the XCL and header files must be
adapted by the user for other microcontroller of the 78K0/Kx2 family.

bl78k0_kx2_user.h

1. Set the values for the IMS(IMS_REGISTER_VALUE) and IXS
(IXS_REGISTER_VALUE) registers. Within the application the IMS and
IXS registers must not be changed.

2. For the banked memory model the user must set the banks count or
comment it out, if non banked model will be used. E.g.
CODEBANK_BANKS_USER =6

3. If the non banked model will be used, the user must set the flash end
address(FLASH_END_ADDR). E.g. For 64KByte flash memory
FLASH_END_ADDR=0xEFFF

XCL-File

Following segments must be added for the self-programming environment:
Location of the bootloader:

-Z(CODE)BCLUST0=0086-0FFF

Location of the register bank 3:
-Z(DATA)RB3REGS=FEEOQ-FEE7

Location of the register bank 2:
-Z(DATA)RB2REGS=FEE8-FEEF

Location of the register bank 1:
-Z(DATA)RB1REGS=FEF0-FEF7

Location of the register bank 0:
-Z(DATA)RBOREGS=FEF8-FEFF

Location of the data buffer:
-Z(DATA)DS_DBF=FB00-FCO00

Location of the work area for the self-programming environment:
-Z(DATA)DS_ERAM=FE20-FE83

Preliminary Application Note U18539EE1VOANOO 33



Chapter 3

Bootloader

34

The CALLF segment can be commented out, because the bootloader does not
uses this feature:
//-Z(CODE)FCODE=0800-0FFF

The following code segments must be located within the address range of
0086 to OFFB. Because the addresses 0080 to 0084 are for the option byte and
OFFC-OFFF are for the bootloader CRC:

The Start-up, Runtime-library, Non banked and Interrupt functions code segment:
-Z(CODE)RCODE,CODE=0086-0FFB

Data initialize segments:
-Z(CODE)NEAR_ID,SADDR_ID,DIFUNCT=0086-0FFB

Location for constants and switch table:
-Z(CODE)CONST,SWITCH=0086-0FFB

The short address data segments must be located from the address FE84,
because the DS_ERAM segment of the self-programming environment is located
up to the address FE83:
-Z(DATA)SADDR_I,SADDR_Z,SADDR_N,WRKSEG=FE84-FEDF

Following segments must be added for address translation and CRC calculation:

This entry will fill the unused bootloader code within the address range of
0000 to OFFB with the OxFF pattern:

-h(CODE)0-0FFB

-HFF

The following segment is the location for the 2Byte CRC:
-Z(CODE)CHECKSUM=0FFE-OFFF

The following entry will calculate a 2Byte CRC over the code range of
0000 to OFFB:
-J2,crc16,,,,1,0=(CODE)0-0FFB

Preliminary Application Note U18539EE1VOANOO



Chapter 4

4.1

Application adaption

This chapter describes how the user can configure the application for use with
the bootloader.

Modify XCL-file

First of all the XCL file must be adapted by the user as described below.

Define two code segments(START_ADDR, END_ADDR), which will contain the
start and the end address boundaries for the CRC calculation.

-Z(CODE)START_ADDR=1008-100B
-Z(CODE)END_ADDR=100C-100F

As described before, the application can not uses CALLT, CALLF... features.
Delete the following listed segments from the XCL file:

-Z(CODE)INTVEC=0000-003F
-Z(CODE)CLTVEC=0040-007D
-Z(CODE)OPTBYTE=0080-0081
-Z(CODE)SECUID=0084-008E
-Z(CODE)FCODE=0800-0FFF

The virtual interrupt vector table must be located within the application area, so
that a the following segment must be defined:

-Z(CODE)VINTVEC=1010-106F

For the CRC calculation the application area must be filled with a byte pattern(-
HFF -> 0xFF). The -h option defines the address area, which must be filled. The
begin(e.g. 1010) and the end(e.g. 1FFF) addresses must be adapted to the
application.

-h(CODE)1010-1FFF // 0x1010 until application end
-HFF

If the application is implemented with banking usage, the banks must be filled
separate.

For example:
-h(CODE)01010-7FFF
-h(CODE)08000-0BFFF
-h(CODE)18000-1BFFF
-h(CODE)28000-2BFFF
-HFF

The following segment defines the location for the calculated CRC of the Linker
(this segment must be added).

-Z(CODE)CHECKSUM=1004-1005

Preliminary Application Note U18539EE1VOANOO 35



Chapter 4

Application adaption

36

4.2

The following option defines the CRC calculation. The address ranges must be
equal to the address ranges of the fill option(see above —h option).

-J2,crc16,,,,1,0=(CODE)1010-1FFF

Change the start addresses of other code segments to ensure that they are over
the end address of the VINTVEC segment.

For example:

OLD: -Z(CODE)RCODE,CODE=0257-7FFF
NEW: -Z(CODE)RCODE,CODE=1070-7FFF

If the bootloader is compiled for the banking mode, the addresses must be
translated. This will be done by the following options:

-M18000-1BFFF=0C000-0FFFF
-M28000-2BFFF=10000-13FFF
-M38000-3BFFF=14000-17FFF
-M48000-4BFFF=18000-1BFFF
-M58000-5BFFF=1C000-1FFFF

Add/configure predefined files

There are three predefined files, which must be added to the application project:
e cstartup.s26
e virtual_irq_table.asm

® app_bootl_def.h

virtual_irq_table.asm

This file contains predefined branches to the interrupt service routines and must
not be changed by the user.

cstartup.s26

This file will replacing the standard cstartup file. The difference between this file
and the standard file is that the address for the reset interrupt vector will not be
written(because it would be on the address 0x0000, where the bootloader is
located). Change this file only if it is necessary for the application.
app_bootl_def.h

This file must be adapted by the user for the application.

1. Modify the start and the end addresses for the application. These addresses
must agree with addresses defined for CRC calculation within the XCL file
(-J2,crc16,,,,1,0=(CODE)1010-1FFF and -h(CODE)1010-1FFF).

#define START_ADDR_APP 0x1010

#define END_ADDR_APP 0x1FFF

Preliminary Application Note U18539EE1VOANOO



Application adaption

Chapter 4

2. Comment out interrupt services, which are not used by the application.

//#define INTCK2_isr_used
//#define INTLVI_isr_used
#define INTPO_isr_used
#define INTP1_isr_used
//#define INTP2_isr_used

If an interrupt service is defined(e.g. #define INTPO_isr_used) the interrupt service
routine will be written as follows:

__interrupt void INTPO_isr(void)

—~

The pragma directive(#pragma vector = INTPO_vect) before the interrupt service
routine must be erased.

If an interrupt service is commented out, it will get an RET! instruction. This
prevents an illegal branch, for example if the interrupts are not clearly disabled.

Preliminary Application Note U18539EE1VOANOO 37



Chapter 4 Application adaption

38 Preliminary Application Note U18539EE1VOANOO



Figure 5-21

Chapter 5 Application example

The following example illustrates a bootloader update.

RealTerne Serial Capture Program 1.99.0.34

Bootloader version =
u: 8.4 f"

pdateTa or b

\ Press .a' for application update

or b for bootloader update

ey

- 1

Display Pot | Captue| Pine | Send | EchoPat| 12c | Misc |  \n| Cleard Freeze|
T I Slabus i
Baud [11520 =] Por[3 =] |open Sg;” o/ Changs | Dicconnect
_IR=D (2]
Paity | Data Bits| [ Shop Bits | Soltware Floys Coniro TR0 ()
Foboe: | g bas) | R 2 F Receive MenCha:[17 | ~|crs )
e L e il alTEe
CE | C ot e e Ry 7 Tt xorw 15| 000G
C Space| ¢ Sbts || © DTR/DSK" RS4SSA) | Ring (9)
| Emce.

[Chat Count:25 [cPs:0 [Mo UART Ovetrun [Mo Bulfer Dverflow [Mo Other Emnoss .'F'nﬂ",gi

User prompt for update

As you can see in the figure the bootloader version is 0.4 and the update method
allows to update the bootloader and the application. If the user does not press
any key, the bootloader would start the application. For example the user typed

=10} x|
| H] B.; .
ple A Bootloader wait on
Send Filell .‘_
the update file for 9s
B =l
af | _pl
Ditplay | Pot | Capture| Pine | Send | EchoPot] 12¢ | Mie | \n| Cleard Freeze|
Bnd— Ctooe (oo o
: LF iz Hews Lina e _| Digconnect
cEe | Chetn |F o [2o= “noi
FHH*AIH:I W Hig Endiany I ﬂ WO Jngm
il [~ Data Erames = _ICTS (/)
Cme Comes F 2| hemon- = A0 | o)
w6 I Soge Gup | | | = None (" ASCH  Numbes jg?ﬂg
" untl6 i = )
" AsciFork _ Rows _IBREAK
™ Hesx Fort Tﬂ'f""*'l"lf‘ﬂ"""| e 2] _IEmor
[Chat Count: 35 icPs:o [Mo UART Ovemun [Mo Bulfer Ovesflow |Mo Other Emcrz  [Port 2

Figure 5-22 Bootloader waits on the update file

Preliminary Application Note U18539EE1VOANOO

39



Chapter 5

Application example

Figure 5-23

The send file process was triggered by the user. The bootloader does not send
any message to the user, that the file transfer was detected.

. Rulh rimn: Serial Capture Program 1.99.0.34 ] -|I:I|£]
BU: 8.4
Update?a or b
Send file
5]
Send file
process
: hd
«| | 3]
Display | Port | Capture| Pins ~ Sendf |EchoPot| 12c | Misc | An| Clear Freeze|
| i_rge Status
¥ | Send Numbers| Send ASCII _ | Disconnect
:l '~ 1 _IRXD 2]

_ITXD [3)
_ICTS (8]
_lDpCo(1
_|DSR(8)
_|Ring [9)
_|BREAK
_ | Emor

o Bultes Ovedlow !Nu OthesErors_ [Pott 2

| Send Numbers| Sendascll |

Triggered file send process

If the Intel-Hex file was successfully transmitted and the CRC check was OK, the
bootloader will send a "File OK!" message.

" RealTerm: Serial Capture Program 1.99.0.34 ) = |I:I|£]

BU: B.4 File was OK!
Update?a or b :
Send 1—‘118/ Start with the new
File OK?

/ bootloader
BU: 8.5

Application isn’t

*APP ? )
pdatefy or n valid

e . .

Display | Port | Capture| Pins ~ Send |EchoPot| 12c | Misc |  An| Clear Freeze|
Status
| ] Send Numbers| Sendasci i_rE jw
=] Send Numbers|  SendAgCl il' 0@

|
I—_I_J Repeats |1 '3] [~ Liel [ StipSpaces 1r —ICIS§)

_lpcoq)
| Lt - _|DSR (6)
H:\Final_Bcotloader\bootioader\Release\Exel |- X Stop I _|Ring[9)
Error Not In-Progress J _|BREAK

Bepeats | j _JEnor | |

|Char Count:78 ICPS:0 INo UART Overun  |Mo Bulfer Overflow [No Other Enors  [Port 2

Figure 5-24 Bootloader update has finished

40

Preliminary Application Note U18539EE1VOANOO



Application example

Chapter 5

After successful update the bootloader start-up with a new version(BV: 0.5).
During the bootloader update the application valid byte pattern will be cleared,
so that the application is not valid and sends the "!APP" message. The new
bootloader only allows application updates("Update? y or n"). If the new
application was written, the bootloader sends the "READY" message and starts
the application.

R
s Intel hex file of
*APP
pdate?{ op n thenew appl. _
end file g wWas OK! Appl. written
Enpy and CRC is
tart apRswE Appl. will be OK!

started &
4| | i3

Display | Pot | Capture | Pins ~ Send |EchoPor| 120 | Miss | An| Clear] Freeze|

“E0 Statug
[v ] SendNumbers| SendASCI ]Irf eyl
| ] send Numbers| sma&cu|F I TXD [3)
|_ = , _IC1S @
ﬂ ﬂ Repeats 11 -I I Literal [ Stip Spaces [ - _|peD (1)
. — 0
[H:'\FmaI_BootIoadet'\Flear:mn Time Measurem EI —] I _|Ring (3]
Error Not | e _|BREAK
LLLLL LR LR R LR LR L R R LR PR R LR _} Eﬂul i
|Char Count:72 |cPs:0 [No USRT Overrun |Mo Buffer Overflow Mo OtherEnars [Port 2

Figure 5-25 Application update and start

Preliminary Application Note U18539EE1VOANOO 41



Chapter 5 Application example

42 Preliminary Application Note U18539EE1VOANOO



Chapter 6

6.1

Figure 6-26

address

Interface specification

This chapter describes the Intel-Hex file and modules specification.

Intel Hex File format

Intel-Hex File consists of records which has a header of 9-character (4-field) prefix
that defines the start of record, byte count, address offset, and record type, and
a 2-character checksum suffix. The following figure illustrates some sample
records.

Start character
Address

Address offset

26000020000FCCRLEF! < Extended Segment Address Record
:020000040010EACRLE| 4 Extended Linear Address Record
:lﬂﬂﬁﬂﬂﬂﬂﬂ:ﬂl131':!1Elﬂl91&101U1F1ﬂ221ﬁ251ﬂﬁFﬁF~Lﬁ
:1000100028102B102E10311034103710 3h1ﬂ3D1|JCCCRLF:
:IUUDEEUUQUIU431[.'!451U4910421U4F1U521ﬂ551DFCFRLFI
:1000300058105B105E10611064106710 GAI'D'EDIDEC[_ZR_L_F_:
:00000001FFCRLEI  }—— End-of-File Record I
Checksum

Checksum
Record type
Byte count

______ Carriage Return and Line Feed

Intel-Hex file format

The differences between "Standard-Intel-Hex" and "Extended-Intel-Hex" are the
address ranges. Extended Intel-Hex has 32 bit address range and Standard Intel-
Hex has 16 Bit address range.

For the address calculation within the Standard Intel-Hex file is only the address
field within the header necessary. The following figure shows the address
calculation within the Standard Intel-Hex file:

Data Record:
:101008001010000000B001009BRT70108FO000BFOOFE

1040 08

Flash

Hex

Figure 6-27 Standard-Intel-Hex file addressing

Preliminary Application Note U18539EE1VOANOO 43



Chapter 6 Interface specification

For 32Bit addressing within the Extended-Intel-Hex file are two additively records
essential(Linear Address offset and Segment address offset):

:02 0000 04 0010 EA Linear Address Offset
02 0000 02 1230 BA Segment Address Offset
10 0045 00 55AA FF ..... BC Data Record

Linear Address

Offsat 00 Hex 10Hex 00 Hex 00 Hex

Segment

Addres Offset 01 Hex 23 Hex 00 Hex
Address offsat from

data record 00 Hex 45 Hex
Final address

[sum) 00 Hex 11 Hex 23 Hex 45 Hex

15 0
27 2% 2% 2'® 2 v i

Figure 6-28 Extended-Intel-Hex file addressing

There are six record types defined for the Intel-Hex file format. Every record will
be secured by a checksum, which is a two’s complement of the fields byte count,
address, record type and data bytes.

00-Data Record

The data record contains data to write into the flash. The data count will be defined
by the byte count field and the address for the first byte by the address field(see
above for address calculation).

Start
T Byte count |Address | Record type Data Checksum
1Byte: |1Byte 2Byte |1Byte 00’ xx Byte count |1 Byte

01-End of File Record

The end-of-file record represents the end of an Intel-Hex file.

Start character | Byte count Address Record type Checksum
1 Byte "' 1 Byte '00" 2 Byte '0000' 1 Byte '01' 1 Byte 'FF'

02-Extended Segment Address Record

This record type defines bits 4 to 19 of the segment address(see above).

T Byte count |Address B Data Checksum
character type

1o ' : o |2 Byte 'ext.
1 Byte " 1 Byte '02' |2 Byte '0000 1 Byte '02 addr." 1 Byte

44 Preliminary Application Note U18539EE1VOANOO



Interface specification Chapter 6

03-Start Segment Address Record

This record, which specifies bits 4-19 of the execution start address will be
ignored by the bootloader.

S Byte count | Address FEEDT Data Checksum
character type
1 Byte "' 1 Byte '04' |2 Byte '0000" 1 Byte '03' ,A'aggte, 1 Byte

04-Extended Linear Address Record

This record specifies bits 16-31 of the destination address(see above).

HE Byte count | Address e Data Checksum

character type

1Byte’s |1Byte'02' |2Byte'0000' |1Byte'04' [2BV1® &t | ipye
vie: y y lin. addr." y

05-Start Linear Address Record

This record, which specifies bits 16-31 of the execution start address will be
ignored by the bootloader.

Bk Byte count | Address FEETTE Data Checksum
character type
1 Byte i’ 1 Byte '04' |2 Byte '0000' 1 Byte '05' ﬁagg:e, 1 Byte

Preliminary Application Note U18539EE1VOANOO 45



Chapter 6

Interface specification

46

6.2 Interface specification

6.2.1

This chapter describes the interface specification. The C files can be exchanged
by the user and only the function names must be equal(the bootloader binds the
function with extern keyword).

Communication interface

void ifacelnit(void)

Description:

This function initializes the communication interface.
Precondition:

None

Postcondition:

The communication interface is initialized and can be used.
Parameter:

None

Return:

None
void readyToRx(void)

Description:

This function signals the host that it is ready to receive(Uart: Xon message(11 hex)
will be send to the host).

Precondition:
None
Postcondition:

The host is informed that the bootloader is ready to receive. The bootloader must
analyze with the readyToRxEnabled function, whether the host has
acknowledged.

Parameter:
None
Return:

None

Preliminary Application Note U18539EE1VOANOO



Interface specification

Chapter 6

u08 readyToRxEnabled(void)

Description:

This function checks the host reaction, whether an acknowledge is received(after
readyToRXx).

Precondition:
The function readyToRx was called.
Postcondition:

The host has acknowledged or not acknowledged. If the host has acknowledged,
all acknowledge flags must be erased.

Parameter:
none
Return:

®  Oppx Host has not acknowledged.
* 1yex Host has acknowledged.

void stopRx(void)

Description:

This function signals the host that it must stop the file transfer(Uart: Xoff message
(13 hex) will be send to the host).

Precondition:
None
Postcondition:

The host is informed that the bootloader is not ready to receive. The bootloader
must analyze with the stopRxEnabled function, whether the host has
acknowledged.

Parameter:
None
Return:

None

Preliminary Application Note U18539EE1VOANOO 47



Chapter 6

Interface specification

48

u08 stopRxEnabled(void)

Description:

This function checks the host reaction, whether an acknowledge is received(after
stopRXx).

Precondition:
The stopRx function was called.
Postcondition:

The host has acknowledged or not yet. If the host has acknowledged, all
acknowledge flags must be erased.

Parameter:
None
Return:

®  Oppx Host has not acknowledged.
* 1yex Host has acknowledged.

void sendByte(u08 txData)

Description:

This function write a byte into the transmit buffer.

Precondition:

The interface status was checked by the txStatus, that it is not busy.
Postcondition:

The byte is written into the transmit buffer.

Parameter:

¢ 1Byte - This byte will be written into the transmit buffer.
Return:

None

Preliminary Application Note U18539EE1VOANOO



Interface specification

Chapter 6

u08 txStatus(void)

Description:

This function check the interface status, whether it is busy or not.
Precondition:

A byte was written into the transmit buffer by the sendByte function.
Postcondition:

If the byte was transmitted, all transmit ready flags must be erased(e.g. tx interrupt
request bit).

Parameter:
None
Return:

¢ Opex Transmit interface is busy
*  1hex Transmit interface is ready-to-transmit

__calit u08 byteReceived(void)

Description:

The function checks the receive status.

Precondition:

The host was informed by the readyToRx function, that it is receive ready.
Postcondition:

If a byte was received, all receive flags must be erased.

Parameter:

None

Return:

¢ 00yex: Nothing received
o 01yex: Byte received

Preliminary Application Note U18539EE1VOANOO 49



Chapter 6

Interface specification

50

__calit u08 rxError(void)

Description:

This function checks the receiver, whether an error occurs during receive.
Precondition:

Byte was received(see byteReceived).

Postcondition:

If an error is occurred, all error flags must be cleared.

Parameter:

None

Return:

e  00pex: Error is occurred during receive routine.
¢ O1pex: No error.

__callt u08 getRxByte(void)

Description:
This function return the received byte.
Precondition:

Byte was received(see byteReceived() and no error occurred during receive
routine(see rxError()).

Postcondition:

Received byte was read from the receive buffer.
Parameter:

None

Return:

¢ 1 Byte: Received byte.
void resetRxErrorFlags(void)

Description:

This function reset all receive error flags of the receive interface.
Precondition:

None

Postcondition:

The receive interface is receive ready.

Parameter:

None

Return:

None

Preliminary Application Note U18539EE1VOANOO



Interface specification

Chapter 6

void resetinterface(void)

Description:

This function reset the communication interface.

Precondition:
None
Postcondition:
None
Parameter:
None

Return:

None

Preliminary Application Note U18539EE1VOANOO

51



Chapter 6 Interface specification

6.2.2 File decoder interface

__callt u08 decodeReceivedBytes(u08 rx_byte)

Description:

This function decode the received byte.

Precondition:

None

Postcondition:

None

Parameter:

e 1 Byte: Received byte from file, which must be checked.
Return:

o O1yex: File error
o 02yex: Bytes is checked, but do not write it into the data buffer
e  03hex: Write the checked byte into the data buffer

__calilt void resetFileDecoder(void)

Description:

This function reset the file decoder.
Precondition:

None

Postcondition:

None

Parameter:

None

Return:

None

52 Preliminary Application Note U18539EE1VOANOO



Interface specification

Chapter 6

u08 isEOF(void)

Description:

This function checks, whether the file end is reached.
Precondition:

The host do not send any bytes from the file(timeout is occurred).
Postcondition:

None

Parameter:

None

Return:

¢ 00pex: Is not file end.
¢ 01pex: The file end is reached.

u32 getAddress(void)

Description:

This function return the flash address location for the byte, which must be written
into the data buffer.

Precondition:

The decodeReceivedBytes() function returned 03}c.
Postcondition:

None

Parameter:

None

Return:

e 4Byte - Flash address of the byte, which must be written into the data
buffer.

Preliminary Application Note U18539EE1VOANOO 53



Chapter 6 Interface specification

u08 getWriteByte(void)

Description:

This function returns the byte, which must be written into the data buffer.
Precondition:

The decodeReceivedBytes() function returned 03}.

Postcondition:

None

Parameter:

None

Return:

¢ 1Byte - The current byte, which must be written into the data buffer.

54 Preliminary Application Note U18539EE1VOANOO



Interface specification

Chapter 6

6.2.3

Time control interface
void init_timer_50ms(void)

Description:

This function will be called after the microcontroller reset. The timer will be
initialized for 50ms interval.

Precondition:

None

Postcondition:

The timer is ready for operation.
Parameter:

None

Return:

None
__calilt void setTimerlntervall_2ms(void)

Description:

This function set the timer on the 2ms interval.
Precondition:

Timer was initialized by the init_timer_50ms() function.
Postcondition:

None

Parameter:

None

Return:

None

Preliminary Application Note U18539EE1VOANOO 55



Chapter 6 Interface specification

__calit void setTimerintervall_50ms(void)

Description:

This function set the timer on the 50ms interval.
Precondition:

Timer was initialized by the init_timer_50ms() function.
Postcondition:

None

Parameter:

None

Return:

None
__callt void initTimeoutDetect(u08 timer_factor)

Description:

This function initialize the timeout detection for a given time(time_factor x 2ms or
time_factor x 50ms).

Precondition:

Timer was initialized by the function init_timer_50msy).
Postcondition:

Timeout detection is initialized and the timer is started.
Parameter:

e 1Byte: This is a factor for the timer e.g. if the timer is initialized by the
function setTimerlntervall_2ms() and the factor is timer_factor = 10 a
timeout will occur after 10 x 2ms = 20ms.

Return:

None

56 Preliminary Application Note U18539EE1VOANOO



Interface specification

Chapter 6

__calilt void resetTimeoutDetect(void)

Description:

This function reset the timer and the timeout detection.
Precondition:

None

Postcondition:

Timeout detection can be used for other process.
Parameter:

None

Return:

None

__callt u08 isTimeout(void)

Description:

This function checks the timeout.

Precondition:

The timeout factor was set by the initTimeoutDetect() function.
Postcondition:

None

Parameter:

None

Return:

e  (0OHex: No timeout
e (01Hex: Timeout occurred

Preliminary Application Note U18539EE1VOANOO 57



Chapter 6 Interface specification

58 Preliminary Application Note U18539EE1VOANOO



Revision History

This revision list shows all functional changes compared to the previous manual version EASE-
UM-0004-0.2 (date published 16/09/05).

Chapter

Page

Description

Preliminary Application Note U18539EE1VOANOO

59



Index

60

Preliminary Application Note U18539EE1VOANOO



	1 Introduction
	1.1 Definition and advantages of a bootloader
	1.2 Main tasks of a Bootloader

	2 Flash Memory Programming
	2.1 Memory organization
	2.1.1 Boot cluster
	2.1.2 Difference in Representation of Memory Space

	2.2 Self programming
	2.2.1 Hardware environment
	2.2.2 Software environment
	2.2.2.1 Boot swap function



	3 Bootloader
	3.1 Specification
	3.2 Hardware requirements
	3.3 Bootloader concept
	3.3.1 Bootloader vs. Application
	3.3.2 Virtual interrupt vectors
	3.3.3 Update methods

	3.4 Software architecture
	3.4.1 Time Control module
	3.4.2 Communication Interface module
	3.4.3 Data Buffer Control module
	3.4.4 File Decoder module

	3.5 Bootloader implementation
	3.5.1 Watchdog
	3.5.2 Timeout detection with polling
	3.5.3 Receive flow
	3.5.4 Error handler

	3.6 Bootloader configuration
	3.6.1 Bootloader adaptation


	4 Application adaption
	4.1 Modify XCL-file
	4.2 Add/configure predefined files

	5 Application example
	6 Interface specification
	6.1 Intel Hex File format
	6.2 Interface specification
	6.2.1 Communication interface
	6.2.2 File decoder interface
	6.2.3 Time control interface


	Revision History
	Index

