
Smart Card Library

Copyright (c) 2014. All rights reserved.

Table of Contents

1 Smart Card Library 4
1.1 Introduction 5

1.2 Legal Information 6

1.3 Release Notes 7

1.3.1 v2.00 7

1.3.2 v1.02.6 7

1.3.3 v1.02.4 7

1.3.4 v1.02.2 8

1.3.5 v1.02 8

1.3.6 v1.01 8

1.3.7 v1.02.8 9

1.3.8 v1.03 9

1.4 Using the Library 10

1.4.1 Smart Card Library Overview 10

1.4.2 Library Architecture 11

1.4.3 How the Library Works 11

1.4.4 Integrating with an Existing Application 12

1.5 Library Interface 13

1.5.1 Functions 13

1.5.1.1 Initialization Functions 13

1.5.1.1.1 SMARTCARD_Initialize Function 13

1.5.1.1.2 SMARTCARD_PowerOnATR Function 13

1.5.1.2 Transaction Functions 14

1.5.1.2.1 SMARTCARD_DataExchange Function 14

1.5.1.2.2 SMARTCARD_EMV_ATRProcess Function 15

1.5.1.2.3 SMARTCARD_EMV_DataExchangeT0 Function 16

1.5.1.2.4 SMARTCARD_EMV_DataExchangeT1 Function 16

1.5.1.2.5 SMARTCARD_IsPPSSupported Function 17

1.5.1.2.6 SMARTCARD_IsPresent Function 17

1.5.1.2.7 SMARTCARD_PPSExchange Function 18

1.5.1.2.8 SMARTCARD_ProtocolTypeGet Function 18

1.5.1.2.9 SMARTCARD_Shutdown Function 19

1.5.1.2.10 SMARTCARD_StateGet Function 19

1.5.2 Data types and constants 20

1.5.2.1 SMARTCARD_APDU_COMMAND Structure 21

1.5.2.2 SMARTCARD_APDU_RESPONSE Structure 21

1.5.2.3 SMARTCARD_PPS_SUPPORT_STATUS Enumeration 22

MLA - Smart Card Library Help

2

1.5.2.4 SMARTCARD_RESET_TYPES Enumeration 22

1.5.2.5 SMARTCARD_STATUS Enumeration 23

1.5.2.6 SMARTCARD_T0CASE_TYPES Enumeration 23

1.5.2.7 SMARTCARD_T1BLOCK_TYPES Enumeration 24

1.5.2.8 SMARTCARD_T1PROLOGUE_FIELD Structure 25

1.5.2.9 SMARTCARD_TRANSACTION_STATUS Enumeration 25

1.5.2.10 SMARTCARD_TRANSACTION_TYPES Enumeration 26

1.5.2.11 EMV_SUPPORT Macro 27

1.5.2.12 SMARTCARD_PROTO_T1 Macro 27

1.5.2.13 SMARTCARD_APDU_BUFF_SIZE Macro 27

1.5.2.14 SMARTCARD_T1_PROTOCOL_MAX_BUFF_SIZE Macro 28

1.6 Demo 29

1.6.1 Configuring Hardware 29

1.6.1.1 Configuration using Explorer 16 Board 29

1.6.1.2 Resource Usage - PIC24F 30

1.6.2 Run Demo 31

1.6.2.1 Getting Started - Smart Card Demo 31

1.6.2.2 Firmware 31

1.6.2.3 Running the Demo 32

1.6.2.4 Configuring the pins 33

Index 34

MLA - Smart Card Library Help

3

Smart Card Library

1 Smart Card Library

1 MLA - Smart Card Library Help

4

1.1 Introduction
Microchip Smart Card Library Help Documentation

Description

Smart Card EMV Standard Library For 16 bit PIC Microcontrollers

The Smart Card library for PIC microcontrollers support EMV Level 1 based on ISO 7816-3 standard . It allows the PIC
microcontroller to communicate with smart card's compatible with these protocols. The library supports both T=0 and T=1
smart card protocols.

The library comprises of PIC24 UART driver and T0/T1 protocol source code meeting Smart Card EMV and ISO-7816-3
standards. An example high level demo application code is also provided to help the user port the smart card library to
different microcontrollers of PIC family (PIC24FJ128GB204/GA204 and PIC24FJ256GB110 by using normal UART).

This document assumes that the reader is familiar with Smart Card EMV/ISO 7816-3 standards and T=0/T=1 protocols.

1.1 Introduction MLA - Smart Card Library Help

5

1.2 Legal Information
This software distribution is controlled by the Legal Information at www.microchip.com/mla_license

1.2 Legal Information MLA - Smart Card Library Help

6

http://www.microchip.com/mla_license

1.3 Release Notes

1.3.1 v2.00

The v2.00 release is a major releases with the following changes.

1. File names, Function names, Macro names and structure names have been changed

2. T=1 protocol support has been added

3. T=0 and T=1 are run time selectable after every "Answer To Reset"

1.3.2 v1.02.6

1. In SClib.c.:-

• Changed the size of input/output parameters of static functions 'SC_UpdateCRC', 'SC_UpdateEDC' and
'SC_SendT1Block'. This fix is done to optimize the code.

• Modified the contents of 'SC_UpdateCRC' and 'SC_SendT1Block' function to suit the above change.

• Modified "SC_TransactT0" function, to transmit first byte as 0x00 when LC and LE bytes are 0x00.

• Changed the local variable 'edc' from 'WORD' type to 'unsigned short int' type (in static function :-
'SC_ReceiveT1Block')

2. In SCpic24.c, SCpic18.c, SCpic32.c and SCdspic33f.c:-

• The variable 'delayLapsedFlag' is declared as 'volatile' type, as it is modified in the Interrupt Service Routine.

1.3.3 v1.02.4

1. In SClib.c.:-

• The wait time was getting reinitialized to default value while communicating with smart card using T = 0 protocol. So
deleted "t0WWTetu = 10752;" in "SC_TransactT0" function.

• Modified the function "SC_SendT1Block" in such a way that EDC is transmitted more effeciently for LRC/CRC mode in
T = 1 protocol.

• Initialized local variable "txLength" to '0' in function "SC_TransactT1" to remove non-critical compiler warnings.

2. In sc_config.h

• Removed the following unused file inclusions:-

1. libpic30.h

2. math.h

3. delays.h

4. plib.h

1.3 Release Notes MLA - Smart Card Library Help v1.02.2

7

1.3.4 v1.02.2

1. Modified the PPS functionality as per ISO 7816 standard.

2. Fixed BWT (Block Wait Time) and WT (Wait Time) calculation issues.

3. Removed recursive function calls and modified the code to make it well structured and organized.

4. Modified "SCdrv_EnableDelayTimerIntr" and "SCdrv_SetDelayTimerCnt" macros to configure 16 bit timers (this macro is
used to provide delays).

5. “WaitMicroSec()" and "WaitMilliSec()" macros are removed from sc_config.h file.

6. Moved timer interrupts (used by smart card stack) to ISO 7816 hardware driver files.

7. Added "TIMER1_SINGLE_COUNT_MICRO_SECONDS" and "TIMER0_SINGLE_COUNT_MICRO_SECONDS" macros
in sc_config.h file.

8. WaitMicroSec() and WaitMilliSec() delay functions have been rewritten in the ISO 7816 driver files to provide accurate
delays.

9. The following PPS response variables have been added as part of the global memory.

Names Description

scPPSresponse[7] PPS Response Bytes from smart card

scPPSresponseLength Length of PPS Response

The prototype definition of function “SC_DoPPS()” has been changed to “SC_DoPPS(BYTE *ppsPtr)”. The input
parameter for “SC_DoPPS” function is PPS request string. This feature enables the user to send the desired PPS request to
the card.

1.3.5 v1.02

Supported smart card library stack to PIC32, PIC24H and dsPIC33F devices.

1.3.6 v1.01

The following list of variable names has been changed to follow a common coding standard across the smartcard library.

Changed From Changed To

SC_CardATR scCardATR

SC_ATRLen scATRLength

SC_LastError scLastError

SC_TA1 scTA1

SC_TA2 scTA2

SC_TA3 scTA3

SC_TB1 scTB1

SC_TB2 scTB2

SC_TB3 scTB3

SC_TC1 scTC1

1.3 Release Notes MLA - Smart Card Library Help v1.01

8

SC_TC2 scTC2

SC_TC3 scTC3

SC_TD1 scTD1

SC_TD2 scTD2

SC_TD3 scTD3

SC_ATR_HistBfr scATR_HistoryBuffer

SC_ATR_HistLen scATR_HistoryLength

The following list of type definitions has been changed to make them more understandable.

Changed From Changed To

SC_APDU_Cmd SC_APDU_COMMAND

SC_APDU_Resp SC_APDU_RESPONSE

The function name “SC_Transact” has been changed to “SC_TransactT0” to signify that this function handles only T=0
transactions with the smart card.

The function name “SC_TransactT1” has been added newly to signify that this function handles only T=1 transactions with
the smart card. The application has to call “SC_TransactT0” or “SC_TransactT1” function depending upon the card inserted.

1.3.7 v1.02.8

1. In SClib.c.:-

• "SC_TransactT0" function is modified to handle a 256 bytes read from smart card as per the "Case 2S" requirement of
ISO 7816 specification.

• The assignment of "apduResponse->SW1" and "apduResponse->SW2" is modified in "SC_TransactT1" function

2. In SCpic24.c, SCpic18.c, SCpic32.c and SCdspic33f.c:-

• "SCdrv_InitUART" function is modifed to switch on the power supply to the smart card during initialization phase.

1.3.8 v1.03

1. In SClib.c.:-

• Changed the data type of variable "cgtETU" from "BYTE" to "unsigned short int".

• Modified "SC_DoPPS" function, so as to add the guard time between transmission of bytes to smart card.

• Modified "SC_CalculateWaitTime" function, so as to calculate correct guard and wait time values.

1.3 Release Notes MLA - Smart Card Library Help v1.03

9

1.4 Using the Library

1.4.1 Smart Card Library Overview

Two communication protocols that are generally used for contact type Smart Card communications are:

• T = 0 (asynchronous half duplex character transmission)

• T = 1 (asynchronous half duplex block transmission)

The data transfers between the card and the terminal(smart card reader) happens on the single wire I/O line.

Following the initial reset of the card after insertion, the card responds with a series of characters called the Answer to
Reset, or ATR. This series of characters establishes the initial communication details, including the specific protocol, bit
timing, and data transfer details for all subsequent communications. While subsequent data transfers can change certain
communications parameters, the ATR establishes initial communications conditions.

The Clock Signal for Baud rate generation is provided to the card by the reader (terminal). The Smart Card default baudrate
divider is 372, which produce 9600 bps when a clock signal of 3.57MHz is supplied to the card. Most Smart Cards allow
higher clock rates, so a simple 4MHz clock can be easily used. Using a 4MHz clock, the default baudrate comes out to be
10752 bps. The PICs UART is appropriately configured by the library, so the communication can be setup using the higher
baudrate settings.

The Smart Card 7816-3 communications requires a 0.5 stop bit. This is important for the Receiver, as it must pull the I/O line
low before the middle of the stop bit (10.5 bit time from start edge) in order to indicate error condition to the Transmitter. The
receiver pulls the line low for 1 to 2 bit time (etu). The transmitter checks the I/O line at the end of stop bit, or 11 etu. If the
transmitter detects the line low, it retransmit the previous data byte after at least 2 etu.

The uart peripheral in PIC micros sets Rx Ready and Transmitter Empty flags to true at 0.5 stop bit, which allows the
implementation of the 7816-3 error detection and retransmission protocol possible.

1.4 Using the Library MLA - Smart Card Library Help Library Architecture

10

1.4.2 Library Architecture

The Smart Card Library has a modular design with separate files for the high level library code and the low level driver for
UART for implementing the EMV/ISO 7816-3 standards of Smart Card protocol.

1.4.3 How the Library Works

The current release of Smart Card library supports PIC24F microcontrollers.The Smart Card library provides the API
necessary to communicate with the EMV standard compliant Smart Card. The sequence of the API calls is as given below.
smart_card.h contains all the API's that are required by the main application to communicate with the Smart Card. The
current release of smart card library supports both T=0 and T=1 protocol.

...

//Initialize smart card stack

SMARTCARD_Initialize();

...

// Wait untill the card is inserted in the slot

while(!SMARTCARD_IsPresent())

...

//After detecting the card, turn on the power to the card and process Answer-to-Reset

if(!SMARTCARD_PowerOnATR())

...

//Do protocol and parameter selection.Configure the desired baud rate

if(SMARTCARD_IsPPSSupported())

...

//Execute Card Commands

//If card is inserted in the slot, execute T=1/T=0 based on ATR commands

if(SMARTCARD_ProtocolTypeGet)

{

//If T=0 card is inserted in the slot, execute T=0 commands

if(!SMARTCARD_EMV_DataExchangeT0(&cardCommand,apduCommandLength,&demo_CardResponse))

1.4 Using the Library MLA - Smart Card Library Help How the Library Works

11

}

else if(!SMARTCARD_EMV_DataExchangeT0(&cardCommand,apduCommandLength,&demo_CardResponse))

{

...

...

// Shut Down the Card when there is nothing to do with it

SMARTCARD_Shutdown;

...

Note :

1)For T=1 protocol "prologueField" buffer should contain the prologue field(NAD,PCB,LENGTH) that needs to be sent to
Smart Card.Once the transaction is completed between the card and the micro, response from the card is stored in
"cardResponse" buffer."apduData" points to the data buffer of the command as well as data response from the card.

2)For T=0 protocol "cardCommand" buffer should contain the command that needs to be sent to the Smart Card. Once the
transaction is completed between the card and the micro, response from the card is stored in "cardResponse" buffer.
"apduData" points to the data buffer of command as well as data response from the card.

1.4.4 Integrating with an Existing Application

It is easy to integrate the Smart Card library with the existing applications.The Smart Card library uses UART and 4 I/O port
pins.

The pins used for the communication between the Smart Card and PIC microcontroller are given in Configuring the Library
section.“smart_card_config.h” is the only file where the user has to modify to port the Smart Card stack to different PIC
microcontrollers.

The API's that needs to be called by the main application are mentioned in smart_card.h file.Please refer "How the Library
Works" to know the usage of smart card library API's.

1.4 Using the Library MLA - Smart Card Library Help Integrating with an Existing Application

12

1.5 Library Interface

1.5.1 Functions

1.5.1.1 Initialization Functions
Functions

Name Description

SMARTCARD_Initialize This function initializes the smart card library

SMARTCARD_PowerOnATR This function performs the power on sequence of the SmartCard and
interprets the Answer-to-Reset data received from the card.

1.5.1.1.1 SMARTCARD_Initialize Function
File

smart_card.h

Syntax

void SMARTCARD_Initialize();

Description

This function initializes the smart card library

Remarks

None

Preconditions

None

Function

void SMARTCARD_Initialize(void)

1.5.1.1.2 SMARTCARD_PowerOnATR Function
File

smart_card.h

Syntax

SMARTCARD_TRANSACTION_STATUS SMARTCARD_PowerOnATR(SMARTCARD_RESET_TYPES resetRequest);

Description

This function performs the power on sequence of the SmartCard and interprets the Answer-to-Reset data received from the
card.

1.5 Library Interface MLA - Smart Card Library Help Functions

13

Remarks

None

Preconditions

SMARTCARD_Initialize() is called, and card is present

Example

 {

 while(!SMARTCARD_IsPresent());
 ...
 ...
 contact = TypeOfCard();
 if(contact)
 {
 return(SMARTCARD_PowerOnATR); //Contact based Smart card
 }
 else
 {
 return(return(SCL_PowerOnATR);); //Contact-less based Smart Card
 }

}

Function

SMARTCARD_TRANSACTION_STATUS SMARTCARD_PowerOnATR(SMARTCARD_RESET_TYPE resetRequest)

1.5.1.2 Transaction Functions
Functions

Name Description

SMARTCARD_DataExchange This function performs the data transaction, by calling the appropriate
routine based upon card type.

SMARTCARD_EMV_ATRProcess This function performs the power on sequence of the SmartCard and
interprets the Answer-to-Reset data received from the card.

SMARTCARD_EMV_DataExchangeT0 This function Sends/receives the ISO 7816-4 compliant T = 0
commands to the card.

SMARTCARD_EMV_DataExchangeT1 This function Sends/receives the ISO 7816-4 compliant T = 1
commands to the card.

SMARTCARD_IsPPSSupported This function gets whether PPS(Protocol & Parameter Selection) is
supported or not

SMARTCARD_IsPresent This macro checks if card is inserted in the socket

SMARTCARD_PPSExchange This function does the PPS exchange with the smart card & configures
the baud rate of the PIC UART module as per the PPS response from
the smart card.

SMARTCARD_ProtocolTypeGet This function gets the type of the protocol supported by the card.

SMARTCARD_Shutdown This function Performs the Power Down sequence of the SmartCard

SMARTCARD_StateGet This function returns the current state of SmartCard

1.5.1.2.1 SMARTCARD_DataExchange Function
File

smart_card.h

1.5 Library Interface MLA - Smart Card Library Help Functions

14

Syntax

uint8_t SMARTCARD_DataExchange(SMARTCARD_APDU_COMMAND* apduCommand);

Description

This function performs the data transaction, by calling the appropriate routine based upon card type.

Remarks

None

Preconditions

SMARTCARD_Initialize() is called, and card is present

Example

 {

 while(!SMARTCARD_IsPresent());
 ...
 ...
 contact = TypeOfCard();
 if(contact)
 {
 SMARTCARD_EMV_T0();
 }
 else
 {
 ...
 }

 }

Function

uint8_t SMARTCARD_DataExchange(SMARTCARD_APDU_COMMAND* apduCommand)

1.5.1.2.2 SMARTCARD_EMV_ATRProcess Function
File

smart_card_layer3.h

Syntax

SMARTCARD_TRANSACTION_STATUS SMARTCARD_EMV_ATRProcess(SMARTCARD_RESET_TYPES resetRequest);

Description

This function performs the power on sequence of the SmartCard and interprets the Answer-to-Reset data received from the
card.

Remarks

None

Preconditions

SMARTCARD_Initialize() is called, and card is present

Parameters

Parameters Description

SMARTCARD_RESET_TYPES resetRequest type of reset requested by the card

Function

SMARTCARD_TRANSACTION_STATUS SMARTCARD_EMV_ATRProcess(SMARTCARD_RESET_TYPE resetRequest)

1.5 Library Interface MLA - Smart Card Library Help Functions

15

1.5.1.2.3 SMARTCARD_EMV_DataExchangeT0 Function
File

smart_card_layer3.h

Syntax

SMARTCARD_TRANSACTION_STATUS SMARTCARD_EMV_DataExchangeT0(uint8_t* apduCommand, uint32_t
apduCommandLength, SMARTCARD_APDU_RESPONSE* apduResponse);

Description

This function Sends/receives the ISO 7816-4 compliant T = 0 commands to the card.

Remarks

None

Preconditions

SMARTCARD_PPS was success

Example

main()
{

 while(!SMARTCARD_IsPresent());
 scError = LoopBackMode(transType);

 // Send Command APDU and get Response APDU
 EMV_APDU (transactionType); // trascationType=T0/T1

 if(transactionType == T0_TYPE)
 {
 return(SMARTCARD_EMV_DataExchangeT0(&apduCmd[0], apduCmdLength, &cardResponse));
 }
 else
 {
 return(SMARTCARD_EMV_DataExchangeT1(&pField,&apduCmd[0],&cardResponse));
//SMARTCARD_EMV_TransactT1
 }

}

Function

SMARTCARD_TRANSACTION_STATUS SMARTCARD_EMV_DataExchangeT0(uint8_t* apduCommand, uint32_t
apduCommandLength, SMARTCARD_APDU_RESPONSE* apduResponse)

1.5.1.2.4 SMARTCARD_EMV_DataExchangeT1 Function
File

smart_card_layer3.h

Syntax

SMARTCARD_TRANSACTION_STATUS SMARTCARD_EMV_DataExchangeT1(SMARTCARD_T1PROLOGUE_FIELD*
pfield, uint8_t* iField, SMARTCARD_APDU_RESPONSE* apduResponse);

Description

This function Sends/receives the ISO 7816-4 compliant T = 1 commands to the card.

Remarks

None

1.5 Library Interface MLA - Smart Card Library Help Functions

16

Preconditions

SC_PPS was success

Example

Refer to SMARTCARD_EMV_DataExchangeT0() function

Function

SMARTCARD_TRANSACTION_STATUS SMARTCARD_EMV_DataExchangeT1(SMARTCARD_T1_PROLOGUE_FIELD*
pfield,uint8_t* iField,SMARTCARD_APDU_RESPONSE* apduResponse)

1.5.1.2.5 SMARTCARD_IsPPSSupported Function
File

smart_card.h

Syntax

SMARTCARD_PPS_SUPPORT_STATUS SMARTCARD_IsPPSSupported();

Description

This function gets whether PPS(Protocol & Parameter Selection) is supported or not

Remarks

None

Preconditions

SMARTCARD_Initialize is called and CARD is in ATR on state.

Example

statement1;
 if (resetRequest == WARM_RESET)
 {
 SMARTCARD_Shutdown();
 }
 ...
 ...
 ...

 SMARTCARD_PowerOnATR();
 ...
 ...
 // Return False if there is no card inserted in the Slot or ATR of the card is unsuccessful
 if(!SCdrv_CardPresent() || (gCardState != ATR_ON))
 {
 SMARTCARD_Shutdown();
 return SC_ERR_CARD_NOT_PRESENT;
 }

Function

void SMARTCARD_IsPPSSupported(void)

1.5.1.2.6 SMARTCARD_IsPresent Function
File

smart_card.h

Syntax

bool SMARTCARD_IsPresent();

1.5 Library Interface MLA - Smart Card Library Help Functions

17

Description

This macro checks if card is inserted in the socket

Remarks

None

Preconditions

SMARTCARD_Initialize() is called

Example

main())
{
 SMARTCARD_Initialize();
 while(!SMARTCARD_IsPresent());
 // Do other tasks only when the card is detected
}

Function

bool SMARTCARD_IsPresent(void)

1.5.1.2.7 SMARTCARD_PPSExchange Function
File

smart_card_layer3.h

Syntax

SMARTCARD_TRANSACTION_STATUS SMARTCARD_PPSExchange(uint8_t * ppsPtr);

Description

This function does the PPS exchange with the smart card & configures the baud rate of the PIC UART module as per the
PPS response from the smart card.

Remarks

This function is called when SMARTCARD_EMV_ATRProcess() returns 1.

Preconditions

SMARTCARD_PowerOnATR was success

Function

SMARTCARD_TRANSACTION_STATUS SMARTCARD_PPSExchange(uint8_t *ppsPtr)

1.5.1.2.8 SMARTCARD_ProtocolTypeGet Function
File

smart_card_layer3.h

Syntax

SMARTCARD_TRANSACTION_TYPES SMARTCARD_ProtocolTypeGet();

Description

This function gets the type of the protocol supported by the card.

Remarks

None

1.5 Library Interface MLA - Smart Card Library Help Functions

18

Preconditions

SMARTCARD_PowerOnATR was success

Function

SMARTCARD_TRANSACTION_TYPES SMARTCARD_ProtocolTypeGet(void)

1.5.1.2.9 SMARTCARD_Shutdown Function
File

smart_card.h

Syntax

void SMARTCARD_Shutdown();

Description

This function Performs the Power Down sequence of the SmartCard

Remarks

None

Preconditions

SMARTCARD_Initialize is called.

Example

statement1;
 if (resetRequest == WARM_RESET)
 {
 SMARTCARD_Shutdown();
 }
 ...
 ...
 ...

 // Not a Valid ATR Response
 scTransactionStatus = SC_ERR_BAR_OR_NO_ATR_RESPONSE;
 SMARTCARD_Shutdown();
 ...
 ...
 // Return False if there is no card inserted in the Slot or ATR of the card is unsuccessful
 if(!SCdrv_CardPresent() || (gCardState != ATR_ON))
 {
 SMARTCARD_Shutdown();
 return SC_ERR_CARD_NOT_PRESENT;
 }

Function

void SMARTCARD_Shutdown(void)

1.5.1.2.10 SMARTCARD_StateGet Function
File

smart_card.h

Syntax

SMARTCARD_STATUS SMARTCARD_StateGet();

Description

This function returns the current state of SmartCard

1.5 Library Interface MLA - Smart Card Library Help Functions

19

Remarks

None

Preconditions

SMARTCARD_Initialize is called.

Example

main())
{
 SMARTCARD_Initialize();
 if(!SMARTCARD_StateGet());
 // Checks for Card ATR_ON state or Unknown state
 // If in ATR_ON state, then card can behave in normal manner, can communicate.
 // If in Unknown state the communication would time out and reset.
}

Return Values

Return Values Description

SMARTCARD_UNKNOWN No Card Detected

SMARTCARD_ATR_ON Card is powered and ATR received

Function

SMARTCARD_STATUS SMARTCARD_StateGet(void)

1.5.2 Data types and constants

Enumerations

Name Description

SMARTCARD_PPS_SUPPORT_STATUS Protocol and Parameter Selections (PPS) status are defined

SMARTCARD_RESET_TYPES Reset Types

SMARTCARD_STATUS This Enum defines Answer To Reset(ATR) status

SMARTCARD_T0CASE_TYPES Various cases handled under T=0 are defined

SMARTCARD_T1BLOCK_TYPES This Enum defines the various blocks present in the T=1, Protocol Data
Unit (PDU)

SMARTCARD_TRANSACTION_STATUS Definition of various Error Types

SMARTCARD_TRANSACTION_TYPES Transaction Protocol Types

Macros

Name Description

EMV_SUPPORT To Support the EMV standard part of the code

SMARTCARD_PROTO_T1 To enable the T1 protocol.

SMARTCARD_APDU_BUFF_SIZE Define the Buffer size of Application Protocol Data Unit (APDU).

SMARTCARD_T1_PROTOCOL_MAX_BUFF_SIZE Define the Maximum Buffer size for T1 Protocol.

Structures

Name Description

SMARTCARD_APDU_COMMAND This Structure defines APDU response packet

SMARTCARD_APDU_RESPONSE This Structure defines response packet with status bytes

SMARTCARD_T1PROLOGUE_FIELD This Structure defines Prologue field of T=1 protocol

1.5 Library Interface MLA - Smart Card Library Help Data types and constants

20

1.5.2.1 SMARTCARD_APDU_COMMAND Structure
This Structure defines APDU response packet

File

smart_card.h

Syntax

typedef struct {
 uint8_t CLA;
 uint8_t INS;
 uint8_t P1;
 uint8_t P2;
 uint8_t LC;
 uint8_t LE;
} SMARTCARD_APDU_COMMAND;

Members

Members Description

uint8_t CLA; CLA Field :Command class

uint8_t INS; INS Field :Instruction Operation code

uint8_t P1; P1 Field : Selection Mode

uint8_t P2; P2 Field : Selection Option

uint8_t LC; LC Field : Data length

uint8_t LE; LE Field : Expected length of data to be returned

Description

SmartCard APDU Response structure 7816-4

The structure defines the response packet definition of various data like CLA, INS, P1, P2,LC and LE

Remarks

None

1.5.2.2 SMARTCARD_APDU_RESPONSE Structure
This Structure defines response packet with status bytes

File

smart_card.h

Syntax

typedef struct {
 uint16_t rxDataLen;
 uint8_t apduData[512];
 uint8_t SW1;
 uint8_t SW2;
} SMARTCARD_APDU_RESPONSE;

Members

Members Description

uint16_t rxDataLen; Received Data length from smart card(excluding SW1 and
SW2 bytes)

uint8_t apduData[512]; Application Protocol Data unit (APDU) max size in bytes is
512

uint8_t SW1; Status byte 1

1.5 Library Interface MLA - Smart Card Library Help Data types and constants

21

uint8_t SW2; Status byte 2

Description

SmartCard APDU Response structure 7816-4

The APDU response byte which can hold 512 bytes of data and two status byte

Remarks

None

1.5.2.3 SMARTCARD_PPS_SUPPORT_STATUS Enumeration
Protocol and Parameter Selections (PPS) status are defined

File

smart_card.h

Syntax

typedef enum {
 SMARTCARD_PPS_NOT_ALLOWED,
 SMARTCARD_PPS_ALLOWED,
 SMARTCARD_PPS_ALLOWED_AFTER_WARM_RESET
} SMARTCARD_PPS_SUPPORT_STATUS;

Members

Members Description

SMARTCARD_PPS_NOT_ALLOWED Protocol Parameter Selection(PPS) not allowed (Specific
Mode)

SMARTCARD_PPS_ALLOWED Supports Parameter Parameter Selection (Negotiable Mode)

SMARTCARD_PPS_ALLOWED_AFTER_WARM_RESET Supports Parameter Parameter Selection only after warm
reset

Description

PPS support Status:

PPS support status states are defined

Remarks

provides various states for PPS support to track during protocol transaction

1.5.2.4 SMARTCARD_RESET_TYPES Enumeration
Reset Types

File

smart_card.h

Syntax

typedef enum {
 SMARTCARD_COLD_RESET,
 SMARTCARD_WARM_RESET
} SMARTCARD_RESET_TYPES;

Members

Members Description

SMARTCARD_COLD_RESET Cold Reset (Done only during Power ON)

SMARTCARD_WARM_RESET Warm Reset

1.5 Library Interface MLA - Smart Card Library Help Data types and constants

22

Description

Reset Type:

This Enum holds the type of Reset provided

Remarks

The enum type signifies the type of reset given by smart card operation

1.5.2.5 SMARTCARD_STATUS Enumeration
This Enum defines Answer To Reset(ATR) status

File

smart_card.h

Syntax

typedef enum {
 SMARTCARD_UNKNOWN,
 SMARTCARD_ATR_ON
} SMARTCARD_STATUS;

Members

Members Description

SMARTCARD_UNKNOWN Indicates the state before the reset of smartcard protocol

SMARTCARD_ATR_ON Indicates the state after reset of smartcard protocol

Description

Smart card ATR Status:

It shows the whether ATR is ON or unknown byte

Remarks

None

1.5.2.6 SMARTCARD_T0CASE_TYPES Enumeration
Various cases handled under T=0 are defined

File

smart_card_layer3.h

Syntax

typedef enum {
 SMARTCARD_UNKNOWN_CASE,
 SMARTCARD_CASE_1,
 SMARTCARD_CASE_2S,
 SMARTCARD_CASE_2E1,
 SMARTCARD_CASE_2E2,
 SMARTCARD_CASE_3S,
 SMARTCARD_CASE_3E1,
 SMARTCARD_CASE_3E2,
 SMARTCARD_CASE_4S,
 SMARTCARD_CASE_4E1,
 SMARTCARD_CASE_4E2
} SMARTCARD_T0CASE_TYPES;

1.5 Library Interface MLA - Smart Card Library Help Data types and constants

23

Members

Members Description

SMARTCARD_UNKNOWN_CASE An unknown mode under T=0

SMARTCARD_CASE_1 Case 1

SMARTCARD_CASE_2S Case 2 Short Mode

SMARTCARD_CASE_2E1 Case 2 Extended Mode(1)

SMARTCARD_CASE_2E2 Case 2 Extended Mode(2)

SMARTCARD_CASE_3S Case 3 Short Mode

SMARTCARD_CASE_3E1 Case 3 Extended Mode(1)

SMARTCARD_CASE_3E2 Case 3 Extended Mode(2)

SMARTCARD_CASE_4S Case 4 Short Mode

SMARTCARD_CASE_4E1 Case 4 Extended Mode(1)

SMARTCARD_CASE_4E2 Case 4 Extended Mode(2)

Description

T0 Case types:

The various cases like short mode, extended mode are defined

Remarks

None

1.5.2.7 SMARTCARD_T1BLOCK_TYPES Enumeration
This Enum defines the various blocks present in the T=1, Protocol Data Unit (PDU)

File

smart_card_layer3.h

Syntax

typedef enum {
 SMARTCARD_NO_BLOCK,
 SMARTCARD_I_BLOCK,
 SMARTCARD_R_BLOCK,
 SMARTCARD_S_BLOCK,
 SMARTCARD_INVALID_BLOCK
} SMARTCARD_T1BLOCK_TYPES;

Members

Members Description

SMARTCARD_I_BLOCK I Block

SMARTCARD_R_BLOCK R Block

SMARTCARD_S_BLOCK S Block

SMARTCARD_INVALID_BLOCK INVALID BLOCK

Description

Block Types in T=1:

In T=1 protocol, the PDU contains various blocks like I-block R-Block S-Block The above said blocks are defined.

Remarks

None

1.5 Library Interface MLA - Smart Card Library Help Data types and constants

24

1.5.2.8 SMARTCARD_T1PROLOGUE_FIELD Structure
This Structure defines Prologue field of T=1 protocol

File

smart_card_layer3.h

Syntax

typedef struct {
 uint8_t NAD;
 uint8_t PCB;
 uint16_t length;
} SMARTCARD_T1PROLOGUE_FIELD;

Members

Members Description

uint8_t NAD; Node Address

uint8_t PCB; Protocol Control Byte

uint16_t length; LENGTH of I-Field

Description

Prologue Field for T=1 Protocol

None

Remarks

None

1.5.2.9 SMARTCARD_TRANSACTION_STATUS Enumeration
Definition of various Error Types

File

smart_card.h

Syntax

typedef enum {
 SMARTCARD_TRANSACTION_SUCCESSFUL = 1,
 SMARTCARD_ERROR_CARD_NOT_SUPPORTED = -16,
 SMARTCARD_ERROR_ATR_DATA,
 SMARTCARD_ERROR_NO_ATR_RESPONSE,
 SMARTCARD_ERROR_CMD_APDU_T0,
 SMARTCARD_ERROR_CMD_APDU_T1,
 SMARTCARD_ERROR_CARD_NOT_PRESENT,
 SMARTCARD_ERROR_CARD_NO_RESPONSE,
 SMARTCARD_ERROR_CARD_VPP,
 SMARTCARD_ERROR_PROCEDURE_BYTE,
 SMARTCARD_ERROR_PPS,
 SMARTCARD_ERROR_RECEIVE_CRC,
 SMARTCARD_ERROR_RECEIVE_LRC,
 SMARTCARD_ERROR_TRANSMIT,
 SMARTCARD_ERROR_T1_RETRY,
 SMARTCARD_ERROR_T1_S_BLOCK_RESPONSE,
 SMARTCARD_ERROR_T1_INVALID_BLOCK
} SMARTCARD_TRANSACTION_STATUS;

Members

Members Description

SMARTCARD_TRANSACTION_SUCCESSFUL = 1 No Error

1.5 Library Interface MLA - Smart Card Library Help Data types and constants

25

SMARTCARD_ERROR_CARD_NOT_SUPPORTED = -16 Card Not Supported

SMARTCARD_ERROR_ATR_DATA ERROR in Answer-To-Reset (ATR) data received from the
card

SMARTCARD_ERROR_NO_ATR_RESPONSE No ATR Response from the card

SMARTCARD_ERROR_CMD_APDU_T0 Wrong T0 Command Application Protocol Data Unit (APDU)

SMARTCARD_ERROR_CMD_APDU_T1 Wrong T1 Command Application Protocol Data Unit (APDU)

SMARTCARD_ERROR_CARD_NOT_PRESENT Card Not present in the slot

SMARTCARD_ERROR_CARD_NO_RESPONSE No response from the card

SMARTCARD_ERROR_CARD_VPP VPP Error received from the card (Voltage
Mismatch/Programming Voltage not supported)

SMARTCARD_ERROR_PROCEDURE_BYTE Incorrect Procedure Byte from the card

SMARTCARD_ERROR_PPS Unsuccessful Protocol and Parameter Select (PPS)
Exchange

SMARTCARD_ERROR_RECEIVE_CRC CRC Error in the block received from the card

SMARTCARD_ERROR_RECEIVE_LRC Longitudinal Redundancy check (LRC) Error in the block
received from the card

SMARTCARD_ERROR_TRANSMIT Transmission of byte to smart card failed

SMARTCARD_ERROR_T1_RETRY Retry for T1 also Unsuccessful

SMARTCARD_ERROR_T1_S_BLOCK_RESPONSE ERROR in T1 'S' Block Response

SMARTCARD_ERROR_T1_INVALID_BLOCK Invalid block

Description

Smart Card Error Types:

During the protocol transaction various Errors could be encountered. This Enum defines the various errors states and it's
interpretations.

Remarks

None

1.5.2.10 SMARTCARD_TRANSACTION_TYPES Enumeration
Transaction Protocol Types

File

smart_card_layer3.h

Syntax

typedef enum {
 SMARTCARD_T0_TYPE,
 SMARTCARD_T1_TYPE,
 SMARTCARD_INVALID_TYPE
} SMARTCARD_TRANSACTION_TYPES;

Members

Members Description

SMARTCARD_T0_TYPE T=0, Protocol is supported

SMARTCARD_T1_TYPE T=1, Protocol is supported

SMARTCARD_INVALID_TYPE Other than 0 or 1 its invalid

Description

Protocol Type Supported:

Two types of protocols supported

1.5 Library Interface MLA - Smart Card Library Help Data types and constants

26

Remarks

The T=0/T=1 protocols are supported,this enum used in assigning the protocol type used in the smart card operation.

1.5.2.11 EMV_SUPPORT Macro
To Support the EMV standard part of the code

File

smart_card_config.h

Syntax

#define EMV_SUPPORT

Description

Support the EMV functionality in the code.

Remarks

None

1.5.2.12 SMARTCARD_PROTO_T1 Macro
To enable the T1 protocol.

File

smart_card_config.h

Syntax

#define SMARTCARD_PROTO_T1

Description

Support the T1 part of protocol in the code.

Remarks

None

1.5.2.13 SMARTCARD_APDU_BUFF_SIZE Macro
Define the Buffer size of Application Protocol Data Unit (APDU).

File

smart_card_config.h

Syntax

#define SMARTCARD_APDU_BUFF_SIZE 256

Description

Maximum size of the buffer of APDU

Remarks

None

1.5 Library Interface MLA - Smart Card Library Help Data types and constants

27

1.5.2.14 SMARTCARD_T1_PROTOCOL_MAX_BUFF_SIZE Macro
Define the Maximum Buffer size for T1 Protocol.

File

smart_card_config.h

Syntax

#define SMARTCARD_T1_PROTOCOL_MAX_BUFF_SIZE 256

Description

Modify the T1 block buffer size as per the RAM size of the chosen micro & project requirement

Remarks

None

1.5 Library Interface MLA - Smart Card Library Help Data types and constants

28

1.6 Demo

1.6.1 Configuring Hardware

This section describes how to set up the various configurations of hardware to run this demo.

1.6.1.1 Configuration using Explorer 16 Board
Following are the Hardware Required :

1. Explorer 16 (Microchip part number DM240001)

2. SC (Smart/Sim Card) PICTail Board

3. And one of the following PIMs

1. PIC24FJ256GB110 Plug-In-Module (PIM) (Microchip part number MA240014),

2. PIC24FJ128GB204 Plug-In-Module (PIM) (Microchip part number MA240036),

3. PIC24FJ128GA204 Plug-In-Module (PIM) (Microchip part number MA240037),

Steps

1. Before attaching the PIM to the Explorer 16 board, insure that the processor selector switch (S2) is in the “PIM” position
as seen in the image below.

2. Short the J7 jumper to the “PIC24” setting

1.6 Demo MLA - Smart Card Library Help Configuring Hardware

29

3. Be careful while inserting the PIC24FJ256GB110 PIM or any other appropriate PIM into Exp 16 board. Insure that no pins
are bent or damaged during the process. Also insure that the PIM is not shifted in any direction and that all of the headers
are properly aligned.

4. Short JP1 to SRC1 (i.e. RD1) or SRC2 (i.e. RB15) based upon the smart card clock pin configured in the firmware:
Example: - Short JP1 to SRC1 while using PIC24FJ256GB110 demo.

5. Insert the J2 slot of SC (Smart/Sim Card) PICTail card into J5 port of Explorer 16 board. Make sure that the Smart Card
Connector is facing towards the Explorer 16 board. Insert the Smart Card in SC PICTail board.

1.6.1.2 Resource Usage - PIC24F
These tables specify the program memory, execution speed, RAM usage, and build requirements PIC24F devices.

Program Memory

Module Optimization Program Memory

Smart Card Library (T=0) -O0 2.7K

Smart Card Library (T=0) -O1 1.9K

Smart Card Library (T=0) -Os 1.7K

Smart Card Library (T=0 and T=1) -O0 4.7K

1.6 Demo MLA - Smart Card Library Help Configuring Hardware

30

Smart Card Library (T=0 and T=1) -O1 3.2K

Smart Card Library (T=0 and T=1) -Os 2.9K

RAM Usage (bytes)

Module/Layer Global Stack Heap

Smart Card Library (T=0) 300 Not available None

Smart Card Library (T=0 and T=1) 330 Not available None

Peripherals

Type/Use Specific/Configurable Polled/Interrupt Limitations

UART Select via Programming, Tx and Rx
Signals

Polled None

Card Power
Output

Select via drv_smart_card_sw.h Polled Be able to source sufficient current to power
the Smart Card

Card Reset
Output

Select via drv_smart_card_sw.h Polled Totempole or Open Drain with pullup

Card Present
Input

Select via drv_smart_card_sw.h Polled Input with Pullup

Clock Output REFO Output n/a Clock Output to Card should be close to
4MHz (3.57MHz for exact Baud Rate, but
not required)

Build Requirements

None

1.6.2 Run Demo

1.6.2.1 Getting Started - Smart Card Demo
This demo shows how the smart card library for PIC microcontroller is used to communicate a smart card using T = 0 and T
= 1 protocols. The demo has to be run in the debug mode of MPLAB IDE.

1.6.2.2 Firmware
To run this project, you will need to load the corresponding firmware into the devices.

The source code for this demo is available in the “<Microchip
Solutions\apps\smartcard\firmware\src\smart_card_demo_main.c” directory. In this directory you will find all of the user level
source and header files, linker file as well as project file for each of the hardware platforms. Find the project (*.mcp) file that
corresponds to the hardware platform you wish to test. Compile and program the demo code into the hardware platform. For
more help on how to compile and program projects, please refer to the MPLAB® IDE help available through the help menu

1.6 Demo MLA - Smart Card Library Help Run Demo

31

of MPLAB (Help->Topics…->MPLAB IDE).

1.6.2.3 Running the Demo
This demo uses the selected hardware platform as a Smart card reader. The demo has to be run in the debug mode of
MPLAB IDE. Please refer "Configuring the Hardware" section for the bench setup connections.

Smart Card consists of 8 pins namely:-

I/O: Input or Output for serial data to the integrated circuit inside the card.

VPP: Programming voltage input (optional use by the card).

GND: Ground (reference voltage).

CLK: Clocking or timing signal.

RST: Reset Signal to the Card.

VCC: Power supply input (optional use by the card).

Communication between the interfacing device and smart card is done as per the following steps:-

1. Insertion of the smart card in the slot.

2. Detection of the smart card insertion by the microcontroller (interfacing device).

3. Microcontroller does the cold reset of the smart card.

4. Answer to Reset (ATR) response by the card.

5. PPS exchange (if smart card supports it).

6. Execution of the transaction(s) between the card and the interfacing device.

7. Removal of the smart card from the slot.

8. Detection of the smart card removal by the microcontroller.

9. Deactivation of the contacts.

Contact type smart card communication protocols that are generally used are:-

• T = 0 asynchronous half duplex character transmission.

• T = 1 asynchronous half duplex block transmission.

The data transfers between the card and the terminal happens on the single wire I/O line. The smart card library supports
both T=0 and T=1 protocol.

Example code for T=0 cards:-

The demo executes the card command Selecting Payment System Environment(PSE) master file "1PAY.SYS.DDF01"

and displays the card record details on UART terminal.

If the master file is not found then the demo application will try to select the application using application identifier(AID).
Currently demo supports the AID query for Master Card , VISA , Amex and Maestro

Example code for T=1 cards:-

1.6 Demo MLA - Smart Card Library Help Run Demo

32

The demo executes the "Get CPLC (Card Production Life Cycle) data" command for T=1 java card. The command list can
be extended further as per the smart card manual and the project requirement.

The demo waits in the while(1) loop until the smart card is inserted in the smart card connector slot. Once the card is
inserted in the slot, 'Cold Reset' and 'PPS' (Protocol and Parameter Selection) has to be performed to the smart card running
MPLAB project in debug mode. If the user has inserted T=0 card in the slot, then “SMARTCARD_EMV_DataExchangeT0”
function is called and the result of the executed command from the smart card is stored in “apduData”. If the user has
inserted T=1 card in the slot, then “SMARTCARD_EMV_DataExchangeT1” function is called and the result of the executed
command from the smart card is stored in “apduData”.

Variable “cardResponse” stores the status codes and the length of the received data from the smart card.

Note: After initially being reset by the card reader, the smart card responds with a string of characters known as the Answer
to Reset, or ATR. These characters consist of an initial character, TS, followed by a maximum of 32 additional characters.
Together, these characters provide information to the card reader about how to communicate with the card for the remainder
of the session. If the card reader wants to modify the data transmission parameters in the smart card, then it must perform
PPS in accordance with Smart Card EMV standards before the transmission protocol is actually used.

For more details about smart card communication using PIC microcontrollers, please refer the application note AN1370

1.6.2.4 Configuring the pins
The current Smart Card software library supports 16-bit PIC microcontrollers.The port pins connection between the micro
and smart card is defined in "smart_card_config" file. The demo uses the signal connections between the smart card and
PIC microcontroller port pins as per the below table:-

Signal Name PIC24FJ256GB110 PIC24FJ128GB204/GA204

SIM_CARD_DET RB1 RA1

SMART_CLK RC7 RC7

SMART_I/O RC4,RF2 RB7,RB13

SMART_RST RE8 RC2

SMART_CARD_DET RB0 RA0

SMART_VCC RB9 RB15

“SMART_CARD_DET”/”SIM_CARD_DET” signals indicate the presence of Smart Card/Sim Card to the microcontroller.
Either of one between Smart Card and Sim Card has to be inserted in the Smart Card PICTail board. If both the cards are
inserted at a time in the PICTail card, then the demo won’t work successfully.

If the user wants to connect the smart card signals to different port pins of the micro, then the pin mapping in
“smart_card_pps_macro.h” file needs to be modified.

1.6 Demo MLA - Smart Card Library Help Run Demo

33

http://ww1.microchip.com/downloads/en/AppNotes/01370A.pdf

Index

C
Configuration using Explorer 16 Board 29

Configuring Hardware 29

Configuring the pins 33

D
Data types and constants 20

Demo 29

E
EMV_SUPPORT 27

EMV_SUPPORT macro 27

F
Firmware 31

Functions 13

G
Getting Started - Smart Card Demo 31

H
How the Library Works 11

I
Initialization Functions 13

Integrating with an Existing Application 12

Introduction 5

L
Legal Information 6

Library Architecture 11

Library Interface 13

R
Release Notes 7

Resource Usage - PIC24F 30

Run Demo 31

Running the Demo 32

S
Smart Card Library 4

Smart Card Library Overview 10

SMARTCARD_APDU_BUFF_SIZE 27

SMARTCARD_APDU_BUFF_SIZE macro 27

SMARTCARD_APDU_COMMAND 21

SMARTCARD_APDU_COMMAND structure 21

SMARTCARD_APDU_RESPONSE 21

SMARTCARD_APDU_RESPONSE structure 21

SMARTCARD_DataExchange 14

SMARTCARD_DataExchange function 14

SMARTCARD_EMV_ATRProcess 15

SMARTCARD_EMV_ATRProcess function 15

SMARTCARD_EMV_DataExchangeT0 16

SMARTCARD_EMV_DataExchangeT0 function 16

SMARTCARD_EMV_DataExchangeT1 16

SMARTCARD_EMV_DataExchangeT1 function 16

SMARTCARD_Initialize 13

SMARTCARD_Initialize function 13

SMARTCARD_IsPPSSupported 17

SMARTCARD_IsPPSSupported function 17

SMARTCARD_IsPresent 17

SMARTCARD_IsPresent function 17

SMARTCARD_PowerOnATR 13

SMARTCARD_PowerOnATR function 13

SMARTCARD_PPS_SUPPORT_STATUS 22

SMARTCARD_PPS_SUPPORT_STATUS enumeration 22

SMARTCARD_PPSExchange 18

SMARTCARD_PPSExchange function 18

SMARTCARD_PROTO_T1 27

SMARTCARD_PROTO_T1 macro 27

SMARTCARD_ProtocolTypeGet 18

SMARTCARD_ProtocolTypeGet function 18

SMARTCARD_RESET_TYPES 22

SMARTCARD_RESET_TYPES enumeration 22

SMARTCARD_Shutdown 19

SMARTCARD_Shutdown function 19

SMARTCARD_StateGet 19

SMARTCARD_StateGet function 19

SMARTCARD_STATUS 23

2 MLA - Smart Card Library Help

34

SMARTCARD_STATUS enumeration 23

SMARTCARD_T0CASE_TYPES 23

SMARTCARD_T0CASE_TYPES enumeration 23

SMARTCARD_T1_PROTOCOL_MAX_BUFF_SIZE 28

SMARTCARD_T1_PROTOCOL_MAX_BUFF_SIZE macro 28

SMARTCARD_T1BLOCK_TYPES 24

SMARTCARD_T1BLOCK_TYPES enumeration 24

SMARTCARD_T1PROLOGUE_FIELD 25

SMARTCARD_T1PROLOGUE_FIELD structure 25

SMARTCARD_TRANSACTION_STATUS 25

SMARTCARD_TRANSACTION_STATUS enumeration 25

SMARTCARD_TRANSACTION_TYPES 26

SMARTCARD_TRANSACTION_TYPES enumeration 26

T
Transaction Functions 14

U
Using the Library 10

V
v1.01 8

v1.02 8

v1.02.2 8

v1.02.4 7

v1.02.6 7

v1.02.8 9

v1.03 9

v2.00 7

2 MLA - Smart Card Library Help

35

	Smart Card Library
	 Table of Contents
	1 Smart Card Library
	1.1 Introduction
	1.2 Legal Information
	1.3 Release Notes
	1.3.1 v2.00
	1.3.2 v1.02.6
	1.3.3 v1.02.4
	1.3.4 v1.02.2
	1.3.5 v1.02
	1.3.6 v1.01
	1.3.7 v1.02.8
	1.3.8 v1.03

	1.4 Using the Library
	1.4.1 Smart Card Library Overview
	1.4.2 Library Architecture
	1.4.3 How the Library Works
	1.4.4 Integrating with an Existing Application

	1.5 Library Interface
	1.5.1 Functions
	1.5.1.1 Initialization Functions
	1.5.1.1.1 SMARTCARD_Initialize Function
	1.5.1.1.2 SMARTCARD_PowerOnATR Function

	1.5.1.2 Transaction Functions
	1.5.1.2.1 SMARTCARD_DataExchange Function
	1.5.1.2.2 SMARTCARD_EMV_ATRProcess Function
	1.5.1.2.3 SMARTCARD_EMV_DataExchangeT0 Function
	1.5.1.2.4 SMARTCARD_EMV_DataExchangeT1 Function
	1.5.1.2.5 SMARTCARD_IsPPSSupported Function
	1.5.1.2.6 SMARTCARD_IsPresent Function
	1.5.1.2.7 SMARTCARD_PPSExchange Function
	1.5.1.2.8 SMARTCARD_ProtocolTypeGet Function
	1.5.1.2.9 SMARTCARD_Shutdown Function
	1.5.1.2.10 SMARTCARD_StateGet Function

	1.5.2 Data types and constants
	1.5.2.1 SMARTCARD_APDU_COMMAND Structure
	1.5.2.2 SMARTCARD_APDU_RESPONSE Structure
	1.5.2.3 SMARTCARD_PPS_SUPPORT_STATUS Enumeration
	1.5.2.4 SMARTCARD_RESET_TYPES Enumeration
	1.5.2.5 SMARTCARD_STATUS Enumeration
	1.5.2.6 SMARTCARD_T0CASE_TYPES Enumeration
	1.5.2.7 SMARTCARD_T1BLOCK_TYPES Enumeration
	1.5.2.8 SMARTCARD_T1PROLOGUE_FIELD Structure
	1.5.2.9 SMARTCARD_TRANSACTION_STATUS Enumeration
	1.5.2.10 SMARTCARD_TRANSACTION_TYPES Enumeration
	1.5.2.11 EMV_SUPPORT Macro
	1.5.2.12 SMARTCARD_PROTO_T1 Macro
	1.5.2.13 SMARTCARD_APDU_BUFF_SIZE Macro
	1.5.2.14 SMARTCARD_T1_PROTOCOL_MAX_BUFF_SIZE Macro

	1.6 Demo
	1.6.1 Configuring Hardware
	1.6.1.1 Configuration using Explorer 16 Board
	1.6.1.2 Resource Usage - PIC24F

	1.6.2 Run Demo
	1.6.2.1 Getting Started - Smart Card Demo
	1.6.2.2 Firmware
	1.6.2.3 Running the Demo
	1.6.2.4 Configuring the pins

	Index

