

Data Sheet September 2000 File Number 3980.9

+5V Powered RS-232 Transmitters/Receivers with 0.1Microfarad External Capacitors

The HIN202-HIN213 family of RS-232 transmitters/receivers interface circuits meet all EIA RS-232E and V.28 specifications, and are particularly suited for those applications where $\pm 12 \text{V}$ is not available. They require a single +5V power supply and feature onboard charge pump voltage converters which generate +10V and -10V supplies from the 5V supply The family of devices offers a wide variety of RS-232 transmitter/receiver combinations to accommodate various applications (see Selection Table).

The HIN206, HIN211 and HIN213 feature a low power shutdown mode to conserve energy in battery powered applications. In addition, the HIN213 provides two active receivers in shutdown mode allowing for easy "wakeup" capability.

The drivers feature true TTL/CMOS input compatibility, slew rate-limited output, and 300 Ω power-off source impedance. The receivers can handle up to $\pm 30 V$ input, and have a $3 k \Omega$ to $7 k \Omega$ input impedance. The receivers also feature hysteresis to greatly improve noise rejection.

Applications

- Any System Requiring RS-232 Communications Port
 - Computer Portable, Mainframe, Laptop
 - Peripheral Printers and Terminals
 - Instrumentation
 - Modems

Features

- · Meets All RS-232E and V.28 Specifications
- Requires Only 0.1μF or Greater External Capacitors
- High Data Rate......120kbit/s
- Two Receivers Active in Shutdown Mode (HIN213)
- Requires Only Single +5V Power Supply
- · Onboard Voltage Doubler/Inverter
- Low Power Consumption (Typ) 5mA
- Low Power Shutdown Function (Typ) 1μA
- Three-State TTL/CMOS Receiver Outputs
- Multiple Drivers
 - ±10V Output Swing for +5V Input
 - 300Ω Power-Off Source Impedance
 - Output Current Limiting
 - TTL/CMOS Compatible
 - 30V/μs Maximum Slew Rate
- · Multiple Receivers
 - ±30V Input Voltage Range
 - $3k\Omega$ to $7k\Omega$ Input Impedance
 - 0.5V Hysteresis to Improve Noise Rejection

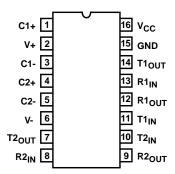
Selection Table

PART NUMBER	POWER SUPPLY VOLTAGE	NUMBER OF RS-232 DRIVERS	NUMBER OF RS-232 RECEIVERS	NUMBER OF 0.1μF EXTERNAL CAPACITORS	LOW POWER SHUTDOWN/TTL THREE-STATE	NUMBER OF RECEIVERS ACTIVE IN SHUTDOWN
HIN202	+5V	2	2	4 Capacitors	No/No	0
HIN206	+5V	4	3	4 Capacitors	Yes/Yes	0
HIN207	+5V	5	3	4 Capacitors	No/No	0
HIN208	5V	4	4	4 Capacitors	No/No	0
HIN211	+5V	4	5	4 Capacitors	Yes/Yes	0
HIN213	+5V	4	5	4 Capacitors	Yes/Yes	2

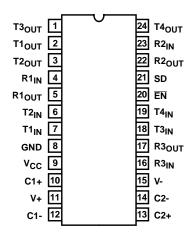
HIN202 thru HIN213

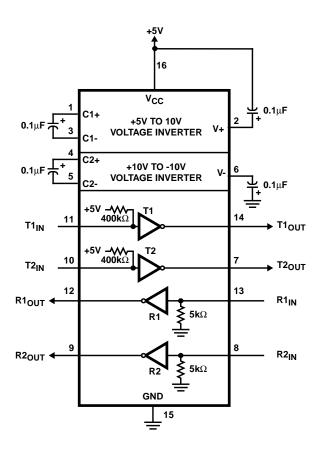
Ordering Information

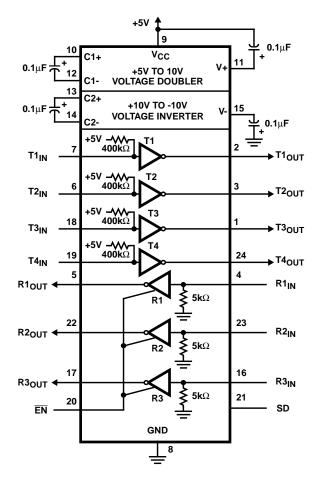
PART NO.	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
HIN202CP	0 to 70	16 Ld PDIP	E16.3
HIN202CB	0 to 70	16 Ld SOIC (W)	M16.3
HIN202IB	-40 to 85	16 Ld SOIC (W)	M16.3
HIN202CBN	0 to 70	16 Ld SOIC (N)	M16.15
HIN206CB	0 to 70	24 Ld SOIC	M24.3
HIN207CP	0 to 70	24 Ld PDIP (N)	E24.3
HIN207CB	0 to 70	24 Ld SOIC	M24.3
HIN207CA	0 to 70	24 Ld SSOP	M24.209
HIN208CP	0 to 70	24 Ld PDIP (N)	E24.3
HIN208CB	0 to 70	24 Ld SOIC	M24.3
HIN208IA	-40 to 85	24 Ld SSOP	M24.209
HIN211CB	0 to 70	28 Ld SOIC	M28.3
HIN211CA	0 to 70	28 Ld SSOP	M28.209
HIN211IA	-40 to 85	28 Ld SSOP	M28.209
HIN213CA	0 to 70	28 Ld SSOP	M28.209


NOTE: Most surface mount devices are available on tape and reel; add "-T" to suffix.

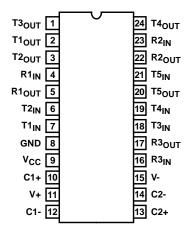
Pin Descriptions

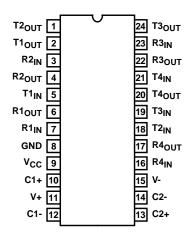

PIN	FUNCTION
V _{CC}	Power Supply Input 5V ±10%, (5V ±5% HIN207).
V+	Internally generated positive supply (+10V nominal).
V-	Internally generated negative supply (-10V nominal).
GND	Ground Lead. Connect to 0V.
C1+	External capacitor (+ terminal) is connected to this lead.
C1-	External capacitor (- terminal) is connected to this lead.
C2+	External capacitor (+ terminal) is connected to this lead.
C2-	External capacitor (- terminal) is connected to this lead.
T _{IN}	Transmitter Inputs. These leads accept TTL/CMOS levels. An internal $400k\Omega$ pull-up resistor to V_{CC} is connected to each lead.
T _{OUT}	Transmitter Outputs. These are RS-232 levels (nominally ±10V).
R _{IN}	Receiver Inputs. These inputs accept RS-232 input levels. An internal 5kΩ pull-down resistor to GND is connected to each input.
R _{OUT}	Receiver Outputs. These are TTL/CMOS levels.
ĒN, EN	Enable Input. This is an active low input which enables the receiver outputs. With $\overline{EN} = 5V$, (HIN213 EN = 0V), the outputs are placed in a high impedance state.
SD, SD	Shutdown Input. With SD = 5V (HIN213 \overline{SD} = 0V), the charge pump is disabled, the receiver outputs are in a high impedance state (except R4 and R5 of HIN213) and the transmitters are shut off.
NC	No Connect. No connections are made to these leads.

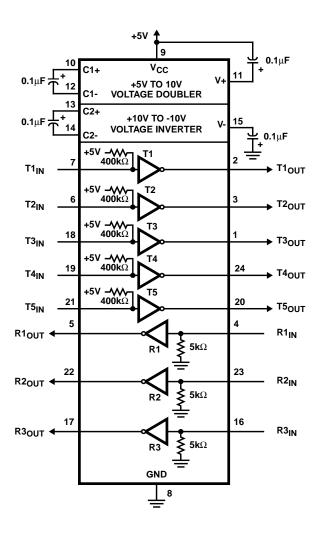

Pinouts

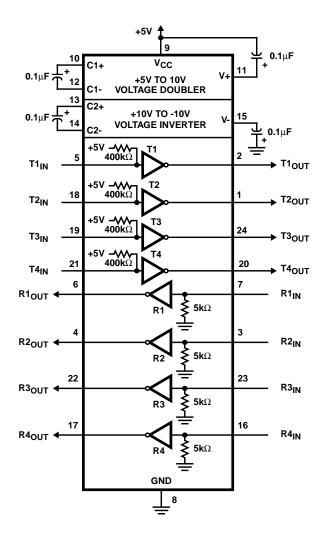

HIN202 (PDIP, SOIC, SSOP) TOP VIEW

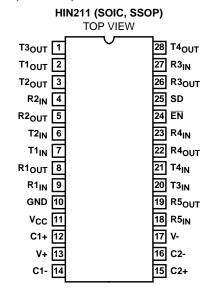
HIN206 (PDIP, SOIC, SSOP) TOP VIEW

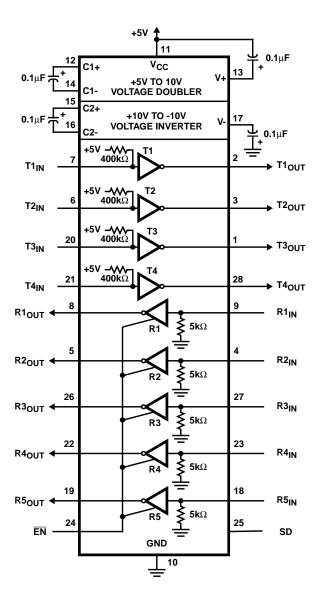


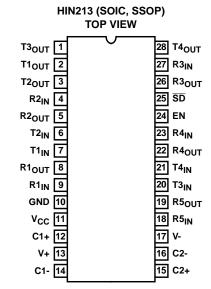


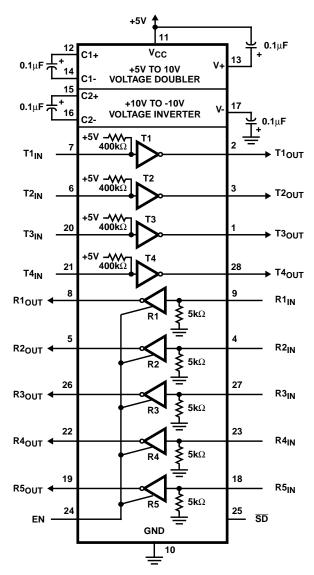

Pinouts (Continued)


HIN207 (PDIP, SOIC, SSOP) TOP VIEW


HIN208 (PDIP, SOIC, SSOP) TOP VIEW






Pinouts (Continued)

NOTE: R4 and R5 active in shutdown.

HIN202 thru HIN213

Absolute Maximum Ratings

V_{CC} to Ground
V- to Ground
Input Voltages
$T_{IN} \dots (V0.3V) < V_{IN} < (V++0.3V)$
R _{IN}
Output Voltages
T_{OUT} (V0.3V) < V_{TXOUT} < (V+ +0.3V)
$R_{OUT} \dots (GND - 0.3V) < V_{RXOUT} < (V + +0.3V)$
Short Circuit Duration
T _{OUT}
R _{OUT}
ESD Classification

Thermal Information

Thermal Resistance (Typical, Note 1)	θ_{JA} (°C/W)
16 Ld SOIC (N) Package	115
16 Ld SOIC (W) Package	100
16 Ld PDIP Package	90
24 Ld SOIC Package	75
24 Ld SSOP Package	135
24 Ld PDIP (N) Package	75
28 Ld SOIC Package	70
28 Ld SSOP Package	100
Maximum Junction Temperature (Plastic Package)	150°C
Maximum Storage Temperature Range65	^o C to 150 ^o C
Maximum Lead Temperature (Soldering 10s)	300°C
(SOIC and SSOP - Lead Tips Only)	

Operating Conditions

Temperature Range	
HIN2XXCX	 0°C to 70°C
HIN2XXIX	 40°C to 85°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $\theta_{\mbox{\scriptsize JA}}$ is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Test Conditions: V_{CC} = +5V ±10%, (V_{CC} = +5V ±5%, HIN207); C1-C4 = 0.1 μ F; T_A = Operating Temperature Range

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNITS
SUPPLY CURRENTS	•		•			
Power Supply Current, I _{CC}	No Load, T _A = 25°C	HIN202	-	8	15	mA
		HIN206 - HIN213	-	11	20	mA
Shutdown Supply Current, I _{CC} (SD)	T _A = 25°C	HIN206, HIN211	-	1	10	μΑ
		HIN213	-	15	50	μΑ
LOGIC AND TRANSMITTER INPUTS, RECEIV	ER OUTPUTS	-				
Input Logic Low, V _{IL}	T _{IN} , EN , SD, I	EN, SD	-	-	0.8	V
Input Logic High, V _{IH}	T _{IN}		2.0	-	-	V
	ĒN, SD, EN, SD		2.4	-	-	V
Transmitter Input Pullup Current, IP	T _{IN} = 0V		-	15	200	μΑ
TTL/CMOS Receiver Output Voltage Low, V _{OL}	I _{OUT} = 1.6mA (HIN202, I _{OUT} = 3.2mA)		-	0.1	0.4	V
TTL/CMOS Receiver Output Voltage High, VOH	I _{OUT} = -1mA		3.5	4.6	-	V
TTL/CMOS Receiver Output Leakage	$\overline{EN} = V_{CC}, EN = 0, 0V < R_{OUT} < V_{CC}$		-	0.05	±10	μΑ
RECEIVER INPUTS						
RS-232 Input Voltage Range, V _{IN}			-30	-	+30	V
Receiver Input Impedance, R _{IN}	$T_A = 25^{\circ}C, V_{IN} = \pm 3V$		3.0	5.0	7.0	kΩ
Receiver Input Low Threshold, V _{IN} (H-L)	$V_{CC} = 5V,$ $T_A = 25^{\circ}C$	Active Mode	0.8	1.2	-	V
		Shutdown Mode HIN213 R4 and R5	0.6	1.5	-	V
Receiver Input High Threshold, V _{IN} (L-H)	V _{CC} = 5V,	Active Mode	-	1.7	2.4	V
	$T_A = 25^{\circ}C$	Shutdown Mode HIN213 R4 and R5	-	1.5	2.4	V

HIN202 thru HIN213

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Receiver Input Hysteresis, V _{HYST}	V _{CC} = 5V No Hysteresis in Shutdown Mode		0.2	0.5	1.0	V
TIMING CHARACTERISTICS						
Baud Rate	1 Transmitter Switching	$R_L = 3k\Omega$	120	-	-	kbps
Output Enable Time, t _{EN}	HIN206, HIN21	1, HIN213	-	400	-	ns
Output Disable Time, t _{DIS}	HIN206, HIN21	1, HIN213	-	200	-	ns
Transmitter, Receiver Propagation Delay, t _{PD}	HIN213 SD = 0V, R4, R5		-	0.5	40	μs
	HIN213 \overline{SD} = V _{CC} , R1 - R5		-	0.5	10	μs
	HIN202 - HIN211		-	0.5	10	μs
Transition Region Slew Rate, SR _T	$R_L=3k\Omega$, $C_L=2500pF$ Measured from +3V to -3V or -3V to +3V, 1 Transmitter Switching (Note 2)		3	-	30	V/µs
TRANSMITTER OUTPUTS						1
Output Voltage Swing, T _{OUT}	Transmitter Outputs, 3kΩ to Ground		±5	±9	±10	V
Output Resistance, R _{OUT}	V _{CC} = V+ = V- = 0V, V _{OUT} = ±2V		300	-	-	Ω
RS-232 Output Short Circuit Current, I _{SC}	T _{OUT} Shorted to GND		-	±10	-	mA

NOTE:

2. Guaranteed by design.

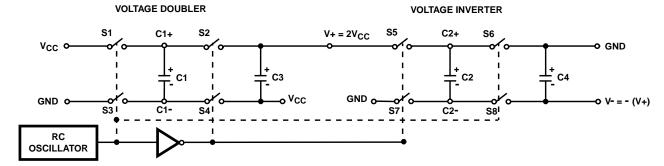


FIGURE 1. CHARGE PUMP

Detailed Description

The HIN202 thru HIN213 family of RS-232 transmitters/receivers are powered by a single +5V power supply feature low power consumption, and meet all EIA RS232C and V.28 specifications. The circuit is divided into three sections: The charge pump, transmitter, and receiver.

Charge Pump

An equivalent circuit of the charge pump is illustrated in Figure 1. The charge pump contains two sections: the voltage doubler and the voltage inverter. Each section is driven by a two phase, internally generated clock to generate +10V and -10V. The nominal clock frequency is 125kHz. During phase one of the clock, capacitor C1 is charged to V_{CC} . During phase two, the voltage on C1 is added to V_{CC} , producing a signal across C3 equal to twice V_{CC}. During phase two, C2 is also charged to 2V_{CC}, and then during phase one, it is inverted with respect to ground to produce a signal across C4 equal to -2V_{CC}. The charge pump accepts input voltages up to 5.5V. The output impedance of the voltage doubler section (V+) is approximately 200 Ω , and the output impedance of the voltage inverter section (V-) is approximately 450Ω. A typical application uses 0.1μF capacitors for C1-C4, however, the value is not critical. Increasing the values of C1 and C2 will lower the output impedance of the voltage doubler and inverter, increasing the values of the reservoir capacitors, C3 and C4, lowers the ripple on the V+ and V- supplies.

During shutdown mode (HIN206 and HIN211, SD = V_{CC} , HIN213, SD = 0V) the charge pump is turned off, V+ is pulled down to V_{CC} , V- is pulled up to GND, and the supply current is reduced to less than 10 μ A. The transmitter outputs are disabled and the receiver outputs (except for HIN213, R4 and R5) are placed in the high impedance state.

Transmitters

The transmitters are TTL/CMOS compatible inverters which translate the inputs to RS-232 outputs. The input logic threshold is about 26% of V_{CC} , or 1.3V for V_{CC} = 5V. A logic 1 at the input results in a voltage of between -5V and V- at the output, and a logic 0 results in a voltage between +5V and (V+ - 0.6V). Each transmitter input has an internal $400k\Omega$ pullup resistor so any unused input can be left unconnected and its output remains in its low state. The output voltage swing meets the RS-232C specifications of ±5V minimum with the worst case conditions of: all transmitters driving $3k\Omega$ minimum load impedance, V_{CC} = 4.5V, and maximum allowable operating temperature. The transmitters have an internally limited output slew rate which is less than 30V/µs. The outputs are short circuit protected and can be shorted to ground indefinitely. The powered down output impedance is a minimum of 300Ω with $\pm 2V$ applied to the outputs and $V_{CC} = 0V$.

Receivers

The receiver inputs accept up to $\pm 30\text{V}$ while presenting the required $3k\Omega$ to $7k\Omega$ input impedance even if the power is off ($V_{CC}=0\text{V}$). The receivers have a typical input threshold of 1.3V which is within the $\pm 3\text{V}$ limits, known as the transition region, of the RS-232 specifications. The receiver output is 0V to V_{CC} . The output will be low whenever the input is greater than 2.4V and high whenever the input is floating or driven between +0.8V and -30V. The receivers feature 0.5V hysteresis (except during shutdown) to improve noise rejection. The receiver Enable line ($\overline{\text{EN}}$ on HIN206 and HIN211, EN on HIN213) when unasserted, disables the receiver outputs, placing them in the high impedance mode. The receiver outputs are also placed in the high impedance state when in shutdown mode (except HIN213 R4 and R5).

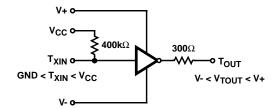


FIGURE 2. TRANSMITTER

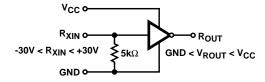
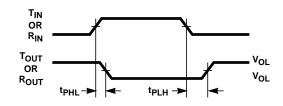



FIGURE 3. RECEIVER

AVERAGE PROPAGATION DELAY =
$$\frac{^{t}PHL + ^{t}PLH}{2}$$

FIGURE 4. PROPAGATION DELAY DEFINITION

HIN213 Operation in Shutdown

The HIN213 features two receivers, R4 and R5, which remain active in shutdown mode. During normal operation the receivers propagation delay is typically 0.5 μ s. This propagation delay may increase slightly during shutdown. When entering shut down mode, receivers R4 and R5 are not valid for 80μ s after $\overline{SD} = V_{IL}$. When exiting shutdown mode, all receiver outputs will be invalid until the charge pump circuitry reaches normal operating voltage. This is typically less than 2ms when using 0.1μ F capacitors.

Typical Performance Curves

FIGURE 5. V- SUPPLY VOLTAGE vs V_{CC}

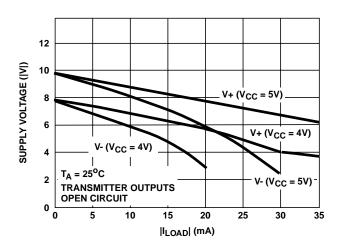


FIGURE 6. V+, V- OUTPUT VOLTAGE vs LOAD

Test Circuits (HIN202)

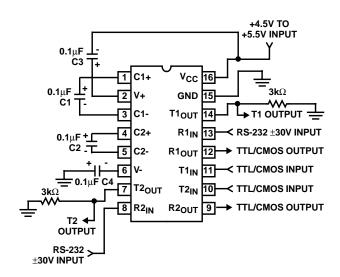


FIGURE 7. GENERAL TEST CIRCUIT

1 C1+ Vcc 2 ۷+ GND 3 C1-T1_{OUT} R1_{IN} 4 C2+ 13 5 C2-R₁out 6 T1_{IN} T2_{OUT} T2_{IN} 7 R2_{IN} 8 R2_{OUT} $R_{OUT} = V_{IN}/I$ T2_{OUT} T1_{OUT} $V_{IN} = \pm 2V$

FIGURE 8. POWER-OFF SOURCE RESISTANCE CONFIGURATION

Application Information

The HIN2XX may be used for all RS-232 data terminal and communication links. It is particularly useful in applications where $\pm 12V$ power supplies are not available for conventional RS-232 interface circuits. The applications presented represent typical interface configurations.

A simple duplex RS-232 port with CTS/RTS handshaking is illustrated in Figure 9. Fixed output signals such as DTR (data terminal ready) and DSRS (data signaling rate select) is generated by driving them through a 5kW resistor connected to V+.

In applications requiring four RS-232 inputs and outputs (Figure 10), note that each circuit requires two charge pump capacitors (C1 and C2) but can share common reservoir capacitors (C3 and C4). The benefit of sharing common reservoir capacitors is the elimination of two capacitors and the reduction of the charge pump source impedance which effectively increases the output swing of the transmitters.

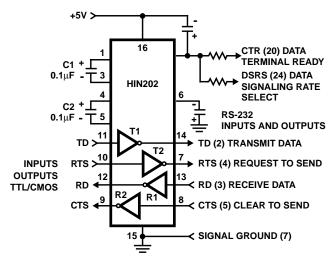


FIGURE 9. SIMPLE DUPLEX RS-232 PORT WITH CTS/RTS HANDSHAKING

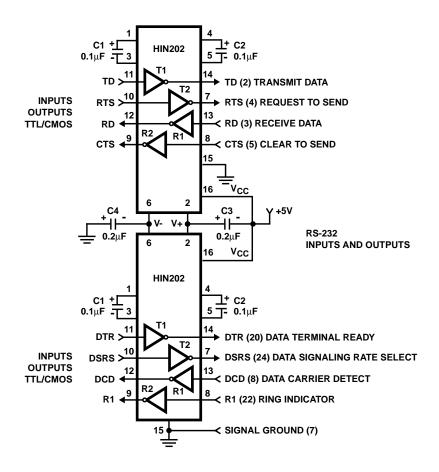


FIGURE 10. COMBINING TWO HIN202s FOR 4 PAIRS OF RS-232 INPUTS AND OUTPUTS

Die Characteristics

DIE DIMENSIONS:

160 mils x 140 mils

METALLIZATION:

Type: Al

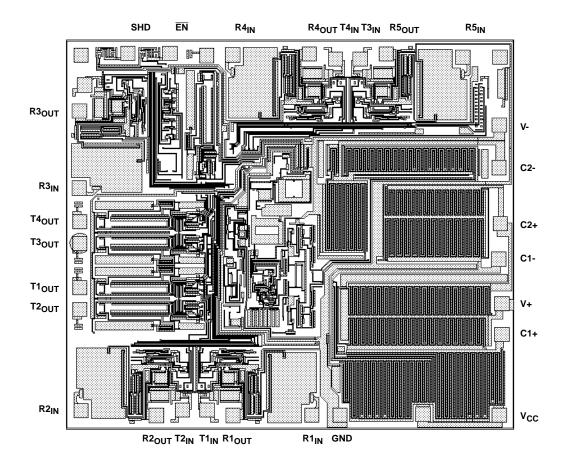
Thickness: 10kÅ ±1kÅ SUBSTRATE POTENTIAL

V+

PASSIVATION:

Type: Nitride over Silox Nitride Thickness: 8kÅ Silox Thickness: 7kÅ

TRANSISTOR COUNT:


238

PROCESS:

CMOS Metal Gate

Metallization Mask Layout

HIN211

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com