
Future Technology Devices Intl Ltd.

Application Note

Created by Future Technology Devices Intl. (FTDI) Ltd.

Contents Copyright (c) 2004 FTDI Ltd.

Data Throughput, Latency & Handshaking

Table of Contents

Part 1 FT232BM and FT245BM Devices - Data
Throughput, Latency, and
Handshaking 1

.. 11.1 Background

Part 2 Data Transfer 2

.. 22.1 The Need For Handshaking

.. 22.2 Data Transfer Comparison

.. 22.3 Continuous Data - Smoothing the Lumps

Part 3 Buffers and the Latency Timer 4

.. 43.1 Small Amounts of Data and End of Buffer conditions

.. 53.2 Adjusting the Receive Buffer Latency Timer

.. 53.3 Effect of USB Buffer Size and the Latency Timer on Data Throughput

.. 63.4 Adjusting the USB Transfer Size

Part 4 Events and Flow Control 8

.. 84.1 Event Characters

.. 84.2 Flushing the Receive Buffer Using the Modem Status Lines

.. 84.3 Flow Control

Part 5 History, Disclaimer, Contact
Information 10

.. 105.1 Document Revision History

.. 105.2 Disclaimer

.. 105.3 Contact Information

..

Data Throughput, Latency & Handshaking
I

1Data Throughput, Latency & Handshaking

1 FT232BM and FT245BM Devices - Data Throughput,
Latency, and Handshaking

1.1 Background

The Universal Serial Bus may be new to some users and developers. This application note
tries to describe the major architecture differences that need to be considered by both
software and hardware designers when changing from a traditional RS232 based solution,
to one that uses the FT232BM USB to serial interface device. Much of the information in
this application note also applies to the FT245BM USB to parallel FIFO interface device.

2 Data Throughput, Latency & Handshaking

2 Data Transfer

2.1 The Need For Handshaking

USB data transfer is prone to delays that do not normally appear in systems that have been
used to transferring data using interrupts. The original COM ports of a PC were directly
connected to the motherboard and were interrupt driven. When a character was transmitted
or received (depending if FIFO's are used) the CPU would be interrupted and go to a
routine to handle the data. This meant that a user could be reasonably certain that, given a
particular baud rate and data rate, the transfer of data could be achieved without any real
need for flow control. The hardware interrupt ensured that the request would get serviced.
Therefore data could be transferred without using handshaking and still arrive into the PC
without data loss.

2.2 Data Transfer Comparison

USB does not transfer data using interrupts. It uses a scheduled system and as a result,
there can be periods when the USB request does not get scheduled and, if handshaking is
not used, data loss will occur. An example of scheduling delays can be seen if an open
application is dragged around using the mouse.

For a USB device, data transfer is done in packets. If data is to be sent from the PC, then a
packet of data is built up by the device driver and sent to the USB scheduler. This
scheduler puts the request onto the list of tasks for the USB host controller to perform.
This will typically take at least 1 millisecond to execute because it will not pick up the new
request until the next ' USB Frame' (The frame period is 1 millisecond). Therefore there is a
sizable overhead (depending on your required throughput) associated with moving the data
from the application to the USB device. If data were sent 'byte at a time' by an application,
this would severely limit the overall throughput of the system as a whole.

2.3 Continuous Data - Smoothing the Lumps

Data is received from USB to the PC by a polling method. The driver will request a certain
amount of data from the USB scheduler. This is done in multiples of 64 bytes. The 'bulk
packet size' on USB is a maximum of 64 bytes. The host controller will read data from the
device until either (a) a packet shorter than 64 bytes is received or (b) the requested data

3Data Throughput, Latency & Handshaking

length is reached. The device driver will request packet sizes between 64 Bytes and 4
Kbytes. The size of the packet will affect the performance and is dependent on the data
rate. For very high speed, the largest packet size is needed. For 'real-time' applications that
are transferring audio data at 115200 Baud, for example, the smallest packet possible is
desirable, otherwise the device will be holding up 4k of data at a time. This can give the
effect of 'jerky' data transfer if the USB request size is too large and the data rate too low
(relatively). The latest FTDI driver release will automatically vary the requested packet size
depending on the baud rate selected.

4 Data Throughput, Latency & Handshaking

3 Buffers and the Latency Timer

3.1 Small Amounts of Data and End of Buffer conditions

When transferring data from the FT232BM or FT245BM to the PC, the device will send
the data given one of the following conditions: -

1. The buffer is full (64 bytes made up of 2 status bytes and 62 user bytes).

2. One of the RS232 status lines has changed (FT232BM chip only). A change of level
(high or low) on CTS# / DSR# / DCD# or RI# will cause it to pass back the current buffer
even though it may be empty or have less than 64 bytes in it.

3. An event character had been enabled and was detected in the incoming data stream.

4. A timer integral to the chip has timed out. There is a timer in both the FT232BM and
FT245BM chips that measures the time since data was last sent to the PC. The default
value of the timer is set to 16 milliseconds. Every time data is sent back to the PC the timer
is reset. If it times-out then the chip will send back the 2 status bytes and any data that is
held in the buffer.

From this it can be seen that small amounts of data (or the end of large amounts of data),
will be subject to a 16 millisecond delay when transferring into the PC. This delay should be
taken along with the delays associated with the USB request size as mentioned in the
previous section. The timer value was chosen so that we could make advantage of 64 byte
packets to fill large buffers when in high speed mode, as well as letting single characters
through. The value chosen is 16 milliseconds. This means that it will take 16 milliseconds
to receive an individual character, over and above the transfer time on serial or parallel link.

For large amounts of data, at high data rates, the timer will not be used. It may be used to
send the last packet of a block, if the final packet size works out to be less than 64 bytes.
The first 2 bytes of every packet are used as status bytes for the driver. This status is sent
every 16 milliseconds, even when no data is present in the device.

A worst case condition could occur when 62 bytes of data are received in 16 milliseconds.
This would not cause a timeout, but would send the 64 bytes (2 status + 62 user data
bytes) back to USB every 16 milliseconds. When the USBD system driver receives the 64
bytes it would hold on to them, and request another 'IN' transaction. This would be
completed another 16 milliseconds later, and so on until USBD gets all of the 4K of data
required. The overall time would be (4096 / 64) * 16 milliseconds = 1.024 seconds between
data packets being received by the application. In order to stop the data arriving in 4K
packets, it should be requested in smaller amounts. A short packet (< 64 bytes) will of
course cause the data to pass from USBD back to the FTDI driver for use by the

5Data Throughput, Latency & Handshaking

application.

*** For application programmers it must be stressed that data should be sent or received
using buffers and not individual characters.

3.2 Adjusting the Receive Buffer Latency Timer

FTDI's second generation, BM series chips allow the latency timer to be changed from 16
milliseconds to any value from 1 to 255 milliseconds, in 1 millisecond increments. When
using the FTDI Virtual Com Port driver the latency timer can be set in the port properties
page. In Windows the port properties page is accessed via the device manager. For
Windows 2000 and XP the initial value of the latency timer can also be pre-configured in
ftdiport.inf by changing the value of the last number in the following line –

HKR,,"LatencyTimer",0x00010001,16

Where again, 16 milliseconds is the default value.

A .dll is also available from FTDI that allows the latency time to be configured
programmatically with VCP on W2000 and XP.

When using FTDI's D2XX direct driver the function FT_SetLatencyTimer can be used to
adjust the value of the latency timer.

3.3 Effect of USB Buffer Size and the Latency Timer on Data
Throughput

An effect that is not immediately obvious is the way the size of the USB total packet
request has on the smoothness of data flow. When a read request is sent to USB, the USB
host controller will continue to read 64 byte packets until one of the following conditions is
met: -

 a) It has read the requested size (default is 4 Kbytes).

 b) It has received a packet shorter than 64 bytes from the chip.

 c) It has been cancelled.

While the host controller is waiting for one of the above conditions to occur, NO data is
received by our driver, and hence the users application. The data, if there is any, is only

6 Data Throughput, Latency & Handshaking

finally transferred after one of the above conditions has occurred.

Normally condition (c) will not occur so we will look at cases (a) and (b). If 64 byte
packets are continually sent back to the host, then it will continue to read the data to match
the block size requested, before it sends the block back to the driver. If a small amount of
data is sent, or the data is sent data slowly, then the latency timer will take over and send a
short packet back to the host, which will terminate the read request. The data that has been
read so far is then passed on to the users application via the FTDI driver. This shows a
relationship between the latency timer, the data rate, and when the data will become
available to the user. A condition can occur where if data is passed into the FTDI chip at
such a rate as to avoid the latency timer timing out, it can take a long time between
receiving data blocks. This occurs because the host controller will see 64 byte packets at
the point just before the end of the latency period, and will therefore continue to read the
data until it reaches the block size, before it is passed back to the users application.

The rate that causes this will be: -

62 / Latency Timer bytes/Second

(We use 2 bytes per 64 byte packet)

For the default values: -

62 / 0.016 ~ = 3875 bytes /second ~ = 38.75 K Baud

Therefore if data is received at a rate of 3875 bytes per second (38.75 K Baud), or faster,
then the data will be subject to delays based on the requested USB block length. If data is
received at a slower rate, then there will be less than 62 bytes (64 including our 2 status
bytes) available after 16 milliseconds. Therefore a short packet will occur, thus terminating
the USB request, and passing the data back. At the limit condition of 38.75 K Baud it will
take approximately 1.06 seconds between data buffers into the users application (assuming
a 4Kbyte USB block request buffer size).

To get around this you can either increase the latency timer or reduce the USB block
request. Reducing the USB block request is the preferred method though a balance
between the 2 may be sought for optimum system response.

3.4 Adjusting the USB Transfer Size

Again, when using the FTDI Virtual Com Port drivers the USB Transfer (buffer) size can
be set in the port properties page. The initial buffer size is calculated from entries in the
ftdiport.inf file - with the size of buffer allocated being equal to the .inf entry plus 1
multiplied by 64 (bytes).

7Data Throughput, Latency & Handshaking

So 0 is 64 bytes, and 3F is (63+1)*64 = 4096.

There are two entries in the INF file - the first one is the transmit buffer and the second is
the receive buffer.

HKR,,ConfigData,1,01,00,3F,3F,10,27,88,13,C4,09,E2,04,71,02,38,41,9c,80,4E,C0,34,00,1A,00,0D,00,06
,40,03,80,00,00,00,00

In the example above the two 3F's are the entries in question, with this line being set for 4k
byte buffer size operation and

HKR,,ConfigData,1,01,00,00,00,10,27,88,13,C4,09,E2,04,71,02,38,41,9c,80,4E,C0,34,00,1A,00,0D,00,06,
40,03,80,00,00,00,00

being set for 64 byte buffer size operation.

When using FTDI's D2XX direct driver the function FT_SetUSBParameters can be used to
adjust the size of the USB block requested. See the separate FTDI application note for
advice on using FT_SetUSBParameters to optimize data throughput.

8 Data Throughput, Latency & Handshaking

4 Events and Flow Control

4.1 Event Characters

Event characters can be used with either FT232BM or FT245BM devices. If the Event
character is enabled, and it is detected in the data stream, then the contents of the devices
buffer is sent immediately. The event character is not stripped out of the data stream by the
device or by the drivers. It is up to the application to remove it. Event characters may be
turned on and off depending on whether large amounts of random data or small command
sequences are to be sent. The Event character will not work if it is the first character in the
buffer. It needs to be the second or higher. The reason for this being, applications that use
the Internet, for example, will program the event character as '$7E'. All the data is then sent
and received in packets that have '$7E' at the start and at the end of the packet. In order to
maximise throughput, and to avoid a packet with only the starting '$7E' in it, the event
character does not trigger on the first position.

4.2 Flushing the Receive Buffer Using the Modem Status Lines

Flow control can be used by the FT232BM to flush the buffer in the chip. Changing one of
the modem status lines will do this. The modem status lines can controlled by an external
device or from the host PC itself. If an unused output line (DTR) is connected to one of the
unused inputs (DSR), then it If the DTR line is changed by the application program from
low to high or high to low, this will cause a change on DSR and make it flush the buffer.

4.3 Flow Control

The FT245BM chip uses its own handshaking as an integral part of its design, by proper
use of the TXE# line. The FT232BM chip can use RTS / CTS, DTR / DSR hardware or
XON / XOFF software handshaking. It is highly recommended that some form of
handshaking be used.

There are 4 methods of flow control that can be programmed for the FT232BM device.

1. None - this may result in data loss at high speeds

9Data Throughput, Latency & Handshaking

2. RTS/CTS - 2 wire handshake. The device will transmit if CTS is active and will drop
RTS if it cannot receive any more.

3. DTR/DSR - 2 wire handshake. The device will transmit if DSR is active and will drop
DTR if it cannot receive any more.

4. XON/XOFF - flow control is done by sending or receiving special characters. One is
XON (transmit on) the other is XOFF (transmit off). They are individually programmable
to any value.

It is strongly encouraged that flow control is used because we are unable to ensure that we
will always be scheduled. The chip can buffer up to 384 bytes of data. Windows can 'starve'
the driver program of time if it is doing other things. The most obvious example of this is
moving an application around the screen with the mouse by grabbing its task bar. This will
result in a lot of graphics activity and data loss will occur if receiving data at 115200 baud
(as an example) with no handshaking. If the data rate is low or data loss is acceptable then
flow control may be omitted.

10 Data Throughput, Latency & Handshaking

5 History, Disclaimer, Contact Information

5.1 Document Revision History

AN232B-04 Version 1.0 – Initial document created March 2004.

5.2 Disclaimer

© Future Technology Devices International Limited , 2002 - 2004

Neither the whole nor any part of the information contained in, or the product described in
this manual, may be adapted or reproduced in any material or electronic form without the
prior written consent of the copyright holder.

This product and its documentation are supplied on an as-is basis and no warranty as to
their suitability for any particular purpose is either made or implied.

Future Technology Devices International Ltd. will not accept any claim for damages
howsoever arising as a result of use or failure of this product. Your statutory rights are not
affected.

This product or any variant of it is not intended for use in any medical appliance, device or
system in which the failure of the product might reasonably be expected to result in
personal injury.

This document provides preliminary information that may be subject to change without
notice.

5.3 Contact Information

Future Technology Devices Intl. Limited
373 Scotland Street,
Glasgow G5 8QB,
United Kingdom.

Tel : +44 (0)141 429 2777

11Data Throughput, Latency & Handshaking

Fax : +44 (0)141 429 2758

E-Mail (Sales) : sales@ftdichip.com
E-Mail (Support) : support@ftdichip.com
E-Mail (General Enquires) : admin@ftdichip.com
Web Site URL : www.ftdichip.com

Agents and Sales Representatives
At the time of writing our Sales Network covers over 50 different countries world-wide.
Please visit the Sales Network page of our Web site for the contact details our
distributor(s) in your country. See http://www.ftdichip.com/FTDisti.htm

http://www.ftdichip.com
http://www.ftdichip.com/FTDisti.htm

Index

- $ -
$7E 8

- 1 -
16 ms 4, 5

- B -
Baud Rate 2

Block Size 5

Buffer 4

Buffer Size 6

Bulk Packet Size 2

Byte at a Time 2

- C -
COM Port 2

Contact 10

CTS# 4

- D -
D2XX 5, 6

Data rate 5

Data Stream 8

DCD# 4

Disclaimer 10

Document Revision History 10

DSR 8

DSR# 4

DTR 8

DTR / DSR 8

- E -
Email 10

Event Character 4

Event Characters 8

- F -
Flow Control 2, 8

Frame 2

FT_SetLatencyTimer 5

FT_SetUSBParameters 6

FT2232C 1

FT232BM 1, 8

FT245BM 1, 8

ftdiport.inf 6

- H -
Handshaking 8

Host Controller 5

- I -
IN 4

IN Transaction 4

Individual Characters 4

INF file 6

ANT8 User Manual12

Interrupts 2

- J -
Jerky Data 2

- L -
Latency Timer 4, 5

- M -
Modem Status Lines 8

- P -
Packet 5

Polling 2

Port Properties Page 5

- R -
Read Request 5

Real Time Applications 2

Receive Buffer 4

RI# 4

RS232 1, 4

RTS / CTS 8

- S -
Scheduling 2

Status Bytes 4

- T -
Trigger 8

TXE# 8

- U -
Universal Seial Bus 1

USB block request 5

USB Frame 2

USB Host Controller 5

USB Packet 5

USB Packets 2

USB Request 5

USB Scheduler 2

USB Total Packet Requst 5

USB Transfer Size 6

USBD 4

- V -
VCP Driver 5, 6

Virtual COM Port Driver 5, 6

- X -
Xon / Xoff 8

Index 13

	FT232BM and FT245BM Devices - Data Throughput, Latency, and Handshaking
	Background

	Data Transfer
	The Need For Handshaking
	Data Transfer Comparison
	Continuous Data - Smoothing the Lumps

	Buffers and the Latency Timer
	Small Amounts of Data and End of Buffer conditions
	Adjusting the Receive Buffer Latency Timer
	Effect of USB Buffer Size and the Latency Timer on Data Throughput
	Adjusting the USB Transfer Size

	Events and Flow Control
	Event Characters
	Flushing the Receive Buffer Using the Modem Status Lines
	Flow Control

	History, Disclaimer, Contact Information
	Document Revision History
	Disclaimer
	Contact Information

