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impedance output, followed by a buffer amp as impedance
converter. Between these two components are a resistor and
a capacitor to determine the open-loop gain, slew rate, and
bandwidth. The differential amplifier charges the capacitor,
C, with quiescent current for rising and falling signals so that
the slew rate can be determined as follows:

Usually, a sine-wave signal is applied to an op amp to
determine its –3dB bandwidth. Since sine-shaped signals
have the largest signal variation at the zero crossing point,
the –3dB bandwidth of the op amp can be calculated by the
following equation:

Internally compensated amplifiers, which include most clas-
sical amplifiers, use an integrated capacitor for the worst
case or smallest closed-loop gain. This compensation ca-
pacitor reduces the maximum open-loop gain to
–6dB per octave starting at very low frequencies but ensures
sufficient phase margin for stable operation even at gain +1.
This method of frequency response adjustment is not at all
suitable for wide-band amplifiers, since the compensation
capacitor allows neither slew rates over 1000V/µs nor large-
signal bandwidths over 100MHz.

CURRENT-FEEDBACK CONFIGURATION:
THE ALTERNATIVE OF THE 80s

About ten years ago, current-feedback amplifiers were de-
veloped as an alternative to conventional op amps. They
consist of a transconductance amplifier in Diamond struc-
ture and an output stage made up of complementary emitter
followers as shown in Figure 2. The feedback loop connects
the output of the amplifier to the low-impedance input, thus
transforming the usual voltage feedback into current feed-
back. The current-feedback method not only allows optimal
frequency response adjustment using the parallel impedance
of the feedback network (which also influences the open-
loop gain) but also eliminates the need for an internal
compensation capacitor. The design does have one parasitic
capacitor at the high-impedance OTA output, but its capaci-
tance is much smaller than that of compensation capacitors
in classical configurations, and the improvement in capaci-
tor charging (10 to 20 times IQ) produces slew rates of up to

CURRENT OR VOLTAGE FEEDBACK:
THE CHOICE IS YOURS WITH THE NEW, FLEXIBLE,

WIDE-BAND OPERATIONAL AMPLIFIER OPA622.

By Christian Henn and Andreas Sibrai, Burr-Brown International GmbH

With the recently introduced wide-band op amp OPA622,
Burr-Brown has reached a new height in op amp design. In
the past, engineers designing a circuit with feedback had to
choose between voltage and current feedback according to
the requirements of their particular applications. Both feed-
back types involve a trade-off. The current-feedback struc-
tures available up to now use their symmetrical circuit
design and short feedback loop to process wide-band analog
signals, while the traditional voltage-feedback amplifiers
provide more optimized DC performance but slow down the
signal processing rate. But with the OPA622, an IC is
available that can be configured for both modes. The first
voltage-feedback op amp manufactured using a complemen-
tary circuit technique, the OPA622 achieves bandwidths and
slew rates previously attainable only with current-feedback
amplifiers, while also offering two identical high-impedance
inputs, improved common-mode rejection, and external ad-
justment of the open-loop gain and quiescent current. The
OPA622’s extremely flexible pin configuration lets the user
assemble it as a voltage-feedback op amp, a fast comparator,
an AGC amplifier, an open-loop or direct-feedback ampli-
fier, and even a 350MHz current-feedback amplifier. Its
powerful output stage can easily drive 50Ω and 75Ω trans-
mission systems and operates stably on capacitive load
resistors. This application note will present the internal
circuit configuration, specifications, and frequency response
alignment of the OPA622 and will also describe its diverse
applications.

CLASSICAL CIRCUIT TECHNIQUES

As shown in Figure 1, a classical op amp consists of a
differential or transconductance amplifier (TA) with high-

FIGURE 1. Operational Amplifier Consisting of a
Transconductance Amplifier (TA) and Buffer
(B).
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2000V/µs and large-signal bandwidths of up to 250MHz.
The current-feedback configuration does, however, have
drawbacks such as asymmetrical inputs, reduced common-
mode rejection, and relatively high input voltage offset
compared to state-of-the-art conventional op amps.

THE WHOLE WORKS:
CURRENT AND VOLTAGE FEEDBACK IN ONE

The OPA622 combines the speed of a current-feedback
design with the precision of a voltage-feedback design using
two identical high-impedance inputs. As shown in Figure 3,

the OPA622 comprises an OTA, a feedback buffer, and a
±70mA output stage. The differential input stage with high-
impedance inputs is made up of two identical complemen-
tary buffers so that the only input offset voltage is the
difference between their offset voltages. Both buffer outputs
are connected to package pins and to each other via the
resistor ROG. This resistor functions like the emitter degen-
eration resistor of a classical 2-transistor differential stage
and allows external open-loop gain adjustment. Figure 4
shows the frequency response of the open-loop gain at
various ROG values. When the input voltage is differential, a
current flows through the ROG. The current mirror in the
OTA reflects this current to its high-impedance output,
which is decoupled by the output stage and functions prac-
tically in open-loop mode. The feedback loop connects the
output to the input of the feedback buffer (FB), which when
inserted switches the circuit from current-feedback to volt-
age-feedback mode.

FLEXIBILITY

When defining a product, engineers always face a conflict
between ensuring pinout compatibility, providing the small-
est possible package, and guaranteeing circuit flexibility.
Only with a flexible configuration is it possible for engineers
to adapt an IC to their particular applications or to imple-
ment functions that are impossible or extremely difficult to
achieve with standard op amps. The OPA622 makes it easy
for users to customize the configuration to their particular
needs and allows multiple access points to the inputs and
outputs of the individual circuit parts. The compromise for
the OPA622’s flexibility is its slightly reduced AC perfor-
mance, as its multiple pin-to-pin connections generate a
longer delay time in the feedback loop. For optimum AC
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FIGURE 2. Current-Feedback Amplifier in Diamond Struc-
ture.

FIGURE 3. Voltage-Feedback Amplifier in Diamond Structure.
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performance and for standard circuit functions, the OPA623
and the planned 8-pin standard pinout voltage-feedback
amplifier series OPA655/6/7/8 are the better choice.

FIGURE 4. Open-Loop Gain at Various ROG Values.

Figure 5 shows the pin configuration of the OPA622, and
Table I describes the function of the individual pins. The
OPA622 is available in a 14-pin  DIL or SO package and is
specified over the industrial temperature range from
–40°C to +85°C. The internal power supply provides the
quiescent current, which rises with temperature to maintain
constant AC performance. In addition, the external resistor,
RQ, allows the user to vary the total quiescent current
consumption between ±3mA and ±8mA. The quiescent
current is specified at ±5mA using a quiescent current
resistance (RQ) of 430Ω. RQ is connected to Pin 5 and the
negative supply voltage (–5V). In normal operation, a nega-
tive current flows at Pin 2. If the user forces a positive
current by using an external current source, the OPA622 is
switched off and requires practically no current. Figure 6
shows the OPA622 as a current-feedback amplifier, which
offers 350MHz bandwidth at 2.8Vp-p and a slew rate of over
2000V/µs. The feedback buffer is not necessary for the
current-feedback configuration so it can be used for other

PIN NO. DESCRIPTION FUNCTION

2 IQ Adjust Quiescent Current Adjustment: typ 3-8mA
3 –In Inverting Analog Input
4 +In Noninverting Analog Input
5 –VCC Negative Supply Voltage: typ –5VDC
6 –VCC OUT Negative Supply Voltage Output Buffer:

typ –5VDC
8 BUF– Analog Output Feedback Buffer
9 VOUT Analog Output

10 OTA Analog Output OTA
11 +VCC OUT Positive Supply Voltage Output Buffer:

   typ +5VDC
12 +VCC Positive Supply Voltage: typ +5VDC
13 BUF+ Analog Output/Input

TABLE I. Functional Description of the Pin Configuration.
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FIGURE 5. Pin Configuration.

applications. Since the output stage of the feedback buffer is
purposely small to ensure a short delay time, and since it
may not be overloaded, the load resistance at the maximum
output signal should not exceed 500Ω.

One special feature of the OPA622 is its separate supply pins
for the differential amp and the output buffer, which is
capable of driving the ±70mA output stage. The separate
supply decouples the differential amplifier from the output
stage, through which large charge currents must flow at
200MHz large-signal bandwidth, and also improves the
pulse response and allows various power supply sensing
techniques for higher output voltage swings. In addition, it
is possible to limit the current consumption to protect the
output stage from overload.

Figure 7 shows inverting and noninverting versions of the
OPA622 in current- and voltage-feedback modes.

OPTIMIZING THE FREQUENCY
RESPONSE ADJUSTMENT

Analyses of various op amp configurations have proven that
the frequency response is optimally flat when the following
equation holds:

C/gm = 2kO • TD, GCL =
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The ability to adjust the open-loop gain externally lets users
adapt the frequency response to capacitive load resistances
to a certain extent. Figure 10 shows the flat frequency
response attained at gain +2 for three different load capaci-
tances.

To put the finishing touches on the general presentation of
the OPA622, Figures 11, 12, and 13 show the bandwidth at
different output signals, the pulse response at 5Vp-p, and the
group delay time, respectively.

The broad range of applications for the OPA622 impres-
sively demonstrates the flexibility of its individual circuit
parts and pin configuration. The OPA622’s specifications,
which are shown in Table II, fulfill requirements for appli-
cations in high-speed analog and digital communications,
broadcasting and video, test and instrumentation, fiber optic
transmission, and data acquisition equipment. Typical appli-
cations include an input differential amplifier for test equip-
ment and monitors, a line driver for analog and digital
systems, an ADC input and DAC output amp, a multiplier
output amp, and a magnetic head driver when combined
with a discrete current source. The following discussion
presents several applications in more detail.

FIGURE 8. Frequency Response at Various Gains.
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Thus the ratio of the capacitance, C, at the high-impedance
OTA output to the internal OTA transconductance is equal
to the closed-loop gain times the delay time (TD) times 2.
Adjusting the open-loop gain externally to produce optimal
frequency response is the best way to guarantee that wide-
band amplifiers will function stably in feedback mode. As
already shown in Figure 4, raising ROG lowers the open-loop
gain while simultaneously maintaining sufficient phase
margin. What’s important for wide-band amplifiers is that
the bandwidth does not decrease with open-loop gain—thus
the gain-bandwidth product rule, stating that the gain band-
width of internally compensated op amps decreases with
increasing closed-loop gain while the product of the gain
times the bandwidth remains constant, no longer applies.
Figure 8 shows that the OPA622 is quite successful in
putting these theoretical analyses into practice. At a gain
range of –2 to +10 and output voltage of 1.4Vp-p, the –3dB
bandwidth varies from 110MHz to 230MHz while ROG

varies from 10Ω to 390Ω. The differences between the
theoretical and real measurements are due to parasitic ca-
pacitances and other minor influences. Figure 9 shows the
effect of varying ROG at constant closed-loop gain. The
frequency response is optimally aligned at a gain of +2 and
ROG of 150Ω. Increasing the ROG flattens the frequency
response curve, while decreasing ROG produces a rise in
frequency response at the end of the bandwidth. In some
applications, slight peaking is useful; while increasing over-
shooting, it also expands the –3dB bandwidth and lowers the
pulse slew rates.
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FIGURE 10. OPA622 Bandwidth at Various Capacitive
Load Resistances.
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corresponding winding ratio to achieve the required output
impedance matching. In the application shown in Figure 14,
the OPA622 with its high-impedance inputs converts the
complementary output currents of the multiplier into an
asymmetrical output voltage. The low-impedance output can
be adapted to 50Ω or 75Ω systems by inserting a series
resistor. In this way, the OPA622 can be used as a true
differential amplifier.

For the multiplier to function perfectly, both open collector
outputs have to have a potential of more than the positive
supply voltage to prevent saturation of the output transistors.
Additional resistors (R3 and R4) are located in series to the
multiplier supply pins so that no extra power supply is
necessary. These resistors reduce the supply voltage of the
multiplier to less than that required by the output amplifier.
We recommend raising the supply voltage from typically 5V
to 6V to expand the common-mode output range of the
OPA622 and to improve the multiplier’s dynamic perfor-
mance.

Using the multiplier, it is possible to multiply wide-band
signals of up to 100MHz with little distortion. Other typical
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A TRUE DIFFERENTIAL AMPLIFIER
FOR WIDE-BAND MULTIPLIERS

Four-quadrant, wide-band multipliers produce  differential
output currents to achieve the high bandwidth required by
their applications. A multiplier’s differential open collector
outputs are undesirable, however, in applications in which
the multiplication should produce a voltage referred to
ground. Since current-feedback amplifiers have asymmetri-
cal inputs, they require complex discrete circuitry to be used
as output amplifiers for wide-band multipliers. Another
possibility is to use an RF transmitter with a sender tap and

TABLE II. Typical Parameters of the OPA622 as a
Voltage-Feedback Amplifier.

Large Signal Bandwidth (5Vp-p) 1700V/µs (SOIC)
Slew Rate 200MHz (SOIC)
Gain Deviation: DC to 30MHz 0.12dB

DC to 100MHz 0.3dB
Quiescent Current Consumption ±5mA
Input Bias Current –1.2µA
Output Current ±70mA
Offset Voltage 100µV
Common-Mode Rejection 78dB
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multiplier applications include modulation, demodulation,
signal control, mixing, phase detection, and fast video switch-
ing and keying.

EXPANDING THE OPEN-LOOP AMPLIFIER

Amplifiers with no external feedback loop deliver band-
widths and slew rates that are unattainable using current-
and voltage-feedback op amps. They can not, however,
provide the benefits of a feedback loop, such as improve-
ment in linearity, reduction in output impedance, perfor-
mance adjustment using the feedback network, and
reduced sensitivity to parameter and temperature variations
and aging effects. The OPA622, however, provides a solu-
tion combining the advantages of both methods. As shown
in Figure 15, the OPA622 functions like a discrete common
emitter circuit. Its working points are internally fixed and the
transconductance of the OTA can be adjusted by varying RQ.
The transconductance remains constant over the input volt-
age range, which is the basic prerequisite for distortion-free
signal transmission in nonfeedback mode. Inserting the
feedback buffer lowers the input offset voltage to 100µV,
and the output stage then decouples the amplifier stage.
Unlike that of feedback op amps, the output impedance is
not in the mΩs, but rather between 4Ω and 10Ω depending
upon the quiescent current. It remains, however, extremely
constant over frequency. The gain can be adjusted using the

FIGURE 14. Output Amplifier for Wide-Band Multipliers.

resistors R1 and R2. Signal excitation at Pin 4 produces
noninverting mode, while excitation at Pin 3 produces in-
verting mode.

FIGURE 15. Open-Loop Amplifier Common Emitter
Circuit.
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AGC AMPLIFIER OR AMPLITUDE MODULATOR

Near the zero point (VDS ~ mV), a FET functions like a linear
resistor controlled by VGS (rDS = dVDS/dID). As shown in
Figure 16, this property of a FET can be used to control the
amplitude of an RF signal by the DC voltage, VGS, according
to the equation in the figure. In this configuration, the
OPA622 functions as an open-loop amplifier with offset
compensation. The signal excitation can take place either at
the inverting or at the noninverting input. The only compo-
nents lacking for a complete AGC circuit are a peak detector
to measure the output voltage and a control amplifier, which
can also be used to linearize the FET.

It’s easy to convert an AGC amplifier into an amplitude
modulator. The carrier frequency is applied to the input of
the OPA622, and the FET modulates the carrier frequency
amplitude in tact with the LF signal voltage.

DIRECT-FEEDBACK AMPLIFIER

It has already been mentioned that a short delay time in the
feedback loop is important to provide large bandwidth. As
indicated by its name, the direct-feedback amplifier, shown
in Figure 17, uses a direct, short feedback loop. The output
signal at the OTA is transferred via R2 to the inverting input.
Since the currents at the OTA output and the inverting input
have the same polarity, they combine to counteract the
voltage at the noninverting input. As already shown using
the OPA660 direct-feedback amplifiers can deliver band-
widths of up to 500MHz and excellent pulse behavior at
slew rates of up to 2ns.

FIGURE 17. Direct-Feedback Amplifier with Offset Compensation.
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the comparator. The positive feedback with R1 increases the
open-loop gain of the comparator at low frequencies, while
C1 increases the overall open-loop gain over frequency.

DESIGN TOOLS

To enable users to test the parameters and applications of the
OPA622 for themselves, Burr-Brown offers a completely
assembled demo board and two PSpice models. The demo
board gives important tips for layout design, as well as
facilitating the test phase. Since almost all pulse and band-
width parameters specified in the PDS were determined
using this demo board, it is guaranteed to deliver compre-
hensible results. As can be seen in Figure 20, the noninverting
variation can be tested using voltage feedback and a gain of
+2. The board uses SMA RF connectors as an interface to
the test devices. For users who wish to reassemble the pins,
Table III lists recommended component values for various
gains.

Another way to sample the OPA622 is by simulation using
the PSpice circuit simulator program. The two PSpice

macromodels for the OPA622 feature differing accuracy and
simulation times. Both models are part of a shell, which
makes it easier for the user to run the simulations and
compare simulation results. The disk also contains com-
pletely dimensioned application circuits for the most com-
mon applications, which can be displayed immediately after
installation.

VOLTAGE-FEEDBACK AMPLIFIER
WITH OUTPUT VOLTAGE LIMITATION

Some integrated circuits such as very fast ADCs react
extremely sensitively to overdrive at the input. In such cases,
overdrive protection is vital to prevent damage to the con-
verters. Unlike circuits offering external protection for sen-
sitive inputs, the circuit shown in Figure 18 limits the
maximum output voltage from a TV camera or production
mixer that can go into a broadcast distribution system. The
high-impedance OTA output functions linearly only up to
the positive or negative limits determined by the limitation
circuitry.

LOW JITTER COMPARATOR

Integrated circuits with good pulse behavior and a short
recovery time after overdrive make excellent comparators.
Figure 19 shows a comparator using the OPA622. This
configuration might appear unusual at first glance, but it
offers a comparator with jitter of approximately 20ps at a
signal frequency of 10MHz. The OPA622 compares the
voltages at its two inputs and changes the output according
to the difference between these input voltages. The two
antiparallel GaAs diodes limit the output voltage and keep
the OPA622 in the linear range. A configuration using R1

and C1 produces positive feedback from the OTA output to
the positive input and works like a Schmitt trigger, acceler-
ating the output voltage change during the reversal phase of

FIGURE 18. Operational Amplifier with Output Voltage Limitation.
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FIGURE 20. Circuit Schematic Demo and Board DEM-OPA622-1GC.
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FIGURE 19. Comparator with Voltage Feedback.
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OPA622AP IQ = 5mA RQC = 430Ω OPA622AU IQ = 5mA  RQC = 430Ω

GCL +1 +2 +5 +10 –1 –2 UNITS GCL +1 +2 +5 +10 –1 –2 UNITS

R1 0 330 620 1,600 390 470 Ω R1 150 240 470 820 240 300 Ω
R2 — 330 160 180 — — Ω R2 — 240 120 91 — — Ω
R3 220 0 0 0 0 0 Ω R3 0 0 0 0 0 0 Ω
ROG 330 150 56 10 200 150 Ω ROG 270 150 47 10 160 100 Ω
COTA 2.2 1 — — 1 1 pF COTA 2.2 1 — — 1 1 pF
RLR 150 150 150 150 150 150 Ω RLR 200 150 200 200 150 150 Ω
R4 — — — — 390 240 Ω R4 — — — — 240 150 Ω
R5 — — — — 62 62 Ω R5 — — — — 68 68 Ω
Ring — — — — 150 150 Ω Ring — — — — 150 150 Ω
Bandwidth: Bandwidth:
VOUT = 0.2Vp-p 170 160 140 110 135 125 MHz   VOUT = 0.2Vp-p 200 170 160 100 180 175 MHz
VOUT = 2.8Vp-p 220 200 170 110 150 150 MHz   VOUT = 2.8Vp-p 250 240 230 100 250 240 MHz

TABLE III. Typical Parameters of the OPA622 as a Voltage-Feedback Amplifier.

FIGURE 21. Layout and Silkscreen of the Demo Board.


