LEVEL SHIFTING SIGNALS WITH DIFFERENTIAL AMPLIFIERS

by David Jones, (602) 746-7696

The INA105 is a unity gain differential amplifier consisting of a premium grade operational amplifier and an on-chip precision resistor network. The self-contained INA105 makes it ideal for many applications. One such application is precision level shifting.

Figure 1 shows a general case of a unity gain differential amplifier that performs a signal level shift proportional to the voltage $\mathrm{V}_{\text {SHIFT }}$ appearing on pin 3 of the OPA27. An operational amplifier is used to drive the INA105's "Ref" pin ($\operatorname{pin} 1$) with a low impedance source to preserve true differential operational of the INA105.
A basic understanding of the circuit operation can be gained by considering the INA105 as a three input summing amplifier. The voltage transfer function is then $\mathrm{E}_{\text {out }}=\mathrm{E}_{2}-\mathrm{E}_{1}+$ $\mathrm{V}_{\mathrm{REF}}$. As this relation shows, the output will respond to a difference signal and algebraically add the voltage at the
"Ref" input. Therefore, $\mathrm{V}_{\text {REF }}$ may take on any arbitrary value that will not saturate the INA105 amplifier's output. In the case of the circuit in Figure 1, $\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {SHIFT }}$, yielding an output of $\mathrm{E}_{\mathrm{O}}=\mathrm{E}_{2}-\mathrm{E}_{1}+\mathrm{V}_{\text {SHIFT }}$.
Precision fixed level shifting can be easily accomplished by the use of a voltage reference source such as the REF102. A REF102 used with an additional INA105 can be used to provide an accurate, low drift, +5 V reference to drive the "Ref" pin of the differentially connected INA105 as shown in Figure 2. If, for example, the input signal is a bipolar $\pm 5 \mathrm{~V}$ signal, the output will be level shifted to a unipolar $0-10 \mathrm{~V}$ signal. The same reference circuit also has -5 V available and may thus be used for the opposite conversion from unipolar $0-10 \mathrm{~V}$ to bipolar $\pm 5 \mathrm{~V}$ signals. (Request PDS-1018 for INA105 and PDS-900 for REF102.)

FIGURE 2. Precision Level Shift Circuit from a Fixed Voltage Reference.

