
At Burr-Brown, we characterize and qualify the reliability of
our devices through high temperature life testing. The re-
sults of this testing are quantified with such values as MTTF
and failure rate. This information can be very valuable when
used for comparative purposes or applied to reliability cal-
culations. However, this information loses its worth if it is
not precisely understood and appropriately employed. It is
the intent of this application note to bring together, in a
concise format, the definitions, ideas, and justifications
behind these reliability concepts in order to provide the
background details necessary for full and correct utilization
of our life testing results.

SOME PRELIMINARY DEFINITIONS

Reliability is “the probability that a part will last at least a
specified time under specified experimental conditions”(1).

MTTF is the mean time to the first failure under specified
experimental conditions. It is calculated by dividing the total
number of device • hours by the number of failures. It is
important to note, at this time, that the dimensions of MTTF
are not hours per failure, but rather, device • hours per
failure. If each part has a 0.1% chance of failure before 1
hour then 10 parts have a 1% chance experiencing a failure
by that time. The MTTF will be the same in both cases. 1
failure in 10 hours on 1 part or 1 failure in 1 hour on 10 parts
both produce an MTTF of 10 device • hours.

Failure rate is the conditional probability that a device will
fail per unit of time. The conditional probability is the
probability that a device will fail during a certain interval
given that it survived at the start of the interval.(5) When
failure rate is used to describe the frequency with which
failures are expected to occur, the time units are typically
device • hours.

FITS is simply failure rate scaled from failures per device •
hour to failures per billion device • hours.

ON TO THE DETAILS

In the definition section MTTF is defined as the average
time, in device • hours, per failure observed under specific
experimental conditions such as a life test. Here at Burr-
Brown we use a slightly modified formula for MTTF. We
calculate 2 times the total device • hours, Tdh, divided by the
upper 60% confidence limit of a chi-square distribution with
2 times the observed number of failures + 2 degrees of
freedom, X2(2f + 2). Our formula is

Since both time and failures are doubled, these definitions
are roughly equivalent. Some explanation is in order.

If multiple life tests are run on the same type of device, it is
unlikely that all tests will have the same number of failures
for the same number of device • hours. Rather there will be
a distribution of failures. The minimum value must be 0 for
no failures. The maximum value could correspond to 100%
failures, but we can presume that we are running enough
parts that this will not happen. Rather the distribution will
taper off as the number of failures increases. Somewhere in
between there will be a concentration of failures.

The chi-square calculation provides us with a tool for adjust-
ing the actual number of failures from a limited life test to
make it more accurately reflect what we might expect from
the population as a whole. For example, applying a confi-
dence level of 60% to a chi-square distribution with 8
degrees of freedom will return a value into the denominator
of the MTTF calculation which is greater than or equal to
60% of the values in a chi-square distribution with a mean
of 8.

One intuitive interpretation of the chi-square calculation is
that the calculated value represents, roughly, a number of
failures which will be greater than 60% of the failures we
might get during multiple life tests. The upper 60% level is
selected because it represents an approximately average
estimate for MTTF and because it is widely accepted among
semiconductor manufacturers and users. This method of
estimating MTTF does not prevent further reliability calcu-
lations from being made at more conservative levels.

One more point remains to be explained regarding this
calculation. Why do we use 2 (# failures) +2? The technical
explanation for this is given later in this paper. Briefly, the
factor of 2 is necessary to achieve theoretical validity of the
X2 distribution. Given the factor of 2, it can be seen that we
are merely adding 1 failure to the actual number of failures.
The added failure appears in the calculation as if a failure
occurred at the end of the test. This assures that the test
terminates with a failure, also a theoretical requirement, as
well as allows calculation of MTTF even if no failures were
observed.

The MTTF value by itself really only serves for comparison
purposes. Many more factors need to be considered before
predictive statements regarding the longevity of our compo-
nents can be made. The statistical concepts of reliability and
failrate allow us to make such predictions. I will present
here, with justification yet to come, the statistical formulas
which quantify these concepts.

MTTF = 2Tdh

χ2 (2f + 2)
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Let reliability be represented by R(t) and failure rate by Z(t).

Then

and

Remember, reliability is the probability that a part will
function at least a specified time. Failure rate describes the
frequency with which failures can be expected to occur. By
examining failure rate we can make important statements
about the life cycle of the product.

The life cycle of a part can be thought of as having three
distinct periods: infant mortality, useful life, and wear-out.
These three periods are characterized mathematically by a
decreasing failure rate, a constant failure rate, and an in-
creasing failure rate. This theory is the basis of the ubiqui-
tously discussed “bathtub curve”.

The listed formulas can model all three of these phases by
appropriate selection of α and β. β affects the shape of the
failure rate and reliability distributions. When β < 1 Z(t)
becomes a decreasing function. β = 1 provides a constant
failure rate. An increasing failure rate can be modeled with
β > 1. Therefore, β can be selected to accurately model the
shape of an empirically known failure rate (or of the original
probability density function of T which defines the failure
rate). The constant α provides the scaling factor.

Given good design, debugging, and thorough testing of
product the infant mortality period of a part’s life should be
past by the time the parts are shipped. This allows us to make
the assumption that most field failures occur during the
useful life phase, and result, not from a systematic defect,
but rather from random causes which have a constant failure
rate. The constant failure rate presumption results in β = 1.
Thus

The concept of a constant failure rate says that failures can
be expected to occur at equal intervals of time. Under these
conditions, the mean time to the first failure, the mean time
between failures, and the average life time are all equal.
Thus, the failure rate in failures per device • hour, is simply
the reciprocal of the number of device • hours per failure.
That is

during constant failure rate conditions.

Note that MTTF is always the number of device • hours per
failure but neither failure rate nor α is always 1/MTTF.

FORMAL DERIVATIONS AND JUSTIFICATIONS

OK, it’s time for some real details. Virtually all of the
information on the Weibull distribution comes from “Prob-
ability and Statistics for Engineers and Scientists” by Ronald
E. Walpole and Raymond H. Myers, copyright 1985,
Macmillan Publishing Company. Much of the information
in the section on MTTF is extrapolated from the lectures of

R(t) = e–αtβ

Z(t) = αβ tβ–1

Z(t) = α

Z(t) = α ≈ 1 / MTTF

Dr. Duane Dietrich, professor of Systems and Industrial
Engineering at the University of Arizona. My apologies to
Dr. Dietrich for any distortions.

Let’s start by hypothetically running a huge life test long
enough to drive all devices to failure, recording time-to-
failure for each part, generating histograms, calculating
MTTF, etc. A histogram of time-to-failure would be useful.
Its shape is unknown and unimportant at this time. Given the
hypothetical nature of the experiment, we can presume that
the distribution is representative of the whole population.

From this distribution, we can describe reliability as

R(t) = P (T > t)

where T represents time-to-failure and t represents time.
Note that this is merely an exact restatement of the verbal
definition already presented.

Another useful function which can be derived from the time-
to-failure histogram will represent the cumulative probabil-
ity of failure at any time t. Let F(t) represent this function.
Then

F (t) = P (T < t)

or
F (t) = 1 – R (t)

Now we are positioned to examine failure rate. Failure rate
is the conditional probability that a device will fail during a
certain interval, given that it survived to the start of that
interval, per unit of time. Let Z(t) represent failure rate.
Then

Now note that

is the derivative of F(t). Also F(t) = 1 – R(t). Therefore,
dF(t)/dt = –dR(t)/dt. Thus

Integrating both sides results in

giving

R(t) = c e
– Z(t)dt∫

  
ln R(t) = – Z(t)dt + ln c∫

Z(t) =
lim

δt → 0
F(t + δt) – F(t)

R(t)δt

lim

δt → 0
F(t + δt) – F(t)

δt

Z(t) = dF(t)
R(t)dt

  

= –dR(t)
R(t)dt

=
–d ln R(t)[ ]

dt
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as the relationship between reliability and failure rate based
only on the original definitions. The constant, c, must satisfy
the initial condition that all parts are assumed to be func-
tional at time t = 0 or R(0) = 1.

ENTER WALODDI WEIBULL

The statistical distribution introduced by Waloddi Weibull
in 1939 provides the mechanism to make our reliability
function usable. For x > 0 the distribution is given by

where α > 0 and β > 0.

Let us presume that the original probability density distribu-
tion of T (time-to-failure) is describable using the Weibull
distribution. Then

and

Thus, the Weibull distribution provides usable mathematical
descriptions of reliability and failure rate:

But do these agree with our formulas derives strictly without
presuming the Weibull distribution? This definition of Z (t)
can be entered into our previous derivation to justify our
assumption.

For R (0) = 1 then c = 1 and

as before. Thus, the Weibull distribution fits our original
definitions, provides a solution to the original equations, and
results in useful formulas for reliability and failure rate.

More on constant failrate and MTTF.

We presume constant failrate conditions during our life test
evaluations. It is particularly important to understand this
condition well. What are constant failrate conditions? How
do they affect the Weibull equations? And what, exactly, is
MTTF?

During the useful life period of our parts, there are no
systematic defects or problems causing a high early failure
rate nor an increasing rate of failure associated with aging.
Failures during this period result from random causes. The
probability of a part failing for a random defect or stress
does not change as the part ages. The failure rate, the
conditional probability that a part will fail at a specific time,
T, given that it has survived to that time, is constant.

From the Weibull distribution, the general equation for
failure rate is given by

Given that Z(t) must equal a constant then b must equal 1 to
drive the time variable t to unity. Thus, under constant
failure rate conditions, the equations for failure rate, reliabil-
ity and the Weibull distribution, become, respectively

and

The function f(t) is the time-to-failure probability density
function. It gives the probability that a part will fail at any
given time t. The mean, or expected value, of f(t) is the
average time-to-failure. This mean value is equal to 1/α. The
problem is that we do no know the true value of 1/α. This
value must be estimated from experimental data.

An estimator for 1/α can be derived using the maximum
likelihood method with the function f(t). Suppose we run a
life test starting with N parts and experience r failures. The
joint probability density function describing the life test
results is given by the product of the probabilities that each
failure occurred when it did. Referring to this p.d.f. as L
(α, t) then

Implicit in this derivation is that the life test is terminated at
the rth failure and the dimension of t is device • hours. Our
method of evaluating MTTF involves adding 1 failure to the
observed failures. This assures the requirement for termina-
tion on the rth failure is satisfied as well as allows calculation
of MTTF even if no actual failures occur. The dimensioning
of t as device • hours accounts for the test time of those parts
that did not fail.

To find an appropriate estimator for 1/α by the maximum
likelihood method, we find the value of α which maximizes
the function L (α, t). We are, in effect, finding the value of

Z(t) = αβtβ–1

R(t) = e–αt

Z(t) = α

f (t) = α e–αt

L(α, t) = αr e
–α ti

i=1

r

∑

R(t) = e–αtβ

R(t) = c e
– Z(t)dt∫

R(t) = c e–αtβ

R(t) = c e
– αβtβ–1dt∫

R(t) = e–αtβ

Z(t) = αβ tβ–1

Z(t) = –dR(t)
R(t)dt

= αβtβ–1e–αtβ

e–αtβ

Z(t) = αβ tβ–1

R(t) = 1– F(t) = 1– αβxβ–1e–αxβ
dx

o

t

∫

R(t) = 1+ de–αxβ

o

t

∫

R(t) = e–αtβ
(see appendix A)

f(x) = αβxβ–1e–axβ
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α which maximizes the probability of observing what was
actually observed. This is accomplished by taking the partial
derivative of the loge of L (α, t), setting it equal to zero, and
solving for α:

using    to indicate the approximation,

This equation shows that 1/α can be estimated by dividing
the accumulated test time for all of the tested devices by the
total number of failures. This agrees with the original defi-
nition of MTTF.

Understanding the chi-square, X2, confidence interval calcu-
lation requires recognition that given the random variable
for time-to-failure, T, has distribution

then the random variable V described by

is distributed X2 with 2r degrees of freedom, X2(2r). There-
fore, for a specified confidence level ç

and the upper confidence limit for MTTF becomes

which, with r equal to the number of observed failures + 1,
is the actual formula we use for MTTF.

To justify the X2 distribution of the random variable V used
above, apply the transformation of variable

to f(t) which results in

which is distributed X2 with 2 degrees of freedom, X2(2) (see
Appendix B).

Now note that

As shown, each factor of the above sum is distributed X2(2).
Therefore, by the reproductive property of X2 the summation
is also distributed X2 with r times 2 degrees of freedom, X2

(2r) as stated.

AND FINALLY

The concepts of MTTF, failure rate and reliability have been
defined, discussed and justified. In general, the time units of
device • hours have been used. With this dimension, failure
rate can be interpreted as the frequency with which failures
can be expected to occur. This description works well with
the experimental estimation of the unknown parameters and
provides an intuitive perspective. However, reliability esti-
mation is, in essence, a probabilistic science and the Weibull
equations are, in essence, probability equations. As a prob-
ability equation, failure rate becomes the probability of
failure per hour, not per device • hour. The reader is
encouraged to give this distinction some thought.

We perform our life testing at elevated temperatures in order
to accelerate failure mechanisms which might result in
device failure. Our reliability reports generally supply MTTF
estimates scaled over a range of temperatures appropriate to
application environments. The Arehnius equation with an
activation energy selected to represent typical failure mecha-
nisms is employed to generate the tables.

Here at Burr-Brown we use a spreadsheet program to calcu-
late and record the results of life tests. Constant failure rate
is presumed. This presumption should always be verified. It
may not be unreasonable to interpret MTTF as the mean
time to the first failure even if the failure rate is not constant.
However, failure rate and reliability predictions based on
that MTTF will be wrong.

APPENDIX A

therefore replacing

and

  

∂ln (L(α, t))
∂α

= r
α

– ti
i=1

r

∑
  

ln (L(α, t)) = rln (α) – α ti
i=1

r

∑

V = 2α ti
i=1

r

∑

2α ti
i=1

r

∑ > X2 (2r,ζ)

1
α

<
2 ti

i=1

r

∑
χ2 (2r,ζ)

= MTTF

V/ = 2αT,
dT
dV/ = 1

2α

dexp (–αxβ ) / dx = exp (–αxβ ) d(–αxβ ) / dx

= – αβxβ–1 exp (–αxβ )

= exp (–αxβ ) (–αβ) (xβ–1)

f (v) = αe
–α V

2α 1
2α

= 1
2

e
–

V
2

2α ti
i=1

r

∑ = 2αt1 + 2αt2 +...+2αtr

1
α̃

=
t i

i=1

r

∑
r

r
α̃

– ti
i=1

r

∑ = 0

α̃

f (t) = αe–αt

– αβxβ–1

0

t

∫ exp (–αxβ ) dx = – d exp (–αxβ )
0

t

∫ / dx dx

= – d exp (–αxβ )
0

t

∫

R(t) = 1 + d exp (–αxβ )
0

t

∫
= 1 + exp(–αxβ ) |

0

t

= 1+ exp(–αtβ ) –1
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The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant
any BURR-BROWN product for use in life support devices and/or systems.

APPENDIX B

The chi-square distribution with r degrees of freedom is
given by

Setting r = 2 for X2(2) results in

as indicated.

f (v) = 1

2
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