$4-20 \mathrm{~mA}$ TO 0-20mA CONVERTER AND CURRENT SUMMING CURRENT-TO-CURRENT CONVERTERS

By R. Mark Stitt and David Kunst (602) 746-7445

Current loops have become the standard for signal transmission in the process control industry. Current loops are insensitive to noise and are immune to errors from line impedance. Burr-Brown offers a complete line of monolithic 4 mA to 20 mA current loop transmitters and receivers.

XTR101

General purpose two-wire $4-20 \mathrm{~mA}$ current-loop transmitter. This transmitter has an instrumentation amplifier input and two 1 mA current sources for transducer excitation and offsetting.

XTR103

Two-wire RTD 4-20mA current-loop transmitter. Similar to XTR101, but with internal linearization circuitry for direct interface to RTDs (Resistance Temperature Detectors). The XTR103 along with an RTD forms a precision temperature to $4-20 \mathrm{~mA}$ current loop transmitter.

XTR104

Two-wire bridge $4-20 \mathrm{~mA}$ current-loop transmitter. Similar to XTR101, but with shunt regulator and linearization circuitry for direct interface to resistor transducer bridges.

XTR110

Three-wire $4-20 \mathrm{~mA}$ transmitter. The XTR110 converts a 0 5 V or $0-10 \mathrm{~V}$ high-level input into a $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ current-soruce output.

RCV420

Self-contained $4-20 \mathrm{~mA}$ receiver. Conditions and offsets 420 mA input signals to give a precision $0-5 \mathrm{~V}$ output. Contains precision voltage reference, 75Ω precision sense resistor and $\pm 40 \mathrm{~V}$ common-mode input range difference amplifier.
The 4 mA to 20 mA current loop is the most often used standard. Since the minimum signal current is 4 mA , the transducer and transmitter can be powered by the same two wires used for the current loop connection. This feature eliminates the need for a remote power supply. Also, open circuits are easy to detect since the signal goes to 0 mA . Some systems, however, use a 0 to 20 mA current loop standard instead. To interface to these systems, the $4-20 \mathrm{~mA}$

NOTE: The minus sign in the equation means that the $I_{I_{N}}, l_{\text {OUT }}$ currents flow as shown.

FIGURE 1. Basic Inverting Current-to-Current Converter.

XTR output must be converted to $0-20 \mathrm{~mA}$. This bulletin shows the suggested circuit and also discusses summing current-to-current converters in general.

INVERTING CURRENT-TO-CURRENT CONVERTERS

Figure 1 shows the basic inverting current-to-current converter. The input current all flows through R_{2} resulting in an $I_{\text {IN }} \cdot R_{2}$ voltage drop across R_{2}. The op amp forces the same voltage across R_{1} so that there is no voltage difference at the op amp inputs. The $\mathrm{I}_{\text {OUT }}$ current is therefore:
For Figure 1:

$$
\mathrm{I}_{\mathrm{OUT}}=-\mathrm{I}_{\mathrm{IN}} \cdot \mathrm{R}_{2} / \mathrm{R}_{1}
$$

Notice that, like its cousin the inverting voltage amplifier,

FIGURE 2. Equal-Gain Summing Inverting Current-to-Current Converter.

FIGURE 3. Arbitrary-Gain Summing Inverting Current-toCurrent Converter.
the output current can be greater than or less than the input current. Of course, the output can also be equal to the input so the circuit can be used as a unity-gain current inverter with $\mathrm{R}_{1}=\mathrm{R}_{2}$.
So long as the gain is the same, any number of currents can be summed at the current-to-current converter input as shown in Figure 2.
For Figure 2:

$$
\mathrm{I}_{\text {OUT }}=\left(-\mathrm{I}_{1}-\mathrm{I}_{2}-\cdots-\mathrm{I}_{\mathrm{N}}\right) \mathrm{R}_{2} / \mathrm{R}_{1}
$$

Any number of currents can be summed with arbitrary gain by using separate gain-setting resistors as shown in Figure 3.
For Figure 3:

$$
\begin{gathered}
\mathrm{I}_{\mathrm{OUT}}=-\mathrm{I}_{1} \cdot \mathrm{R}_{2} / \mathrm{R}_{1}-\mathrm{I}_{2}\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right) / \mathrm{R}_{1}-\cdots- \\
\mathrm{I}_{\mathrm{N}}\left(\mathrm{R}_{2}+\mathrm{R}_{3}+\cdots+\mathrm{R}_{\mathrm{N}}\right) / \mathrm{R}_{1}
\end{gathered}
$$

NONINVERTING CURRENT-TO-CURRENT CONVERTERS

Figure 4 shows the circuit for the basic noninverting current-to-current converter. As before, all the input current flows through R_{2} resulting in a $\mathrm{I}_{\mathrm{IN}} \cdot \mathrm{R}_{2}$ voltage drop across R_{2}. In this circuit, the op amp is connected as a unity-gain buffer forcing the same voltage drop across R_{1}. The output current is the sum of the input current flowing through R_{2} and the current flowing through R_{1}. The following relationships

FIGURE 4. Basic Noninverting Current-to-Current Converter.
apply to the noninverting circuits.
For Figure 4:

$$
\mathrm{I}_{\mathrm{OUT}}=\mathrm{I}_{\mathrm{IN}}\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right)
$$

Notice that, like its cousin the noninverting voltage amplifier, the gain is always greater than 1.0 so that the output current must always be greater than the input current.

As with the inverting summing current-to-current converter, so long as the gain is the same, any number of currents can be summed at the current-to-current converter input as shown in Figure 5.
For Figure 5:

FIGURE 5. Equal-Gain Summing Noninverting Current-to-Current Converter.

$$
\mathrm{I}_{\text {OUT }}=\left(\mathrm{I}_{1}+\mathrm{I}_{2}+\cdots+\mathrm{I}_{\mathrm{N}}\right)\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right)
$$

Likewise, any number of currents can be summed with arbitrary gain by using separate gain-setting resistors as shown in Figure 6.
For Figure 6:

$$
\begin{gathered}
\mathrm{I}_{\text {OUT }}=\mathrm{I}_{1}\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right)+\mathrm{I}_{2}\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right) / \mathrm{R}_{1}+\cdots+ \\
\mathrm{I}_{\mathrm{N}}\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\cdots+\mathrm{R}_{\mathrm{N}}\right) / \mathrm{R}_{1}
\end{gathered}
$$

$I_{\text {OUT }}=I_{1}\left(1+R_{2} / R_{1}\right)+I_{2}\left(R_{1}+R_{2}+R_{3}\right) / R_{1}+\cdots+$ $I_{N}\left(R_{1}+R_{2}+R_{3}+\cdots+R_{N}\right) / R_{1}$

FIGURE 6. Arbitrary-Gain Summing Noninverting Current-to-Current Converter.

INVERTING AND NONINVERTING CURRENT-TO-CURRENT CONVERTERS

The inverting and noninverting circuits can be used simultaneously either with equal gains or arbitrary gains as shown in Figures 7 and 8:

For Figure 7:

$$
\begin{gathered}
\mathrm{I}_{\text {OUT }}=\left\{\left(-\mathrm{I}_{1 \mathrm{~A}}-\mathrm{I}_{2 \mathrm{~A}}-\cdots-\mathrm{I}_{\mathrm{NA}}\right) \mathrm{R}_{2 \mathrm{~A}} / \mathrm{R}_{1 \mathrm{~B}}\right\}+ \\
\left\{\left(\mathrm{I}_{1 \mathrm{~B}}+\mathrm{I}_{2 \mathrm{~B}}+\cdots+\mathrm{I}_{\mathrm{NB}}\right)\left(1+\mathrm{R}_{2 \mathrm{~B}} / \mathrm{R}_{1 \mathrm{~B}}\right)\right\}
\end{gathered}
$$

FIGURE 7. Equal-Gain Summing Inverting and Noninverting Current-to-Current Converter.

For Figure 8:

$$
\begin{gathered}
\mathrm{I}_{\text {OUT }}=\left\{-\mathrm{I}_{1 \mathrm{~A}} \cdot \mathrm{R}_{2 \mathrm{~A}} / \mathrm{R}_{1 \mathrm{~B}}-\mathrm{I}_{2 \mathrm{~A}}\left(\mathrm{R}_{2 \mathrm{~A}}+\mathrm{R}_{3 \mathrm{~A}}\right) / \mathrm{R}_{1 \mathrm{~B}}-\cdots-\right. \\
\left.\mathrm{I}_{\mathrm{NA}}\left(\mathrm{R}_{2 \mathrm{~A}}+\mathrm{R}_{3 \mathrm{~A}}+\cdots+\mathrm{R}_{\mathrm{NA}}\right) / \mathrm{R}_{1 \mathrm{~B}}\right\}+ \\
\left\{\mathrm{I}_{1 \mathrm{~B}}\left(1+\mathrm{R}_{2 \mathrm{~B}} / \mathrm{R}_{1 \mathrm{~B}}\right)+\mathrm{I}_{2 \mathrm{~B}}\left(\mathrm{R}_{1 \mathrm{~B}}+\mathrm{R}_{2 \mathrm{~B}}+\mathrm{R}_{3 \mathrm{~B}}\right) / \mathrm{R}_{1 \mathrm{~B}}+\cdots+\right. \\
\left.\mathrm{I}_{\mathrm{NB}}\left(\mathrm{R}_{1 \mathrm{~B}}+\mathrm{R}_{2 \mathrm{~B}}+\mathrm{R}_{3 \mathrm{~B}}+\cdots+\cdots+\mathrm{R}_{\mathrm{NB}}\right) / \mathrm{R}_{1 \mathrm{~B}}\right\}
\end{gathered}
$$

FIGURE 8. Arbitrary-Gain Summing Inverting and Noninverting Current-to-Current Converter.

4-20mA to $\mathbf{0 - 2 0 m A}$ CONVERTER

There are two ways to make a $4-20 \mathrm{~mA}$ to $0-20 \mathrm{~mA}$ converter using current summing circuits and a REF200 $100 \mu \mathrm{~A}$ current source for offsetting. Since the polarity of the $0-20 \mathrm{~mA}$ output current must be the same as the $4-20 \mathrm{~mA}$ input signal, the noninverting circuit is used in the main signal path. The REF200 $100 \mu \mathrm{~A}$ current source can be connected in either polarity so either inverting or noninverting summing can be used to offset the signal for 0 mA out with 4 mA in.

4-20mA to 0-20mA CONVERTER USING BOTH INVERTING AND NONINVERTING CURRENT-TOCURRENT CONVERTER CIRCUITS

One implementation of the $4-20 \mathrm{~mA}$ to $0-20 \mathrm{~mA}$ converter is shown in Figure 9. From the Figure 4 and Figure 1 equations:
For Figure 9:

$$
\mathrm{I}_{\mathrm{OUT}}=\mathrm{I}_{1}\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right)-\mathrm{I}_{2} \cdot \mathrm{R}_{3} / \mathrm{R}_{1}
$$

Where:
$\mathrm{I}_{1}=4-20 \mathrm{~mA}$ input current
$\mathrm{I}_{2}=100 \mu \mathrm{~A}$ REF200 offsetting current
Two equations can be written: one for $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$ with $\mathrm{I}_{\text {IN }}$ $=4 \mathrm{~mA}$ and one for $\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}$ with $\mathrm{I}_{\mathrm{IN}}=20 \mathrm{~mA}$. Since there are three unknowns $\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right.$, and $\left.\mathrm{R}_{3}\right)$ and only two equations, one resistor value must be selected first. A value of 100Ω was selected as an arbitrary but adequate value for R_{2}. With $R_{2}=100 \Omega$, the maximum voltage drop across it is 2 V at 20 mA . A smaller value for R_{2} will reduce the voltage burden and power dissipation in the circuit, but since the signal-to-noise ratio is reduced, it will be more sensitive to op amp errors.
To solve for R_{1} :
Notice that the current gain is:

$$
\begin{gathered}
(20 \mathrm{~mA}-0 \mathrm{~mA}) /(20 \mathrm{~mA}-4 \mathrm{~mA})=(20 \mathrm{~mA}) /(16 \mathrm{~mA}) \\
=1.25 \mathrm{~mA} / \mathrm{mA}
\end{gathered}
$$

Rewriting the Figure 4 equation in terms of gain:

$$
\begin{gathered}
\text { GAIN }=\mathrm{I}_{\mathrm{OUT}} / \mathrm{I}_{\mathrm{IN}} \\
\mathrm{GAIN}=1+\mathrm{R}_{2} / \mathrm{R}_{1}
\end{gathered}
$$

Solving the gain equation for R_{1} :

$$
\mathrm{R}_{1}=\mathrm{R}_{2} /(\mathrm{GAIN}-1)
$$

Substituting $\mathrm{R}_{2}=100 \Omega$:

$$
\begin{gathered}
\mathrm{R}_{1}=100 \Omega /(1.25-1) \\
\mathrm{R}_{1}=400 \Omega
\end{gathered}
$$

Then, solving the Figure 9 equation for R_{3} :

$$
\mathrm{R}_{3}=\mathrm{I}_{1}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) / \mathrm{I}_{2}
$$

Substituting $\mathrm{I}_{1}=4 \mathrm{~mA}, \mathrm{I}_{2}=100 \mu \mathrm{~A}$:

$$
\mathrm{R}_{3}=40\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)
$$

Substituting $\mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=400 \Omega$:

$$
\mathrm{R}_{3}=20.0 \mathrm{k} \Omega
$$

NOTE: This circuit has poor compliance with positive power-supply rail.

FIGURE 9. $4-20 \mathrm{~mA}$ to $0-20 \mathrm{~mA}$ Current-to-Current Converter Using Inverting and Noninverting Summing Circuits.

4-20mA TO 0-20mA CONVERTER USING ONLY NONINVERTING CURRENT-TO-CURRENT CONVERTER CIRCUIT

The other possible circuit is shown in Figure 10. From the Figure 6 equations:
For Figure 10:

$$
\mathrm{I}_{\mathrm{OUT}}=\mathrm{I}_{1}\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right)+\mathrm{I}_{2}\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right) / \mathrm{R}_{1}
$$

Where, as before:
$\mathrm{I}_{1}=4-20 \mathrm{~mA}$ input current
$\mathrm{I}_{2}=100 \mu \mathrm{~A}$ REF200 offsetting current
The relationships for R_{1} and R_{2} are the same as for the Figure 9 circuit: with $\mathrm{R}_{2}=100 \Omega, \mathrm{R}_{1}=400 \Omega$.
Solving the Figure 10 equation for R_{3} :

$$
\mathrm{R}_{3}=\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) / \mathrm{I}_{2}
$$

Substituting $I_{1}=4 \mathrm{~mA}, \mathrm{I}_{2}=100 \mu \mathrm{~A}$:

$$
\mathrm{R}_{3}=39\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)
$$

Substituting $\mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=400 \Omega$:

$$
\mathrm{R}_{3}=19.5 \mathrm{k} \Omega
$$

WHICH $4-20 \mathrm{~mA}$ TO $0-20 \mathrm{~mA}$ CONVERTER IS BETTER?

The only significant functional difference between the Figure 9 and Figure 10 converter circuits is the output voltage compliance range. Output range of the current-to-current converter circuit is limited by the op amp input and output ranges and by the minimum compliance range of the REF200 current source. Voltages for the two circuits at the 0 mA and 20 mA output current extremes are shown in Table I.

NOTE: This circuit has excellent compliance with positive power-supply rail.

FIGURE 10. $4-20 \mathrm{~mA}$ to $0-20 \mathrm{~mA}$ Current-to-Current Converter Using Only Noninverting Summing Circuits.

OUTPUT CURRENT	FIGURE 9 CIRCUIT		FIGURE 10 CIRCUIT	
	${\text { OP AMP } V_{\text {IN }}}{\text { OP AMP } \text { V }_{\text {OUT }}}$	OP AMP $_{\text {IN }}$	OP AMP V $_{\text {OUT }}$	
0 mA	0.4	-1.6	-1.56	-1.56
20 mA	2.0	0.0	0.04	0.04

TABLE I. Op Amp Input/Output Voltages for Figures 9 and 10 Circuits.

Both circuits have an op amp $\mathrm{V}_{\text {OUT }}$ of approximately -1.6 V at one extreme. This limits the compliance to the negative power-supply rail to $\mathrm{SL}+1.6 \mathrm{~V}$ where SL is the op amp output negative swing limit. For example, if an op amp can swing to $-12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right)$, its swing limit is $\mathrm{SL}=3 \mathrm{~V}$. The closest the circuit can swing to the negative rail is $3 \mathrm{~V}+1.6 \mathrm{~V}$ $=4.6 \mathrm{~V}$ or $\mathrm{V}_{\text {OUT }}=-10.4 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right)$.

The Figure 10 circuit has an advantage for compliance to the positive power-supply rail. The Figure 9 circuit has a worstcase $\mathrm{V}_{\text {IN }}=2 \mathrm{~V}$. Also, the REF200 (with a min compliance of 2.5 V) is connected between the input and $+\mathrm{V}_{\mathrm{S}}$. This limits the compliance to the positive power-supply rail to $2 \mathrm{~V}+$ $2.5 \mathrm{~V}=4.5 \mathrm{~V}$.
The Figure 10 circuit has a worst-case $\mathrm{V}_{\mathrm{IN}}=0.04 \mathrm{~V}$. Also, the REF200 is connected between the input and $-\mathrm{V}_{\mathrm{S}}$. This allows the Figure 10 circuit to swing to the positive powersupply rail within the limits of the op amp input compliance. Op amps are available with input compliance to $+\mathrm{V}_{\mathrm{S}}$. Compliance of the Figure 10 circuit (using the OPA177) is:

$$
+13 \mathrm{~V}(+14 \mathrm{~V} \text { typ }),-10.9 \mathrm{~V}(-11.4 \mathrm{~V} \text { typ }) \text { with } \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}
$$

[^0]
[^0]: The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

