

OPA548

PRELIMINARY INFORMATION SUBJECT TO CHANGE WITHOUT NOTICE

High-Voltage, High-Current OPERATIONAL AMPLIFIER

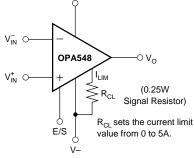
FEATURES

- WIDE SUPPLY RANGE Single Supply: +8V to +60V Dual Supply: ±4V to ±30V
- HIGH OUTPUT CURRENT: 3A Continuous
- WIDE OUTPUT VOLTAGE SWING
- FULLY PROTECTED: Thermal Shutdown Adjustable Current Limit
- OUTPUT DISABLE CONTROL
- THERMAL SHUTDOWN INDICATOR
- HIGH SLEW RATE: 10V/us
- LOW QUIESCENT CURRENT
- PACKAGES:
 7-Lead TO-220
 7-Lead DDPAK Surface-Mount

APPLICATIONS

- VALVE, ACTUATOR DRIVER
- SYNCHRO, SERVO DRIVER
- POWER SUPPLIES
- TEST EQUIPMENT
- TRANSDUCER EXCITATION
- AUDIO AMPLIFIER

DESCRIPTION


The OPA548 is a low cost, high-voltage/high-current operational amplifier ideal for driving a wide variety of loads. A laser-trimmed monolithic integrated circuit provides excellent low-level signal accuracy and high output voltage and current.

The OPA548 operates from either single or dual supplies for design flexibility. In single supply operation, the input common-mode range extends below ground.

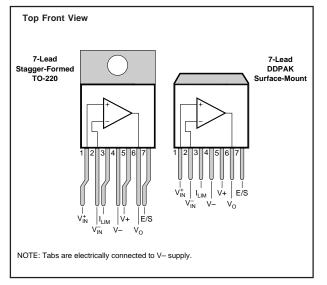
The OPA548 is internally protected against overtemperature conditions and current overloads. In addition, the OPA548 was designed to provide an accurate, user-selected current limit. Unlike other designs which use a "power" resistor in series with the output current path, the OPA548 senses the load indirectly. This allows the current limit to be adjusted from 0 to 5A with a 0 to 330μ A control signal. This is easily done with a resistor/potentiometer or controlled digitally with a voltage-out or current-out DAC.

The Enable/Status (E/S) pin provides two functions. An input on the pin not only disables the output stage to effectively disconnect the load but also reduces the quiescent to conserve power. The E/S pin output can be monitored to determine if the OPA548 is in thermal shutdown.

The OPA548 is available in an industry-standard 7-lead staggered TO-220 package and a 7-lead DDPAK surface-mount plastic power package. The copper tab allows easy mounting to a heat sink or circuit board for excellent thermal performance. It is specified for operation over the extended industrial temperature range, -40° C to $+85^{\circ}$ C.

International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111 Internet: http://www.burr-brown.com/ • FAXLine: (800) 548-6133 (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS


At T_{CASE} = +25°C, V_{S} = $\pm 30\text{V}$ and E/S pin open, unless otherwise noted.

		OPA548T, F			
PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE					
Input Offset Voltage	$V_{CM} = 0, I_{O} = 0$		±1	±5	mV
vs Temperature	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		±25		μV/°C
vs Power Supply	$V_{\rm S} = \pm 4 V$ to $\pm 30 V$		10	100	μV/V
INPUT BIAS CURRENT ⁽¹⁾					P***
Input Bias Current ⁽²⁾	V _{CM} = 0V		-100	-500	nA
•	V _{CM} =0V			-500	nA/°C
vs Temperature Input Offset Current	V 0V		±0.5 ±5	±50	
	V _{CM} = 0V		±ο	±50	nA
NOISE					
Input Voltage Noise Density, f = 1kHz			90		nV/√Hz
Current Noise Density, f = 1kHz			1		pA/√Hz
INPUT VOLTAGE RANGE					
Common-Mode Voltage Range: Positive	Linear Operation	(V+) −3	(V+) -2.3		V
Negative	Linear Operation	(V–) –0.1	(V–) –0.2		V
Common-Mode Rejection	$V_{CM} = (V-) -0.1V$ to $(V+) -3V$	80	95		dB
	· CWI (1 / e ic (1 / e.				
			407 11 0		0.11.5
Differential			107 6		Ω pF
Common-Mode			10 ⁹ 4		Ω pF
OPEN-LOOP GAIN					
Open-Loop Voltage Gain, f = 10Hz	$V_0 = \pm 25V, R_L = 1k\Omega$	90	100		dB
	$V_0 = \pm 25V, R_L = 10\Omega$		90		dB
FREQUENCY RESPONSE			1		1
Gain-Bandwidth Product	$R_1 = 10\Omega$		1		MHz
Slew Rate	$G = 1,50Vp-p, R_1 = 10\Omega$		10		V/µs
Full Power Bandwidth	0 = 1, 00 VP P, 11 = 1022		54		kHz
Settling Time: ±0.1%	G = -10, 50V Step		18		μs
Total Harmonic Distortion + Noise, $f = 1 \text{ kHz}$	$R_1 = 10\Omega$		0.05		μs %
,	$K_{L} = 1022$		0.05		/0
OUTPUT					
Voltage Output, Positive	I _O = 3A	(V+) -3.7	(V+) -3.3		V
Negative	$I_0 = -3A$	(V–) +3.5	(V–) +3		V
Positive	I _O = 0.6A	(V+) -2.5	(V+) -2		V
Negative	$I_0 = -0.6A$	(V–) +2	(V–) +1.5		V
Maximum Continuous Current Output: dc	Ű	±3			A
ac		3			Arms
Leakage Current, Output Disabled, dc	$V_0 = V - to (V+) - 1V$		5	10	mA
Output Current Limit	0		-		
Current Limit Range			0 to ±5		A
Current Limit Equation		l = (1	5000)(4.75)/(13750	$(\Omega + R_{\alpha})$	A
Current Limit Tolerance ⁽¹⁾	$R_{CL} = 14.8 k\Omega (I_{LIM} = \pm 2.5 A),$	IIM – (I	±100	±200	mA
	$R_{L} = 7.5\Omega$		100	1200	
Capacitive Load Drive	$N_{L} = 7.552$		1000		pF
·			1000		pi
OUTPUT ENABLE /STATUS (E/S) PIN					
Shutdown Input Mode					
V _{E/S} High (output enabled)	E/S Pin Open or Forced High	(V–) +2.4			V
V _{E/S} Low (output disabled)	E/S Pin Forced Low			(V–) +0.8	V
I _{E/S} High (output enabled)	E/S Pin High		-60		μΑ
I _{E/S} Low (output disabled)	E/S Pin Low		-65		μA
Output Disable Time			1		μs
Output Enable Time			3		ms
Thermal Shutdown Status Output			-		_
Normal Operation	Sourcing 20µA	(V–) +2.4	(V–) +3.5		V
Thermally Shutdown	Sinking 5μ A, $T_{J} > 160^{\circ}$ C	(. ,	(V-) +0.35	(V–) +0.8	v v
Junction Temperature, Shutdown			+160		°c
Reset from Shutdown			+140		°C
					† Ť
POWER SUPPLY			100		
Specified Voltage			±30		V
Operating Voltage Range		<u>±</u> 4		±30	V
Quiescent Current	I_{LIM} Connected to V–, $I_{\text{O}} = 0$		±15	±20	mA
Quiescent Current, Shutdown Mode	I _{LIM} Connected to V-		±6		mA
TEMPERATURE RANGE					
Specified Range		-40		+85	°C
Operating Range		-40		+125	°č
Storage Range		-40 -55		+125	0°C
		-33		T120	
Thermal Resistance, θ_{JC}	6. 5011-				
7-Lead DDPAK, 7-Lead TO-220	f > 50Hz		2		°C/W
7-Lead DDPAK, 7-Lead TO-220	dc		3		°C/W
Thermal Resistance, θ_{IA}					
7-Lead DDPAK, 7-Lead TO-220	No Heat Sink		65		°C/W

NOTES: (1) High-speed test at $T_J = +25^{\circ}$ C. (2) Positive conventional current flows into the input terminals.

CONNECTION DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Output Current	See SOA Curve
Supply Voltage, V+ to V	
Input Voltage	
Input Shutdown Voltage	V+
Operating Temperature	40°C to +125°C
Storage Temperature	–55°C to +125°C
Junction Temperature	150°C
Lead Temperature (soldering 10s) ⁽²⁾	

NOTE: (1) Stresses above these ratings may cause permanent damage. (2) Vapor-phase or IR reflow techniques are recommended for soldering the OPA548F surface mount package. Wave soldering is not recommended due to excessive thermal shock and "shadowing" of nearby devices.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

