HDSL/MDSL ANALOG FRONT END

FEATURES

- COMPLETE ANALOG INTERFACE
- T1, E1, AND MDSL OPERATION
- CLOCK SCALEABLE SPEED
- SINGLE CHIP SOLUTION
- +5V ONLY (5V OR 3.3V DIGITAL)
- 250mW POWER DISSIPATION
- 48-PIN SSOP
- $-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$ OPERATION
- SECOND SOURCED BY BROOKTREE Bt8921

DESCRIPTION

Burr-Brown's Analog Front End greatly reduces the size and cost of an HDSL or MDSL system by providing all of the active analog circuitry needed to connect the Brooktree Bt8952 HDSL digital signal processor to an external compromise hybrid and a 1:2 HDSL line transformer. All internal filter responses as well as the pulse former output scale with clock frequencyallowing the AFE1103 to operate over a range of bit rates from 196 kbps to 1.168 Mbps .

Functionally, this unit is separated into a transmit and a receive section. The transmit section generates, filters, and buffers outgoing 2B1Q data. The receive section filters and digitizes the symbol data received on the telephone line and passes it to the Bt8952. The HDSL Analog Interface is a monolithic device fabricated on $0.6 \mu \mathrm{CMOS}$. It operates on a single +5 V supply. It is housed in a 48 -pin SSOP package. This unit is second sourced by Brooktree's Bt8921.

International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ $85734 \cdot$ Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111 Internet: http://www.burr-brown.com/ • FAXLine: (800) $548-6133$ (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

Typical at $25^{\circ} \mathrm{C}, \mathrm{AV}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{DV}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{t} x}=584 \mathrm{kHz}$ (E 1 rate), unless otherwise specified.

PARAMETER	COMMENTS	AFE1103E			UNITS		
		MIN	TYP	MAX			
RECEIVE CHANNEL Number of Inputs Input Voltage Range Common-Mode Voltage Input Impedance Input Capacitance Input Gain Matching Resolution Programmable Gain Settling Time for Gain Change Gain + Offset Error Output Data Coding Output Data Rate, rxSYNC ${ }^{(3)}$	Differential Balanced Differential ${ }^{(1)}$ 1.5V CMV Recommended All Inputs Line Input vs Hybrid Input Four Gains: $0 \mathrm{~dB}, 3.25 \mathrm{~dB}, 6 \mathrm{~dB}$, and 9 dB Tested at Each Gain Range	2 See T 14 0 98	$\begin{array}{r} \pm 3.0 \\ +1.5 \end{array}$ Perform 10 ± 2 6 5 fet Bin	Curves 9 584	V V pF $\%$ Bits dB Symbol Periods \%FSR (2) kHz		
TRANSMIT CHANNEL Transmit Symbol Rate, f_{tx} T1 Transmit - 3dB Point T1 Rate Power Spectral Density ${ }^{(4)}$ E1 Transmit - 3dB Point E1 Rate Power Spectral Density ${ }^{(4)}$ Transmit Power ${ }^{(4,5)}$ Pulse Output Common-Mode Voltage, V_{CM} Output Resistance ${ }^{(6)}$	Bellcore TA-NWT-3017 Compliant ETSI RTR/TM-03036 Compliant DC to 1 MHz	98 See T See T 13 See T	196 Perform 292 Perform Perform $\mathrm{AV}_{\mathrm{DD}} / 2$ 1		kHz kHz kHz dBm V Ω		
TRANSCEIVER PERFORMANCE Uncancelled Echo ${ }^{(7)}$	rxGAIN $=0 \mathrm{~dB}$, Loopback Enabled rxGAIN $=0 \mathrm{~dB}$, Loopback Disabled rxGAIN $=3.25 \mathrm{~dB}$, Loopback Disabled rxGAIN $=6 \mathrm{~dB}$, Loopback Disabled rxGAIN = 9dB, Loopback Disabled			$\begin{aligned} & -67 \\ & -67 \\ & -69 \\ & -71 \\ & -73 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$		
DIGITAL INTERFACE(6) Logic Levels V_{IH} V_{IL} V_{OH} V_{OL} Transmit/Receive Channel Interface $\mathrm{t}_{\mathrm{tx} 1}$ $\mathrm{t}_{\mathrm{t} \times 2}$	$\begin{aligned} & \mid \\|_{I H}<10 \mu \mathrm{~A} \\ & \left\|\\|_{\mathrm{IL}}\right\|<10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mu \mathrm{~A} \end{aligned}$ txCLK Period txCLK Pulse Width	$\begin{gathered} \mathrm{DV}_{\mathrm{DD}}-1 \\ -0.3 \\ \mathrm{DV}_{\mathrm{DD}}-0.5 \end{gathered}$ $\begin{gathered} 1.7 \\ \mathrm{t}_{\mathrm{tx} 1} / 16 \end{gathered}$		$\begin{gathered} \mathrm{DV}_{\mathrm{DD}}+0.3 \\ +0.8 \\ +0.4 \\ \\ 10.2 \\ 15 t_{\mathrm{t} \times 1} / 16 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$ $\mu \mathrm{s}$ ns		
POWER Analog Power Supply Voltage Analog Power Supply Voltage Digital Power Supply Voltage Digital Power Supply Voltage Power Dissipation ${ }^{(4,5,8)}$ Power Dissipation ${ }^{(4,5,8)}$ PSRR	Specification Operating Range Specification Operating Range $\begin{gathered} D V_{D D}=3.3 V \\ D V_{D D}=5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 4.75 \\ 3.15 \\ 60 \end{gathered}$	$\begin{gathered} 5 \\ 3.3 \\ 250 \\ 300 \end{gathered}$	$\begin{aligned} & 5.25 \\ & 5.25 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~mW} \\ \mathrm{~mW} \\ \mathrm{~dB} \end{gathered}$		
TEMPERATURE RANGE Operating ${ }^{(6)}$		-40		+85	${ }^{\circ} \mathrm{C}$		

NOTES: (1) With a balanced differential signal, the positive input is 180° out of phase with the negative input, therefore the actual voltage swing about the common mode voltage on each pin is $\pm 1.5 \mathrm{~V}$ to achieve a differential input range of $\pm 3.0 \mathrm{~V}$ or $6 \mathrm{Vp}-\mathrm{p}$. (2) FSR is Full-Scale Range. (3) The output data is available at twice the symbol rate with interpolated values. (4) With a pseudo-random equiprobable sequence of HDSL pulses; 13.5 dBm applied to the transformer (27 dBm output from $\operatorname{txLINE}_{\mathrm{p}}$ and $\mathrm{txLINE} \mathrm{E}_{\mathrm{N}}$. (5) See the Discussion of Specifications section of this data sheet for more information. (6) Guaranteed by design and characterization. (7) Uncancelled Echo is a measure of the total analog errors in the transmitter and receiver sections including the effect of non-linearity and noise. See the Discussion of Specifications section of this data sheet for more information. (8) Power dissipation includes only the power dissipated within the component and does not include power dissipated in the external loads. See the Discussion of Specifications section for more information.

PIN DESCRIPTIONS

PIN \#	TYPE	NAME	DESCRIPTION
1	Ground	PGND	Analog Ground for PLL
2	Power	PV ${ }_{\text {DD }}$	Analog Supply (+5 V) for PLL
3	Input	txCLK	Symbol Clock (QCLK from Bt8952) (392kHz for T1, 584kHz for E1)
4	Input	txDAT ${ }_{\text {N }}$	XMITB Line from Bt8952
5	Input	txDAT ${ }_{\text {P }}$	XMIT Line from Bt8952
6	Output	rxD0	ADC Output Bit-0 (RCV 2 from Bt8952)
7	Output	rxD1	ADC Output Bit-1 (RCV 3 from Bt8952)
8	Output	rxD2	ADC Output Bit-2 (RCV 4 from Bt8952)
9	Output	rxD3	ADC Output Bit-3 (RCV 5 from Bt8952)
10	Output	rxD4	ADC Output Bit-4 (RCV 6 from Bt8952)
11	Output	rxD5	ADC Output Bit-5 (RCV 7 from Bt8952)
12	Ground	DGND	Digital Ground
13	Power	DV ${ }_{\text {DD }}$	Digital Supply (+3.3 V to +5 V)
14	Output	rxD6	ADC Output Bit-6 (RCV 8 from Bt8952)
15	Output	rxD7	ADC Output Bit-7 (RCV 9 from Bt8952)
16	Output	rxD8	ADC Output Bit-8 (RCV 10 from Bt8952)
17	Output	rxD9	ADC Output Bit-9 (RCV 11 from Bt8952)
18	Output	rxD10	ADC Output Bit-10 (RCV 12 from Bt8952)
19	Output	rxD11	ADC Output Bit-11 (RCV 13 from Bt8952)
20	Output	rxD12	ADC Output Bit-12 (RCV 14 from Bt8952)
21	Output	rxD13	ADC Output Bit-13 (RCV 15 from Bt8952)
22	Ground	DGND	Digital Ground
23	Input	rxSYNC	ADC Sync Signal (RCVCLK from Bt8952) (392kHz for T1, 584kHz for E1)
24	Input	rxGAINO	Receive Gain Control Bit-0
25	Input	rxGAIN1	Receive Gain Control Bit-1
26	Input	rxLOOP	Loopback Control Signal (loopback is enabled by positive signal)
27	Power	$\mathrm{AV}_{\mathrm{DD}}$	Analog Supply (+5 V)
28	Input	rxHYB_{N}	Negative Input from Hybrid Network
29	Input	$\mathrm{rxHYB}_{\mathrm{P}}$	Positive Input from Hybrid Network
30	Input	rxLINE_{N}	Negative Line Input
31	Input	rxLINE_{P}	Positive Line Input
32	Ground	AGND	Analog Ground
33	Ground	AGND	Analog Ground
34	Output	REF ${ }_{P}$	Positive Reference Output, Nominally 3.5V
35	Output	$V_{C M}$	Common-Mode Voltage (buffered), Nominally 2.5 V
36	Output	$\mathrm{REF}_{\mathrm{N}}$	Negative Reference Output, Nominally 1.5V
37	Power	$\mathrm{AV}_{\mathrm{DD}}$	Analog Supply (+5 V)
38	Ground	AGND	Analog Ground
39	Output	$\operatorname{txLINE}_{N}$	Transmit Line Output Negative
40	Power	$\mathrm{AV}_{\mathrm{DD}}$	Analog Supply (+5 V)
41	Output	txLINE_{P}	Transmit Line Output Positive
42	Ground	AGND	Analog Ground
43	NC	NC	Connection to Ground Recommended
44	NC	NC	Connection to Ground Recommended
45	NC	NC	Connection to Ground Recommended
46	NC	NC	Connection to Ground Recommended
47	Output	$\mathrm{PLL}_{\text {out }}$	PLL Filter Output
48	Input	PLL ${ }_{\text {IN }}$	PLL Filter Input

[^0]
PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER $^{(1)}$	TEMPERATURE RANGE
AFE1103E	48 -Pin Plastic SSOP	333	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

TYPICAL PERFORMANCE CURVES

At Output of Pulse Transformer

Typical at $25^{\circ} \mathrm{C}, \mathrm{AV}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{DV} \mathrm{DD}=+3.3 \mathrm{~V}$, unless otherwise specified.

CURVE 1. Upper Bound of Power Spectral Density Measured at the Transformer Output.

CURVE 2. Transmitted Pulse Template and Actual Performance as Measured at the Transformer Output.

CURVE 3. Input Impedance of rxLINE and rxHYB.

THEORY OF OPERATION

The transmit channel consists of a switched-capacitor pulse forming network followed by a differential line driver. The pulse forming network receives symbol data from the XMIT and XMITB outputs of the Bt8952 and generates a 2B1Q output waveform. The output meets the pulse mask and power spectral density requirements defined in European Telecommunications Standards Institute document RTR/ TM-03036 for E1 mode and in sections 6.2.1 and 6.2.2.1 of Bellcore technical advisory TA-NWT-001210 for T1 mode. The differential line driver uses a composite output stage combining class B operation (for high efficiency driving large signals) with class AB operation (to minimize crossover distortion).
The receive channel is designed around a fourth-order delta sigma A/D converter. It includes a difference amplifier designed to be used with an external compromise hybrid for first order analog crosstalk reduction. A programmable gain amplifier with gains of 0 dB to +9 dB is also included. The delta sigma modulator operating at a 24 X oversampling ratio produces 14 bits of resolution at output rates up to 584 kHz . The basic functionality of the AFE1103 is illustrated in Figure 1 shown below.
The receive channel operates by summing the two differential inputs, one from the line (rxLINE) and the other from the compromise hybrid (rxHYB). The connection of these two inputs so that the hybrid signal is subtracted from the line signal is described in the paragraph titled "Echo Cancellation in the AFE". The equivalent gain for each input in the difference amp is 1 . The resulting signal then passes to a programmable gain amplifier which can be set for gains of 0 dB through 9 dB . The ADC converts the signal to a 14-bit digital word, rxD13-rxD0.

rxLOOP INPUT

rxLOOP is the loopback control signal. When enabled, the $\operatorname{rxLINE}_{\mathrm{P}}$ and $\mathrm{rxLINE}_{\mathrm{N}}$ inputs are disconnected from the AFE. The $\mathrm{rxHYB}_{\mathrm{P}}$ and $\mathrm{rxHYB}_{\mathrm{N}}$ inputs remain connected. Loopback is enabled by applying a positive signal (Logic 1) to rxLOOP.

ECHO CANCELLATION IN THE AFE

The rxHYB input is designed to be subtracted from the rxLINE input for first order echo cancellation. To accomplish this, note that the rxLINE input is connected to the same polarity signal at the transformer (positive to positive and negative to negative) while the rxHYB input is connected to opposite polarity through the compromise hybrid (negative to positive and positive to negative) as shown in Figure 2.

RECEIVE DATA CODING

The data from the receive channel A/D converter is coded in offset binary.

ANALOG INPUT	OUTPUT CODE (rxD13 - rxDO)
Positive Full Scale	11111111111111
Negative Full Scale	00000000000000

RECEIVE CHANNEL PROGRAMMABLE GAIN AMPLIFIER

The gain of the amplifier at the input of the Receive Channel is set by two gain control pins, rxGAIN1 and rxGAIN0. The resulting gain between 0 dB and +9 dB is shown below.

rxGAIN1	rxGAIN0	GAIN
0	0	0 dB
0	1	3.25 dB
1	0	6 dB
1	1	9 dB

FIGURE 1. Functional Block Diagram of AFE1103.

FIGURE 2. Basic Connection Diagram.

rxHYB AND rxLINE INPUT ANTI-ALIASING FILTERS

The -3 dB frequency of the input anti-aliasing filter for the rxLINE and rxHYB differential inputs should be about 1 MHz . Suggested values for the filter are 750Ω for each of the two input resistors and 100 pF for the capacitor. Together the two 750Ω resistors and the 100 pF capacitor result in -3 dB frequency of just over 1 MHz . The 750Ω input resistors will result in a minimal voltage divider loss with the input impedance of the AFE1103.
This circuit applies at both T1 and E1 rates. For slower rates, the antialiasing filters will give best performance with their -3 dB frequency approximately equal to the bit rate. For example, a -3 dB frequency of 500 kHz should be used for a single pair bit rate of 500 kbps .

rxHYB AND rxLINE INPUT BIAS VOLTAGE

The transmitter output on the txLINE pins is centered at midscale, 2.5 V . But, the rxLINE input signal is centered at 1.5 V in the circuit shown in Figure 2 above.

Inside the AFE1103, the rxHYB and rxLINE signals are subtracted as described in the paragraph on echo cancellation above. This means that the rxHYB inputs need to be centered at 1.5 V just as the rxLINE signal is centered at $1.5 \mathrm{~V} . \mathrm{REF}_{\mathrm{N}}(\operatorname{Pin} 36)$ is a 1.5 V voltage source. The external compromise hybrid must be designed so that the signal into the rxHYB inputs is centered at 1.5 V .

NOTES: (1) Any transmit sequence not shown will result in a zero symbol. (2) All transitions are specified relative to the rising edge of txCLK. (3) Maximum allowable error for any txDAT edge is $\pm \mathrm{t}_{\mathrm{tx} 1} / 12$ ($\pm 17.8 \mathrm{~ns}$ at E 1 rate; $\pm 26.6 \mathrm{~ns}$ at T 1 rate). (4) txDAT_{N} is the inverse of txDAT . (5) Both txDAT inputs are read by the AFE1103 at $1 / 8,3 / 8$, and $5 / 8$ of a symbol period from the rising edge of txCLK. (6) rxSYNC can shift to one of 16 discrete delay times from the rising edge of txCLK. (7) It is recommended that rxD13-rxD0 be read on the rising edge of $r x S Y N C$.

FIGURE 3. Timing Diagram.

RECEIVE TIMING

The rxSYNC signal controls portions of the A/D converter's decimation filter and the data output timing of the A / D converter. It is generated at the symbol rate by the user and must be synchronized with txCLK. The leading edge of rxSYNC can occur at the leading edge of txCLK or it can be shifted by the user in increments of $1 / 16$ of a symbol period to one of 15 discrete delay times after the leading edge of txCLK.

The bandwidth of the A / D converter decimation filter is equal to one half of the symbol rate. The A/D converter data output rate is 2 X the symbol rate. The specifications of the AFE1103 assume that one A/D converter output is used per symbol period and the other interpolated output is ignored. The Receive Timing Diagram above suggests using the rxSYNC pulse to read the first data output in a symbol period. Either data output may be used. Both data outputs may be used for more flexible post-processing.

DISCUSSION OF SPECIFICATIONS

UNCANCELLED ECHO

The key measure of transceiver performance is uncancelled echo. This measurement is made as shown in the diagram of Figure 4. The AFE is connected to an output circuit including a typical 1:2 line transformer. The line is simulated by a 135Ω resistor. Symbol sequences are generated by the tester and applied both to the AFE and to the input of an adaptive filter. The output of the adaptive filter is subtracted from the AFE output to form the uncancelled echo signal. Once the filter taps have converged, the RMS value of the uncancelled echo is calculated. Since there is no far-end signal source or additive line noise, the uncancelled echo contains only noise and linearity errors generated in the transmitter and receiver.
The data sheet value for uncancelled echo is the ratio of the RMS uncancelled echo (referred to the receiver input through the receiver gain) to the nominal transmitted signal (13.5 dBm into 135Ω, or 1.74 Vrms). This echo value is measured under a variety of conditions: with loopback enabled (line input disconnected); with loopback disabled under all receiver gain ranges; and with the line shorted (S_{1} closed in Figure 4).

POWER DISSIPATION

Approximately 75\% of the power dissipation in the AFE1103 is in the analog circuitry, and this component does not change with clock frequency. However, the power dissipa-
tion in the digital circuitry does decrease with lower clock frequency. In addition, the power dissipation in the digital section is decreased when operating from a smaller supply voltage, such as 3.3 V . (The analog supply, $\mathrm{AV}_{\mathrm{DD}}$, must remain in the range 4.75 V to 5.25 V .)
The power dissipation listed in the specifications section applies under these normal operating conditions: 5V Analog Power Supply; 3.3V Digital Power Supply; standard 13.5dBm delivered to the line; and a pseudo-random equiprobable sequence of HDSL output pulses. The power dissipation specifications includes all power dissipated in the AFE1103, it does not include power dissipated in the external load. The external power is $16.5 \mathrm{dBm}, 13.5 \mathrm{dBm}$ to the line and 13.5 dBm to the impedance matching resistors. The external load power of 16.5 dBm is 45 mW . The typical power dissipation in the AFE1103 under various conditions is shown in Table I.

BIT RATE PER AFE1103 (Symbols/sec)	DVDD (V)	TYPICAL POWER DISSIPATION IN THE AFE1103 (mW)
584 (E1)	3.3	250
584 (E1)	5	300
392 (T1)	3.3	240
392 (T1)	5	270
146 (E1/4)	3.3	230
146 (E1/4)	5	245

TABLE I. Typical Power Dissipation.

FIGURE 4. Uncancelled Echo Test Diagram.

LAYOUT

The analog front end of an HDSL system has a number of conflicting requirements. It must accept and deliver digital outputs at fairly high rates of speed, phase-lock to a highspeed digital clock, and convert the line input to a highprecision (14-bit) digital output. Thus, there are really three sections of the AFE1103: the digital section, the phaselocked loop, and the analog section.
The power supply for the digital section of the AFE1103 can range from 3.3 V to 5 V . This supply should be decoupled to digital ground with a ceramic $0.1 \mu \mathrm{~F}$ capacitor placed as close to DGND (pin 12) and $\mathrm{DV}_{\mathrm{DD}}$ (pin 13) as possible. Ideally, both a digital power supply plane and a digital ground plane should run up to and underneath the digital pins of the AFE11103 (pins 3 through 26). However, DV ${ }_{D D}$ may be supplied by a wide printed circuit board (PCB) trace. A digital ground plane underneath all digital pins is strongly recommended.
The phase-locked loop is powered from $\mathrm{PV}_{\mathrm{DD}}$ (pin 2) and its ground is referenced to PGND (pin 1). Note that $\mathrm{PV}_{\mathrm{DD}}$ must be in the 4.75 V to 5.25 V range. This portion of the AFE1103 should be decoupled with both a $10 \mu \mathrm{~F}$ Tantalum capacitor and a $0.1 \mu \mathrm{~F}$ ceramic capacitor. The ceramic capacitor should be placed as close to the AFE1103 as possible. The placement of the Tantalum capacitor is not as critical, but should be close. In each case, the capacitor should be connected between $\mathrm{PV}_{\mathrm{DD}}$ and PGND.

In most systems, it will be natural to derive $\mathrm{PV}_{\mathrm{DD}}$ from the $A V_{D D}$ supply. A 5Ω to 10Ω resistor should be used to connect $\mathrm{PV}_{\mathrm{DD}}$ to the analog supply. This resistor in combination with the $10 \mu \mathrm{~F}$ capacitor form a lowpass filterkeeping glitches on $\mathrm{AV}_{\mathrm{DD}}$ from affecting $\mathrm{PV}_{\mathrm{DD}}$. Ideally, $\mathrm{PV}_{\mathrm{DD}}$ would originate from the analog supply (via the resistor) near the power connector for the printed circuit board. Likewise, PGND should connect to a large PCB trace or small ground plane which returns to the power supply connector underneath the $\mathrm{PV}_{\mathrm{DD}}$ supply path. The PGND "ground plane" should also extend underneath $\mathrm{PLL}_{\mathrm{IN}}$ and $P^{2 L} L_{\text {OUT }}$ (pins 47 and 48).
The remaining portion of the AFE1103 should be considered analog. All AGND pins should be connected directly to a common analog ground plane and all $\mathrm{AV}_{\mathrm{DD}}$ pins should be connected to an analog 5 V power plane. Both of these planes should have a low impedance path to the power supply.

Ideally, all ground planes and traces and all power planes and traces should return to the power supply connector before being connected together (if necessary). Each ground and power pair should be routed over each other, should not overlap any portion of another pair, and the pairs should be separated by a distance of at least 0.25 inch (6 mm). One exception is that the digital and analog ground planes should be connected together underneath the AFE1103 by a small trace.

[^0]: The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

