

speedrus 10-Bit, 20MHz Sampling ANALOG-TO-DIGITAL CONVERTER

FEATURES

- NO MISSING CODES
- INTERNAL REFERENCE
- LOW DIFFERENTIAL LINEARITY ERROR: 0.2LSB
- LOW POWER: 195mW
- HIGH SNR: 60dB
- WIDEBAND TRACK/HOLD: 65MHz
- PACKAGES: 28-Pin SOIC and 28-PIN SSOP

APPLICATIONS

- SET-TOP BOXES
- CABLE MODEMS
- VIDEO DIGITIZING
- CCD IMAGING Camcorders
Copiers
Scanners
Security Cameras
- IF AND BASEBAND DIGITIZATION
 Internet: http://www.burr-brown.com/ • FAXLine: (800) 548-6133 (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491•FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, Sampling Rate $=20 \mathrm{MHz}$, with a 50% duty cycle clock having a 2 ns rise/fall time, unless otherwise noted.

PARAMETER	CONDITIONS	TEMP	ADS820U, E			UNITS	
			MIN	TYP	MAX		
Resolution Specified Temperature Range	$\mathrm{T}_{\text {AMBIENT }}$		-40	10 Guarantee	+85	$\begin{aligned} & \text { Bits } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	
ANALOG INPUT Differential Full Scale Input Range Common-Mode Voltage Analog Input Bandwidth (-3 dB) Small Signal Full Power Input Impedance	$-20 \mathrm{dBFS}{ }^{(1)}$ Input 0dB Input	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	+1.25	$\begin{gathered} 2.25 \\ \\ 120 \\ 65 \\ 1.25\|\mid 4 \end{gathered}$	+3.25	V V MHz MHz $\mathrm{M} \Omega \\| \mathrm{pF}$	
DIGITAL INPUT Logic Family Convert Command	Start Conversion		TTL/HCT Compatible CMOS Falling Edge				
ACCURACY ${ }^{(2)}$ Gain Error Gain Tempco Power Supply Rejection of Gain Input Offset Error Power Supply Rejection of Offset	$\begin{aligned} & \text { Delta }+V_{S}= \pm 5 \% \\ & \text { Delta }+V_{S}= \pm 5 \% \end{aligned}$	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \\ \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & \pm 0.6 \\ & \pm 1.0 \\ & \pm 85 \\ & 0.01 \\ & \pm 2.1 \\ & 0.02 \end{aligned}$	$\begin{gathered} \pm 1.5 \\ \pm 2.5 \\ \\ 0.1 \\ \pm 3.0 \\ 0.1 \end{gathered}$		
CONVERSION CHARACTERISTICS Sample Rate Data Latency			10k	6.5	20M	Sample/s Convert Cycle	
DYNAMIC CHARACTERISTICS Differential Linearity Error $\begin{aligned} & f=500 \mathrm{kHz} \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$ No Missing Codes Integral Linearity Error at $\mathrm{f}=500 \mathrm{kHz}$ Spurious-Free Dynamic Range (SFDR) $f=500 \mathrm{kHz}(-1 \mathrm{dBFS} \text { input })$ $f=10 \mathrm{MHz}(-1 \mathrm{dBFS} \text { input })$ Two-Tone Intermodulation Distortion (IMD) ${ }^{(3)}$ $\mathrm{f}=4.4 \mathrm{MHz}$ and 4.5 MHz (referred to -1 dBFS $\begin{aligned} & \text { Signal-to-Noise Ratio (SNR) } \\ & f=500 \mathrm{kHz} \text { (}-1 \mathrm{dBFS} \text { input) } \\ & f=10 \mathrm{MHz} \text { (}-1 \mathrm{dBFS} \text { input) } \\ & \text { Signal-to-(Noise + Distortion) (SINAD) } \\ & f=500 \mathrm{kHz} \text { (-1dBFS input) } \\ & f=10 \mathrm{MHz} \text { (-1dBFS input) } \end{aligned}$ Differential Gain Error Differential Phase Error Effective Bits ${ }^{(4)}$ Aperture Delay Time Aperture Jitter Overvoltage Recovery Time ${ }^{(5)}$	velope) NTSC or PAL NTSC or PAL $\mathrm{f}_{\mathrm{IN}}=3.58 \mathrm{MHz}$ 1.5x Full Scale Input	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ \text { Full } \\ \text { Full } \\ \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \end{gathered}$	67 64 59 57 58 56 58 56 58 55 56 54	± 0.15 ± 0.15 ± 0.2 ± 0.2 Guaranteed ± 0.5 77 74 63 62 -61 -60 60.5 60 60 60 60.5 60 58 57 0.5 0.1 9.5 2 7 2	$\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \\ & \pm 1.0 \\ & \pm 1.0 \\ & \pm 2.0 \end{aligned}$	LSB LSB LSB LSB LSB dBFS dBFS dBFS dBFS dBc dBc dB $d B$ $d B$ $d B$ dB $d B$ $d B$ $d B$ $\%$ degrees Bits ns ps rms ns	

NOTE: (1) dBFS refers to dB below Full Scale. (2) Percentage accuracies are referred to the internal A / D Full Scale Range of $4 V p-p$. (3) IMD is referred to the larger of the two input signals. If referred to the peak envelope signal ($\approx 0 \mathrm{~dB}$), the intermodulation products will be 7 dB lower. (4) Based on (SINAD - 1.76)/6.02. (5) No "rollover" of bits.

[^0]
BURR - BROWN ${ }^{\text {® }}$

SPECIFICATIONS (CONT)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, Sampling Rate $=20 \mathrm{MHz}$, with a 50% duty cycle clock having a 2 ns rise/fall time, unless otherwise noted.

PARAMETER	CONDITIONS	TEMP	ADS820U, E			UNITS
			MIN	TYP	MAX	
OUTPUTS Logic Family Logic Coding Logic Levels 3-State Enable Time 3-State Disable Time	Logic Selectable Logic "LO", $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ Logic "HI", $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	Full Full Full	$\begin{gathered} 0 \\ 2.5 \end{gathered}$	ompat B or 20 2	$\begin{gathered} 0.4 \\ +V_{S} \\ 40 \\ 10 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~ns} \\ \mathrm{~ns} \end{gathered}$
POWER SUPPLY REQUIREMENTS Supply Voltage: $+\mathrm{V}_{\text {S }}$ Supply Current: $+I_{S}$ Power Consumption $\begin{aligned} & \text { Thermal Resistance, } \theta_{\mathrm{JA}} \\ & 28 \text {-Pin SOIC } \\ & 28 \text {-Pin SSOP } \end{aligned}$	Operating Operating Operating Operating Operating	$\begin{gathered} \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	+4.75	$\begin{gathered} +5 \\ 39 \\ 40 \\ 195 \\ 200 \\ 75 \\ 75 \end{gathered}$	$\begin{gathered} +5.25 \\ 47 \\ 55 \\ 235 \\ 275 \end{gathered}$	V mA mA mW mW ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$

ABSOLUTE MAXIMUM RATINGS

NOTE: Stresses above these ratings may permanently damage the device.

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER $^{(1)}$	TEMPERATURE RANGE
ADS820U	28 -Pin SOIC	217	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ADS820E	28 -Pin SSOP	324	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. BurrBrown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

PIN CONFIGURATION

PIN DESCRIPTIONS

PIN	DESIGNATOR	DESCRIPTION
1	GND	Ground
2	B1	Bit 1, Most Significant Bit
3	B2	Bit 2
4	B3	Bit 3
5	B4	Bit 4
6	B5	Bit 5
7	B6	Bit 6
8	B7	Bit 7
9	B8	Bit 8
10	B9	Bit 9
11	B10	Bit 10, Least Significant Bit
12	DNC	Do not connect.
13	DNC	Do not connect.
14	GND	Ground
15	$+V_{S}$	+5V Power Supply
16	CLK	Convert Clock Input, 50% Duty Cycle
17	$+V_{S}$	+5V Power Supply
18	OE	HI: High Impedance State. LO or Floating: Nor-
19	MSBI	mal Operation. Internal pull-down resistor.
		Most Significant Bit Inversion, HI: MSB inverted
		for complementary output. LO or Floating: Straight
		output. Internal pull-down resistor.
20	$+V_{S}$	+5V Power Supply
21	REFB	Bottom Reference Bypass. For external bypass-
		ing of internal +1.25V reference.
22	CM	Common-Mode Voltage. It is derived by (REFT +
23	REFT	REFB)/2.
		Top Reference Bypass. For external bypassing
of internal +3.25V reference.		
24	$+V_{S}$	+5V Power Supply
25	GND	Ground
26	IN	Input
27	IN	Complementary Input
28	GND	Ground

TIMING DIAGRAM

TYPICAL PERFORMANCE CURVES

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, Sampling Rate $=20 \mathrm{MHz}$, with a 50% duty cycle clock having a 2 ns rise/fall time, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, Sampling Rate $=20 \mathrm{MHz}$, with a 50% duty cycle clock having a 2 ns rise/fall time, unless otherwise noted.

DYNAMIC PERFORMANCE

NOTE: REFT $_{\text {EXT }}$ varied, REFB is fixed at the internal value of +1.25 V .

DYNAMIC PERFORMANCE

NOTE: REFT $_{\text {EXT }}$ varied, REFB is fixed at internal value of +1.25 V .

TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, Sampling Rate $=20 \mathrm{MHz}$, with a 50% duty cycle clock having a 2 ns rise/fall time, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, Sampling Rate $=20 \mathrm{MHz}$, with a 50% duty cycle clock having a 2 ns rise/fall time, unless otherwise noted.

THEORY OF OPERATION

The ADS820 is a high speed sampling analog-to-digital converter with pipelining. It uses a fully differential architecture and digital error correction to guarantee 10 -bit resolution. The differential track/hold circuit is shown in Figure 1. The switches are controlled by an internal clock which has a non-overlapping two phase signal, $\phi 1$ and $\phi 2$. At the sampling time the input signal is sampled on the bottom plates of the input capacitors. In the next clock phase, $\phi 2$, the bottom plates of the input capacitors are connected together and the feedback capacitors are switched to the op amp output. At this time the charge redistributes between C_{I} and C_{H}, completing one track/hold cycle. The differential output is a held DC representation of the analog input at the sample time. The track/hold circuit can also convert a single-ended input signal into a fully differential signal for the quantizer. The pipelined quantizer architecture has 9 stages with each stage containing a two-bit quantizer and a two bit digital-toanalog converter, as shown in Figure 2. Each two-bit quantizer stage converts on the edge of the sub-clock, which is twice the frequency of the externally applied clock. The output of each quantizer is fed into its own delay line to

FIGURE 1. Input Track/Hold Configuration with Timing Signals.

FIGURE 2. Pipeline A/D Architecture.
time-align it with the data created from the following quantizer stages. This aligned data is fed into a digital error correction circuit which can adjust the output data based on the information found on the redundant bits. This technique gives the ADS820 excellent differential linearity and guarantees no missing codes at the 10 -bit level.
There is a 6.5 clock cycle data latency from the start convert signal to the valid output data. The output data is available in Straight Offset Binary (SOB) or Binary Two's Complement (BTC) format.

THE ANALOG INPUT AND INTERNAL REFERENCE

The analog input of the ADS820 can be configured in various ways and driven with different circuits, depending on the nature of the signal and the level of performance desired. The ADS820 has an internal reference that sets the full scale input range of the A/D. The differential input range has each input centered around the common-mode of +2.25 V , with each of the two inputs having a full scale range of +1.25 V to +3.25 V . Since each input is 2 V peak-to-peak and 180° out of phase with the other, a 4 V differential input signal to the quantizer results. As shown in Figure 3, the positive full scale reference (REFT) and the negative full scale reference (REFB) are brought out for external bypassing. In addition, the common-mode voltage (CM) may be used as a reference to provide the appropriate offset for the driving circuitry. However, care must be taken not to appreciably load this reference node. For more information regarding external references, single-ended inputs, and ADS820 drive circuits, refer to the applications section.

FIGURE 3. Internal Reference Structure.

CLOCK REQUIREMENTS

The CLK pin accepts a CMOS level clock input. The rising and falling edge of the externally applied convert command clock control the various interstage conversions in the pipeline. Therefore, the duty cycle of the clock should be held at 50% with low jitter and fast rise/fall times of 2 ns or less. This is especially important when digitizing a high frequency input and operating at the maximum sample rate. Deviation from a 50% duty cycle will effectively shorten some of the interstage settling times, thus degrading the SNR and DNL performance.

DIGITAL OUTPUT DATA

The 10 -bit output data is provided at CMOS logic levels. The standard output coding is Straight Offset Binary where a full scale input signal corresponds to all " 1 's" at the output. This condition is met with pin 19 "LO" or Floating due to an internal pull-down resistor. By applying a high voltage to this pin, a Binary Two's Complement output will be provided where the most significant bit is inverted. The digital outputs of the ADS820 can be set to a high impedance state by driving $\overline{\mathrm{OE}}$ (pin 18) with a logic "HI". Normal operation is achieved with pin 18 "LO" or Floating due to internal pull-down resistors. This function is provided for testability purposes and is not meant to drive digital buses directly or be dynamically changed during the conversion process.

	OUTPUT CODE	
	$\begin{array}{c}\text { SOB } \\ \text { PIN 19 }\end{array}$	$\begin{array}{c}\text { BTC } \\ \text { PIN 19 } \\ \text { DIFFERENTIAL INPUT }\end{array}$
(1)	FLOATING or LO	

TABLE I. Coding Table for the ADS820.

APPLICATIONS

DRIVING THE ADS820

The ADS820 has a differential input with a common-mode of +2.25 V . For AC-coupled applications, the simplest way to create this differential input is to drive the primary winding of a transformer with a single-ended input. A differential output is created on the secondary if the center tap is tied to the common-mode voltage (CM) of +2.25 V per Figure 4. This transformer-coupled input arrangement pro-

FIGURE 4. AC-Coupled Single-Ended to Differential Drive Circuit Using a Transformer.
vides good high frequency AC performance. It is important to select a transformer that gives low distortion and does not exhibit core saturation at full scale voltage levels. Since the transformer does not appreciably load the ladder, there is no need to buffer the common-mode (CM) output in this instance. In general, it is advisable to keep the current draw from the CM output pin below $0.5 \mu \mathrm{~A}$ to avoid nonlinearity in the internal reference ladder. A FET input operational amplifier such as the OPA130 can provide a buffered reference for driving external circuitry. The analog IN and $\overline{\mathrm{IN}}$ inputs should be bypassed with 22 pF capacitors to minimize track/hold glitches and to improve high input frequency performance.
Figure 5 illustrates another possible low cost interface circuit which utilizes resistors and capacitors in place of a transformer. Depending on the signal bandwidth, the component values should be carefully selected in order to maintain the performance outlined in the data sheet. The input capacitors, $\mathrm{C}_{\text {IN }}$, and the input resistors, R_{IN}, create a high-pass filter with the lower corner frequency at $\mathrm{f}_{\mathrm{C}}=1 /\left(2 \pi \mathrm{R}_{\mathrm{IN}} \mathrm{C}_{\mathrm{IN}}\right)$. The corner frequency can be reduced by either increasing the value of R_{IN} or C_{IN}. If the circuit operates with a 50Ω or 75Ω impedance level, the resistors are fixed and only the value of the capacitor can be increased. Usually AC-coupling capacitors are electrolytic or tantalum capacitors with values of $1 \mu \mathrm{~F}$ or higher. It should be noted that these large capacitors become inductive with increased input frequency, which could lead to signal amplitude errors or oscillation. To maintain a low AC-coupling impedance throughout the signal band, a small value (e.g. $1 \mu \mathrm{~F}$) ceramic capacitor could be added in parallel with the polarized capacitor.
Capacitors $\mathrm{C}_{\mathrm{SH} 1}$ and $\mathrm{C}_{\mathrm{SH} 2}$ are used to minimize current glitches resulting from the switching in the input track and hold stage and to improve signal-to-noise performance. These capacitors can also be used to establish a low-pass filter and effectively reduce the noise bandwidth. In order to create a real pole, resistors $\mathrm{R}_{\text {SER1 }}$ and $\mathrm{R}_{\text {SER2 }}$ were added in series with
each input. The cut-off frequency of the filter is determined by $\mathrm{f}_{\mathrm{C}}=1 /\left(2 \pi \mathrm{R}_{\mathrm{SER}} \cdot\left(\mathrm{C}_{\mathrm{SH}}+\mathrm{C}_{\mathrm{ADC}}\right)\right)$ where $\mathrm{R}_{\mathrm{SER}}$ is the resistor in series with the input, C_{SH} is the external capacitor from the input to ground, and $\mathrm{C}_{\mathrm{ADC}}$ is the internal input capacitance of the A/D converter (typically 4 pF).
Resistors R_{1} and R_{2} are used to derive the necessary common mode voltage from the buffered top and bottom references. The total load of the resistor string should be selected so that the current does not exceed 1 mA . Although the circuit in Figure 5 uses two resistors of equal value so that the common mode voltage is centered between the top and bottom reference $(+2.25 \mathrm{~V})$, it is not necessary to do so. In all cases the center point, V_{CM}, should be bypassed to ground in order to provide a low impedance AC ground.
If the signal needs to be DC coupled to the input of the ADS820, an operational amplifier input circuit is required. In the differential input mode, any single-ended signal must be modified to create a differential signal. This can be accomplished by using two operational amplifiers, one in the noninverting mode for the input and the other amplifier in the inverting mode for the complementary input. The low distortion circuit in Figure 6 will provide the necessary input shifting required for signals centered around ground. It also employs a diode for output level shifting to guarantee a low distortion +3.25 V output swing. Another DC-coupled circuit is shown in Figure 7. Other amplifiers can be used in place of the OPA642s if the lowest distortion is not necessary. If output level shifting circuits are not used, care must be taken to select operational amplifiers that give the necessary performance when swinging to +3.25 V with a $\pm 5 \mathrm{~V}$ supply operational amplifier. The OPA620 and OPA621, or the lower power OPA650 and OPA651 can be used in place of the OPA642s in Figure 6. In that configuration, the OPA650 and OPA651 will typically swing to within 100 mV of positive full scale. If the OPA621 or OPA651 is used, the input buffer must be configured in a gain of 2 .

FIGURE 5. AC-Coupled Differential Input Circuit.

FIGURE 6. A Low Distortion DC-Coupled, Single-Ended to Differential Input Driver Circuit.

NOTE: Power supplies and bypassing not shown. The measured SNR performance with 12.5 MHz input signal is 57 dB with this driver circuit.
FIGURE 7. A Wideband DC-Coupled, Single-Ended to Differential Input Driver Circuit.

The ADS820 can also be configured with a single-ended input full scale range of +0.25 V to +4.25 V by tying the complementary input to the common-mode reference voltage as shown in Figure 8. This configuration will result in increased even-order harmonics, especially at higher input frequencies. However, this tradeoff may be quite acceptable for time-domain applications. The driving amplifier must give adequate performance with a +0.25 V to +4.25 V output swing in this case.

FIGURE 8. Single-Ended Input Connection.

external references and adjustment of FULL SCALE RANGE

The internal reference buffers are limited to approximately 1 mA of output current. As a result, these internal +1.25 V and +3.25 V references may be overridden by external references that have at least 18 mA (at room temperature) of output drive capability. In this instance, the common-mode voltage will be set halfway between the two references. This feature can be used to adjust the gain error, improve gain drift, or to change the full scale input range of the ADS820. Changing the full scale range to a lower value has the benefit of easing the swing requirements of external input amplifiers. The external references can vary as long as the value of the external top reference $\left(\mathrm{REFT}_{\mathrm{EXT}}\right)$ is less than or equal to +3.4 V and the value of the external bottom reference $\left(\mathrm{REFB}_{\mathrm{EXT}}\right)$ is greater than or equal to +1.1 V and the difference between the external references are greater than or equal to 800 mV .
For the differential configuration, the full scale input range will be set to the external reference values that are selected. For the single-ended mode, the input range is $2 \bullet\left(\mathrm{REFT}_{\text {EXT }}-\right.$ $\mathrm{REFB}_{\mathrm{EXT}}$), with the common-mode being centered at $\left(\mathrm{REFT}_{\mathrm{EXT}}+\mathrm{REFB}_{\mathrm{EXT}}\right) / 2$. Refer to the typical performance curves for expected performance vs full scale input range.
The circuit in Figure 9 works completely on a single +5 V supply. As a reference element, it uses the micro-power reference REF1004-2.5, which is set to a quiescent current of 0.1 mA . Amplifier A_{2} is configured as a follower to buffer the +1.25 V generated from the resistor divider. To provide the necessary current drive, a pull-down resistor, R_{P} is added.
Amplifier A_{1} is configured as an adjustable gain stage, with a range of approximately 1 to 1.32 . The pull-up resistor again relieves the op amp from providing the full current drive. The value of the pull-up/down resistors is not critical and can be varied to optimize power consumption. The need for pull-up/down resistors depends only on the drive capability of the selected drive amplifiers and thus can be omitted.

PC BOARD LAYOUT AND BYPASSING

A well-designed, clean PC board layout will assure proper operation and clean spectral response. Proper grounding and bypassing, short lead lengths, and the use of ground planes are particularly important for high frequency circuits. Multilayer PC boards are recommended for best performance but if carefully designed, a two-sided PC board with large, heavy ground planes can give excellent results. It is recommended that the analog and digital ground pins of the ADS820 be connected directly to the analog ground plane. In our experience, this gives the most consistent results. The A/D power supply commons should be tied together at the analog ground plane. Power supplies should be bypassed with $0.1 \mu \mathrm{~F}$ ceramic capacitors as close to the pin as possible.

DYNAMIC PERFORMANCE TESTING

The ADS820 is a high performance converter and careful attention to test techniques is necessary to achieve accurate results. Highly accurate phase-locked signal sources allow high resolution FFT measurements to be made without using data windowing functions. A low jitter signal generator such as the HP8644A for the test signal, phase-locked with a low jitter HP8022A pulse generator for the A/D clock, gives excellent results. Low pass filtering (or bandpass filtering) of test signals is absolutely necessary to test the low distortion of the ADS820. Using a signal amplitude slightly lower than full scale will allow a small amount of "headroom" so that noise or DC offset voltage will not overrange the A/D and cause clipping on signal peaks.

DYNAMIC PERFORMANCE DEFINITIONS

1. Signal-to-Noise-and-Distortion Ratio (SINAD):

2. Signal-to-Noise Ratio (SNR):
$10 \log \frac{\text { Sinewave Signal Power }}{\text { Noise Power }}$
3. Intermodulation Distortion (IMD):
$10 \log \frac{\text { Highest IMD Product Power (to 5th-order) }}{\text { Sinewave Signal Power }}$
IMD is referenced to the larger of the test signals f_{1} or f_{2}. Five "bins" either side of peak are used for calculation of fundamental and harmonic power. The " 0 " frequency bin (DC) is not included in these calculations as it is of little importance in dynamic signal processing applications.

FIGURE 9. Optional External Reference to Set the Full-Scale Range Utilizing a Dual, Single-Supply Op Amp.

FIGURE 10. ADS820 Interface Schematic with AC-Coupling and External Buffers.

[^0]: The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

