

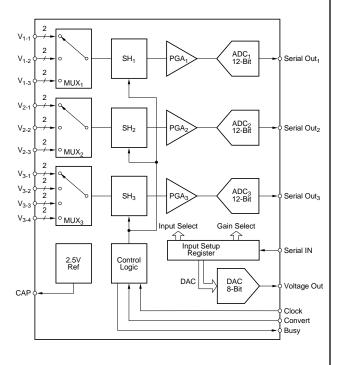
ADS7833

10-Channel, 12-Bit DATA ACQUISITION SYSTEM

FEATURES

- 3 SIMULTANEOUS SAMPLED CHANNELS
- 3 SYNCHRONIZED 12-BIT ADCs
- 6.6µs THROUGHPUT RATE
- FULLY DIFFERENTIAL MUX INPUTS
- DIGITALLY SELECTABLE INPUT RANGES
- ±5V POWER SUPPLIES
- SERIAL DIGITAL INPUT/OUTPUTS
- 2 SIMULTANEOUS SAMPLED AUXILIARY CHANNELS
- DIRECT INTERFACE TO MOTOROLA'S DSP56004/7

DESCRIPTION


The ADS7833 consists of three 12-bit analog-to-digital converters preceded by three simultaneously operating sample-hold amplifiers, and multiplexers for 10 differential inputs. The ADCs have simultaneous serial outputs for high speed data transfer and data processing.

The ADS7833 also offers a programmable gain amplifier with programmable gains of 1.0V/V, 1.25V/V, 2.5V/V, and 5.0V/V. Channel selection and gain selection are selectable through the serial input control word. The high through put rate is maintained by simultaneously clocking in the 13-bit input control word for the next conversion while the present conversions are clocked out.

The part also contains an 8-bit digital-to-analog converter whose digital input is supplied as part of the input control word.

APPLICATIONS

- AC MOTOR SPEED CONTROLS
- THREE PHASE POWER CONTROL
- UNINTERRUPTABLE POWER SUPPLIES
- VIBRATION ANALYSIS
- PC DATA ACQUISITION
- MEDICAL INSTRUMENTATION

International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111
Internet: http://www.burr-brown.com/ • FAXLine: (800) 548-6133 (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

At V_{ANA+} = +5V, V_{ANA-} = -5V, V_{DIG+} = +5V, V_{DIG-} = -5V, and T_A = -40°C to +85°C, using internal reference, f_{CLOCK} = 2.1MHz.

ANALOG-TO-DIGITAL CONVERTER CHANNELS

			ADS7833N		
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
RESOLUTION		12			Bit
ANALOG INPUT Full Scale Voltage, Differential Common-Mode Voltage Impedance	G = 1.0V/V G = 1.25V/V G = 2.5V/V G = 5.0V/V	±0.5	±2.5 ±2.0 ±1.0 ±0.5 See Table VII		ν ν ν ν ν
Capacitance THROUGHPUT SPEED Conversion Time Complete Cycle Throughput Rate	CLK = 2.1MHz Acquire and Convert	150	200	6.1 6.6	pF μs μs kHz
SAMPLING DYNAMICS S/H Droop Rate S/H Acquisition Time S/H Aperture Delay S/H Aperture Jitter Sampling Skew, Channel-to-Channel			0.1 0.5 50 50 3		μV/μs μs ns ps ns
DC ACCURACY Integral Linearity - ADC Differential Linearity - ADC No Missing Codes Integral Linearity - Asynchronous, Synchronous Differential Linearity - Asynchronous, Synchronous Full Scale Error Full Scale Error Other Gains Full Scale Error Drift Zero Error - ADC Zero Error - Asynchronous, Synchronous	G = 1.0V/V G = 1.0V/V G = 2.5V/V G = 1.0V/V G = 1.0V/V	12	±0.5 ±0.5 0.5 0.5 0.5 ±10 ±10 ±0.5 ±0.5	±2 ±3 ±3 2 4 ±100 ±100 ±15 ±20	LSB LSB Bits LSB LSB % of FSR % of FSR ppm/°C ppm/°C LSB LSB
Zero Error Drift AC ACCURACY Total Harmonic Distortion f _{IN} = 1kHz f _{IN} = 1MHz CMR	$G = 1.0V/V$ $V_{CM} = 1V, f_{CM} = 1MHz$		92 72 40		ppm/°C dB dB dB
REFERENCE Internal Reference Voltage Internal Reference Accuracy Internal Reference Drift Internal Reference Source Current External Reference Voltage Range for Specified Linearity External Reference Current Drain		2.25	2.5 ±0.25 ±10 10 2.5	2.75	V % ppm/°C µA V µA
DIGITAL INPUTS Logic Levels VIL VIH IIL IIH Input Capacitance	At All Digital Input Pins	0 +3.5		1.5 +5 ±10 ±10 15	V V μA μA pF
DIGITAL OUTPUTS Data Format Data Coding VoL VoH Leakage Current Output Capacitance	I _{SINK} = 1.6mA I _{SOURCE} = 500μA At All Digital Output Pins	0 4.2	12-Bit Serial BTC	0.4 5 ±5 15	V V μA pF

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS (CONT)

At V_{ANA+} = +5V, V_{ANA-} = -5V, V_{DIG+} = +5V, V_{DIG-} = -5V, and T_A = -40°C to +85°C, using internal reference, f_{CLOCK} = 2.1MHz.

ANALOG-TO-DIGITAL CONVERTER CHANNELS

			ADS7833N		
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES	Specified Performance				
V _{ANA+}		+4.75	+5.0	+5.25	V
V _{ANA}		-4.75	-5.0	-5.25	V
V _{DIG+}		+4.75	+5.0	+5.25	V
V _{DIG} _		-4.75	-5.0	-5.25	V
I _{ANA+}			15	25	mA
I _{ANA-}			8	10	mA
I _{DIG+}			3	5	mA
I _{DIG} _			1	2	mA
Power Dissipation			125		mW
TEMPERATURE RANGE					
Specified Performance		-40		+85	°C
Derated Performance		-55		+125	°C
Storage		-65		+150	°C

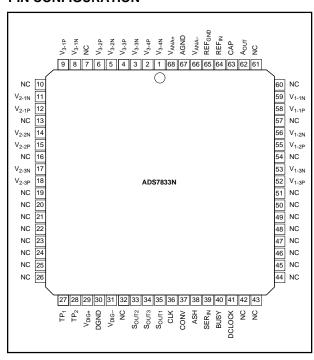
DIGITAL-TO-ANALOG CONVERTER

			ADS7833N		
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
RESOLUTION		8-Bits			
Output Range		0		+2.5	V
Output Settling Time	To 0.5LSB			1	μs
Linearity Error				±1	LSB
Differential Linearity				±1	LSB
Output Current		200			μΑ
Offset Error			±1	10	mV
Full Scale Error				2	%

ABSOLUTE MAXIMUM RATINGS

Analog Input Voltage	
V _{ANA+}	+7V
V _{ANA}	7V
V _{DIG+}	+7V
V _{DIG-}	7V
Digital Inputs	$-0.3V$ to V_{DIG} +0.3V
Maximum Junction Temperature	+165°C
Internal Power Dissipation	825mW
Lead Temperature (soldering, 10s)	+300°C

CONVERSION AND DATA TIMING

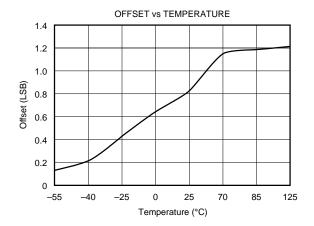

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
t _{CONV}	A/D Conversion Time	6.6	4.0		μs
CLK	A/D Conversion Clock	2.1	2.8		MHz
t ₁	Setup Time for Conversion Before Rising Edge of Clock	50			ns
t ₂	Hold Time for Conversion After Rising Edge of Clock	50			ns
t ₃	Setup Time for Serial Out			25	ns
t ₄	Setup Time for Serial Input	30			ns
t ₅	Hold Time for Serial Input	30			ns

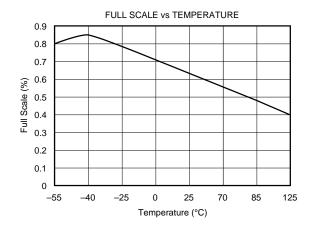
PACKAGE INFORMATION

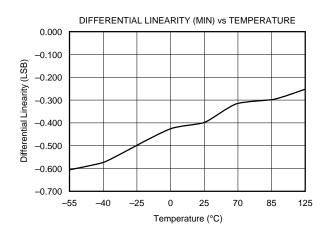
PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
ADS7833N	68-Lead PLCC	312

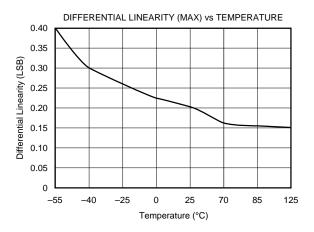
NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

PIN CONFIGURATION

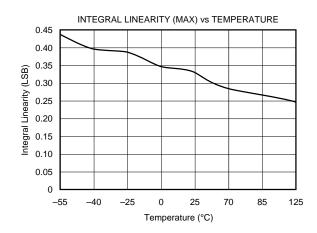

PIN DEFINITIONS

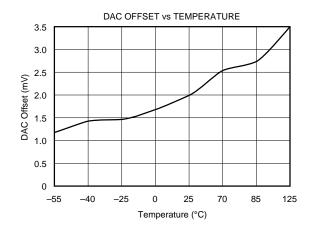

	NAME	TYPE ⁽¹⁾	DESCRIPTION	PIN NO	NAME	TYPE ⁽¹⁾	DESCRIPTION
1	V _{3-4N}	Al	Voltage Input, Channel 3, Mux I/P 4,	35 36	S _{OUT1}	DO DI	Serial Digital Output, Channel 1
1			Negative Side	36	CLK	DI	Clock for A/D Converters Start A/D Converters. When CONV goes to
2	V _{3-4P}	Al	Voltage Input, Channel 3, Mux IP 4, Positive Side	37	CONV	DI	"0" (low) the next rising edge of CLK starts the conversion.
3	V _{3–3N}	Al	Voltage Input, Channel 3, Mux I/P 3, Negative Side	38	ASH	DI	Digital Control for Asynchronous Sample Hold. If signal is "1" (high), signals
4	V_{3-3P}	Al	Voltage Input, Channel 3, Mux I/P 3, Positive Side	39	SER _{IN}	DI	are sampled. Serial Digital Input for Input Control Word
5	V_{3-2N}	Al	Voltage Input, Channel 3, Mux I/P 2, Negative Side	40	BUSY	DO	A/D Converters Busy. Busy if signal is "0" (low).
6	V _{3-2P}	Al	Voltage Input, Channel 3, Mux I/P 2, Positive Side	41	DCLOCK	DO	A Delayed and Truncated Version of the CLK Signals. It is Delayed 50ns
7	NC	_	No Connection				from the CLK Signal and Stays Low
8	V_{3-1N}	Al	Voltage Input, Channel 3, Mux I/P 1,				after 13 DCLOCK Cycles.
1			Negative Side	42	NC	_	No Connection
9	V_{3-1P}	Al	Voltage Input, Channel 3, Mux I/P 1,	43	NC	_	No Connection
1	-		Positive Side	44	NC	_	No Connection
10	NC	_	No Connection	45	NC	_	No Connection
11	V_{2-1N}	Al	Voltage Input, Channel 2, Mux I/P 1,	46	NC	_	No Connection
			Negative Side	47	NC	_	No Connection
12	V_{2-1P}	Al	Voltage Input, Channel 2, Mux I/P 1,	48	NC	_	No Connection
1	2 11		Positive Side	49	NC	_	No Connection
13	NC	_	No Connection	50	NC	_	No Connection
14	V_{2-2N}	l ai l	Voltage Input, Channel 2, Mux I/P 2,	51	NC	_	No Connection
			Negative Side	52	V _{1-3P}	Al	Voltage Input, Channel 1, Mux I/P 3, Positive Side
15	V _{2-2P}	Al	Voltage Input, Channel 2, Mux I/P 2, Positive Side	53	V _{1-3N}	AI	Voltage Input, Channel 1, Mux I/P 3, Negative Side
16	NC	_	No Connection	54	NC	_	No Connection
17	V _{2–3N}	Al	Voltage Input, Channel 2, Mux I/P 3, Negative Side.	55	V _{1-2P}	AI	Voltage Input, Channel 1, Mux I/P 2, Positive Side
18	V_{2-3P}	Al	Voltage Input, Channel 2, Mux I/P 3, Positive Side	56	V _{1-2N}	AI	Voltage Input, Channel 1, Mux I/P 2, Negative Side
19	NC	_	No Connection	57	NC		No Connection
20	NC	-	No Connection	57 58	V _{1-1P}	AI	Voltage Input, Channel 1, Mux I/P 1,
21	NC	-	No Connection	30	V 1−1P	Λι	Positive Side
22	NC	-	No Connection	59	V _{1-1N}	AI	Voltage Input, Channel 1, Mux I/P 1,
23	NC	-	No Connection	39	V 1–1N	AI AI	Negative Side
24	NC	-	No Connection	60	NO.		
25 26	NC NC	_	No Connection No Connection	60	NC NC	_	No Connection No Connection
26	TP1	_	Test Point 1, Make No Connection	62	1	AO	Output of DAC
28	TP2	_	Test Point 1, Make No Connection	63	A _{OUT} CAP	AO	Decoupling Point for Internal Reference
29	V _{DIG+}	P	Digital Supply Voltage, +5V	64	REFIN	AI	Input Pin for External Reference
30	DGND	' P	Digital Supply Voltage, 43V Digital Supply Voltage, Ground	65	REF _{GND}	P	Ground Pin for External Reference
31	V _{DIG}	P	Digital Supply Voltage, –5V	66	V _{ANA}	P.	Analog Supply Voltage, –5V
32	NC	-	No Connection	67	AGND	P.	Analog Supply Voltage, Ground
33	S _{OUT2}	DO	Serial Digital Output, Channel 2	68	V _{ANA+}	Р	Analog Supply Voltage, +5V
34	S _{OUT3}	DO	Serial Digital Output, Channel 3		Alvai		

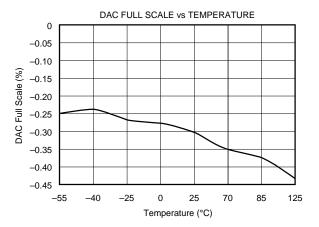

NOTE: (1) Al is Analog Input, AO is Analog Output, DI is Digital Input, DO is Digital Output, P is Power Supply Connection.

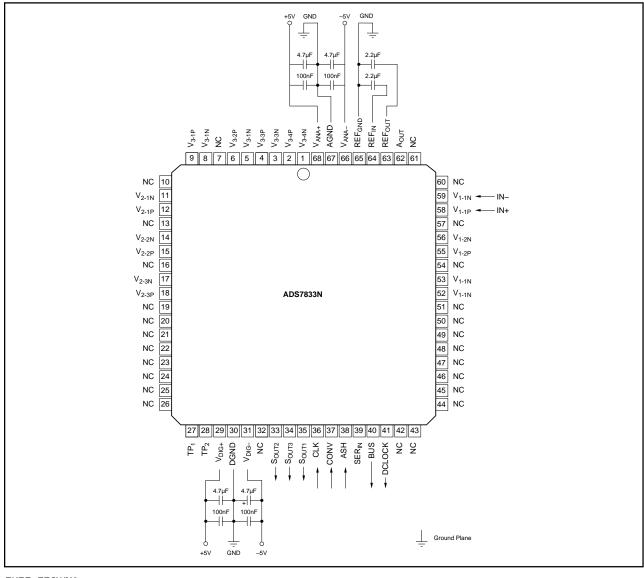

TYPICAL PERFORMANCE CURVES

At V_{ANA+} = +5V, V_{ANA-} = -5V, V_{DIG+} = +5V, V_{DIG-} = -5V and T_A = 25°C, using internal reference, f_{CLOCK} = 2.1MHz.








TYPICAL PERFORMANCE CURVES (CONT)

At V_{ANA+} = +5V, V_{ANA-} = -5V, V_{DIG+} = +5V, V_{DIG-} = -5V and T_A = 25°C, using internal reference, f_{CLOCK} = 2.1MHz.

BASIC CIRCUIT CONFIGURATION

FUNCTIONAL DESCRIPTION

(See Figure 1)

ADCs AND PGAs

The ADS7833 contains three signal channels each with a 12-bit analog-to-digital converter output. The ADCs operate synchronously and their serial outputs occur simultaneously. (Table VI gives the analog input/digital output relation-

ships). The ADCs are preceded by programmable gain amplifiers. (Table II gives gain select information). For channels one and two, the PGAs are effective for all three analog inputs. For the third channel, only the V_{3-1} input is gain changed by the PGA. Inputs V_{3-2} , V_{3-3} , and V_{3-4} are connected to ADC₃ at a fixed gain of 1V/V regardless of the Gain Select value.

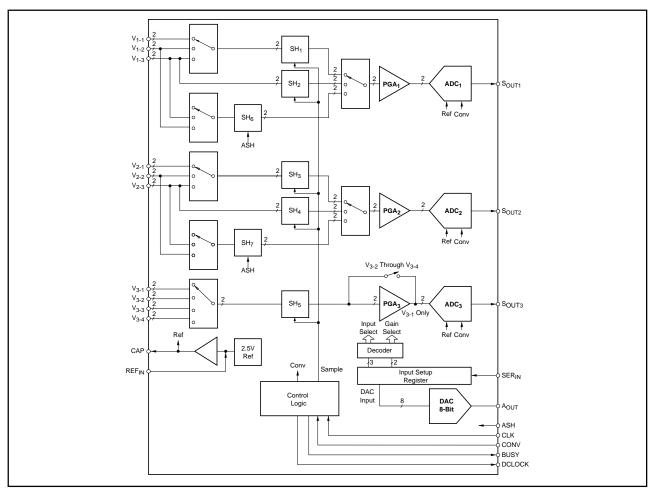


FIGURE 1. Functional Diagram.

SAMPLE HOLDS

The ADS7833 contains seven sample holds. Five of them (SH₁ through SH₅) sample simultaneously and have their sample/hold timing internally synchronized. (The timing is shown in Figure 2).

Three of the sample holds (SH_1 , SH_3 , and SH_5) are connected to the input multiplexers so that they can provide simultaneous sampling for all of their channels inputs. In addition, SH_2 and SH_4 simultaneously sample the third input of their channels (V_{1-3} and V_{2-3} , respectively). This is useful in motor control applications where V_{1-2} and V_{1-3} are the quadrature inputs for one position sensor, and V_{2-2} and V_{2-3} are the quadrature inputs for a second position sensor (see Figure 6). In that application, it is desirable to sample

the quadrature inputs of a given position sensor at the same time (even though they are converted on successive conversion cycles) (see Table III), so that their values are captured at the same shaft position.

The ADS7833 also has the capability for limited asynchronous sampling. The sampling of SH_6 and SH_7 is controlled asynchronously by the control signal ASH (see Table III). This allows two inputs each on channel 1 and channel 2 (see Table IV) to be sampled asynchronously from the timing of the other sample holds. This can be useful in motor control applications where the two inputs for each channel come from a position sensor and it is desired to sample based on position sensor timing rather than system clock timing.

MULTIPLEXERS

The ADS7833 also contains several multiplexers that are used to select the desired analog inputs and connect the proper sample hold outputs to the PGAs and ADCs. The MUXs are driven by a decoder which receives its inputs from the Input Setup Register. (See Table III and Table IV for information on input channel selection). The input multiplexers can take full differential input signals (see Figure 3 and Table VII). The analog signals stay differential through the sample holds and the PGAs all the way to the inputs of the ADSs. This is done to provide the best possible high frequency noise rejection.

INPUT SETUP

As the ADCs are converting and transmitted their serial digital data for one conversion cycle, a setup word is being received to be used for the next conversion cycle. The 13-bit word is supplied at the SER_{IN} pin (see Figure 1), and is stored in the buffered Input Setup Register. The Input Select and Gain Select portions of the word are decoded and determine the state of the multiplexers and PGAs (see CON-FIGURABLE PARAMETERS section).

DIGITAL-TO-ANALOG CONVERTER

An 8-bit DAC provides 256 output voltage levels from 0V to 2.5V (see Table V for input/output relationships). The DAC is controlled by the DAC Input portion of the input setup word. The DAC Input portion of the word is strobed into the DAC at the end of the conversion cycle (14th CLK pulse in Figure 2).

VOLTAGE REFERENCE

The ADS7833 contains an internal 2.5V voltage reference. It is available externally through an output buffer amplifier. If it is desired to use an external reference, one may be

connected at the REF_{IN} pins. This then overrides the internal 2.5V reference, is connected to the ADCs and is available buffered at the CAP pin.

OTHER DIGITAL INPUTS AND OUTPUTS

Sampling and conversion is controlled by the CONV input (see Figure 2). The ADS7833 is designed to operate from an external clock supplied at the CLK input. This allows the conversion to be done synchronously with system timing so that transient noise effects can be minimized. The CLK signal may run continuously or may be supplied only during convert sequences. The BUSY and DCLOCK signals are internally generated and are supplied to make interfaces with microprocessors easier (see Figures 2, 4, and 6).

CONFIGURABLE PARAMETERS

Configurable parameters are:

- PGA Gain
- Input multiplexer and sample/hold selection
- DAC output voltage

Configuration information for these parameters is contained in the SER_{IN} word (See Figure 2). As one conversion is taking place, the configuration for the next conversion is being loaded into the buffered Input Setup Register via the SER_{IN} word. Table I shows information regarding these parameters.

CLOCK POSITIONS ⁽¹⁾	DESCRIPTION	FUNCTIONS		
2-9	DAC Input ₀₋₇	Sets DAC Output Voltage		
10-11	Gain Select ₀₋₁	Sets PGA Gains		
12-14	Input Select ₀₋₂	Determines Multiplexers Conditions		
NOTE: (1) See F	NOTE: (1) See Figure 2. "Clock Pulse Reference No."			

TABLE I. Description of Configurable Parameters.

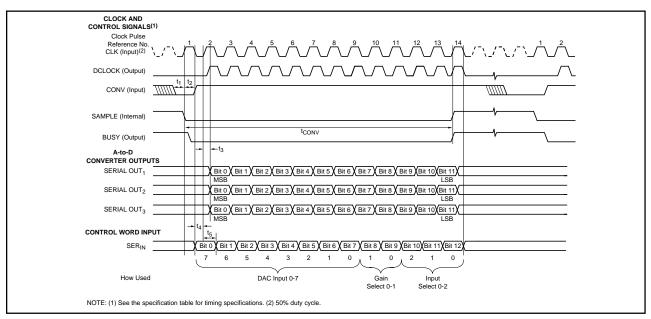


FIGURE 2. Timing Diagram.

PGA GAIN

The PGA gain is determined by the Gain Select portion (bits 8 and 9) in the SER_{IN} word (see Figure 2). There is one gain input that sets the same gain for all three PGAs. The gain values and allowable full scale inputs are shown in Table II.

For channels one and two the PGAs set the gain for all three analog inputs. For the third channel, only the V_{3-1} input is gain changed by the PGA. Inputs V_{3-2} , V_{3-3} and V_{3-4} are connected to ADC₃ at a fixed gain of 1V/V regardless of the Gain Select value.

GAIN SELECT ₀₋₁	GAIN SETTING	FULL SCALE INPUT
0 _H	5.0V/V	±0.5V
1 _H	2.5V/V	±1.0V
2 _H	1.25V/V	±2.0V
3 _H	1.0V/V	±2.5V

TABLE II. Gain Select Information.

INPUT MULTIPLEXER AND SAMPLE HOLD SELECTION

The Input Select portion of the SER_{IN} word (bits 10, 11 and 12) (see Figure 2) are decoded and determine the open/closed condition of the multiplexer switches. This in turn determines which input signals are connected to the sample holds and which sample holds are connected to the PGAs/ADCs.

INPUT SIGNALS FOR PGAs/ADCs

Table III shows the relationships between the value of Input Select₀₋₂ and the signals that are converted.

INPUT SELECT ₀₋₂		ANALOG SIGNAL CONNECTED TO			
HEX	BINARY	PGA _X /ADC _X			
CODE	CODE	PGA ₁ /ADC ₁	PGA ₂ /ADC ₂	PGA ₃ /ADC ₂	
0 _H	000	Undefined	Undefined	V ₃₋₄	
1 _H	001	V _{1-X} via SH ₆ ⁽¹⁾	V _{2-X} via SH ₇ ⁽¹⁾	V ₃₋₄	
2 _H	010	V ₁₋₃ via SH ₁	V ₂₋₃ via SH ₃	V ₃₋₃	
3 _H	011	V ₁₋₃ via SH ₂	V ₂₋₃ via SH ₄	V ₃₋₃	
4 _H	100	V ₁₋₂	V ₂₋₂	V ₃₋₂	
5 _H	101	V ₁₋₂	V ₂₋₂	V ₃₋₂	
6 _H	110	V ₁₋₂	V ₂₋₂	V ₃₋₂	
7 _H	111	V ₁₋₁	V ₂₋₁	V ₃₋₁	
NOTE:	NOTE: (1) See Table IV for Operation.				

TABLE III. Input Controls for Synchronous Sample Holds.

Input Select = 7_H—Synchronously sample and convert input signals V_{1-1} , V_{2-1} , and V_{3-1} .

Input Select = 4_H, 5_H, 6_H—Synchronously sample and convert input signals V_{1-2}, V_{2-2}, and V_{3-2}. These codes also cause SH_2 and SH_4 to sample their inputs. Values 4_H, 5_H, 6_H have different effects on the inputs to SH_6 and SH_7 (see Table IV).

Input Select = 3_H—Convert V_{1-3} via SH_2 , V_{2-3} via SH_4 , and V_{3-3} (V_{1-3} and V_{2-3} are from the value sampled in a preceding conversion cycle with Input Select = 4_H , 5_H or 6_H).

Input Select = 2_H—Convert V_{1-3} via SH_1 , V_{2-3} via SH_3 , and V_{3-3} (V_{1-3} is sampled on SH_2 in this conversion cycle).

Input Select = 1_H—Input V_{3-4} is converted by PGA₃/ADC₃. The output of the asynchronous sample holds, SH₆ and SH₇, are converted by PGA₁/ADC₁ and PGA₂/ADC₂, respectively. Note that the inputs to SH₆ and SH₇ are determined by previous Input Select values (see Table IV). Thus, to properly convert the output of one of the asynchronous sample holds it is first necessary to choose its input with a previous conversion cycle. Also, the output of SH₆ or SH₇ will only be converted if ASH goes low before the CONV command is received.

Input Select = 0_H— $V_{3.4}$ is converted by PGA₃/ADC₃. The inputs to PGA₁/ADC₁ and PGA₂/ADC₂ are undefined.

CONVERSIONS FROM THE ASYNCHRONOUS SAMPLE HOLDS

Decoding the Input Select value also determines which inputs are applied to the two asynchronously controlled sample holds SH_6 and SH_7 . (See Table IV.) One of the three possible inputs is selected by the Input Select value being 4, 5, or 6.

The "No Effect" states indicate that these values of Input Select have no effect on the multiplexers at the input of SH_6 and SH_7 . When one of the "No Effect" values of Input Select is presented, the multiplexers will not be changed (i.e., their condition is determined by the last 4, 5, or 6 value of Input Select that existed prior to the "No Effect" state).

Note that Input Select = $1_{\rm H}$ presents the output of SH_6 and SH_7 (1ASH_X and 2ASH_X) to PGA_1/ADC_1 and PGA_2/ADC_2 , respectively (see Table III). Therefore, in order to properly convert the asynchronous sampled signals, it is first necessary to choose an input signal (Input Select equal 5 or 6 in Table IV) with one load/convert cycle and then convert the sample hold output (Input Select = 4 in Table III) in a following conversion cycle.

INPUT	SELECT ₀₋₂			
HEX	BINARY	ANALOG SIGNAL CONNECTED TO		
CODE	CODE	SH ₆	SH ₇	
0 _H	000	No Effect	No Effect	
1 _H	001	No Effect	No Effect	
2 _H	010	No Effect	No Effect	
3 _H	011	No Effect	No Effect	
4 _H	100	Open	Open	
5 _H	101	V ₁₋₃	V ₂₋₃	
6 _H	110	V ₁₋₂	V ₁₋₂	
7 _H	111	No Effect	No Effect	

TABLE IV. Input Controls for Asynchronous Sample Holds.

DAC OUTPUT VOLTAGE

The value of the DAC output voltage is determined by the DAC Input portion of the SER_{IN} word (bits 0 through 7—see Figure 2). The 8-bit DAC has 256 possible output voltages from 0V to +2.49V. The value of 1 LSB is 0.0098V.

ANALOG-TO-DIGITAL CONVERTERS

ARCHITECTURE

The ADCs are 12-bit, successive approximation types implemented with a switched capacitor circuitry.

SPEED

The clock for the ADC conversion is supplied externally at the CLK pin. Maximum clock frequency for specified accuracy is 2.1MHz. This results in a complete conversion cycle (S/H acquisition and A/D conversion) of 6.6µs.

INPUT/OUTPUT

The ADS7833 is designed for bipolar input voltages and uses a binary two's complement digital output code. A programmable gain function is associated with each ADC. This changes the full scale analog input range and the analog resolution of the converter. Details are shown in Table VI.

DIFFERENTIAL AND COMMON-MODE INPUT VOLTAGES

The ADS7833 is designed with full differential signal paths all the way from the multiplexer inputs through to the input of the ADCs. This was done to provide superior high frequency noise rejection.

	_ INPUT IPUT ₀₋₇	ANALOG OUTPUT
HEX CODE	BINARY CODE	
00 _H 01 _H	0000 0000 0000 0001	0V +0.0098V
:	•	:
FF _H	• 1111 1111	• +2.499

TABLE V. DAC Input/Output Relationships.

As is common with most differential input semiconductor devices, there are compound restrictions on the combination of differential and common-mode input voltages. This matter is made slightly more complicated by the fact that most of the analog inputs are capable of being affected by the programmable gain function. The possible differential and single ended configurations are shown in Figures 3a and 3b.

The maximum differential and common mode restrictions are shown in Table VII.

GAIN SELECT CODE	0	1	2	3
Gain	5.0V/V	2.5V/V	1.25V/V	1.0V/V
Full Scale Range (V _D with V _{CM} = 0)	±0.5V	±1.0V	±2.0V	±2.5V
Largest Positive Common Mode Voltage, V _{CM} +	+2.7V	+2.4V	+1.9V	+1.6V
Largest Negative Common Mode Voltage, V _{CM} -	-2.7V	-2.4V	-1.9V	-1.6V

TABLE VII. Differential and Common Mode Voltage Restrictions.

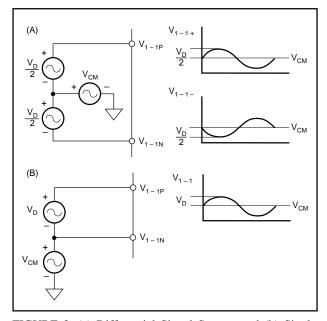


FIGURE 3. (a) Differential Signal Source, and (b) Single Ended Signal Source.

DESCRIPTION	ANALOG INPUT				DIGITAL OUTPUT	
GAIN SELECT CODE	0	1	2	3		
GAIN	5V/V	2.5V/V	1.25V/V	1.0V/V	BINARY TWO'S COMPLIMENT FORMAT	
FULL SCALE RANGE	±0.5V	±1.0V	±2.0V	±2.5V	HEX CODE	BINARY CODE
+Full Scale (FS -1LSB) One Bit above Mid-Scale Mid-Scale One Bit Below Mid-Scale -Full Scale	+0.49976 +0.244mV 0V -0.244V -0.500V	+0.9995V +0.488mV 0V -0.488mV -1.000V	+1.999V +0.976mV 0V -0.976mV -2.000V	+2.499 +1.22mV 0V -1.22mV -2.500V	7FF _H 001H 000 _H FFF _H 800 _H	0111 1111 1111 0000 0000 0001 0000 0000 0000 1111 1111 1111 1000 0000 0000

NOTE: The programmable gain function applies to all three input channels for ADC₁ and ADC₂. However, the programmable gain function only applies to the first input (V_{3-1}) for ADC₃. The other three inputs (V_{3-2} , V_{3-3} , and V_{3-4}) are not affected by the GAIN SEL input. They operate at a fixed gain of 1V/V and thus have a fixed ± 2.5 V full scale input range.

TABLE VI. Analog Input - Digital Output Relationships.

MICROPROCESSOR INTERFACE

The internal logic of the ADS7833 is designed for easy control and data interface with microprocessors. Figure 4 shows the interface for loading the input control word from the microprocessor data bus into the serial input of the ADS7833.

Table VIII provides a sample assembly code and Figure 4 shows the connection diagram for connecting an ADS7833 to the DSP56004N—or DSP56007 a Motorola Digital Signal Processor. This configuration allows for full control of the ADS7833 as well as receiving all three conversion results simultaneously. The start of conversion is generated by the DSP56004 as well as the sample time of the asynchronous sample/holds.

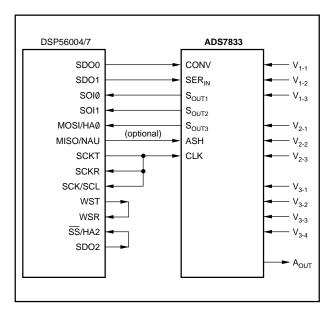


FIGURE 4. Microprocessor Interface for Motorola DSP56004/7.

While this is one of the most useful, the DSP56004/7 is flexible enough to allow various other configurations. These will free up the serial outputs for use with other serial peripherals, such as DACs.

TYPICAL ISOLATED ANALOG INPUT

Figure 5 shows an ISO130 used to isolate the current measurement in a motor speed control application. This amplifier is well suited for this application because of its high transient immunity ($10kV/\mu s$). Its differential output feature is well suited to the differential input of the ADS7833. Keeping the signal transmission differential helps to preserve the high frequency noise rejection of the system.

A unique characteristic of the ISO130 is that it has a common mode output voltage of approximately 2.39V. To accept this level of CMV, the ADS7833 must be operated at a gain of 5V/V (± 0.5 V full scale differential input). (See Figure 3 and Table VII). Since the ISO130 has a gain of 8V/V, the maximum value of V_{SENSE} is 62.5mV. Thus, the value of R_{SENSE} is chosen to scale V_{SENSE} to this maximum value.

POWER-UP INITIALIZATION

When power is applied to the ADS7833, two conversion cycles are required for initialization and valid digital data is transmitted on the third cycle.

The first conversion after power is applied is performed with indeterminate configuration values in the double buffer output of the Input Setup Register. The second conversion cycle loads the desired values into the register. The third conversion uses those values to perform proper conversions and output valid digital data from each of the ADCs.

```
movep
                 #>$0,x:$ffe4
                                    ; Disable SAI transmit port
       movep
                #>$0.x:$ffe1
                                    ; Disable SAI receive port
                #>$0,x:$fff1
                                    ; Disable SHI port
       movep
                #>$dfff00,x:$ffe5 ; Convert command
       movep
       movep
                 #>$101f00,x:$ffe6
                                    ; DAC to midscale, G=1V/V, Channel 1 all ADCs
                #>$0,x:$ffe7
                                    ; For SS pin-enables SHI at proper time
       movep
       movep
                #>$10d.x:$ffe0
                                    ; Divide by 1 pre, divide by 13-96kHz conv @ 40MHz
                #>$3,x:$ffe1
                                    ; Enable SAI recv (rsng edge, MSB 1st, 16-bits, slave)
                #>$2001,x:$fff0
                                    ; Set narrow spike filter, CPOL=0, CPHA=1
       movep
                #>$5.x:$fff1
                                    ; Enable SHI (slave, no fifo, 16-bits)
       movep
       movep
                #>$f,x:$ffe4
                                    ; Enable SAI trans (rsng edge, MSB 1st, 16-bits, mstr)
wait
       btst
                #14,x:$ffe1
                                    ; Look for a receive flag (left or right)
       jcs
                data
       btst
                #15.x:$ffe1
       jcc
                wait
data
                x:$ffe2,x0
                                    ; Get Sout1
       movep
       move
                x0.x:$00
                                    ; Save it.
       movep
                x:$ffe3.x0
                                    ; Get Sout2
                x0,x:$01
       move
                                    ; Save it
                x:$fff3,x0
                                    ; Get Sout3
       move
                x0.x:$02
                                    ; Save it
       movep
```

TABLE VIII. Sample Code for Motorola DSP56004/7.

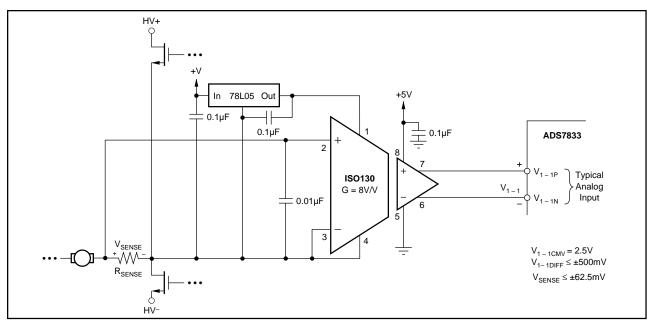


FIGURE 5. Typical Isolated Differential Analog Input.

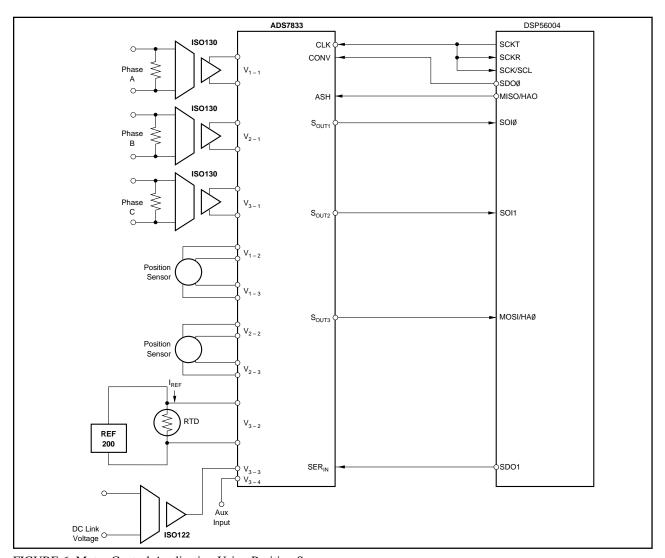


FIGURE 6. Motor Control Application Using Position Sensors.

