

12-Bit 800kHz Sampling CMOS ANALOG-to-DIGITAL CONVERTER

FEATURES

- $1.25 \mu \mathrm{~s}$ THROUGHPUT TIME
- STANDARD $\pm 10 \mathrm{~V}$ INPUT RANGE
- 69dB min SINAD WITH 250kHz INPUT
- $\pm 3 / 4$ LSB max INL AND ± 1 LSB max DNL
- INTERNAL REFERENCE
- COMPLETE WITH S/H, REF, CLOCK, ETC.
- PARALLEL DATA w/LATCHES
- 28-PIN 0.3" PDIP AND SOIC

DESCRIPTION

The ADS7810 is a complete 12 -bit sampling A/D using state-of-the-art CMOS structures. It contains a complete 12-bit capacitor-based SAR A/D with inherent S / H, reference, clock, interface for microprocessor use, and three-state output drivers.

The ADS7810 is specified at an 800 kHz sampling rate, and guaranteed over the full temperature range. Laser-trimmed scaling resistors provide the industrystandard $\pm 10 \mathrm{~V}$ input range, while an innovative design allows operation from $\pm 5 \mathrm{~V}$ supplies.
The 28 -pin ADS7810 is available in a plastic 0.3" DIP and in an SOIC, both fully specified for operation over the industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ range.

SPECIFICATIONS

ELECTRICAL

At $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{S}}=800 \mathrm{kHz},+\mathrm{V}_{\mathrm{DIG}}=+\mathrm{V}_{\mathrm{ANA}}=+5 \mathrm{~V},-\mathrm{V}_{\text {ANA }}=-5 \mathrm{~V}$, using internal reference and the 50Ω input resistor shown in Figure 4 b , unless otherwise specified.

PARAMETER	CONDITIONS	ADS7810P, U			ADS7810PB, UB			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
RESOLUTION				12			*	Bits
ANALOG INPUT Voltage Range Impedance Capacitance			$\begin{gathered} \pm 10 \\ 3.1 \\ 5 \end{gathered}$			*		$\begin{gathered} \mathrm{V} \\ \mathrm{k} \Omega \\ \mathrm{pF} \end{gathered}$
THROUGHPUT SPEED Conversion Cycle Complete Cycle Throughput Rate	$t_{3}+t_{4}$ Acquire \& Convert	800	1020	1250	*	*	*	$\begin{gathered} \text { ns } \\ \text { ns } \\ \mathrm{kHz} \end{gathered}$
DC ACCURACY Integral Linearity Error Differential Linearity Error No Missing Codes Transition Noise ${ }^{(2)}$ Full Scale Error ${ }^{(3,4)}$ Full Scale Error Drift Full Scale Error ${ }^{(3,4)}$ Full Scale Error Drift Bipolar Zero Error ${ }^{(3)}$ Bipolar Zero Error Drift Power Supply Sensitivity $\left(+\mathrm{V}_{\mathrm{DIG}}=+\mathrm{V}_{\mathrm{ANA}}=\mathrm{V}_{\mathrm{D}}\right)$	Ext. 2.5000V Ref Ext. 2.5000V Ref $\begin{gathered} +4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{D}}<+5.25 \mathrm{~V} \\ -5.25 \mathrm{~V}<-\mathrm{V}_{\text {ANA }}<-4.75 \mathrm{~V} \end{gathered}$		$\begin{aligned} & \text { Guaranteed } \\ & \left\lvert\, \begin{array}{c\|} 0.1 \\ \pm 12 \\ \pm 12 \\ \pm 2 \end{array}\right. \end{aligned}$	± 0.5 ± 0.5 ± 8 $\begin{gathered} \pm 5 \\ \pm 0.5 \end{gathered}$			± 0.75 ± 0.25 ± 4	LSB $\left({ }^{1}\right)$ LSB LSB $\%$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\%$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ LSB $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ LSB LSB
AC ACCURACY Spurious-Free Dynamic Range Total Harmonic Distortion Signal-to-(Noise+Distortion) Signal-to-Noise Usable Bandwidth(6)	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=250 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{IN}}=250 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{IN}}=250 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{IN}}=250 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 74 \\ & 67 \\ & 68 \end{aligned}$	$\begin{gathered} 82 \\ -80 \\ 71 \\ 71 \\ 1.5 \end{gathered}$	-74	$\begin{aligned} & 77 \\ & 69 \\ & 70 \end{aligned}$	$\begin{gathered} 84 \\ -82 \end{gathered}$	-77	$\begin{gathered} \mathrm{dB}(5) \\ \mathrm{dB} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \mathrm{MHz} \end{gathered}$
SAMPLING DYNAMICS Aperture Delay Aperture Jitter Transient Response Overvoltage Recovery(7)	FS Step		$\begin{gathered} 20 \\ 10 \\ 200 \\ 250 \end{gathered}$			*		ns ps ns ns
REFERENCE Internal Reference Voltage Internal Reference DC Source Current (External load should be static) Internal Reference Drift External Reference Voltage Range For Specified Linearity External Reference Current Drain	Ext. 2.5000V Ref	2.48 2.3	$\begin{gathered} 2.5 \\ 100 \\ \\ 8 \\ 2.5 \end{gathered}$	2.52 2.7 100				V $\mu \mathrm{A}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ V $\mu \mathrm{A}$
DIGITAL INPUTS Logic Levels $\mathrm{V}_{\text {IL }}$ V_{IH} IL I_{H}	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V} \end{aligned}$	$\begin{array}{r} -0.3 \\ +2.4 \end{array}$		$\begin{gathered} +0.8 \\ \mathrm{~V}_{\mathrm{D}}+0.3 \\ \pm 10 \\ \pm 10 \end{gathered}$	*		*	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$
DIGITAL OUTPUTS Data Format Data Coding V_{OL} V_{OH} Leakage Current Output Capacitance	$\begin{gathered} \mathrm{I}_{\text {SINK }}=1.6 \mathrm{~mA} \\ \mathrm{I}_{\text {SOURCE }}=500 \mu \mathrm{~A} \\ \text { High-Z State, } \\ \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { to } \mathrm{V}_{\text {DIG }} \\ \text { High-Z State } \end{gathered}$	+2.8		Para Binary Tw $+0.4$ ± 5 15	12 Com		15	V V $\mu \mathrm{A}$ pF
DIGITAL TIMING Bus Access Time Bus Relinquish Time				$\begin{aligned} & 62 \\ & 83 \end{aligned}$			*	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS (CONT)

ELECTRICAL

At $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{S}}=800 \mathrm{kHz},+\mathrm{V}_{\mathrm{DIG}}=+\mathrm{V}_{\mathrm{ANA}}=+5 \mathrm{~V},-\mathrm{V}_{\mathrm{ANA}}=-5 \mathrm{~V}$, using internal reference and the 50Ω input resistor shown in Figure 4 b , unless otherwise specified.

NOTES: (1) LSB means Least Significant Bit. For the 12 -bit, $\pm 10 \mathrm{~V}$ input ADS7810, one LSB is 4.88 mV . (2) Typical rms noise at worst case transitions and temperatures. (3) Measured with 50Ω in series with analog input. Adjustable to zero with external potentiometer. (4) Full scale error is the worst case of -Full Scale or +Full Scale untrimmed deviation from ideal first and last code transitions, divided by the transition voltage (not divided by the full-scale range) and includes the effect of offset error. (5) All specifications in dB are referred to a full-scale $\pm 10 \mathrm{~V}$ input. (6) Usable Bandwidth defined as Full-Scale input frequency at which Signal-to-(Noise+Distortion) degrades to 60dB, or 10 bits of accuracy. (7) Recovers to specified performance after $2 \times$ FS input over voltage.

ABSOLUTE MAXIMUM RATINGS

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. BurrBrown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

ORDERING AND PACKAGE INFORMATION

PRODUCT	MAXIMUM INTEGRAL LINEARITY ERROR (LSB)	MINIMUM SIGNAL-TO(NOISE + DISTORTION) RATIO (dB)	SPECIFICATION TEMPERATURE RANGE	PACKAGE	PACKAGE DRAWING NUMBER ${ }^{(1)}$
ADS7810P	± 1	67	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Pin Plastic DIP	246
ADS7810PB	± 0.75	69	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Pin Plastic DIP	246
ADS7810U	± 1	67	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Pin SOIC	217
ADS7810UB	± 0.75	69	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Pin SOIC	217

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

PIN ASSIGNMENTS

PIN \#	NAME	$\begin{gathered} \text { DIGITAL } \\ \text { I/O } \end{gathered}$	DESCRIPTION
1	$\mathrm{V}_{\text {IN }}$		Analog Input. Connect via 50Ω to analog input. Full-scale input range is $\pm 10 \mathrm{~V}$.
2	AGND1		Analog Ground. Used internally as ground reference point. Minimal current flow.
3	REF		Reference Input/Output. Outputs internal reference of +2.5 V nominal. Can also be driven by external system reference. In both cases, decouple to ground with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
4	CAP		Reference Buffer Output. $10 \mu \mathrm{~F}$ tantalum capacitor to ground. Nominally +2 V .
5	AGND2		Analog Ground.
6	D11 (MSB)	0	Data Bit 11. Most Significant Bit (MSB) of conversion results. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH, or when R/C is LOW, or when a conversion is in progress.
7	D10	0	Data Bit 10. Hi-Z state when $\overline{C S}$ is HIGH, or when R/C is LOW, or when a conversion is in progress.
8	D9	0	Data Bit 9. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH, or when R/ $\overline{\mathrm{C}}$ is LOW, or when a conversion is in progress.
9	D8	0	Data Bit 8. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH, or when R/C is LOW, or when a conversion is in progress.
10	D7	0	Data Bit 7. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH, or when R/ $\overline{\mathrm{C}}$ is LOW, or when a conversion is in progress.
11	D6	0	Data Bit 6. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH, or when R/ $\overline{\mathrm{C}}$ is LOW, or when a conversion is in progress.
12	D5	0	Data Bit 5. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH , or when R/C is LOW, or when a conversion is in progress.
13	D4	0	Data Bit 4. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH, or when R/C is LOW, or when a conversion is in progress.
14	DGND		Digital Ground.
15	D3	0	Data Bit 3. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH, or when R/ $\overline{\mathrm{C}}$ is LOW, or when a conversion is in progress.
16	D2	0	Data Bit 2. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH, or when R/C is LOW, or when a conversion is in progress.
17	D1	0	Data Bit 1. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH, or when R/C is LOW, or when a conversion is in progress.
18	D0 (LSB)	0	Data Bit 0. Least Significant Bit (LSB) of conversion results. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH, or when R/Z is LOW, or when a conversion is in progress.
19			Not internally connected.
20	$+\mathrm{V}_{\text {ANA }}$		Analog Positive Supply Input. Nominally +5V. Connect directly to pins 21, 27 and 28.
21	$+\mathrm{V}_{\text {DIG }}$		Digital Supply Input. Nominally +5V. Connect directly to pins 20, 27 and 28.
22	DGND		Digital ground. $\overline{\text { a }}$
23	R/C	1	Read/Convert Input. With $\overline{\overline{C S}}$ LOW, a falling edge on R/C puts the internal sample/hold into the hold state and starts a conversion. With $\overline{\mathrm{CS}}$ LOW and no conversion in progress, a rising edge on R/C enables the output data bits.
24	$\overline{\overline{C S}}$	1	Chip Select. With R/C LOW, a falling edge on $\overline{\mathrm{CS}}$ will initiate a conversion. With $\mathrm{R} / \overline{\mathrm{C}} \mathrm{HIGH}$ and no conversion in progress, a falling edge on $\overline{\mathrm{CS}}$ will enable the output data bits.
25	$\overline{\text { BUSY }}$	0	Busy Output. Falls when a conversion is started, and remains LOW until the conversion is completed and the data is latched into the output register. With $\overline{C S}$ LOW and R/C HIGH, output data will be valid when $\overline{B U S Y}$ rises, so that the rising edge can be used to latch the data.
26	$-\mathrm{V}_{\text {ANA }}$		Analog Negative Supply Input. Nominally -5 V . Decouple to ground with $0.1 \mu \mathrm{~F}$ ceramic and $10 \mu \mathrm{~F}$ tantulum capacitors.
27 28	$+\mathrm{V}_{\text {DIG }}$ $+\mathrm{V}_{\text {ANA }}$		Digital Supply Input. Nominally +5 V . Connect directly to pins 20, 21 and 28. Analog Positive Supply Input. Nominally +5 V . Connect directly to pins 20, 21 and 27, and decouple to ground with $0.1 \mu \mathrm{~F}$ ceramic and $10 \mu \mathrm{~F}$ tantulum capacitors.

PIN CONFIGURATION

NOTE: (1) Not Internally Connected.

TYPICAL PERFORMANCE CURVES

$\mathrm{T}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{S}}=800 \mathrm{kHz},+\mathrm{V}_{\mathrm{DIG}}=+\mathrm{V}_{\text {ANA }}=+5 \mathrm{~V},-\mathrm{V}_{\text {ANA }}=-5 \mathrm{~V}$, using internal reference and the input 50Ω resistors as shown in Figure 4b, unless otherwise specified.

FREQUENCY SPECTRUM
(4096 Point FFT; $\mathrm{f}_{\mathrm{IN}}=252 \mathrm{kHz},-0.5 \mathrm{~dB}$)

FREQUENCY SPECTRUM (4096 Point FFT; $\mathrm{f}_{\mathrm{IN}}=1.002 \mathrm{MHz},-0.5 \mathrm{~dB}$)

FREQUENCY SPECTRUM
(4096 Point FFT; $\mathrm{f}_{\mathrm{IN}}=502 \mathrm{kHz},-0.5 \mathrm{~dB}$)

FREQUENCY SPECTRUM (4096 Point FFT; f1 ${ }_{\mathrm{IN}}=232 \mathrm{kHz},-6.5 \mathrm{~dB}$; $\mathrm{f}_{\mathrm{IN}}=272 \mathrm{kHz},-6.5 \mathrm{~dB}$)

TYPICAL PERFORMANCE CURVES (CONT)

$\mathrm{T}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{S}}=800 \mathrm{kHz},+\mathrm{V}_{\mathrm{DIG}}=+\mathrm{V}_{\mathrm{ANA}}=+5 \mathrm{~V},-\mathrm{V}_{\mathrm{ANA}}=-5 \mathrm{~V}$, using internal reference and the 50Ω input resistors as shown in Figure 4 b , unless otherwise specified.

BASIC OPERATION

Figure 1 shows a basic circuit to operate the ADS7810. Taking R/C (pin 23) LOW for a minimum of 40 ns will initiate a conversion. $\overline{\text { BUSY (pin 25) will go LOW and stay }}$ LOW until the conversion is completed and the output registers are updated. Data will be output in Binary Two's Complement with the MSB on D11 (pin 6). $\overline{\text { BUSY }}$ going HIGH can be used to latch the data. All convert commands will be ignored while $\overline{\text { BUSY }}$ is LOW.
The ADS7810 will begin tracking the input signal at the end of the conversion. Allowing 1.25μ s between convert commands assures accurate acquisition of a new signal.

$\overline{\mathbf{C S}}$	$\mathbf{R /} \overline{\mathbf{C}}$	$\overline{\text { BUSY }}$	OPERATION
1	X	X	None. Databus in Hi-Z state.
\downarrow	0	1	Initiates conversion. Databus remains in Hi-Z state.
0	\downarrow	1	Initiates conversion. Databus enters Hi-Z state.
0	1	\uparrow	Conversion completed. Valid data from the most recent conversion on the databus.
\downarrow	1	1	Enables databus with valid data from the most recent conversion.
\downarrow	1	0	Conversion in progress. Databus in Hi-Z state, enabled when the conversion is completed
0	\uparrow	0	Conversion in progress. Databus in Hi-Z state, enabled when the conversion is completed
0	0	\uparrow	Conversion completed. Valid data from the most recent conversion in the output register, but output pins D11-D0 are tri-stated.
X	X	0	New convert commands ignored. Conversion in progress.

Table I. Control Line Functions for 'read' and 'convert'.

STARTING A CONVERSION

The combination of $\overline{\mathrm{CS}}$ (pin 24) and $\mathrm{R} / \overline{\mathrm{C}}$ (pin 23) LOW for a minimum of 40 ns puts the sample/hold of the ADS7810 in the hold state and starts a conversion. BUSY (pin 25) will go LOW and stay LOW until the conversion is completed and the internal output register has been updated. All new convert commands during $\overline{\text { BUSY }}$ LOW will be ignored.
The ADS7810 will begin tracking the input signal at the end of the conversion. Allowing 1.25μ s between convert commands assures accurate acquisition of a new signal. Refer to Table I for a summary of $\overline{\mathrm{CS}}, \mathrm{R} / \overline{\mathrm{C}}$, and $\overline{\mathrm{BUSY}}$ states and Figures 2 and 3 for timing parameters.
$\overline{\mathrm{CS}}$ and $\mathrm{R} / \overline{\mathrm{C}}$ are internally OR'd and level triggered. There is not a requirement which input goes LOW first when initiating a conversion. If it is critical that $\overline{\mathrm{CS}}$ or $\mathrm{R} / \overline{\mathrm{C}}$ initiate the conversion, be sure the less critical input is LOW at least 10 ns prior to the initiating input.

DESCRIPTION	ANALOG VALUE	DIGITAL OUTPUT	
Full Scale Range	$\pm 10 \mathrm{~V}$	BINARY TWO'S COMPLEMENT	
Least Significant	4.88 mV		
Bit (LSB)		BINARY CODE	HEX CODE
+Full Scale	9.995 V	011111111111	7 FF
(10V - 1LSB)			
Midscale	0 V	000000000000	000
One LSB below	-4.88 mV	111111111111	FFF
Midscale			
-Full Scale	-10 V	100000000000	800

TABLE II. Ideal Input Voltages and Output Codes.

To reduce the number of control pins, $\overline{\mathrm{CS}}$ can be tied LOW using $\mathrm{R} / \overline{\mathrm{C}}$ to control the read and convert modes. Note that the parallel output will be active whenever R/C is HIGH and no conversion is in progress. See the Reading Data section and refer to Table I for control line functions for 'read' and 'convert' modes.

READING DATA

The ADS7810 outputs full parallel data in Binary Two's Complement data format. The parallel output will be active when $\mathrm{R} / \overline{\mathrm{C}}$ (pin 23) is HIGH, $\overline{\mathrm{CS}}$ (pin 24) is LOW, and no conversion is in progress. Any other combination will tristate the parallel output. Valid conversion data can be read in a full parallel, 12-bit word on D11-D0 (pins 6-13 and 1518). Refer to Table II for ideal output codes.

After the conversion is completed and the output registers have been updated, $\overline{\text { BUSY (}}$ pin 25) will go HIGH. Valid data from the most recent conversion will be available on D11-D0 (pins 6-13 and 15-18). $\overline{\text { BUSY going HIGH can be }}$ used to latch the data. Refer to Table III and Figures 2 and 3.
Note: For the best performance, the external data bus connected to D11-D0 should not be active during a conversion. The switching noise of the external asynchronous data signals can cause digital feedthrough degrading the converter's performance.
The number of control lines can be reduced by tieing $\overline{\mathrm{CS}}$ LOW while using R/C to initiate conversions and activate the output mode of the converter. See Figure 2.

INPUT RANGES

The ADS7810 offers a standard $\pm 10 \mathrm{~V}$ input range. Figures 4 a and 4 b show the necessary circuit connections for the ADS7810 with and without external trim. Offset and full scale error ${ }^{(1)}$ specifications are tested and guaranteed with the 50Ω resistor shown in Figure 4b. This external resistor makes it possible to trim the offset $\pm 50 \mathrm{mV}$ using a trim pot or trim DAC. This resistor may be left out if the offset and gain errors will be corrected in software or if they are negligible in regards to the particular application. See the Calibration section of the data sheet for details.

The nominal input impedance of $3.125 \mathrm{k} \Omega$ results from the combination of the internal resistor network shown on the front page of the product data sheet and external 50Ω resistor. The input resistor divider network provides inherent overvoltage protection guaranteed to at least $\pm 25 \mathrm{~V}$. The $50 \Omega, 1 \%$ resistor does not compromise the accuracy or drift of the converter. It has little influence relative to the internal resistors, and tighter tolerances are not required.
Note: The values shown for the internal resistors are for reference only. The exact values can vary by $\pm 30 \%$. This is true of all resistors internal to the ADS7810. Each resistive divider is trimmed so that the proper division is achieved.

NOTE: (1) Full scale error includes offset and gain errors measured at both + FS and -FS.

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
t_{1}	Convert Pulse Width	40			ns
t_{2}	Data Valid Delay After R/C LOW		955	1095	ns
t_{3}	$\overline{B U S Y}$ Delay From R/C̄ LOW		70	125	ns
t_{4}	$\overline{\text { BUSY LOW }}$		950	1080	ns
t_{5}	$\overline{B U S Y}$ Delay After End of Conversion		90		ns
t_{6}	Aperture Delay		20		ns
t_{7}	Conversion Time		910	1020	ns
t_{8}	Acquisition Time		200	230	ns
$\mathrm{t}_{7} \& \mathrm{t}_{8}$	Throughput Time		1110	1250	ns
t_{9}	Bus Relinquish Time	10	50	83	ns
t_{10}	$\overline{B U S Y}$ Delay After Data Valid	20	65	120	ns
t_{11}	$\mathrm{R} / \overline{\mathrm{C}}$ to $\overline{\mathrm{CS}}$ Setup Time	10			ns
t_{12}	Time Between Conversions	1250			ns
t_{13}	Bus Access Time	10	25	62	ns

TABLE III. Timing Specifications ($\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$).

FIGURE 2. Conversion Timing with Outputs Enabled After Conversion ($\overline{\mathrm{CS}}$ Tied Low).

FIGURE 3. Using $\overline{\mathrm{CS}}$ to Control Conversion and Read Timing.

FIGURE 4a. Circuit Diagram With External Hardware Trim.

FIGURE 4b. Circuit Diagram Without External Hardware Trim.

CALIBRATION

The ADS7810 can be trimmed in hardware or software. The offset should be trimmed before the gain since the offset directly affects the gain.

Hardware Calibration

To calibrate the offset and gain of the ADS7810, install the proper resistors and potentiometers as shown in Figure 4a. The calibration range is $\pm 50 \mathrm{mV}$ for bipolar zero and $\pm 120 \mathrm{mV}$ for full scale.
Potentiometer P_{1} and resistor R_{1} form the offset adjust circuit and P_{2} and R_{2} the gain adjust circuit. The exact values are not critical. R_{1} and R_{2} should not be made any larger than the value shown. They can easily be made smaller to provide increased adjustment range. Reducing these below 15% of the indicated values could begin to adversely affect the operation of the converter.
P_{1} and P_{2} can also be made larger to reduce power dissipation. However, larger resistances will push the useful adjustment range to the edges of the potentiometer. P_{1} should probably not exceed $20 \mathrm{k} \Omega$ and $\mathrm{P} 2100 \mathrm{k} \Omega$ in order to maintain reasonable sensitivity.

Software Calibration

To calibrate the offset and gain of the ADS7810, no external resistors are required. See the No Calibration section for details on the effects of the external resistor.

No Calibration

See Figure $4 b$ for circuit connections. Note that the actual voltage dropped across the 50Ω resistor is nearly two orders of magnitude lower than the voltage dropped across the internal resistor divider network. This should be taken into consideration when choosing the accuracy and drift specifications of the external resistors. In most applications, 1% metal-film resistors will be sufficient.

The external 50Ω resistor shown in Figure 4 b may not be necessary in some applications. This resistor provides trim capability for the offset and compensates for a slight gain adjustment internal to the ADS7810. Not using the 50Ω resistor will cause a small gain error but will have no effect on the inherent offset error. Figure 5 shows typical transfer function characteristics with and without the 50Ω resistor in the circuit.

REFERENCE

The ADS7810 can operate with its internal 2.5 V reference or an external reference. By applying an external reference to pin 3, the internal reference can be bypassed. The reference voltage at REF is buffered internally and output on CAP (pin 4).

REF

REF (pin 3) is an input for an external reference or the output for the internal 2.5 V reference. A $0.1 \mu \mathrm{~F}$ capacitor should be connected as close to the REF pin as possible. The capacitor and the output resistance of REF create a low pass filter to band limit noise on the reference. Using a smaller value capacitor will introduce more noise to the reference degrading the SNR and SINAD. The internal reference should not be used to sink or source currents greater than $100 \mu \mathrm{~A}$. In addition, all external loads should be static.
The range for the external reference is 2.3 V to 2.7 V and determines the actual LSB size. Increasing the reference voltage will increase the full scale range and the LSB size of the converter which can improve the SNR.

FIGURE 5. Comparison of the ADS7810 Transfer Function With and Without the 50Ω Series Resistor on $V_{\text {IN }}$.

CAP

CAP (pin 4) is the output of the internal reference buffer. A $10 \mu \mathrm{~F}$ tantalum capacitor should be placed as close to the CAP as possible to provide optimum switching currents for the CDAC throughout the conversion cycle and compensation for the output of the buffer. Using a capacitor any smaller than $1 \mu \mathrm{~F}$ can cause the output buffer to oscillate and may not have sufficient charge for the CDAC. Capacitor values larger than $10 \mu \mathrm{~F}$ will have little effect on improving performance. The voltage on the CAP pin is approximately 2 V when using the internal reference, or 80% of an externally supplied reference.

LAYOUT

POWER

The ADS7810 uses the majority of its power for analog and static circuitry, and it should be considered as an analog component. For optimum performance, tie the analog and digital +5 V power pins to the same +5 V power supply and tie the analog and digital grounds together.

For best performance, the $\pm 5 \mathrm{~V}$ supplies can be produced from whatever analog supply is used for the rest of the analog signal conditioning. If $\pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$ supplies are present, simple regulators can be used. The +5 V power for the A / D should be separate from the +5 V used for the system's digital logic. Connecting $+\mathrm{V}_{\text {DIG }}$ (pin 27) directly to a digital supply can reduce converter performance due to switching noise from the digital logic.

Although it is not suggested, if the digital supply must be used to power the converter, be sure to properly filter the supply. Either using a filtered digital supply or a regulated analog supply, both $\mathrm{V}_{\text {DIG }}$ and $\mathrm{V}_{\text {ANA }}$ should be tied to the same +5 V source.

GROUNDING

Three ground pins are present on the ADS7810. DGND (pin 22) is the digital supply ground. AGND2 (pin 5) is the analog supply ground. AGND1 (pin 2) is the ground which all analog signals internal to the A/D are referenced. AGND1 is more susceptible to current induced voltage drops and must have the path of least resistance back to the power supply.
All the ground pins of the ADS should be tied to the analog ground plane, separated from the system's digital logic ground, to achieve optimum performance. Both analog and digital ground planes should be tied to the "system" ground as near to the power supplies as possible. This helps to prevent dynamic digital ground currents from modulating the analog ground through a common impedance to power ground.

SIGNAL CONDITIONING

The FET switches used for the sample hold on many CMOS A/D converters release a significant amount of charge injection which can cause the driving op amp to oscillate. The resistive front end of the ADS7810 attenuates this charge and reduces its magnitude significantly-reducing the burden on the external input amplifier or buffer.
However, keep in mind that maintaining signal integrity at voltage swings of $\pm 10 \mathrm{~V}$ and frequencies of several hundred kilohertz is extremely challenging. In addition, the external input amplifier must drive the ADS7810 mainly during its sample period-roughly 200ns. This will require a highspeed, precision amplifier which can swing to greater than $\pm 10 \mathrm{~V}$.
For signals where the predominant frequencies are below 200 kHz , the OPA671 operational amplifier should be adequate for most applications. In some cases or where input frequencies are higher, a composite configuration of the OPA671 and BUF634 (in its wide bandwidth mode) may be the best choice. See the BUF634 data sheet for more information.
The resistive front end of the ADS7810 also provides a guaranteed $\pm 25 \mathrm{~V}$ over voltage protection. In most cases, this eliminates the need for external input protection circuitry.

INTERMEDIATE LATCHES

The ADS7810 does have tri-state outputs for the parallel port, but intermediate latches should be used if the bus will be active during conversions. If the bus is not active during conversions, the tri-state outputs can be used to isolate the A/D from other peripherals on the same bus.
Intermediate latches are beneficial on any monolithic A/D converter. The ADS7810 has an internal LSB size of $610 \mu \mathrm{~V}$. Transients from fast switching signals on the parallel port, even when the A/D is tri-stated, can be coupled through the substrate to the analog circuitry causing degradation of converter performance.

