
ICCAVR – C Cross Compiler for the Atmel AVR

1

INTRODUCTION ... 3
Version, Trademarks, and Copyrights... 4
IMPORTANT: Registering the Software.. 5
Software License Agreement.. 6
About the ImageCraft Development Environment ... 7
Support .. 8
Product Updates .. 9
Frequently Asked Questions..10
File Types and File Extensions ..12
Pragmas ...13
Converting from Other Compilers ..14
Acknowledgments ...15

TUTORIALS ...16
Getting Started..17
Anatomy of a C Program...18
IDE Overview ..19
Using the Project Manager ..20

IDE...21
Compiling a Single File..22
Creating a New Project..23
Project Manager..24
Editor Windows ...25
Status Window ..26
Terminal Emulator...27

REFERENCES...28
Pop Up Menus ..29
File Menu ..30
Edit Menu..31
Search Menu...32
View Menu ..33
Project Menu...34
RCS Menu ..35
Tools Menu ...36
Terminal Menu ..37
Compiler Options ..38
Compiler Options: Paths..39
Compiler Options: Compiler...40
Compiler Options: Target ..41
Environment Options...43
Editor and Print Options ..44
Terminal Options...46

C LIBRARY AND THE STARTUP FILE...47
Startup File ...48
C Library General Description..49
Character Type Functions ...50
Floating Point Math Functions ...51
Standard IO functions..53
Standard Library And Memory Allocation Functions ...55
String Functions ..57
Variable Argument Functions...59

PROGRAMMING THE AVR..60
Accessing AVR Features...61
Bit Twiddling..62
Program Memory and Constant Data...63
Strings...64
Stacks...65
Inline Assembly...66
IO Registers ..67
Addressing Absolute Memory Locations ..68

ICCAVR – C Cross Compiler for the Atmel AVR

2

Interrupt Handling..69
Accessing EEPROM ...70
Accessing the SPI ...71
Relative Jump/Call Wrapping ..72

C RUNTIME ARCHITECTURE ...73
Data Type Sizes..74
Assembly Interface and Calling Conventions ...75
Functions Returning Non-Integer Values ...76
C Machine Routines ..77
Program and Data Memory Usage ..78
Program Areas..79

DEBUGGING ...80
Testing Your Program Logic ..81
COFF Debug and Working With AVR Studio ...82
Listing File...83

COMMAND LINE COMPILER OVERVIEW...84
Compilation Process..85
Driver ..86
Compiler Arguments..87

TOOLS REFERENCES ..89
Code Compressor (tm)..90
Configuration Management With RCS ...91
Assembler Syntax ...92
Assembler Directives...95
Linker Operations..99
Librarian..100

ICCAVR – C Cross Compiler for the Atmel AVR

3

INTRODUCTION

ICCAVR – C Cross Compiler for the Atmel AVR

4

Version, Trademarks, and Copyrights
Version

This printed document is generated from the online help document included with the product. This version
of the document describes 6.16 of the product. Since we continuously update our product, sometimes the
printed document becomes out of phase with the shipping product. When in doubt, please refer to the
online document for the most up to date information. This document was last updated on May 1st, 2000.

Trademarks and Copyrights

Copyright © 1999-2000 by ImageCraft Creations Inc. All rights reserved.

AVR ® is a registered trademark of Atmel Corporation, and any mention of AVR or other trademarked
names of Atmel products, explicit or implicit, in this document should be understood as trademarked by
Atmel Corporation. The product name ICCAVR does not claim ownership of the AVR trademark. All
trademarks belong to their respective owners.

ICCAVR – C Cross Compiler for the Atmel AVR

5

IMPORTANT: Registering the Software
PLEASE READ THIS BEFORE INSTALLATION!
The software must be unlocked within 30 days of installation or it will stop operating after the 30 days has
ended. Downloading the software and attempting to reinstall it for another 30 day trial period will fail.
When you register, we will provide you with an unlock code. The primary reason we copy-protected the
software in this fashion is so that you can download the latest version of our software at anytime from our
website. Once you register, the updates do not needed to be registered again, providing you install the
update over the existing version.

You must unlock this software whether you purchase the product from us or from one of our distributors
or through the website. Otherwise, the software will behave as if it is a demo version that expires in 30
days. Once you register, you should save and restore the licensing information if you ever want to move
the installation to a different machine or different directory. This also means that updates should be
installed in the same directory as the previous version. Otherwise, the new copy will behave once again
as only a demo version.

If some accident occurs and you need to reinstall the product and have lost the licensing number, contact
us and we will give you a new copy. We feel that the ability to obtain easy updates from our website
outweighs the minor annoyances that the registration process causes.

Note that the licensing code is written to a floppy disk in a special format and the floppy disk cannot be
copied. For updating to the latest versions, if you install the later version in the same directory as the
older version, you will not have to do anything special regarding the licensing.

Unlocking with a Key (Floppy) Disk

If you receive a key disk with your package, then you can use the licensing code in the disk to unlock your
software. Follow the directions on "Importing a License from a Floppy Disk" below.

Register without a Key Disk

In the Help menu, select "Register." A dialog box with a string of hexadecimal digits appear. Email, FAX,
or call us with the string. We will then reply with an unlock code. In the unlikely event that you wish to
uninstall and return the product to us, you will need to select the same dialog box and obtain an unlock
code from us to render the software useless.

Transferring Your License to a Floppy Disk

You can transfer your license to a floppy disk temporarily if you want to reinstall the product on a different
directory or different machine. In the Help menu, select "Transfer License to Floppy Disk." Follow the
program directions to proceed. Once the license is transferred to a floppy disk, then the old copy
becomes unlicensed so only do this if you are moving the license to a different copy.

Importing a License from a Floppy Disk

After transferring your license to a floppy disk (or if you receive a key disk), you may register a new
installation by clicking on the "Import License from Floppy" button in the register dialog box. You can also
do this by selecting "Import License from Floppy Disk" in the Help menu.

Using the Product on Multiple Computers

If you need to use the product on multiple computers, e.g. on an office PC and a laptop, and if you are the
only user of the product, then you may obtain a separate license from us. Contact us for details.
Alternatively, you may transfer the license back and forth using the floppy disk as described above.

ICCAVR – C Cross Compiler for the Atmel AVR

6

Software License Agreement
This is a legal agreement between you, the end user, and ImageCraft. If you do not agree to the terms of
this Agreement, please promptly return the package for a full refund.

GRANT OF LICENSE. This ImageCraft Software License Agreement permits you to use one copy of the
ImageCraft software product (“SOFTWARE”) on any computer provided that only one copy is used at a
time.

COPYRIGHT. The SOFTWARE is owned by ImageCraft and is protected by United States copyright laws
and international treaty provisions. You must treat the SOFTWARE like any other copyrighted material
(e.g., a book). You may not copy written materials accompanying the SOFTWARE.

OTHER RESTRICTIONS. You may not rent or lease the SOFTWARE, but you may transfer your rights
under this License on a permanent basis provided that you transfer this License, the SOFTWARE and all
accompanying written materials, you retain no copies, and the recipient agrees to the terms of this
License. If the SOFTWARE is an update, any transfer must include the update and all prior versions.

LIMITED WARRANTY
LIMITED WARRANTY. ImageCraft warrants that the SOFTWARE will perform substantially in
accordance with the accompanying written materials and will be free from defects in materials and
workmanship under normal use and service for a period of ninety (90) days from the date of receipt. Any
implied warranties on the SOFTWARE are limited to 90 days. Some states do not allow limitations on the
duration of an implied warranty, so the above limitations may not apply to you. This limited warranty gives
you specific legal rights. You may have others, which vary from state to state.

CUSTOMER REMEDIES. ImageCraft’s entire liability and your exclusive remedy shall be, at ImageCraft’s
option, (a) return of the price paid or (b) repair or replacement of the SOFTWARE that does not meet
ImageCraft’s Limited Warranty and that is returned to ImageCraft. This Limited Warranty is void if failure
of the SOFTWARE has resulted from accident, abuse, or misapplication. Any replacement SOFTWARE
will be warranted for the remainder of the original warrant period or 30 days, whichever is longer.

NO OTHER WARRANTIES. ImageCraft disclaims all other warranties, either express or implied,
including but not limited to implied warranties of merchantability and fitness for a particular purpose, with
respect to the SOFTWARE, the accompanying written materials, and any accompanying hardware.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES. In no event shall ImageCraft or its supplier be liable
for any damages whatsoever (including, without limitation, damages for loss of business profits, business
interruption, loss of business information, or other pecuniary loss) arising out of the use of or inability to
use the SOFTWARE, even if ImageCraft has been advised of the possibility of such damages. The
SOFTWARE is not designed, intended, or authorized for use in applications in which the failure of the
SOFTWARE could create a situation where personal injury or death may occur. Should you use the
SOFTWARE for any such unintended or unauthorized application, you shall indemnify and hold
ImageCraft and its suppliers harmless against all claims, even if such claim alleges that ImageCraft was
negligent regarding the design or implementation of the SOFTWARE.

ICCAVR – C Cross Compiler for the Atmel AVR

7

About the ImageCraft Development Environment
The ImageCraft C Development Environment is a program for developing microcontroller applications
using the ANSI standard C language. Its main features are:

An intuitive Windows 95/NT native Integrated Development Environment (IDE) with integrated editor
and project manager. Source files are organized into projects. Editing and building can be done
wholly within the environment. Compile time errors are displayed in the status window, and with a
simple click of the mouse button, you can jump to the lines that cause the errors in the editor window.
The integrated project manager generates a standard makefile that you can view and use directly if
desired.

The IDE drives an ANSI C command line compiler that is normally transparent in operation. However,
if you wish, you can interact with the compiler directly using the command prompt program. The
compiler is a set of native 32-bit programs and understands long file names.

 With some exceptions, this document does not describe C in detail nor does it contain C tutorials in
general. Since the compiler implements the standard ANSI C language, there are many excellent books
on C available in your local bookstores or from online booksellers such as Amazon (although we highly
recommend you support your local independent bookstores if possible).

 You can find a list of books that we recommend on our website. There are many more fine books
available, so browse around.

ICCAVR – C Cross Compiler for the Atmel AVR

8

Support
Before contacting us, find out the version number of the software by selecting "About ICCAVR" in the
Help menu. If you believe you have found a bug, please create the smallest complete example program
that exhibits the behavior so that we can duplicate the problem.

Internet and email are the preferred methods of support. Program updates are available free of charge for
the first six months. Files are available from our website:

http://www.imagecraft.com

Email support questions to

support@imagecraft.com

We have a mailing list called icc-avr pertinent to our AVR product users. To subscribe, email

minimalist@imagecraft.com

with the subject

subscribe icc-avr

The mailing list should not be used for general support questions. Those are best handled by the
support@imagecraft.com account.

Our postal address and telephone numbers are

ImageCraft
706 Colorado Ave.
Suite 10-88
Palo Alto, CA 94303
U.S.A.

(650) 493-9326
(650) 493-9329 (FAX)

If you purchased the product from one of our international distributors, you may wish to query them for
support first.

ICCAVR – C Cross Compiler for the Atmel AVR

9

Product Updates
The product version number consists of a major number and a minor number. For example, V6.10
consists of the major number of 6 and the minor number of .10. Within the initial six months of purchase,
you may update to the latest minor version free of charge. To receive updates afterward, you may
purchase the low cost annual maintenance plan. Upgrade to a new major version may require additional
cost.

With the software protection scheme used in the product, you get the upgrades by downloading the latest
"demo" available on the website and installing it in the same directory as your current installation. Your
existing license will work on the newly installed files.

Note that if you wish to install the new version on a different directory, or to a different machine, then you
must transfer your license by using the floppy disk, as explained in Registering the Software.

ICCAVR – C Cross Compiler for the Atmel AVR

10

Frequently Asked Questions
Where do I start? I just want to write a simple program!

 First, you have to have a basic understanding of C. You use Project to organize your files, and you
Build them to an output that you could use to program your device. You can also compile a single file
to an output, but a Project is the preferred method of organizing your files.

I try to compile one of the example programs, but something about the "paths" is incorrect.

 The project files contain the paths to the include files and the libraries. You need to modify them to
match the locations where you install the tools. You can do this by selecting Project->Options.

Does your compiler support ATMega? Tiny? or ??? devices?

 Currently, we support all devices that have data SRAM. We (will) have a campanion product ICCtiny
for programming the Tiny devices and the ATS901200. We constantly update our device support list
so the IDE will support newer devices as they become available. In addition, you can enter device
characteristics by hand for any unsupported devices.

I don't know C, what should I do?

 You should definitely get a good tutorial book. You can also use a PC ANSI C compiler (e.g.
Borland/Inprise or Microsoft) to test out your algorithms.

How do I use the ??? susbsystems of the AVR?

 You need the relevant AVR data book from Atmel. We also provide a set of simple interface library
functions to the subsystems.

I use printf, and nothing comes out.

 You need to initialize the UART. For example,

 UART_TRANSMIT_ON();

 UBRR = BAUD9600;

 Initializes the UART to 9600 baud and turns the transmitter on. These macros are defined in the file
avr.h (the baudrate is for a 4MHz clock).

What do I need to do to get interrupts working?

 See Interrupt Handlers.

How do I use the Terminal IO window in AVR Studio? How come (XXXX) features do not work under
AVR Studio?

 See COFF and Working With AVR Studio.

How do I build my own libraries?

 See Librarian.

Can I write in assembly code?

 Yes, both inline assembly and assembler modules (files).

What library functions do you support?

 A subset of the Standard C library, and some AVR specific routines.

Is the library source code available?

 Yes. See C Library General.
Can I keep non-source files (e.g. documentation) in the Project Manager Window?

 Yes.

Can you support ISP of the STK-200 or STK-300 boards?

ICCAVR – C Cross Compiler for the Atmel AVR

11

 Kanda Systems has advised us that we should not include ISP support within our IDE since the
algorithms are still being revised. Please use the Kanda software instead.

ICCAVR – C Cross Compiler for the Atmel AVR

12

File Types and File Extensions
Files types are determined by their extensions. The IDE and the compiler base their actions on the file
types of the input.

.c - specifies a C source file.

.s - specifies an assembly source file.

.h - specifies a header file.

.prj - a project file. This is created and maintained by the IDE to store information about a project.

.a - library file. The package comes with several libraries. libcavr.a is the basic library containing the
Standard C library and AVR specific routines. The linker only links in modules (or files) from a library
if the module is referenced. You may create or modify libraries as needed.

 Output Files

.s - for each C source file, an assembly output is generated by the compiler.

.o - an object file, produced by assembling an assembly file. An output executable file is the result of
linking multiple object files.

.hex - an Intel HEX output file.

.cof - a COFF format output file.

.lst - a listing file. The object code and final addresses for your program files are gathered into a
single listing file.

.mp - a map file. It contains the symbol and size information of your program in a concise form.

 The IDE also creates other files in the project output directory.

ICCAVR – C Cross Compiler for the Atmel AVR

13

Pragmas
#pragma

The compiler accepts the following pragmas:

#pragma interrupt_handler <func1>:<vector number> <func2>:<vector> ...

 Declare functions as interrupt handlers so that the compiler generates a reti instead of ret
instruction, and save and restore all the registers that the functions use. Also generates the interrupt
vectors based on the vector numbers. See Interrupt Handlers. This pragma must precede the
function definitions.

 The following pragmas do not have much use for the AVR targets.

#pragma text:<name>

 Change the name of a text area. Corresponds to the -text:<text> command line option.

#pragma data:<data>

 Change the name of a data area. Corresponds to the -data:<data> command line option.

#pragma abs_address:<address>

 Do not use relocatable areas for the functions and global data but allocate them from the absolute
address starting at <address>. This is useful for accessing interrupt vectors and other hard-wired
items. This does not apply to uninitialized global data.

#pragma end_abs_address

 Use the normal relocatable areas for objects.

ICCAVR – C Cross Compiler for the Atmel AVR

14

Converting from Other Compilers
Converting between IAR or other ANSI C Compilers

As the first C compiler available for the AVR, there is quite a bit of source code written for the IAR C
compiler. This page examines some of the issues you are likely to see when you are converting source
code written for the IAR compiler to the ImageCraft compiler. Fortunately, most of your code should
compile without any problem since both compilers are ANSI C compilers. Even the IO registers
references are the same.

Interrupt handler declaration. Our product uses a pragma to declare a function as an interrupt handler
whereas IAR introduces syntactic extension. The mapping is one to one:

 ICCAVR:
 #pragma interrupt_handler func:4 // 4 is the vector number

 IAR:
 interrupt [vector_name] func()

Extended keyword. IAR introduces the flash keyword to allocate an item in the program memory.
ICCAVR uses the const keyword for similar purposes.

Calling convention. The registers used to pass arguments to functions are different between the
compilers. This only affect hand-written assembly functions.

Inline assembly, macros etc. IAR does not support symbolic forms of inline assembly, whereas
ICCAVR does.

 Converting Between ICCtiny and ICCAVR

 ICCtiny is our development product for the tiny AVR devices. A list of the compatabilities between
ICCAVR and ICCtiny can be found in the ICCtiny help file and manual.

ICCAVR – C Cross Compiler for the Atmel AVR

15

Acknowledgments
The front end of the compiler is lcc: "lcc source code (C) 1995, by David R. Hanson and AT&T.
Reproduced by permission." The assembler/linker is a distant descendent of Alan Baldwin's public
domain assembler/linker package. Some of the 16-bit arithmetic multiply/divide/modulo routines were
written by Atmel. The 32-bit floating point and long arithmetic routines were written by Jack Tidwell. Check
out http://www3.igalaxy.net/~jackt for Jack's AVR BASIC compiler, utilities and AVR circuits. The Make
utility is by Jacob Navia. Check out Jacob's low cost Win32 compiler http://www.cs.virginia.edu/~lcc-
win32.

The PROFESSIONAL version includes the GNU RCS utilities and the grep program. The GNU copyleft
license specifies that you may redistribute the GNU programs. This does not apply to any other software
in this package that is not GNU based. ImageCraft has not modified the GNU programs.

The PROFESSIONAL version also includes the Application Builder from Kanda Inc.
(http://www.kanda.com) and Jack Tidwell's AvrCalc program.

All code used with permission. Please report ALL bugs to us directly.

ICCAVR – C Cross Compiler for the Atmel AVR

16

TUTORIALS

ICCAVR – C Cross Compiler for the Atmel AVR

17

Getting Started
Once you invoke the IDE, choose Project->Open from the menu system. Navigate to the \icc\examples
directory and select the project "led." The project manager displays the filename led.c indicating there is
one file in this project. Select the project compilation option by choosing Project->Options. Under the
"Target" tab, select the target processor. Make changes to the "Paths" tab to match the location
where you install the compiler.

Now select Project->Make. The IDE invokes the compiler to compile the project files and display any
messages in the Status Window.

Assuming there is no error, an output file called led.hex is produced in the same directory as your source
file; in this case, \icc\examples. This is a file in Intel HEX format. Most AVR programmers and simulators
understand this format, and you can load this program into your target. That's all there is to build a
program!

If you want to test your program on a tool that accepts COFF debug information, for example the AVR
Studio, then you need to select COFF as the output file format under Project->Options. Notice that the
often used functions are also available in the button bar and as context sensitive right mouse pop-up
menus. For example, you can choose the compiler options by right clicking on the Project Window.

Double clicking a file name in the Project Window opens it in the Editor. Go ahead and open led.c this
way. For experimentation, try to introduce errors, for example, delete a semicolon ";" from a line. Now
select Project->Build. The IDE will ask you if you want to save the changes first. Select yes and the
compilation will commence. This time there should be an error displayed in the Status Window. Clicking
on the error line, or clicking on the error symbol on the left on the error line will move the cursor to the
offending line in the Editor.

ICCAVR – C Cross Compiler for the Atmel AVR

18

Anatomy of a C Program
A C program must define a function called main. The compiler links your program with the startup code
and the library functions into an "executable" file, so called because you can execute it on your target.
The purpose of the startup code is described in detail in Startup File. In summary, a C program needs
the target environment to be set up in certain ways and the startup code initializes the target to satisfy
these requirements.

In general, your main routine performs some initialization stuff and then executes an infinite loop. As an
example, let's examine the file led.c in the \icc\examples directory:

#include <avr.h>
/* This seems to produce the right amount of delay for the LED to be
 * seen
 */
void Delay()

{
unsigned char a, b;

for (a = 1; a; a++)
for (b = 1; b; b++)

;
}

void LED_On(int i)
{
PORTC = ~BIT(i); /* low output to turn LED on */
Delay();
}

void main()
{
int i;
DDRC = 0xFF; /* output */
PORTC = 0xFF; /* all off */

while (1)
{
/* forward march */
for (i = 0; i < 8; i++)

LED_On(i);
/* backward march */
for (i = 8; i > 0; i--)

LED_On(i);
/* skip */
for (i = 0; i < 8; i += 2)

LED_On(i);
for (i = 7; i > 0; i -= 2)

LED_On(i);
}

}

The main routine is very straightforward. After initializing some IO registers, it executes an infinite loop
and changes the LEDs in walking patterns. The LEDs are changed in the routine LED_On, which simply
writes the correct values to the IO port. Since the CPU runs very fast, LED_On calls a delay loop so that
the patterns can be seen. Since the actual amount of delay is not critical, a pair of nested loops seems to
give the right amount of delay. If the actual timing is important, then the routine should use the timer
register to count time.

The other example, 8515intr.c, is very similar but also shows how simple it is to write an interrupt
handler in C. While small, these two programs can serve as a starting point for your programs.

ICCAVR – C Cross Compiler for the Atmel AVR

19

IDE Overview
The IDE is divided into three window panes:

The top left window pane is the editor and incudes the terminal tabs. The editor is capable of syntax
highlighting C elements, plus bookmarks and other features. When opened, the built in terminal emulator
also displays as one of the tabbed windows in the editor pane. The top right pane is the Project Manager
window. This pane contains the list of C and assembly files in a project. The bottom pane is the Status
Window. Any compilation status is displayed on this pane. In addition, the bottom status bar displays
useful information such as the full file name of the currently active editor, the cursor position, and the full
file name of the project file.

The panes are resizable and you may hide the status window or the project window from view to
maximize the editor display. This is done by toggling the appropriate menu item in the View menu.

User operations are input through the menus. Frequently used operations are also available on the button
bar and as context sensitive right mouse button pop-up menus. The IDE is highly configurable. Browse
the choices available from the Option menus.

ICCAVR – C Cross Compiler for the Atmel AVR

20

Using the Project Manager
Once you create your program file(s), either with the IDE's built-in editor, or some other tool, you can add
the files to the Project Manager. The Project Manager keeps track of all the files in your project, including
non-source code files such as project documentation. Only the source code files are important to the
Project Manager. When you select a Build command, the Project Manager deduces the header file
dependencies and invokes the compiler to rebuild only the files that have been changed. Using a project
manager greatly simplifies your programming task.

Sometimes for quick and dirty prototyping, you may want to forgo the steps of setting up a project. The
IDE allows you to compile a single file into an output file. See Compiling a Single File.

ICCAVR – C Cross Compiler for the Atmel AVR

21

IDE

ICCAVR – C Cross Compiler for the Atmel AVR

22

Compiling a Single File
Normally in order to create an output file, you should create a project and define all the source files
belonging to that project. Nevertheless, sometimes it is convenient to compile a single file to either an
object file or into a final output. You can use the IDE File->Compile File... command to perform either of
these tasks. When you invoke this command, the file in the current active editor is compiled.

Compiling a single file into an object file is useful for checking syntax errors, or if you are compiling a new
startup file. Compiling a single file into an output file is useful if your program is small and can be kept as
a single file. Note that the default compiler options are used.

ICCAVR – C Cross Compiler for the Atmel AVR

23

Creating a New Project
To create a new project, use Project->New. This brings up a dialog box that allows you to specify the
name of the project, which is also used as the name of your output file. Since you can't save an empty
project, you must add some source files to the project file list. If you have already created some source
files, you can add them using the Project->AddFile(s) command. Otherwise, you can create source files
by invoking File->New, typing in your code and then invoking File->Save or File->SaveAs. You can then
add the newly created file by invoking Project->AddFile(s). You can also add a file that is currently being
edited to the project file list by right clicking on the editor window and invoking "Add to Project." Usually
you put the source files in the same directory as the project file, but that is not a requirement.

Be sure to save the project by invoking Project->Save or Project->SaveAs. Compiler options are specified
using Project->Options.

ICCAVR – C Cross Compiler for the Atmel AVR

24

Project Manager
The Project Manager allows you to group a list of files into a project and defines compilation options for
them. This allows you to break down your program into small modules. When you perform a project Build
function, only source files that have been changed are recompiled. Header file dependencies are
automatically generated. That is, if a source file includes a header file, then the source file will be
automatically recompiled if the header file changes. The Project Manager creates a makefile in standard
format. You may examine the generated makefile if you wish.

A source file can be written in either C or in assembly. C files must have the .c extension and assembly
files must have the .s extension. You may keep any files in the project list. For example, you may keep
project documentation files in the Project Manager window. The Project Manager ignores non-source files
when performing a Build.

Compiler options are kept with the project files so you can have different projects with different targets.
When you start a new project, a default set of options is used. You may set the current options as the
default or load the default options into the current option set. The default options are kept in the file
default.prj in the executable directory where the compiler is located.

To ease cluttering up your project directory, you may specify that the output file and the intermediate files
that the tool generates reside in a separate directory. Usually this is a subdirectory under your project
directory. See Compiler Options: Paths.

ICCAVR – C Cross Compiler for the Atmel AVR

25

Editor Windows
The Editor Windows section is the main area of interaction between you and the IDE. It contains a list of
open files in a tabbed notebook control. If you invoke the IDE built-in terminal emulator, it is opened in this
section as well.

The editor is highly configurable. See Environment Options and Editor Options. If you choose not to use
the IDE's built-in editor, you can use your editor of choice. The compiler's output is fairly simple and
should be parseable by most advanced editors. Contact us or the editor vendors for details. To enable
concurrent viewing and editing of the same file in the IDE's editor and an external editor, you can direct
the IDE to detect if any opened files have been changed on the disk (e.g. by an external editor) and to
reload the file if changed.

To the left of the editor is the gutter where informational glyphs are displayed. These include line numbers
and bookmarks. Up to 10 bookmarks can be set in each editor window.

ICCAVR – C Cross Compiler for the Atmel AVR

26

Status Window
The Status Window displays the status information from the IDE, such as from a Project Build. Compiler
error messages start with "!E.." and are tagged with a small red sign on the gutter. Clicking on an error
status line brings the cursor to the offending line in the editor.

The contents of the Status Window can be selected and copied into the Windows Clipboard. When you
are performing a Build function, the last line indicates the status of the build. If there is any error, you may
scroll backward to find the source of the error(s).

ICCAVR – C Cross Compiler for the Atmel AVR

27

Terminal Emulator
The IDE contains a built in terminal emulator. Note that it does not contain any ISP (in System
Programming) functions but is a simple terminal, perhaps for your target device to display debugging
messages. An ASCII file downloader is also provided.

ICCAVR – C Cross Compiler for the Atmel AVR

28

REFERENCES

ICCAVR – C Cross Compiler for the Atmel AVR

29

Pop Up Menus
Context sensitive popup menus are available in most places by right-clicking on the mouse. Usually they
are a subset of the most popular commands for that window.

ICCAVR – C Cross Compiler for the Atmel AVR

30

File Menu
This menu contains file and program related operations. The active editor is the editor tab with the focus.
If you select to open a file that is already opened, its editor tab will be made active. The status bar at the
bottom gives information about the current active editor tab, including cursor location, whether the file is
READONLY or modified, and the full path name of the file.

New - Creates an empty editor tab where you can enter text.

Reopen... - Contains a list of recently opened files. Select file to reopen it.

Open... - Opens a file for editing.

Reload... from Disk - Abandons all changes and reloads the active file from the disk.

Reload... from Back Up - Reloads the active file from the last backed up file. See "Save."

Save - Saves the active file to the disk. It optionally creates a backup file, of the form <file>.~<ext>
before the new contents are saved. See Environment Options.

Save As... - Saves the active file to the disk with a new name.

Close - Closes the active file. Prompts if the file contains unsaved changes.

Compile File... to Object - Compiles the active file to an object file with .o extension. Note that an
object file is not directly loadable into a device programmer or simulator such as AVR Studio. See
File Types. This is useful to check for any compilation errors with the file, or to create an object file for
a library, or a new startup file.

Compile File... to Output - Compiles the active file to an output, suitable to be loaded into a device
programmer or AVR Studio. Normally you would use the Project Manager to manage a list of the
files for your project, but if your project is small, you can simply use this command to create an
output. The compiler uses the default Compiler Options.

Save All - Saves all the currently open files.

Close All - Closes all the currently open files and the Terminal Tab if open. Prompts for unsaved
changes.

Print - Prints the active file. See Print Options for options.

Exit - Quits the program. Prompts for unsaved changes.

ICCAVR – C Cross Compiler for the Atmel AVR

31

Edit Menu
This menu contains editing operations for the editor.

Undo - Undoes last editing changes.

Redo - Undoes the last "undo." That is, reapplies the changes you have undone.

Cut - Cuts the selected text into the Windows Clipboard.

Copy - Copies the selected text into the Windows Clipboard. Note that this works for the Status
Window content.

Paste - Pastes the Window Clipboard content into the cursor point.

Delete - Deletes the selected text.

Select All - Selects the entire contents of the active editor.

Block Indent - Indents (i.e. shift right) the selected text by the amount specified in the Environment
Options -> Editor.

Block Outdent - Outdents (i.e. shift left) the selected text by the amount specified in the Environment
Options -> Editor.

ICCAVR – C Cross Compiler for the Atmel AVR

32

Search Menu
This menu contains the searching functions of the editor.

Find... - Finds text in the editor. The search options are:

Match Case - If checked, match the case exactly

Whole Word - If checked, find match only if the search string is surrounded by white spaces or
punctuation.

Direction Up/Down - Selects whether to perform the search upward or downward from the
cursor.

Find in Files... - Available only in the PROFESSIONAL version. Finds text in all the open files, or all
files in the project, or all the files matching the specified filemask (default is *.* or all files). The result
of the search is displayed in the Status Window. The search options are:

Case Sensitive - If checked, match the case exactly

Whole Word - If checked, find match only if the search string is surrounded by white spaces or
punctuation.

Regular Expression - If checked, then allow grep regular expressions. Some of the more
commonly used expressions are:

. (dot) - any character

^ - the beginning of a line

$ - the end of a line

[0-9] - any digit

[a-z] - any lower case letter

(<expr1>|<expr2>) - match either "expr1" or "expr2"

? - match 0 or 1 occurrence of the previous expression

* - match 0 or more occurrences of the previous expression

Replace... - Replaces text in the editor.

Find Again - Performs another search using the last search string.

Jump To Matching Brace - if the cursor is on (i.e. in front of) a brace character, the cursor is moved
forward or backward to go the matching brace character. For example, '(' is the matching brace
character for ')'. The brace characters are:

 (,), [,], {, }, <, and >

Goto Line Number - Prompts for a line number to jump to. Note that you can also have the editor
display line numbers in the gutter.

Add Bookmark - Adds a bookmark to the line. Note that it is often quicker to simply click on the
gutter of a line to add or delete a bookmark.

Delete Bookmark - Deletes a bookmark on a line.

Next Bookmark - Searches forward until a line with a bookmark is encountered.

Goto Bookmark - Jumps to a specific bookmark.

ICCAVR – C Cross Compiler for the Atmel AVR

33

View Menu
Project File List - If checked, the Project File List Window (the right pane) is displayed. Uncheck it to
maximize the editor window size.

Status Window - If checked, the Status Window (the bottom pane) is displayed. Uncheck it to
maximize the top pane display.

Project Makefile - Opens the makefile in READONLY mode. When you Build a project, the Project
Builder creates a makefile that describes the dependencies of the project files. Dependencies
between the header files (.h files) are determined automatically by the Project Builder.

Output Listing File - Opens the listing file (.lst) in READONLY mode. The listing file contains final
code addresses for all your program code, excluding the library routines. See Listing File.

ICCAVR – C Cross Compiler for the Atmel AVR

34

Project Menu
The menu contains the interface to the Project Builder. Only one project may be open at a time. If there is
an open project with unsaved changes and you try to create a new project or open another project, you
will be prompted to save the changes.

New... - Creates a new project file. Prompts for a directory and file name to store the project file.
Usually you would keep your project file in the same directory as your source files, although it is not
required. Long file names are supported except that paths with embedded spaces are not allowed.
The name you give to the project will be used as the name of the program output. For example, if
your project is named "foo.prj," then the output is called foo.hex, or foo.cof, depending on the output
file format.

Open - Opens an existing project file.

Open All Files... - Opens all the project source files.

Close All Files - Closes all project files that are open.

Reopen... - Contains a list of recently opened projects; select to reopen one.

Make Project - Determines the project file dependencies and compiles changed files to output.

Rebuild All - Recompiles all project files. Useful if somehow things get out of sync, but if you find that
your files are not being recompiled even if they are changed, there may be other causes such as
incorrect system dates.

Add File(s) - Opens a dialog box and adds files to the project. You may add any files to your project
but source files must either be C files (with .c extension) or assembly files (with .s extension). Non-
source files are kept on the project file list but are otherwise ignored by the Project Builder.

Remove Selected Files - Removes selected files in the project file list window from the project.

Option... - Opens the Compiler Options dialog box. See Compiler Options.

Close - Closes the project. Prompts to save changes if needed.

Save - Saves the project, including list of project files and compiler options.

Save As... - Saves the project to a different name.

ICCAVR – C Cross Compiler for the Atmel AVR

35

RCS Menu
Please see Configuration Management with RCS for a general overview of RCS.

IDE RCS functions

Checkin Selected File(s) - checks in all the selected files in the project list window. A dialog box is
displayed for you to enter the check in message (or in the case of initial check in, the file description
and an optional label). The files are checked out immediately afterward. This uses the "ci" command
with the -l option to check out the files.

Checkin Project - checks in all the files in the project. You will get an error message from "ci" if a file
has not been changed, you may ignore those errors. The files are checked out immediately afterward.

Diff Selected File - displays the differences between different revisions of a file. The default is to
compare the last revision with the version that you are currently working on. You can also compare
any two versions of the file. The output is displayed in the Status Window. This uses the "rcsdiff"
command.

Show Log of the Selected File(s) - shows the log entries of the selected files. This is useful for
finding out the different revision numbers and labels of the files. This uses the "rlog" command.

ICCAVR – C Cross Compiler for the Atmel AVR

36

Tools Menu
Environment Options - Opens up the Environment Options and the Terminal Options dialog box.

Editor and Print Options - Opens up the Editor and Print Options dialog box.

App Builder - Available only in the PROFESSIONAL version. Invokes the Application Builder, which
is a program that creates AVR initialization routines based on the selections you make in a series of
dialog boxes. Currently only the MEGA device is supported.

AVR Calc - Available only in the PROFESSIONAL version. Invokes the AVRCalc program, which is a
handy program that displays 32-bits floating point as hexidecimal, and calculates the UART constants
and timer registers for a given baudrate or crystal frequency.

Configure Tools - Allows you to add tools to the Tools Menu.

 When invoked, you can use the dialog box to change the Tools Menu content. The fields of this dialog
box are:

Menu Name - Name to use in the Tools menu.

Program - Full path to the executable. You may use the Browse button to select an executable.

Parameters - Parameters to the program. If you specify %f in the content, it will be replaced by
the filename of the topmost file being edited.

Initial Directory - The directory the IDE switches to before running the program.

Capture Output - If checked, the IDE captures the output (standard output and standard error) of
the program and displays it on the Status Window. This should only be checked for Win32
Console Mode or DOS programs.

Run - Simple interface to run a program. Similar to Windows "Run" function on the Start menu.

 Any tools that you configure will appear after the "Run" command.

ICCAVR – C Cross Compiler for the Atmel AVR

37

Terminal Menu
This menu interacts with the terminal emulator.

View - Toggles whether to display the terminal emulator.

Clear Window - Clears the terminal window.

ASCII Download... Last File - Downloads the last file.

ASCII Download... Browse - Prompts for a file to download.

Capture... - Toggles capturing of the terminal output. Prompts for file name when turned on.

ICCAVR – C Cross Compiler for the Atmel AVR

38

Compiler Options
There are three tabs in the option dialog box: Paths, Compiler, and Target. There are two buttons in
addition to the standard OK, Cancel, and Help:

Set As Default - Writes the options to the default option file \icc\bin\default.prj. When you start the IDE
or create a new project, it is loaded with the default options.

Load Default - Loads the default options into the current setting.

ICCAVR – C Cross Compiler for the Atmel AVR

39

Compiler Options: Paths
Include Path(s) - You may specify the directories where the compiler should search for include files.
You may specify multiple directories by separating the paths with semicolons or spaces. If a path
contains a space, then you should enclose it within double quotes.

Library Path - The compiler automatically links in the startup file (see Startup File), and the standard
library. This edit box specifies the location of these files. Only a single directory may be specified. If a
path contains a space, then you should enclose it within double quotes.

Output Directory - Typically the source files are kept in the project directory, along with the project
files. Compilation creates a number of files and to avoid cluttering up the project directory, you may
want to put all the output files in their own directory. Typically this is a subdirectory under the project
directory.

ICCAVR – C Cross Compiler for the Atmel AVR

40

Compiler Options: Compiler
Strict ANSI C Checking - The ANSI C standard still allows certain operations that may be unsafe. If
this check box is selected, the compiler warns about declarations and casts of function types without
prototypes, assignments between pointers to integers and pointers to enums, and conversions from
pointers to smaller integral types. It also warns about unrecognized control lines, non-ANSI language
extensions and source characters in literals, unreferenced variables and static functions, declaring
arrays of incomplete types, and exceeding some ANSI environmental limits, such as more than 257
cases in switch statements.

Accept C++ Comments - If selected, the compiler treats everything up to the newline after the
character pair // as comments.

Macro Define(s) - You define macros separated by spaces or commas. Each macro definition is in
the form

 name[:value] or name[=value]

 For example:

 DEBUG:1;PRINT=printf

 defines two macros, DEBUG and PRINT. DEBUG has the value 1 by default and PRINT is defined as
printf. This is equivalent to writing

 #define DEBUG 1

 #define PRINT printf

 in the source code. A common usage is to use conditional preprocessor directives to include or
exclude certain code fragments.

Macro Undefine(s) - same syntax as Macro Define(s) but has the opposite meaning.

Output File Format - You select COFF/HEX, Intel HEX or COFF. Intel HEX is a simple format that is
basically a memory image of the program. COFF contains debugging information that can be used by
tools that accept that format for source level debugging. For example, the AVR Studio understands
COFF output format. COFF/HEX specifies that both types of files will be generated.

Strings in FLASH - By default, literal strings are allocated in both FLASH ROM and SRAM to allow
easy mixing of strings and char pointers. (See Strings.) If you want to eliminate the overhead of
allocating strings in SRAM, you can check this option. You must be careful to use the correct library
functions. For example, to copy a literal string allocated this way into a buffer, you must use the
cstrcpy() function instead of the standard strcpy() function. (See String Functions.)

Optimizations - You control the levels and types of optimizations. Currently, the choices are

Default - basic optimizations such as register allocation, basic block common subexpression
elimination etc.

Maximize Code Size Reduction - enabled for the PROFESSIONAL version only. This invokes
the Code Compressor (tm) optimizer to eliminate duplicate object code fragments. While the
operation of the Code Compressor is generally transparent, you should read the description in the
Code Compressor page to familiarize yourself with its operations and limitations.

 The STANDARD and demo versions of the product are allowed a number of free trial runs of the
optimizer. Once the number of trial runs is over, the optimizer will no longer be operative in these
versions.

 As we improve the product, we will add more optimization levels to both the STANDARD and
PROFESSIONAL versions of the tools, and the compiler option settings will be augmented to provide
the users with flexible control.

ICCAVR – C Cross Compiler for the Atmel AVR

41

Compiler Options: Target
Device Configuration - Select the target device. If your device is not on the list, as long as it has
data SRAM, the compiler will work with it. If your target device is not on the list, select "Custom" and
enter the relevant parameters described below.

Memory Sizes - Specify the amount of program and data memory in the device. Changeable only if
you select "Custom" in the device selector list. The data memory refers to the internal SRAM. Note
that the compiler cannot use more than 64K of program memory so there is only one entry for both
Mega603 and Mega103.

Text Address - Normally text (the code) starts right after the interrupt vector entries. For example,
code starts at 0xD (word address) for 8515 and 0x30 for the Mega devices. However, if you do not
use all of the interrupts, you may start your code earlier - as long as it does not conflict with the vector
table. Changeable only if you select "Custom" in the device selector list.

Data Address - Specify the start of the data memory. Normally this is 0x60, right after the CPU and
IO registers. Changeable only if you select "Custom" in the device selector list. Ignore if you choose
external SRAM.

Use Long JMP/CALL - Specify that the device supports long jmp and long call instructions.

Enhanced Core - Specify that the device supports the enhanced core instructions such as hardware
multiply, lpm z+, movw etc.

IO Registers Offset Internal SRAM - Specify whether or not the IO registers offset the start of the
internal SRAM. For example, 8515's SRAM starts at 0x60, after the IO registers space and extends
for 512 bytes. For the Mega603 device, the IO registers overlays the SRAM space and therefore
SRAM starts at 0 (but not usable until after 0x60) and extends for 4096 bytes. Changeable only if you
select "Custom" in the device selector list.

Internal vs. External SRAM - Specify the type of data SRAM on your target system. If you select
external SRAM, the correct MCUCR bits will be set.

PRINTF Version - This radio group allows you to choose which version of the printf your program is
linked with. More features obviously use up more code space:

Small or Basic: only %c, %d, %x, %X, %u, and %s format specifier without modifiers are
accepted.

Long: the long modifier: %ld, %lu, %lx, %lX are supported, in addition to the width and
precision fields.

Floating point: %f for floating point are supported. Note that for non-mega targets, due to large
code space requirement, long support is not presented. For mega targets, all format and
modifiers are accepted.

AVR Studio Simulator IO - If selected, use the library functions that interface to the Terminal IO
Window in the AVR Studio. Note that you must copy the file iostudio.s into your source directory. See
COFF and Working With AVR Studio.

Additional Libraries - You may use other libraries besides the standard ones provided by the
product. For example, on our website is a library called libstk.a for accessing STK-200 peripherals. To
use other libraries, copy the files to the library directory and specify the names of the library files
without the "lib" prefix and the ".a" extension in this box. For example, "stk" refers to the libstk.a library
file. All library files must end with the .a extension.

Advanced - the options here allow you finer control over the target customization:

Return Stack Size - the compiler uses two stacks, one for the return addresses for the function
calls and interrupt handler (known as the hardware stack), and one for parameter passing and
local storage (known as the software stack). This option allows you to control the size of the
return stack. The size of the software stack does not need to be specified. See Stacks.

 Each function call or interrupt handler uses two bytes of the return stack. Therefore, you need to
estimate the deepest level of your call trees (i.e. the maximum number of nested routines your
program may call, possibly any interrupts), and enter the appropriate size here. Programs using

ICCAVR – C Cross Compiler for the Atmel AVR

42

floating points or longs should specify a hardware stack size of at least 30 bytes.

Non Default Startup - a startup file is always linked with your program (see Startup File). In
some cases, you may have different startup files based on the project. This option allows you to
specify the name of the startup file. If the filename is not an absolute pathname, then the startup
file must be in the directory specified in the "Paths" tab.

ICCAVR – C Cross Compiler for the Atmel AVR

43

Environment Options
This dialog box controls the general environment settings of the IDE:

Beep on Completing Build - Emits a beep when a build is completed.

Verbose Compiler Output - Directs the compiler driver to print out each pass as it processes the file.
This shows the exact command line switches passed to each compiler pass.

Multiple Row Editor Tabs - Changes the appearance of the editor tabs to use multiple row display
instead of single row with scroll arrow when the number of editor labels grows too large to fit in the
display.

Auto Save Files Before Compiling - Saves the project files automatically when you request a Build.
Normally, you are prompted to save unsaved changes for each changed file.

Create Backup on Save - When saving a file, copies the last version to a file of the form
<file>.~<ext> before overwriting it with the latest modifications.

Undo Across Save - Allows undoing of changes even if the file has been saved.

Scan for Changes in Opened Files - Periodically scans the opened files to see if the disk version
has been changed. This is useful if you are using an external editor while keeping a file open in this
IDE as well.

Close Files on Project Close - Automatically closes all the project files when a project is closed.

Printer Setup - Invokes the Printer Setup dialog box.

ICCAVR – C Cross Compiler for the Atmel AVR

44

Editor and Print Options
There are three tabs that control the Editor and Print operations. File related editor options (e.g. whether
to create backup on save), are part of the Environment Options. Some options are described "unused
and is ignored."

Options

Print

Wrap long lines - wrap long lines when printing

Line numbers - print line numbers

Title in header - print file name on header

Date in header - print current date and time on header

Page numbers - print page numbers

 General

Word wrap - word wrap text display

Override wrapping - unused and is ignored

Auto indent - When not in word-wrap mode, indent caret to first non-space character in line above

Smart TAB - When not in word-wrap mode, TAB keys move to next non-space character in line above

Smart fill - If use TAB character is on (below), this option causes the editor to use the minimum
number of characters made up of TABs and spaces to fill a required gap. Otherwise, it uses spaces
only.

Use TAB character - Insert the TAB character into the text. If this checkbox is not checked, then the
correct number of spaces are inserted in place of the TAB character.

Line numbers in gutter - Show line numbers in the gutter

Mark wrapped lines - Show a black triangle in the gutter for wrapped lines

Title as filename - unused and is ignored

Block cursor for overwrite - Show a block cursor when the editor is in overwrite mode

Word select - Double clicking selects word nearest to mouse position

Syntax highlight - Turn on Syntax Highlighting

Cursor beyond EOL - Allow caret/cursor to move beyond the end of the line

Show all chars - Show hidden white space characters as glyphs (applies to TAB, SPACE, NEWLINE
and wrapped lines)

 Others

Right Margin - Display a right margin (vertical gray line) on specified column

Gutter - Display a gutter of specified size. Note that the gutter is used for displaying bookmarks and
line numbers, among other things.

Block indent step size - Number of steps to use when indenting using the Block Indent and Outdent
commands

TAB Columns - Specify the position of the tab columns. If not specified, then the TAB stop value is
used to calculate the positions of the TABs.

TAB stop - number of characters to use per TAB if "TAB columns" is not used

 Highlighting

 This page allows you to control the highlighting display.

 Key Assignments

ICCAVR – C Cross Compiler for the Atmel AVR

45

 The page allows you to modify the key assignments for editing commands.

 Code Templates

 This page allows you to define and edit "code templates" that you can access with a hotkey combination
(defaults to Control-J, or ^J). Code templates are useful for filling out the basic syntactic elements without
you doing all the typing. A list of templates for commonly used elements such as the C control structures
is provided.

ICCAVR – C Cross Compiler for the Atmel AVR

46

Terminal Options
Changing the COM port or the baud rate closes the COM port and reopens it if it was already open.

COM Port - Specifies which COM port the terminal emulator should use.

Baudrate - Specifies the Baudrate to use. All Windows standard Baudrates are supported.

Flow Control - Controls the method of flow control.

ASCII Transfer Protocol - If using ASCII Downloading to transfer an output file to a programming
device, certain target programmers need certain protocols to be used. Note that the terminal emulator
does not support the AVR ISP (In System Programming) function.

ICCAVR – C Cross Compiler for the Atmel AVR

47

C LIBRARY AND THE STARTUP FILE

ICCAVR – C Cross Compiler for the Atmel AVR

48

Startup File
The linker links in the startup file before your files, and links the standard library libcavr.a with your
program. The startup file is either crtavr.o or crtatmega.o depending on the target device. The startup file
defines a global symbol __start which is the starting point of your program. The startup file functions are:

I. Initialize the hardware and software stack pointers.

II. Copy the initialized data from the idata area to the data area.

III. Initialize the bss area to zero.

IV. Call the user main routine.

V. Define the entry point for exit, which is defined as an infinite loop. If main ever returns, it will enter
exit and gets stuck there (so much for "exit").

 The startup also defines the reset vector. You do not need to modify the startup file to use other
interrupts, see Interrupt Handlers.
 To modify and use a new startup file:

 cd \icc\libsrc.avr ; or wherever you install the compiler

 <edit crtavr.s>

 <open crtavr.s using the IDE> ;

 <Choose "Compile File To->Object"> ;generate a new crtavr.o

 copy crtavr.o ..\lib ; copy to the library directory

 Substitute "crtatmega" for "crtavr" if you are targeting the Mega devices. Note that Mega devices use two
words per interrupt entry whereas non-Mega devices only use one word per entry.

 You can also have multiple startup files. You simply specify the name of the startup file to use in your
Project Options dialog box. Note that you must either specify the startup with an absolute pathname or it
must be located in the directory specified by the Project Options Library path.

ICCAVR – C Cross Compiler for the Atmel AVR

49

C Library General Description
Library Source

The library source code (c:\icc\libsrc.avr\libsrc.zip by default) is a password protected zip
file. Many unzip programs are available on the web if you do not already have one. The password is
shown on the "About" box if the software has been unlocked. For example:

cd \icc\libsrc

unzip -s libsrc.zip

; unzip prompts for password

io*.h (io2313.h, io8515.h, iom603.h, ... etc.)

These files are converted from the official Atmel source files that define the IO registers. These files
should be used instead of the older avr.h.

PORTB = 1;

uc = PORTA;

macros.h

This file contains useful macros and defines.

Other Header Files

The following standard C header files are supported. In general, it is a good practice to include the header
files if you use the listed functions in your program. In the case of floating point or long functions, you
must include the header files since the compiler must know about their prototypes. See Functions
Returning Non-Integer Values.

assert.h - assert(), the assertion macros

ctype.h - character type functions.

float.h - floating point characteristics.

limits.h - data type sizes and ranges

math.h - floating point math functions.

stdarg.h - support for variable argument functions.

stddef.h - standard defines.

stdio.h - standard IO (input/output) functions.

stdlib.h - standard library including memory allocation functions.

string.h - string manipulation functions.

ICCAVR – C Cross Compiler for the Atmel AVR

50

Character Type Functions
The following functions categorize input according to the ASCII character set. Use "#include <ctype.h>"
before using these functions.

int isalnum(int c)

 returns non zero if c is a digit or alphabetic.

int isalpha(int c)

 returns non zero if c is an alphabetic.

int iscntrl(int c)

 returns non zero if c is a control character (e.g. FF, BELL, LF ..etc.).

int isdigit(int c)

 returns non zero if c is a digit.

int isgraph(int c)

 returns non zero if c is a printable character and not a space.

int islower(int c)

 returns non zero if c is a lower case alphabetic.

int isprint(int c)

 returns non zero if c is a printable character.

int ispunct(int c)

 returns non zero if c is a printable character and is not a space or a digit or an alphabetic.

int isspace(int c)

 returns non zero if c is a space character including space, CR, FF, HT, NL, and VT.

int isupper(int c)

 returns non zero if c is an upper case alphabetic.

int isxdigit(int c)

 returns non zero if c is a hexadecimal digit.

int tolower(int c)

 returns the lower case version of c if c is an upper case character. Otherwise it returns c.

int toupper(int c)

 returns the upper case version of c if c is a lower case character. Otherwise it returns c.

ICCAVR – C Cross Compiler for the Atmel AVR

51

Floating Point Math Functions
The following floating point math routines are supported. You must #include <math.h> before using these
functions.

float asin(float x)

 returns the arcsine of x for x in radians.

float acos(float x)

 returns the arccosine of x for x in radians.

float atan(float x)

 returns the arctangent of x for x in radians.

float atan2(float x, float y)

 returns the angle whose tangent is y / x, in the range [-pi, +pi] radians.

float ceil(float x)

 returns the smallest integer not less than x.

float cos(float x)

 returns the cosine of x for x in radians.

float cosh(float x)

 returns the hyperbolic cosine of x for x.

float exp(float x)

 returns e to the x power.

float exp10(float x)

 returns 10 to the x power.

float fabs(float x)

 returns the absolute value of x.

float floor(float x)

 returns the largest integer not greater than x.

float fmod(float x, float y)

 returns the remainder of x / y.

float frexp(float x, int *pexp)

 returns a fraction f and stores a base-2 integer into *pexp that represents the value of the input x. The
return value is in the interval of [1/2, 1) and x equals f * 2**(*pexp).

float fround(float x)

 rounds x to the nearest integer.

float ldexp(float x, int exp)

 returns x * 2**exp

float log(float x)

 returns the natural logarithm of x.

float log10(float x)

 returns the base-10 logarithm of x.

float modf(float x, float *pint)

 returns a fraction f and stores an integer into *pint that represents x. f + (*pint) equal x. abs(f) is in the

ICCAVR – C Cross Compiler for the Atmel AVR

52

interval [0, 1) and both f and *pint have the same sign as x.

float pow(float x, float y)

 returns x raised to the power y.

float sqrt(float x)

 returns the square root of x.

float sin(float x)

 returns the sine of x for x in radians.

float sinh(float x)

 returns the hyperbolic sine of x for x.

float tan(float x)

 returns the tangent of x for x in radians.

float tanh(float x)

 returns the hyperbolic tangent of x.

ICCAVR – C Cross Compiler for the Atmel AVR

53

Standard IO functions
Since standard file IO is not meaningful for an embedded microcontroller, much of the standard stdio.h
content is not applicable. Nevertheless, some IO functions are supported. Use "#include <stdio.h>" before
using these functions. You will need to initialize the output port. The lowest level of IO routines consists of
the single character input (getchar) and output (putchar) routines. Thus, if you want to use a higher level
function on a different device, for example printf to an LCD, all you need to do is to redefine the low level
function. See Librarian.
To use the standard IO functions with the AVR Studio simulator (the Terminal IO Window), select the
appropriate radio button in Compiler Options.

int getchar()

 returns a character from the UART using polled mode.

int printf(char *fmt, ..)

 prints out formatted text according to the format specifiers in the fmt string. The format specifiers are
a subset of the standard formats:

 %d - prints the next argument as a decimal integer

 %o - prints the next argument as an unsigned octal integer

 %x - prints the next argument as an unsigned hexadecimal integer

 %X - the same as %x except that upper case is used for 'A'-'F'

 %u - prints the next argument as an unsigned decimal integer

 %s - prints the next argument as a C null terminated string

 %c - prints the next argument as an ASCII character

 %f - prints the next argument as a floating point number

 %S - prints the next argument as a constant string in FLASH

 If a ‘#’ character is specified between ‘%’ and ‘o’ or ‘x’, then a leading 0 or 0x is printed respectively. If
you specify ‘l’ (letter el) between % and one of the integer format characters, then the argument is
taken to be long, instead of int.

 printf is supplied in three versions, depending on your code size and feature requirements (the more
features, the higher the code size):

Basic: only %c, %d, %x, %u, and %s format specifiers without modifiers are accepted.

Long: the long modifiers %ld, %lu, %lx are supported, in addition to the width and precision
fields.

Floating point: all formats including %f for floating point are supported.

 The code size is significantly larger as you progress down the list. You select the version to use in the
Compiler Options dialog box.

int putchar(int c)

 prints out a single character. The library routine uses the UART in polled mode to output a single
character. For convenience, writing a ‘\n’ newline character causes a ‘\r’ carriage return character to
be output first.

int puts(char *s)

 prints out a string followed by NL.

int sprintf(char *buf, char *fmt)

 prints a formatted text into buf according to the format specifiers in fmt. The format specifiers are the
same as in printf().

ICCAVR – C Cross Compiler for the Atmel AVR

54

"const char *" support functions
cprintf and csprintf are exactly the same as printf and sprintf respectively except that the
format string takes a FLASH string.

ICCAVR – C Cross Compiler for the Atmel AVR

55

Standard Library And Memory Allocation Functions
The Standard Library header file <stdlib.h> defines the macros NULL and RAND_MAX and typedefs
size_t and declares the following functions. Note that you must initialize the heap with the _NewHeap call
before using any of the memory allocation routines (i.e.. calloc, malloc, and realloc).

int abs(int i)

 returns the absolute value of i.

int atoi(char *s)

 converts the initial characters in "s" into an integer, or returns 0 if an error occurs.

double atof(const char *s)

 converts the initial characters in "s" into a double and returns it.

long atol(char *s)

 converts the initial characters in "s" into a long integer, or returns 0 if an error occurs.

void *calloc(size_t nelem, size_t size)

 returns a memory chunk large enough to hold "nelem" number of objects, each of size “size.” The
memory is initialized to zeros. It returns 0 if it cannot honor the request.

void exit(status)

 terminates the program. Under an embedded environment, typically it simply loops forever and its
main use is to act as the return point for the user "main" function.

void free(void *ptr)

 frees a previously allocated heap memory.

void *malloc(size_t size)

 allocates a memory chunk of size “size” from the heap. It returns 0 if it cannot honor the request.

void _NewHeap(void *start, void *end)

 initializes the heap for memory allocation routines. Malloc and related routines manage memory in
the heap region. See Data Memory Usage for information on memory layout. A typical call uses the
address of the symbol _bss_end as the "start" value. _bss_end is defined in the endavr.o file
linked in automatically by the linker. It defines the end of the data memory used by the compiler for
global variables and strings. The "end" value must not run into the stacks.

 extern void _bss_end;

 _NewHeap(&_bss_end, (char *)(&_bss_end) + 200); // 200 bytes heap

 Beware that for a microcontroller with a small amount of data memory, it is often not feasible or wise
to use dynamic allocation due to its overhead and potential for memory fragmentation. Often a simple
statically allocated array serves ones needs better.

int rand(void)

 returns a pseudo random number between 0 and RAND_MAX.

void *realloc(void *ptr, size_t size)

 reallocates a previously allocated memory chunk with a new size.

void srand(unsigned seed)

 initializes the seed value for subsequent rand() calls.

long strtol(char *s, char **endptr, int base)

 converts the initial characters in "s" to a long integer according to the "base." If base is 0, then "strtol"
chooses the base depending on the initial characters (after the optional minus sign, if any) in s: 0x or
0X indicates a hexadecimal integer, 0 indicates an octal integer, with a decimal integer assumed

ICCAVR – C Cross Compiler for the Atmel AVR

56

otherwise. If "endptr" is not NULL, then *endptr will be set to where the conversion ends in s.

unsigned long strtoul(char *s, char **endptr, int base)

 is the same thing as "strtol" except that the number to be converted is an unsigned long and the
return value is unsigned long.

ICCAVR – C Cross Compiler for the Atmel AVR

57

String Functions
The following String functions are supported. Use "#include <string.h>" before using these functions.
<string.h> defines NULL and typedefs size_t, and the following string and character array functions:

void *memchr(void *s, int c, size_t n)

 searches for the first occurrence of "c" in the array "s" of size "n." It returns the address of the
matching element or the null pointer if no match is found.

int memcmp(void *s1, void *s2, size_t n)

 compares two arrays, each of size "n." It returns 0 if the arrays are equal and greater than 0 if the first
different element in "s1" is greater than the corresponding element in "s2." Otherwise, it returns a
number less than 0.

void *memmove(void *s1, void *s2, size_t n)

 copies "s2" into "s1," each of size "n." The routine works correctly even if the inputs overlap. It returns
s1.

void *memset(void *s, int c, size_t n)

 stores "c" in all elements of the array "s" of size "n." It returns s.

char *strcat(char *s1, char *s2)

 concatenates "s2" into "s1." It returns s1.

char *strchr(char *s, int c)

 searches for the first occurrence of "c" in "s," including its terminating null character. It returns the
address of the matching element or the null pointer if no match is found.

int strcmp(char *s1, char *s2)

 compares two strings. It returns 0 if the strings are equal, and greater than 0 if the first different
element in "s1" is greater than the corresponding element in "s2." Otherwise, it returns a number less
than 0.

char *strcpy(char *s1, char *s2)

 copies "s2" into "s1." It returns s1.

size_t strcspn(char *s1, char *s2)

 searches for the first element in "s1" that matches any of the elements in "s2." The terminating nulls
are considered part of the strings. It returns the index where the match is found.

size_t strlen(char *s)

 returns the length of "s." The terminating null is not counted.

char *strncat(char *s1, char *s2, size_t n)

 concatenates up to "n" elements, not including the terminating null, of "s2," into "s1." It then copies a
null character onto the end of s1. It returns s1.

int strncmp(char *s1, char *s2, size_t n)

 is the same as the strcmp function except it compares at most "n" characters.

char *strncpy(char *s1, char *s2, size_t n)

 is the same as the strcpy function except it copies at most "n" characters.

char *strpbrk(char *s1, char *s2)

 does the same search as the strcspn function except that it returns the pointer to the matching
element in "s1" if the element is not the terminating null. Otherwise, it returns a null pointer.

char *strrchr(char *s, int c)

 searches for the last occurrence of "c" in "s" and returns a pointer to it. It returns a null pointer if no

ICCAVR – C Cross Compiler for the Atmel AVR

58

match is found.

size_t strspn(char *s1, char *s2)

 searches for the first element in "s1" that does not match any of the elements in "s2." The terminating
null of s2 is considered part of s2. It returns the index where the condition is true.

char *strstr(char *s1, char *s2)

 finds the substring of "s1" that matches "s2." It returns the address of the substring if found and a null
pointer otherwise.

 "const char *" support functions

 These functions perform the same processing as their counterparts without the 'c' prefix except that they
operate on constant strings in FLASH.

size_t cstrlen(const char *s)

char *cstrcpy(char *dst, const char *src);

int cstrcmp(const char *s1, char *s2);

ICCAVR – C Cross Compiler for the Atmel AVR

59

Variable Argument Functions
<stdarg.h> provides support for variable argument processing. It defines the pseudo-type va_list, and
three macros:

va_start(va_list foo, <last-arg>)

 initializes the variable “foo.”

va_arg(va_list foo, <promoted type>)

 accesses the next argument, cast to the specified type. Note that type must be a "promoted type,"
e.g. int, long, or double. Smaller integer types such as "char" should not be used.

va_end(va_list foo)

 ends the variable argument processing.

 For example, printf() may be implemented using vfprintf() as follows:

 #include <stdarg.h>

 int printf(char *fmt, ...)

 {

 va_list ap;

 va_start(ap, fmt);

 vfprintf(fmt, ap);

 va_end(ap);

 }

ICCAVR – C Cross Compiler for the Atmel AVR

60

PROGRAMMING THE AVR

ICCAVR – C Cross Compiler for the Atmel AVR

61

Accessing AVR Features
The strength of C is that while it is a high level language, it allows you to access low level features of the
target devices. With this capability, there are very few reasons to use assembly except in cases where
optimized code is of utmost importance. Even in cases where the target features are not available in C,
usually inline assembly and preprocessor macros can be used to access these features transparently.

The header file io*.h (e.g. io8515.h, iom603.h etc.) define device specific AVR IO
registers. These files are converted from the official Atmel release to match our compiler syntax. The file
macros.h defines many useful macros. For example, the macro UART_TRANSMIT_ON() can be used
to turn on the UART (when available on the target device).

The compiler is smart enough to generate the single cycle instructions such as in, out, sbis, sbi,
etc. when accessing memory mapped IO. See IO registers.

Note: our older header file avr.h defines IO register bits as a bit mask, whereas io*.h defines them as
a bit position. Thus to use io*.h and IO register bits, most of the time you will need to use the BIT()
macro defined in macros.h. For example:

avr.h:

#define SRE 0x80 // external RAM enable

... (in your C program)

MCUCR |= SRE;

io8515.h

#define SRE 7

... (in your C program)

#include <macros.h>

MCUCR |= BIT(SRE);

ICCAVR – C Cross Compiler for the Atmel AVR

62

Bit Twiddling
A common task in programming the microcontroller is to turn on or off some bits in the IO registers.
Fortunately, Standard C is well suited to bit twiddling without resorting to assembly instructions or other
non standard C constructs. C defines some bitwise operators that are particularly useful.

 a | b - bitwise or, the expression denoted by "a" is bitwise or'ed with the expression denoted by "b."
This is used to turn on certain bits, especially when used in the assignment form |=. For example:

 PORTA |= 0x80; // turn on bit 7 (msb)

 a & b - bitwise and. This operator is useful for checking if certain bits are set. For example:

 if ((PORTA & 0x81) == 0) // check bit 7 and bit 1

 Note that the parathesis is needed around the expressions of an & operator since it has lower
precedence than the == operator. This is a source of many programming bugs in C programs.

 a ^ b - bitwise exclusive or. This operator is useful for complementing a bit. For example, in the
following case, bit 7 is flipped:

 PORTA ^= 0x80; // flip bit 7

 ~a - bitwise complement. This operator performs a ones-complement on the expression. This is
especially useful when combined with the bitwise and operator to turn off certain bits:

 PORTA &= ~0x80; // turn off bit 7

 The compiler generates optimal machine instructions for these operations. For example, the sbic
instruction might be used for a bitwise and operator for conditional branching based on bit status.

ICCAVR – C Cross Compiler for the Atmel AVR

63

Program Memory and Constant Data
The AVR is a Harvard architecture machine, separating program memory from data memory. There are
several advantages to such a design. For example, the separate address space allows an AVR device to
access more total memory than a conventional architecture. For example, the ATmega series allows up to
64K words of program memory and 64K bytes of data memory, and future devices with possibly even
greater amounts of program memory may be available later. However, the program counter still remains
at 16 bits.

Unfortunately, C was not invented on such a machine. In particular, C pointers are either data pointers or
function pointers, and C rules already specify that you cannot assume data and function pointers can be
converted back and forth. However, with a Harvard architecture machine like the AVR, even a data
pointer may point to either data memory or to program memory.

There are no standard C rules for how to handle this. The ImageCraft AVR compiler uses the "const"
qualifier to signify that an item is in the program memory. Note that for a pointer declaration, the const
qualifier may appear in different places, depending whether it is qualifying the pointer variable itself or the
items that it points to. For example:

const int table[] = { 1, 2, 3 };

const char *ptr1;

char * const ptr2;

const char * const ptr3;

"table" is a table allocated in the program memory. "ptr1" is an item in the data memory that points to data
in the program memory. "ptr2" is an item in the program memory that points to data in the data memory.
Finally, "ptr3" is an item in the program memory that points to data in the program memory. In most
cases, items such as "table" and "ptr1" are probably the most typical. The C compiler generates the LPM
instruction to access the program memory.

Note that the C Standard does not require "const" data to be put in the read-only memory, and in a
conventional architecture, this would not matter except for access rights. So, this use of the const qualifier
is unconventional, but within the allowable parameters of the C standard. However, this does introduce
conflicts with some of the standard C function definitions.

For example, the standard prototype for "strcpy" is strcpy(char *dst, const char *src), with
the const qualifier of the second argument signifying that the function does not modify the argument.
However, under ICCAVR, the const qualifier would indicate that the second argument points to the
program memory which is likely not the case. Thus these functions are defined without the const
qualifiers.

Finally, note that only const variables with file storage class will be put into FLASH. For example,
variables that are defined outside of a function body or variables that have the static storage class have
file storage class. If you declare local variables with the const qualifier, they will not be put into
FLASH and undefined behaviors may result.

ICCAVR – C Cross Compiler for the Atmel AVR

64

Strings
As explained in Program Memory and Constant Data, the separation of program and data memory in the
AVR's Harvard architecture introduces some complexity. This page explains this complexity as it relates
to literal strings.

Strings

The compiler places switch tables and items declared as const into program memory. The last thorny
issue is the allocation of literal strings. The problem is that, in C, strings are converted to char pointers. If
strings are allocated in the program memory, then either all the string library functions must be duplicated
to handle different pointer flavors, or the strings must also be allocated in the data memory.

The ImageCraft compiler offers two options for dealing with this:

Default String Allocation

The default is to allocate the strings in both the data memory and the program memory. All references to
the strings are to the copies in data memory. To ensure that their values are correct, at program startup
the strings are copied from the program memory to the data memory. Thus, only a single copy of the
string functions are needed (this is also exactly how the compiler implements initialized global variables).

If you wish to conserve space, you can allocate strings only in the program memory by using const
character arrays. For example:

const char hello[] = "Hello World";

In this example, hello can be used in all contexts that a literal string can be used, except as an
argument to the standard C library string functions, as explained above.

printf has been extended with the %S format character for printing out FLASH only strings. In addition,
new string functions have been added to support FLASH only strings. (See String Functions.)

Allocating All Literal Strings to FLASH Only

You can direct the compiler to place all literal strings in FLASH only by selecting the "Project->Options-
>Target->Strings In FLASH Only" checkbox. Again, be aware that you must be careful when calling
library functions. When this option is checked, effectively the type for a literal string is "const char *"
and you must ensure that the function takes the appropriate argument type. Besides new "const char
*" related string functions, cprintf and csprintf have been created to accept "const char *" as
the format string type. See Standard IO Functions.

ICCAVR – C Cross Compiler for the Atmel AVR

65

Stacks
The generated code uses two stacks: a hardware stack that is used by the subroutine calls and interrupt
handlers, and a software stack for allocating stack frames for parameters, temporary and local variables.
Although it may seem cumbersome, using two stacks instead of one allows the most transparent use of
the data RAM.

The hardware stack is allocated at top of the data memory, and the software stack is allocated a number
of bytes below that. The size of the hardware stack and the size of the data memory are controlled by
settings in the target tab of Compiler Options. The data area is allocated starting at 0x60, right after the
IO space. This allows the data area and the software stack to grow toward each other. You must not
allow the hardware stack to grow into the software stack, otherwise Bad Things Can Happen (tm). A later
release of the linker may automatically choose an optimal size for the hardware stack, unless recursive
functions are involved.

A downside of allocating the stacks at the top of the data memory is that if external SRAM is used for
additional data memory, then accesses to the stacks are slowed down by at least one additional clock
cycle. A different method would place the stacks in the internal SRAM (which does not incur the additional
clock penalty), and place global data in the external SRAM. Fortunately, since we provide the full source
code to the startup file (and the library functions), you may modify the startup file to use this method
instead.

ICCAVR – C Cross Compiler for the Atmel AVR

66

Inline Assembly
Besides writing assembly functions in assembly files, inline assembly allows you to write assembly code
within your C file. (Of course, you may use assembly source files as part of your project as well.) The
syntax for inline assembly is:

asm("<string>");

Multiple assembly statements can be separated by the newline character \n. String concatenations can
be used to specify multiple statements without using additional asm keywords. To access a C variable
inside an assembly statement, use the %<name> format:

register unsigned char uc;

asm("mov %uc,R0\n"

 "sleep\n");

Any C variable can be referenced this way (excluding C goto labels). If you use an assembly instruction
that requires a CPU register, then you must use the register storage class to force a local variable to be
allocated in a CPU register.

In general, using inline assembly to reference local registers is limited in power: it is possible that no CPU
registers are available if you have declared too many register variables in that function. In that case, you
would get an error from the assembler. There is also no way to control allocation of register variables, so
your inline instruction may fail. For example, using the ldi instruction requires the register to be one of
the 16 upper registers, but there is no way to request that using inline assembly. There is also no way to
reference the upper half of an integer register.

Inline assembly may be used inside or outside of a C function. The compiler indents each line of the inline
assembly for readability. Unlike the AVR assembler, the ImageCraft assembler allows labels to be placed
anywhere (not just at the first character of the lines in your file) so you may create assembly labels in your
inline assembly code. You may get a warning on asm statements that are outside of a function. You may
ignore these warnings.

ICCAVR – C Cross Compiler for the Atmel AVR

67

IO Registers
IO registers, including the Status Register SREG, can be accessed in two ways. The IO addresses
between 0x00 to 0x3F can be used with the IN and OUT instructions to read and write the IO registers, or
the data memory addresses between 0x20 to 0x5F can be used with the normal data accessing
instructions and addressing modes. Both methods are available in C:

Data memory addresses. A direct address can be used directly through pointer indirection and type
casting. For example, SREG is at data memory address 0x5F:

 unsigned char c = *(volatile unsigned char *)0x5F; // read SREG

 *(volatile unsigned char *)0x5F |= 0x80; // turn on the Global
Interrupt bit

 Note that data memory 0 to 31 refer to the CPU registers! Extreme care must be taken not to change
the CPU registers inadvertently.

 This is the preferred method since the compiler automatically generates the low level instructions
such as in, out, sbrs, sbrc, etc. when accessing data memory in the IO register region.

IO addresses. You may use inline assembly and preprocessor macros to access IO addresses:

 register unsigned char uc;

 asm("in %uc,$3F"); // read SREG

 asm("out $3F,%uc"); // turn on the Global Interrupt bit

 In some early releases, this was the only way to use the faster low level in and out instructions
but this is no longer the case.

 Note: our older header file avr.h defines IO register bits as bit mask, whereas io*.h define them as bit
position. Thus to use io*.h and IO register bits, most of the time you will need to use the BIT() macro
defined in macros.h. For example:

 avr.h:

 #define SRE 0x80 // external RAM enable

 ... (in your C program)

 MCUCR |= SRE;

 io8515.h

 #define SRE 7

 ... (in your C program)

 #include <macros.h>

 MCUCR |= BIT(SRE);

ICCAVR – C Cross Compiler for the Atmel AVR

68

Addressing Absolute Memory Locations
Your program may need to address absolute memory locations. For example, external IO peripherals are
usually mapped to specific memory locations. These may include LCD interface and dual port SRAM.
Currently, you can use inline asm or a separate assembler file to declare data that are located in specific
memory addresses. In a later release of the compiler, we may provide this capability in C.

In the following examples, assume there is a two-byte LCD control register at location 0x1000 and a two-
byte LCD data register at the following location (0x1002), and there is a 100 byte dual port SRAM located
at 0x2000.

Using an Assembler Module

In an assembler file, put the following:

.area memory(abs)

.org 0x1000

_LCD_control_register:: .blkw 1

_LCD_data_register:: .blkw 1

.org 0x2000

_dual_port_SRAM:: .blkb 100

In your C file, you must then declare them as:

extern unsigned int LCD_control_register, LCD_data_register;

extern char dual_port_SRAM[100];

Note the interface convention of prefixing an external variable names with an '_' in the assembler file and
the use of two colons to define them as global variables.

Using Inline Asm

Inline asm is really just the same as regular assembler syntax, except that it is enclosed in the pseudo-
function asm(). In a C file, the above assembly code becomes the following:

asm(".area memory(abs)"

".org 0x1000"

"_LCD_control_register:: .blkw 1"

"_LCD_data_register:: .blkw 1");

asm(".org 0x2000"

"_dual_port_SRAM:: .blkb 100");

You still need to declare these as "extern" in C (as above), just as in the case of using a separate
assembler file, since the C compiler does not really know what's inside the asm statements.

ICCAVR – C Cross Compiler for the Atmel AVR

69

Interrupt Handling
C Interrupt Handlers

Interrupt handlers can be written in C. In the file where you define the function, before the function
definition you must inform the compiler that the function is an interrupt handler by using a pragma:

#pragma interrupt_handler <name>:<vector number> *

"vector number" is the interrupt's vector number. Note that the vector number starts with one, which is the
reset vector. This pragma has two effects:

For an interrupt function, the compiler generates the reti instruction instead of the ret instruction,
and saves and restores all registers used in the function.

The compiler generates the interrupt vector based on the vector number and the target device.

 For example,

 #pragma interrupt_handler timer_handler:4

 ...

 void timer_handler()

 {

 ...

 }

 The compiler generates the instruction

 rjmp _timer_handler ; for classic devices, or

 jmp _timer_handler ; for Mega devices

 at location 0x06 (byte address) for the classic devices and 0xC (byte address) for the Mega devices
(Mega devices use 2 word interrupt vector entries vs. 1 word for the classic non-Mega devices).

 You may place multiple names in a single interrupt_handler pragma, separated by spaces. If you wish to
use one interrupt handler for multiple interrupt entries, just declare it multiple times with different vector
numbers. For example:

 #pragma interrupt_handler timer_ovf:7 timer_ovf:8

 Assembly Interrupt Handlers

 You may write interrupt handlers in assembly. However, beware that if you call C functions inside your
assembly handler, then the assembly routine must save and restore the volatile registers (see Assembly
Interface) since the C functions do not do that (unless they are declared as interrupt handlers, but then
they should not be called directly).

 If you use assembly interrupt handlers, then you must define the vectors yourself. You use the "abs"
attribute to declare an absolute area (see Assembler Directives) and use the ".org" statement to assign
the rjmp or jmp instruction at the right location. Note that the ".org" statement uses byte address.

 ; for all but the ATMega devices

 .area vectors(abs) ; interrupt vectors

 .org 0x6

 rjmp _timer

 ; for the ATMega devices

 .area vectors(abs) ; interrupt vectors

 .org 0xC

 jmp _timer

ICCAVR – C Cross Compiler for the Atmel AVR

70

Accessing EEPROM
The EEPROM can be accessed at runtime using library functions. Use #include <eeprom.h> before
calling these functions:

unsigned char EEPROMread(int location)

 Reads a byte from the specified EEPROM location.

int EEPROMwrite(int location, unsigned char byte)

 Writes a byte to the specified EEPROM location. Returns 0 if successful.

unsigned char _256EEPROMread(int location)

 Reads a byte from the specified EEPROM location for devices with 256 bytes of EEPROM, e.g. 2313
and 4414.

int _256EEPROMwrite(int location, unsigned char byte)

 Writes a byte to the specified EEPROM location for devices with 256 bytes of EEPROM, e.g. 2313
and 4414. Returns 0 if successful.

 The source code to the library is provided to licensed users, see C Library General. This allows you to
tailor the device specific functions for your needs. Your may either add your new functions to the standard
library libcavr.c (see Librarian), or add the new source file(s) as part of your project.

ICCAVR – C Cross Compiler for the Atmel AVR

71

Accessing the SPI
A set of functions to access the SPI in polled master mode is provided. Please refer to spi.h for further
information.

ICCAVR – C Cross Compiler for the Atmel AVR

72

Relative Jump/Call Wrapping
On devices with 8K of program memory, all memory locations can be reached with the relative jump and
call instructions (rjmp and rcall). To accomplish that, relative jumps and calls are wrapped around
the 8K boundary. For example, a forward jump to byte location 0x2100 (0x2000 is 8K) is wrapped to the
byte location 0x100.

This option is automatically detected by the Project Manager whenever the target Program Memory is
exactly 8192 bytes.

ICCAVR – C Cross Compiler for the Atmel AVR

73

C RUNTIME ARCHITECTURE

ICCAVR – C Cross Compiler for the Atmel AVR

74

Data Type Sizes

TYPE SIZE (bytes) RANGE

unsigned char 1 0..256

signed char 1 -128..127

char (*) 1 0..256

unsigned short 2 0..65535

(signed) short 2 -32768..32767

unsigned int 2 0..65535

(signed) int 2 -32768..32767

unsigned long 4 0..4294967295

(signed) long 4 -2147483648..2147483647

float 4 1.175e-38..3.40e+38

double 4 1.175e-38..3.40e+38

(*) "char" is equivalent to "unsigned char"

floats and doubles are in IEEE standard 32-bit format with 7 bit exponent and 23-bit mantissa.

Bitfield types must be either signed or unsigned but they will be packed into the smallest space. For
example:

struct {

unsigned a : 1, b : 1;

};

Size of this structure is only 1 byte.

ICCAVR – C Cross Compiler for the Atmel AVR

75

Assembly Interface and Calling Conventions
External Names

External C names are prefixed with an underscore, e.g. the function main is _main if referenced in an
assembly module. Names are significant to 32 characters. To make an assembly object global, use two
colons after the name. For example,

_foo::

.word 1

(In the C file)

extern int foo;

Argument and Return Registers

The first argument is passed in registers R16/R17 if it is an integer and R16/R17/R18/R19 if it is a long or
floating point. The second argument is passed in R18/R19. All other remaining arguments are passed on
the software stack. Integer arguments smaller than ints (i.e. char) are extended to int size when passing
to a function even if a function prototype is available. If R16/R17 is used to pass the first argument and
the second argument is a long or float, the lower half of the second argument is passed in R18/R19 and
the upper half is passed on the software stack.

Integer values are returned in R16/R17 and longs and floats are returned in R16/R17/R18/R19.

Preserved Registers

An assembly function must save and restore the following registers:

R28/R29 or Y, this is the frame pointer.

R10/R11/R12/R13/R14/R15/R20/R21/R22/R23

 These registers are called preserved registers since their contents are unchanged by a function call.

 Volatile Registers

 The other registers:

R0/R1/R2/R3/R4/R5/R6/R7/R8/R9/R24/R25/R26/R27/R30/R31

SREG

 can be used in a function without being saved or restored. These registers are called volatile registers
since their contents may be changed by a function call.

 Interrupt Handlers

 Note that unlike a normal function, an interrupt handler must save and restore all registers that it uses.
This is done automatically if you use the compiler capability to declare a C function as an interrupt
handler. If you write a handler in assembly and if it calls normal C functions, then the assembly handler
must save and restore the Volatile Registers since normal C functions do not preserve them. Since an
interrupt handler operates asynchronous to the normal program operation, the interrupt handler or the
functions it calls must not modify any machine registers.

ICCAVR – C Cross Compiler for the Atmel AVR

76

Functions Returning Non-Integer Values
You must declare a function that returns a long, a floating point, or a structure value before you call it. For
example, you should #include the header file <math.h> before calling any of the floating point functions.
Otherwise, your program will not work since these routines return their values in different locations than
functions returning integer values.

Long and Float Return Values

Long and float return values are in the same register set R16-R19.

Passing a Structure by Value

If passed by value, a structure is always passed through the stack, and not in registers. Passing a
structure by reference (i.e. passing the address of a structure) is the same as passing the address of any
data item, that is, a pointer (which is two bytes) is passed.

Returning a Structure by Value

When a function returning a structure is called, the calling function allocates a temporary storage and
passes a secret pointer to the called function. When such a function returns, it copies the return value to
this temporary storage.

ICCAVR – C Cross Compiler for the Atmel AVR

77

C Machine Routines
Most C operations are translated into direct AVR instructions. However, there are some operations that
are translated into subroutine calls since they involve many machine instructions and would cause too
much code bloat if the translations are done inline. These routines are written in assembly language and
can be distinguished by the fact that the routine names do not start with an underscore. Some of the
commonly encountered routines with the following prefixes are:

lsr16, lsr32, ... - perform shift operations on 16-bit and 32-bit data

mpy, div, mod, neg, rmpy, rdiv, rmod, ... - 32-bit long and floating point routines

ICCAVR – C Cross Compiler for the Atmel AVR

78

Program and Data Memory Usage
Program Memory

The program memory is used for storing your program code, constant tables, and initial values for certain
data such as strings and global variables. See Program Memory and Constant Data. The compiler
generates a memory image in the form of an output file that can be used by a suitable program such as
an ISP (In System Flash) Programmer.

Currently, the compiler does not use any program memory above 64K bytes. To access memory above
the 64K bytes boundary (e.g. on the mega 103 devices), you need to call the instruction ELPM directly
after setting up the RAMPZ register.

Data Memory (Internal SRAM Only)

The Data Memory is used for storing variables, the stack frames, and the heap for dynamic memory
allocation. In general, they do not appear in the output file but are used when the program is running. A
program uses data memory as follows:

CPU and IO Registers

Global Variables and
Strings

Heap

SW
Stack

HW Stack
High Address

Low Address

The bottom of the memory map is address 0. The first 96 (0x60) locations are CPU and IO registers. The
compiler places global variables and strings from 0x60 on up. On top of the variables is the area where
you can allocate dynamic memory. See Memory Allocation Functions. At the high address, the hardware
stack starts at the end of the SRAM. Below that is the software stack which grows downward. It is up to
you, the programmer, to ensure that the hardware stack does not grow past the software stack, and the
software stack does not grow into the heap. Otherwise, unexpected behaviors will result (oops...).

Data Memory (External SRAM)

If you select a device target with 32K or 64K of external SRAM, then the stacks are placed at the top of
the internal SRAM and grow downward toward the low memory addresses. The data memory starts on
top of the hardware stack and grows upward. The allocations are done differently because the internal
SRAM has faster access time than external SRAM and in most cases, it is more beneficial to allocate
stack items to the faster memory.

ICCAVR – C Cross Compiler for the Atmel AVR

79

Program Areas
The compiler generates code and data into different "areas." See Assembler Directives. The areas used
by the compiler, ordered here by increasing memory address, are:

Read-Only Memory

interrupt vectors - This area contains the interrupt vectors.

func_lit - function table area. Each word in this area contains the address of a function entry. To be
fully compatible with the Code Compressor, all indirect function references must be through an extra
level of indirection. This is done automatically for you in C if you invoke a function by using a function
pointer. In assembly, the following example illustrates:

 ; assume _foo is the name of the function
 .area func_lit
 PL_foo:: .word _foo ; create a function table entry
 .area text
 ldi R30,<PL_foo
 ldi R31,>PL_foo
 rcall xicall

 You may use the library function xicall to call the function indirectly after putting the address of the
function table entry into the R30/R31 pair.

lit - This area contains integer and floating point constants.

idata - The initial values for the global data and strings are stored in in this area.

text - This area contains program code.

 Data Memory

data - this is the data area containing global and static variables, and strings. The initial values of the
global variables and strings are stored in the "idata" area and copied to the data area at startup
time.

bss - this is the data area containing "uninitialized" C global variables. Per ANSI C definition, these
variables will get initialized to zero at startup time.

 The job of the linker is to collect areas of the same types from all the input object files and concatenate
them together in the output file. See Linker Operations.

ICCAVR – C Cross Compiler for the Atmel AVR

80

DEBUGGING

ICCAVR – C Cross Compiler for the Atmel AVR

81

Testing Your Program Logic
Since the compiler implements the ANSI C language, a common method of program development is in
fact to use a PC compiler such as Borland C or Visual C and debug your program logic first by compiling
your program as a PC program. Obviously, hardware-specific portions must be isolated and replaced or
stubbed out using dummy routines. Typically, 95% or more of your program's code can be debugged
using this method.

ICCAVR – C Cross Compiler for the Atmel AVR

82

COFF Debug and Working With AVR Studio
If you select the COFF output file format, source level debugging information is available for COFF
capable debuggers such as AVR Studio(r), which you can download for free from Atmel's website
http://www.atmel.com. Note that due to the limitations of the COFF format and AVR Studio, all
source files and the COFF output file must be in the same directory.

Basic debugging is available with the STANDARD version of the compiler tool. The STANDARD version
generates C source line numbers and variable addresses and basic data type information.

The PROFESSIONAL version of the compiler tool generates full debugging information including
structure types.

Using Terminal IO Under AVR Studio in Simulator Mode

In order to use the Terminal IO window in AVR Studio in simulator mode, you must do the following:

I. Copy the file \icc\libsrc.avr\iostudio.s to your project directory.

II. Modify Compiler Options to select "AVR Studio Compatible IO."

 Once this is done, the simulator uses its Terminal IO Window for UART IO.

 Limitations of AVR Studio

 You need AVR Studio 1.52 or higher to work effectively with output from the compiler. The latest version
of AVR Studio as of this writing is V3 Beta.

ICCAVR – C Cross Compiler for the Atmel AVR

83

Listing File
One of the output files produced by the compiler is a listing file of the name <exec file>.lst. Filenames
with .lis extensions are assembler output listing files and do not contain full information and
should not be used. The listing file contains your program's assembly code as generated by the
compiler, interspersed with the C source code and the machine code and program locations. While global
code and data are always displayed, due to the unfortunate nature of a relocatable linker, some of the
static code or data will not be displayed with the final program locations. In addition, library code is not
included.

Nevertheless, even with these limitations, the listing file is invaluable for debugging your program if you
do not have debugging tools that understand the COFF debug format. Some low-cost In Circuit Emulators
(ICE) may also use the listing file to drive their debugging, in addition to or in place of COFF.

Note that as of this release, when run, the Code Compressor does not update the content of the listing
file. This will be fixed in a lter release.

ICCAVR – C Cross Compiler for the Atmel AVR

84

COMMAND LINE COMPILER OVERVIEW

ICCAVR – C Cross Compiler for the Atmel AVR

85

Compilation Process
[Underneath the user friendly IDE is a set of command line compiler programs. While you do not need to
understand this chapter to use the compiler, this chapter is good for those who want to find out "what's
under the hood."]

Given a list of files in a project, the compiler's job is to translate the files into an executable file in some
output format. Normally, the compilation process is hidden from you through the use of the IDE's Project
Manager. However, it can be important to have an understanding of what happens "under the hood":

I. The compiler compiles each C source file to an AVR assembly file.

II. The assembler translates each assembly file (either from the compiler or assembly files that you
have written) into a relocatable object file.

III. After all the files have been translated into object files, the linker combines them together to form
an executable file. In addition, a map file, a listing file, and debug information files are also output.

 All these details are handled by the compiler driver. You give it a list of files and ask it to compile them
into an executable file (default) or to some intermediate stage (e.g. to the object files). The driver invokes
the compiler, the assembler and the linker as needed.

 Actually, the IDE does not even interface with the compiler driver directly. It generates a makefile and
invokes the "make" program to interpret the makefile, which causes the compiler driver to be invoked.

ICCAVR – C Cross Compiler for the Atmel AVR

86

Driver
The compiler driver examines each input file and acts on the file based on the file's extension and the
command line arguments it has received. .c files are C source files and .s files are assembly source files
respectively. The design philosophy for the IDE is to make it as easy to use as possible. The command
line compiler, though, is extremely flexible. You control its behavior by passing command line arguments
to it. If you want to interface with the compiler with your own GUI (for example, the Codewright or Multiedit
editor), here are some of the things you need to know.

Error messages referring to the source files begin with "!E file(line):.."

To bypass the command line length limit on Windows 95/NT, you may put command line arguments
in a file, and pass it to the compiler as @file or @-file. If you pass it as @-file, the compiler will delete
"file" after it is run.

 The next page, Compiler Arguments, elaborates further on the subject.

ICCAVR – C Cross Compiler for the Atmel AVR

87

Compiler Arguments
The IDE controls the behaviors of the compiler by passing command line arguments to the compiler
Driver. Normally you do not need to know what these command line arguments do, but you can see them
in the generated makefile and in the Status Window when you perform a build. Nevertheless, this page
documents the options as used by the AVR IDE in case you want to drive the compiler using your own
editor/IDE such as Codewright. All arguments are passed to the driver and the driver in turn passes the
appropriate arguments down to different passes.

The general format of a command is

iccavr [command line arguments] <file1> <file2> ... [<lib1> ...]

where iccavr is the name of the compiler driver. As you can see, you can invoke the driver with multiple
files and the driver will perform the operations on all of the files. By default, the driver then links all the
object files together to create the output file.

For most of the common options, the driver knows which arguments are destined for which compiler
passes. You can also specify which pass an argument applies to by using a -W<c> prefix. For example:

-Wp is the preprocessor. e.g -Wp-e

-Wf is the compiler proper. e.g. -Wf-atmega

-Wa is the assembler

-Wl (letter el) is the linker

 Arguments Affecting the Driver itself

-c Compile the file to the object file level only (does not invoke the linker.)

-o <name> Name the output file. By default, the output file name is the same as the input file name,
or the same as the first input file if you supply a list of files

-v Verbose mode. Print out each compiler pass as it is being executed.

 Preprocessor Arguments

-D<name>[=value] Define a macro. See Compiler Options: Macro Define(s). Note that you should
define ATMEGA if the target is a ATMega device since there are some definitions in the header file
avr.h which depend on this being defined.

-U<name> Undefine a macro. See Compiler Options: Macro Undefine(s).
-e Accept C++ comments.

-I<dir> (Capital letter i) Specify the location(s) to look for header files. Multiple -I flags can be
supplied.

 Compiler Arguments

-l (letter el) Generate a listing file.

-A -A (two -As) Turn on strict ANSI checking. Single -A turns on some ANSI checking.

-g Generate debug information.

-Mavr_mega Generate ATMega instructions such as call and jmp instead of rcall and rjmp.

-Mavr_enhanced Generate enhanced core instructions and call and jmp

-Mavr_enhanced_short Generate enhanced core instructions but not call and jmp

-str_in_flash Allocate literal strings in FLASH only

 Assembler Arguments

-W Turn on relocation wrapping. See Relative Jump/Call Wrapping. Note that you need to
use the -Wa prefix since the driver does not know of this option directly (i.e. -Wa-W).

 Linker Arguments

ICCAVR – C Cross Compiler for the Atmel AVR

88

-L<dir> Specify the library directory. Only one library directory (the last specified) will be used.

-O Invoke the Code Compressor (operative only for the PROFESSIONAL version).

-m Generate a map file.

-g Generate debug information.

-u<crt> Use <crt> instead of the default startup file. If the file is just a name without path
information, then it must be located in the library directory.

-W Turn on relocation wrapping. See Relative Jump/Call Wrapping. Note that you need to
use the -Wl prefix since the driver does not know of this option directly (i.e. -Wl-W).

-fihx_coff Output format is both COFF and Intel HEX.

-fcoff Output format is COFF
-fintelhex Output format is Intel HEX

-fmots19 Output format is Motorola S19 (not used on AVR - you can ignore this).

-bfunc_lit:<address ranges> Assign the address ranges for the area named "func_lit." The format
is <start address>[.<end address>] where addresses are word address. Any memory not used by this
area will be consumed by areas that follow it, so this effectively declares the size of the FLASH
memory. For example, some typical values are:

 -bfunc_lit:0x60.0x10000 for ATMega

 -bfunc_lit:0x1a.0x800 for 23xx

 -bfunc_lit:0x1a.0x2000 for 85xx

-bdata:<address ranges> Assign the address ranges for the area or section named "data," which is
the data memory on the AVR. For example, some typical values are:

 -bdata:0x60.0x800 for ATMega

 -bdata:0x60.0x80 for 23xx

 -bdata:0x60.0x200 for 85xx

-dram_end:<address> Define the end of the data area. This is used by the startup file to
initialize the value of the hardware stack. For the classic non-Mega devices without external SRAM,
"ram_end" is the size of the SRAM plus 96 bytes of IO and CPU registers minus one. For the Mega
devices, it is the size of the SRAM minus one. If a 64K external SRAM is attached, then it is 0xFFFF
for all devices.

-dhwstk_size:<size> Define the size of the hardware stack. The hardware is allocated at the
top of SRAM, then the software stack follows it. See Stacks.

-l<lib name> Link in the specific library files in addition to the default libcavr.a. This
can be used to change the behavior of a function in libcavr.a since libcavr.a is always linked in last.
The "libname" is the library file name without the "lib" prefix and without the ".a" suffix. For examples:

 -lstudio "libstudio.a" using withAVR Studio IO

 -llpavr "liblpavr.a" using full printf

 -lfpavr "libfpavr.a" using floating point printf

ICCAVR – C Cross Compiler for the Atmel AVR

89

TOOLS REFERENCES

ICCAVR – C Cross Compiler for the Atmel AVR

90

Code Compressor (tm)
The Code Compressor (tm) optimizer is a state-of-the-art optimization that reduces your final program
size from 5-18%. It works on your entire program, searching across all files for opportunities to reduce the
program size.

Advantages

Code Compressor decreases your program size transparently. It does not interfere with traditional
optimizations and can decrease code size even when aggressive traditional optimizations are done.

Unlike other similar schemes, this is the first implementation that we are aware of in a commercial
embedded compiler that optimizes the entire program.

Code Compressor does not affect source level debugging with AVR Studio.

 Disadvantage

There is a slight increase in execution time due to function call overhead.

 Compatibility Requirements

 To be fully compatible with the Code Compressor, you should note the following:

Indirect function references must be done through a function label entry in the "func_lit" output
area. See Program Areas. This is done automatically if you are using C.

Unlike the previous releases of the product, the program areas func_lit, lit, and idata now
preceed the text program area. This allows the text area to shrink. However, this means that you
should not create other named sections in the FLASH program area. (Contact ImageCraft if this
capability is required.)

If you are using the command line compiler directly and are upgrading from a pre-6.16 version, refer
to Compiler Arguments for changes in the starting address specification.

 Temporarily Deactivating the Code Compressor

 Sometimes you may wish to disable the code compressor temporarily. For example, perhaps the code is
extremely timing sensitive and it cannot afford to lose cycles by going through the extra function call and
return overhead. You can do this by bracketing code fragments with an instruction pair:

 tst R28

 ...

 tst R29

 If such a pair is found and if there is no return instruction between them, then the code compressor
ignores the instructions in the fragment. Since these particular instructions test the stack pointer, it is
unlikely that they would appear in the code accidentally.

 The include file macros.h contains two new definitions:

 COMPRESS_DISABLE(); // disable Code Compressor

 COMPRESS_REENABLE(); // enable Code Compressor again

 for use in C programs. Again, please note that there cannot be a return statement between the start and
end of a fragment. Otherwise, these two instructions will be ignored.

ICCAVR – C Cross Compiler for the Atmel AVR

91

Configuration Management With RCS
The PROFESSIONAL version of the software provides a set of configuration management tools and an
IDE interface to manage your source code. The command line software is the GNU Revision Control
System (RCS) utilities (see Acknowledgements for remarks on GNU software). RCS manages multiple
revisions of the source files, allowing you to look at an older revision of the file if needed. The IDE
provides a simple interface to RCS which is sufficient for the most common tasks. To perform the more
advanced tasks, you must use the command line RCS utilities directly. This page describes some of the
more common RCS functions (visit http://www.gnu.org for full GNU RCS documentation).

RCS Repository

For each file under RCS control, RCS keeps a master record of the file, containing all changes made to
the file at each revision. Typically the RCS repository is the subdirectory named RCS in the source file
location. The IDE creates the repository automatically.

Each revision of the file has a revision number and an optional label. You refer to a particular revision by
its number or label. A label is useful to snapshot a particular set of changes (for example, before you
release your software).

In advanced usage, you may even modify an older revision and "merge" in your changes, or have multiple
changes to the same file made by different people and have RCS reconcile the different changes (unless
there are actual conflicts). These advanced topics will not be discussed further in this document.

Files Checkin and Checkout

To add a new revision of a file to the repository, you use the checkin command ("ci" utility). In order to
modify a file in the repository, you use the checkout command ("co" utility). In the simplest case, a special
option to "ci" checks in the file and then performs an immediate checkout so that you can continue to
modify the file.

The IDE uses "ICCAVR" as the logname of the files in the repository.

ICCAVR – C Cross Compiler for the Atmel AVR

92

Assembler Syntax
The assembler has the following syntax

Names

All names in the assembler must conform to the following specification:

(‘_’ | [a-Z]) [[a-Z] | [0-9] | ‘_’] *

That is, a name must start with either an underscore (_) or an alphabetic character, followed by a
sequence of alphabetics, digits, or underscores. In this document, names and symbols are synonyms for
each other. A name is either the name of a symbol, which is a constant value, or the name of a label,
which is the value of the Program Counter (PC) at that moment. A name can be up to 30 characters in
length. Names are case sensitive except for instruction mnenomics and assembler directives.

Name Visibility

A symbol may either be used only within a program module or it can be made visible to other modules. In
the former case, the symbol is said to be a local symbol, and in the latter case, it is called a global
symbol.

If a name is not defined within the file it is referenced in, then it is assumed to be defined in another
module and its value will be resolved by the linker. The linker is sometimes referred as a relocatable linker
precisely because one of its purposes is to relocate the values of global symbols to their final addresses.

Numbers

If a number is prefixed with 0x or $, then the number is taken to be a hexadecimal number:

Example: 10

0x10

$10

0xBAD

0xBEEF

0xC0DE

-20

Input File Format

Input to the assembler must be an ASCII file that conforms to certain conventions. Each line must be of
the form:

[label: [:]] [command] [operands] [;comments]

[] – optional field

Each field must be separated from another field by a sequence of one or more “space characters,” which
are either spaces or tabs.

Labels

A name followed by one or two colons denotes a label. The value of the label is the value of the Program
Counter (PC) at that point of the program. A label with two colons is a global symbol; that is, it is visible to
other modules.

Commands

A command can be an AVR instruction, an assembler directive or a macro invocation. The “operands”
field denotes the operands needed for the command.

ICCAVR – C Cross Compiler for the Atmel AVR

93

Expressions

An instruction operand may involve an expression. For example, the direct addressing mode is simply an
expression:

lds R10,asymbol

“asymbol” is an example of the simplest expression, which is just a symbol or label name. In general, an
expression is described by:

expr: term |

{ expr }

unop expr

expr binop expr

term: . <- current program counter

name |

#name

Parentheses () provide grouping. Operator precedents are given below. Expressions cannot be arbitrarily
complex, due to the limitations of relocation information communicated to the linker. The basic rule is that
for an expression, there can only be only one relocatable symbol. For example,

lds R10,foo+bar

is invalid if both foo and bar are external symbols.

Operators

The following is the list of the operators and their precedents. Operators with higher precedents are
applied. Only the addition operator may apply to a relocatable symbol (i.e. an external symbol). All other
operators must be applied to constants or symbols resolvable by the assembler (i.e. a symbol defined in
the file).

OPERATOR FUNCTION TYPE PRECEDENT

* multiply binary 10

/ divide binary 10

% modulo binary 10

<< left shift binary 5

>> right shift binary 5

^ bitwise exclusive OR binary 4

& bitwise exclusive AND binary 4

| bitwise OR binary 4

- negate unary 11

~ one’s complement unary 11

ICCAVR – C Cross Compiler for the Atmel AVR

94

< low byte unary 11

> high byte unary 11

“Dot” or Program Counter

If a dot (.) appears in an expression, then the current value of the Program Counter (PC) is used in place
of the dot.

ICCAVR – C Cross Compiler for the Atmel AVR

95

Assembler Directives
Assembly directives are commands to the assembler. Directives are case insensitive.

.area <name> [(attributes)]

Defines a memory region to load the following code or data. The linker gathers all areas with the same name
together and either concatenates or overlays them depending on the area’s attributes. The attributes are:

abs, or <- absolute area

rel <- relocatable area

followed by

con, or <- concatenated

ovr <- overlay

The starting address of an absolute area is specified within the assembly file itself whereas the starting
address of a relocatable area is specified as a command option to the linker. For an area with the “con”
attribute, the linker concatenates areas of that name one after another. For an area with the “ovr”
attribute, for each file, the linker starts an area at the same address. The following illustrates the
differences:

file1.o:

.area text <- 10 bytes, call this text_1

.area data <- 10 bytes

.area text <- 20 bytes, call this text_2

file2.o:

.area data <- 20 bytes

.area text <- 40 bytes, call this text_3

text_1, text_2, and so on are just names used in this example. In practice, they are not given individual
names. Lets assume that the starting address of the text area is set to zero. Then, if the text area has the
"con” attribute, text_1 would start at 0, text_2 at 10, and text_3 at 30. If the text area has the “ovr”
attribute, then text_1 and text_2 would again have the addresses 0 and 10 respectively, but text_3, since
it starts in another file, would also have 0 as the starting address. All areas of the same name must have
the same attributes, even if they are used in different modules. Here are examples of the complete
permutations of all acceptable attributes:

.area foo(abs)

.area foo(abs,con)

.area foo(abs,ovr)

.area foo(rel)

.area foo(rel,con)

.area foo(rel,ovr)

.ascii “strings”

.asciz “strings”

ICCAVR – C Cross Compiler for the Atmel AVR

96

These directives are used to define strings, which must be enclosed in a delimiter pair. The delimiter can
be any character as long as the beginning delimiter matches the closing delimiter. Within the delimiters,
any printable ASCII characters are valid, plus the following C-style escape characters, all of which start
with a backslash (‘\’):

\e escape

\b backspace

\f form feed

\n line feed

\r carriage return

\t tab

\<up to 3 octal digits> character with value equal to the octal digits

ASCIZ adds a NUL character (\0) at the end. It is acceptable to embed \0 within the string.

Examples: asciz “Hello World\n”

asciz “123\0456”

.byte <expr> [,<expr>]*

.word <expr> [,<expr>]*

.long <expr> [,<expr>]*
These directives define constants. The three directives denote byte constant, word constant (2 bytes) and
long word constant (4 bytes) respectively. Word and long word constants are output in little endian format,
the format used by the AVR microcontrollers. Note that .long can only have constant values as operands.
The other two may contain relocatable expressions.

Example: .byte 1, 2, 3

.word label,foo

.blkb <value>

.blkw <value>

.blkl <value>
These directives reserve space without giving them values. The number of items reserved is given by the
operand.

.define <symbol> <value>

Defines a textual substitution. Whenever "symbol" is used inside an expression (e.g. a register specifier or
a label), it is replaced with "value." For example:

.define quot R15

mov quot,R16

.else

Forms a conditional clause together with a preceding “.if” and following “.endif.” If the "if" clause
conditional is true, then all the assembly statements from the “.else” to the ending “.endif” (the else
clause) are ignored. Otherwise, if the "if" clause conditional is false, then the "if" clause is ignored and the

ICCAVR – C Cross Compiler for the Atmel AVR

97

‘else’ clause is processed by the assembler. See .if.

.endif

Ends a conditional statement. See .if and .else.

.endmacro

Ends a macro statement. See .macro.

<symbol> = <value>
Defines a constant value for a symbol.

Example: foo = 5

.if <symbol name>

If the “symbol name” has a non zero value, then the following code, up to either the “.else” statement or
the “.endif” statement (whichever occurs first), is assembled. Conditionals can be nested up to 10 levels.
For example:

.if cond

lds R10,a

.else

lds R10,b

.endif

would load "a" into R10 if the symbol “cond” is non zero, and load "b" into R10 if “cond” is zero.

.include “<filename>”

Processes the contents in the file specified by “filename.” If the file does not exist, then the assembler will
try to open the file name created by concatenating the path specified via the –I command line switch with
the specified filename.

Example: .include “registers.h”

.macro <macroname>

Defines a macro. The body of the macro consists of all the statements up to the .endmacro statement.
Any assembly statement is allowed in a macro body except for another macro statement. Within a macro
body, the expression @digit where digit is between 0 and 9 is replaced by the corresponding macro
argument when the macro is invoked. You cannot define a macro name that conflicts with an instruction
mnemonic or an assembly directive. See .endmacro and Macro Invocation. For example,

Defines a macro named “foo:”

.macro foo

lds @0,a

mov @1,@0

.endmacro

Invoking foo with two arguments:

foo R10,R11

is equivalent to writing

ICCAVR – C Cross Compiler for the Atmel AVR

98

lds R10,a

mov R11,R10

.org <value>

Sets the Program Counter (PC) to "value." This directive is only valid for areas with the "abs" attribute.
Note that "value" is a byte address.

Example: .area interrupt_vectors(abs)

org 0xFFD0

dc.w reset

.globl <symbol> [, <symbol>]*

Makes the symbols defined in the current module visible to other modules. This is the same as having a
label name followed by two periods (.). Otherwise, symbols are local to the current module.

<macro> [<arg0> [,<args>]*]

Invokes a macro by writing the macro name as an assembly command followed by a number of
arguments. The assembler replaces the statement with the body of the macro, expanding expressions of
the form @digit with the corresponding macro argument. You may specify more arguments than are
needed by the macro body but it is an error if you specify less arguments than needed.

Example: foo bar,x

Invokes the macro named “foo” with two arguments, “bar” and “x.”

ICCAVR – C Cross Compiler for the Atmel AVR

99

Linker Operations
The main purpose of the linker is to combine multiple object files into an output file suitable to be loaded
by a device programmer or target simulator. The linker can also take input from a "library" which is
basically a file containing multiple object files. In producing the output file, the linker resolves any
references between the input files. In some detail, the linking steps involve:

I. Making the Startup File be the first file to be linked. The startup file initializes the execution
environment for the C program to run.

II. Appending any libraries that you explicitly requested (or in most cases, as were requested by the
IDE) to the list of files to be linked. Library modules that are directly or indirectly referenced will be
linked in. All the user specified object files (e.g. your program files) are linked.

III. Appending the standard C library libcavr.a and a special object module endavr.o to the end of the
file list.

IV. Scanning the object files to find unresolved references. The linker marks the object file (possibly
in the library) that satisfies the references and adds to its list of unresolved references.It repeats the
process until there are no outstanding unresolved references.

V. Combining all marked object files into an output file and generating map and listing files as
needed.

 Lastly, if this is the PROFESSIONAL version and if the Code Compressor optimization option is on, then
the Code Compressor is called.

ICCAVR – C Cross Compiler for the Atmel AVR

100

Librarian
A library is a collection of object files in a special form that the linker understands. When a library's
component object file is referenced by your program directly or indirectly, the linker pulls out the library
code and links it to your program. The standard supplied library is libcavr.a, which contains the standard
C and AVR specific functions. Other libraries, such as libstudio.a, override some functions in libcavr.a so
that a different behavior can be achieved without changing your program code. For example, by linking in
libstudio.a, your program may use the Terminal IO window under AVR Studio. Of course, the linking
process is mostly transparent to you - by choosing the appropriate Compiler Options, the IDE generates
the correct switches to the compiler programs.

Nevertheless, there are times where you need to modify or create libraries. A command line tool called
ilibw.exe is provided for this purpose (note: the PROFESSIONAL version may include capabilities that
handle library files within the IDE, please inquire for details).

Note that a library file must have the .a extension. See Linker Operations.

Compiling a File into a Library Module

Each library module is simply an object file. Therefore, to create a library module, you need to compile a
source file into an object file. This can be done by opening the file into the IDE, and invoking the File-
>Compile File To Object command.

Listing the Contents of a Library

On a command prompt window, change the directory to where the library is, and give the command "ilibw
-t <library>". For example,

ilibw -t libcavr.a

Adding or Replacing a Module

I. Compile the source file into an object module.

II. Copy the library into the work directory

III. Use the command "ilibw -a <library> <module>" to add or replace a module.

 For example, the following replaces the putchar function in libcavr.a with your version.

 cd \icc\libsrc.avr

 <modify putchar() in iochar.c>

 <compile iochar.c into iochar.o>

 copy \icc\lib\libcavr.a ; copy library

 ilibw -a libcavr.a iochar.o

 copy libcavr.a \icc\lib ; copy back

 ilibw creates the library file if it does not exist, so to create a new library, just give ilibw a new library file
name.

 Deleting a Module

 The command switch -d deletes a module from the library. For example, the following deletes iochar.o
from the libcavr.a library:

 cd \icc\libsrc.avr

 copy \icc\lib\libcavr.a ; copy library

 ilibw -d libcavr.a iochar.o ; delete

 copy libcavr.a \icc\lib ; copy back

ICCAVR – C Cross Compiler for the Atmel AVR

101

ICCAVR – C Cross Compiler for the Atmel AVR

102

Accessing AVR features ..
Accessing EEPROM..
Accessing the SPI..
Acknowledgments..
Addressing Absolute Memory Locations................................
Anatomy of a C Program..
Assembler ..
Assembler Directives ..
Assembly Interface ..
Bit Twiddling ..
C Library..
C Machine Routines..
C References and Tutorials..
Character Type Functions..
Code Compressor..
COFF Debug Format ..
Compilation Process ..
Compiler Arguments ..
Compiler Options..
Compiler Options: Compiler ..
Compiler Options: Paths ..
Compiler Options: Target ..
Compiling a Single File ..
Configuration Management With RCS................................
Contents ..
Converting from Other Compilers................................
Creating a New Project ..
Data Type Sizes ..
Driver ..
Edit Menu ..
Editor and Print Options ..
Editor Windows..
Environment Options ..
File Menu..
File Types..
Floating Point Math Functions..
Functions Returning Floating points or Structures
How Do I...?..
IDE Overview..
Inline Assembly ..

ICCAVR – C Cross Compiler for the Atmel AVR

103

Interrupt Handlers ..
IO Registers..
Librarian ..
Linker Operations ..
Listing File ..
Pop Up Menus..
Program and Data Memory Usage................................
Program Areas ..
Program Memory and Constant Data
Program Updates..
Project Manager ..
Project Menu ..
RCS Menu..
Registrating the Software..
Relative Jump/Call Wrapping..
Search Menu ..
Software License Agreement ..
Stacks ..
Standard IO functions ..
Standard Library Functions ..
Startup File ..
Status Window..
String Functions..
Strings ..
Support..
Terminal Emulator ..
Terminal Menu..
Terminal Options ..
Testing Your Program Logic ..
Tools Menu..
Tutorial ..
Using the Project Manager..
Variable Arguments Functions ..
Version, Trademarks, and Copyrights
View Menu..

