
1

Programmable System Level Integration brings
System-on-Chip Design to the Desktop

Joel Rosenberg
PSLi Product Line Director

Atmel Corporation
2325 Orchard Parkway

San Jose, California 95131 USA

In the mid-1980s the gate array offered logic designers the promise of thousands of gates of
logic all on a single chip. The appeal of the gate array was to reduce the amount of board
area, lower power consumption, improve reliability and reduce overall system cost.
Unfortunately the benefits afforded by gate arrays were offset by the high cost of design
tools, the non-recurring engineering charges (NRE) every time a design revision was
made, the high degree of design risk, and the extended lead-time from design to production
silicon. As such gate arrays, with all their promise, were a feasible solution to a few large
companies who could afford the up front costs of tools and NREs and manufacture
products in very large volumes.

By 1985 the first Field Programmable Gate Arrays (FPGAs) were introduced. Xilinx
developed a family of standard user-configurable products utilizing industry standard
SRAM technology, and a (relatively) low cost design tool that for the first time made Gate
Array technology available to virtually any design engineer who had access top a desktop
computer.

Today the chip industry has progressed from putting thousands of gates of logic into a
single chip to putting an entire system on a chip (SOC). This means integrating not only
the programmable and ASIC logic on a single IC, but also including the processor, memory
and analog functions as well, as shown in figure 1.

Like their gate array predecessors in the 1980s and 1990s, System-On-Chip capability is
extremely expensive and out of reach for most design projects today. Design tools,
including co-verification, can cost in excess of $100K per seat; intellectual property cores
are expensive and largely unproven, the mask charges for a 0.25u array are in excess of
$250K, and the system level knowledge and experience required to successfully implement
a SOC is not readily available. These issues are summarized in figure 2.

2

Figure 1
FPSLIC Architecture
A new family of standard products, called FPSLIC (Field Programmable System Level
Integration Circuits) and associated design tools have been introduced to address programmable
SOC. A single FPSLIC (shown in figure 3) contains embedded 5K - 40K gates FPGA,
microcontroller, Memory, peripherals and interface logic. The low cost design tools include a
system design manager, synthesis, hardware and software simulation, and Co-verification. These
products, along with the tools, bring the promise of SOC to all design engineers, much in the
same way that FPGAs brought the power of the gate array to the desktop of thousands of
designers over the last several years.

Figure 2

A Typical System Board

FPGA
Glue Logic

Memory
SRAM

CPU

Analog

POWER
Management

Clock

ASSP
Logic

NVM

System-On-Chip Issues
• $250K+ NRE

• $100K+ design tools

• Large volume requirements

• Custom product

• Long design time

• Extensive design experience

• High risk

• IP issues (availability, cost
 implementation)

>> System level integration not viable for most customers

Figure 3

4

The embedded microcontroller core is the Atmel AVR. It is an 8-bit RISC processor that is
capable of executing most of its 120+ instructions in a single clock cycle. The AVR is very code
efficient when compared to other 8-bit processors, and when embedded in an SRAM-based
FPSLIC device ultimately creates 3 significant advantages – much higher throughput, much
lower power consumption and less memory required to store the uC instruction set.

Embedded within the FPSLIC devices are several fixed peripherals associated with the AVR;
including a high speed 10-bit multiplier, 2 UARTs, watch-dog timer, programmable
timer/counters and interrupts. Additional custom peripheral functions can be programmed into
the FPGA and mapped directly into the AVR address space. The AVR can actually reconfigure
the entire contents of the FPGA, as well as individual elements of the FPGA as shown in figure
4. This FPGA capability, called Cache LogicTM, is analogous to the idea of cache memory, but
now those logic functions that are currently active, or require very high performance, are
implemented in the FPGA, while those functions that are not currently being used are stored in
less expensive non-volatile memory, as shown in figure 5. These FPSLIC features enable
reconfigurable peripherals on-demand, as well as adaptive hardware including logic acceleration,
adaptive filters for DSP, reconfigurable cross point switches and reconfigurable network
processors, and many other possibilities.

Figure 4

Internal FPGA Configuration Access

Embedded
FPGA
CORE

8 Bit Data Read

Embedded
AVR
CORE

8 Bit Z/TAG address

8 Bit Y address

8 Bit X address

Memory
Mapped
Location
Memory
Mapped
Location
Memory
Mapped
Location
Memory
Mapped
Location32

 B
it

co
nf

ig
ur

at
io

n
w

or
d

32 Bit
Configuration
Memory
Access

Configuration Logic

Configuration Clock - Each tick is generated when the
Memory Mapped I/O location for DATA is written to inside the AVR

5

 In addition, the interface between the FPGA and the AVR has been implemented in ASIC gates
to eliminate the need to use valuable FPGA gates for this function. The same is true of the
memory interface and controller. Figure 6 provides details on the AVR and FPGA interface,
showing how peripheral functions implemented in the FPGA can be directly mapped into the
address space of the AVR microcontroller. Again, because the AVR microcontroller and FPGA
interface logic is “hardwired” into the FPSLIC device, the effective utilization of the FPGA logic
gates is significantly higher. The result of these features is to increase the efficiency of the
FPGA, improve performance, and simplify the design process.

Figure 5

Cache Logic ConceptR

6

Figure 6

The embedded FPGA contains all of the features of Atmel’s AT40K FPGA. The AT40K is a
family of fully PCI-compliant, SRAM-based FPGAs with distributed 10ns programmable
synchronous/asynchronous, dual port/single port SRAM, 8 global clocks, Cache Logic ability
(partially or fully reconfigurable without loss of data), automatic component generators, and
range in size from 5,000 to 150,000 usable gates. I/O counts range from 128 to 384 in industry
standard packages ranging from 84-pin PLCC to 475-pin BGA, and support 3V and 5V designs.

The AT40K is designed to quickly implement high performance, large gate count designs
through the use of synthesis and schematic-based tools used on a PC, Sun and HP platform.
Atmel’s design tools provide seamless integration with industry standard tools from Cadence
(Concept/Verilog), Everest, Exemplar, Mentor, OrCAD, Synario, Veribest, and Viewlogic.

The AT40K can be used as a Coprocessor for high-speed (DSP/Processor-based) designs by
implementing a variety of compute-intensive, arithmetic functions. These include adaptive finite
impulse response (FIR) filters, fast Fourier transforms (FFT), convolvers, interpolators and
discrete-cosine transforms (DCT) that are required for video compression and decompression,
encryption, convolution and other multimedia, telecom and industrial control applications.

In addition to the AT40K’s distributed FreeRAM SRAM, the FPSLIC device contains a large
block of SRAM that can be configured at program memory for the AVR microcontroller and data
memory for the FPGA and AVR, as shown in figure 7.

Internal I/O space and Interrupts

Embedded
FPGA
CORE

Embedded
AVR

CORE

Address
Decoder

4:16
Decode

16 Memory
Mapped
Decoded
Address
Lines from
64 Location
I/O Memory
Space

7 Bits of
16 Bit I/O
Memory
Address
Bus

16 Interrupt Lines from FPGA
to AVR - Various Priority Levels

I/O Read
strobe

I/O Write strobe
8 Bit
Data In

8 Bit
Data Out

8 Bit Bi-directional Data bus

7

* The AT94K05 includes a 2K block.
Figure 7

All FPSLIC devices include a fixed block of 10Kx16-program memory and a fixed block of
4Kx8 data memory. There are additional blocks that can be programmed (at run time) to
increase program memory to 16Kx16 – 8K x 18 on the AT94K05 – (in incremental blocks of
2Kx16) and/or increase data memory to 16Kx8 (in incremental blocks of 4Kx8). The
programmable instruction and data memory size enables the memory allocation to be optimized
for multiple hardware and software configurations. The data memory is analogous to dual port
RAM, in that both the FPGA and the AVR, as shown in figure 8 can access it.

FPSLIC ‘Dynamic’ SRAM Allocation

Fixed
10K x 16*

O
pt

io
na

l
2K

 x
 1

6

O
pt

io
na

l
2K

 x
 1

6

O
pt

io
na

l
2K

 x
 1

6

Fixed
4K x 8

Program
SRAM
Memory

Data
SRAM
Memory

Memory Partition is User
Defined during Development

Optional
4K x 8

Optional
4K x 8

Optional
4K x 8

$0
00

0

$2
7F

F

$3
80

0

$3
FF

F

$2
80

0

$2
FF

F
$3

00
0

$3
7F

F

$0000

$0FFF
$1000

$1FFF
$2000

$2FFF
$3000

$3FFF

8

Figure 8

FPSLIC represents a family of products, not just a single device. The initial FPSLIC family is
shown in figure 9. There are 3 initial devices, each containing identical features; with the
exception of the number of available FPGA gates, associated FreeRAM and Program/Data
memory. The usable FPGA gate densities range from 5,000 to 40,000 usable gates. In fact the
effective FPGA gates available are substantially higher due to the interface between the FPGA,
memory and the microcontroller already being implemented in ASIC gates, leaving more space
in the FPGA for implementation of peripherals and other value added logic.

Device Samples FPGA
Gates

FreeRAMTM

SRAM
FPGA I/O Program/Data

SRAM
AT94K10 Now 10K 4608

bits
upto
204

20K –32K Bytes/
4K-16K Bytes

AT94K20 Now 20K 8192
bits

upto
298

20K –32K Bytes/
4K-16K Bytes

AT94K40 Now 40K 18432
bits

upto
384

20K –32K Bytes/
4K-16K Bytes

Figure 9

Internal SRAM Access

Embedded
FPGA
CORE

Embedded
AVR

COREData
SRAM
4K x 8
Up To

16K x 8

16 Address
Lines -
FPGA edge
express
buses

16 Bit I/O
Address

Bus

CLK fpga

WE fpga

8 Bit Data Write

8 Bit Data Read

8 Bit Data Write

8 Bit Data Read

WE avr

CLK avr

RE avr

9

The benefits of the FPSLIC architecture and integration over currently available discrete
solutions include:

• >50% reduction in PCB area
• >50% reduction in power consumption
• >200% performance improvement
• Reduced design complexity
• Improved reliability
• 1-3 months improvement on time-to-market

FPSLIC Design Tools

While the concept of system-on-chip design implies many benefits, one of the major drawbacks
today is the cost of the tools and engineering charges required to build such products. The price
of co-verification tools today alone is typically $80K per license, and the non-recurring
engineering costs (NRE) for a single 0.25 micron mask set are typically $250K. Unless the
production volume can justify these costs, SOC design is not feasible for most customers today.
Atmel has addressed these issues and solved these problems by developing a programmable
system-on-chip and a very low cost set of design tools, based on proven, industry standard
software.

10

The concept of programmable system level integration has the potential to bring many benefits to
the system designer – having the right tools will ultimately determine the success of this product
area. Design engineers have made significant investments in both tool acquisition and the time
required becoming an expert at using these tools. In order for FPSLIC to succeed it is mandatory
that the tools used in FPSLIC design take advantage of designers’ knowledge of existing tools
design flows and methodology. This is true for the FPGA design, microcontroller design and the
interaction between the two.

The FPSLIC software system architecture is shown in Figure 10. The design manager seamlessly
integrates all the design tools, databases and flows required for FPSLIC implementation as
shown in Figure 11. The design manager steps the user through each stage of the design process,
from Verilog/VHDL design entry for the hardware (FPGA), through synthesis, place & route,
and simulation, as well as guiding the user through the microcontroller design process and
verification, as well as co-simulation and verification between the software and hardware aspects
of the system.

Figure 10

 FPSLICTM Software System Architecture

Technology
Mapping

FPGA Bitstream

Place and Route

AVR
programming

code

HDL Synthesis AVR Studio
Compiler

C/Assembly
Code entry

HDL Entry
HDLPlanner

Back Annotated
Co-Verification

Functional
Co-Verification

Waveform
Viewer

Waveform
Viewer

FPGA IDS Base AVR Studio Base

Co-Verification

FPSLIC
programming

System Designer

11

Figure 11

Included in the FPSLIC design suite are the AT40K series FPGA design software, Exemplar
synthesis compiler, Model Technology hardware simulator, AVR studio and Seamless co-
verification tools, powered by Mentor Graphics. Figure 12 provides additional details of the
included tools. System designer has been architected in a modular and open architecture fashion.
This has the added benefit of allowing the FPSLIC designer to work with other 3rd part design
entry, synthesis and simulation tools. In addition, the tools can be adapted to work with addional
microcontroller and processor cores, as well as different variations of the FPSLIC architecture.
This powerful combination of integrated tools enable fast, efficient, simplified design for
FPSLIC devices.

12

Figure 12

The FPGA portion of the FPSLIC design tools are based on those developed for Atmel’s industry
standard, proven AT40K series FPGA. The FPGA development software (Figure 13) includes
both push-button and interactive place and route, the ability to import files from other FPGA
designs, logic and RAM compilers, floor planning, timing driven design, static timing analysis,
incremental design change, as well as synthesis and simulation.

FPSLICTM Design Suite
 Complete IDS FPGA Software

• Place & route, floorplanning,
 timing analysis, etc.

• Exemplar Synthesis Compiler
• VHDL & Verilog entry (FPSLIC version)

• Model Technology hardware
 simulator (FPSLIC version)

• AVR Studio
• Design & debugging
• Instruction set simulator

• Seamless co-verification tools
• PC-based: Windows 95/98/NT/2000
• Powered by Mentor Graphics (FPSLIC version)

Everything* for $995

FPGA

Co-Verification
AVR

* = Does not include C compiler

13

Figure 13

Co-Verification

One of the challenges of system-on-chip design is the opportunity to develop both hardware and
software concurrently. With the FPGA/logic and microprocessor both on the same chip, it is
only natural that co-verification tools be available to support the ability to make
hardware/software tradeoffs and to verify the interaction of these prior to building the actual
system board.

The conventional way of designing a system is to first design the hardware and implement it in
an FPGA or ASIC, and then turn the design over to the software developers who will implement
the processor code. The limitations of the traditional design approach without co-verification are
shown in figure 14. The problem with designing a system where hardware is developed prior to
software is that inability to anticipate and accommodate changes to the hardware do to software
limitations, and visa versa. This creates a situation where numerous design iterations may occur
due to performance, power and space limitations of both the logic and the processor. The
situation can result in significant delays to development schedule, typically 1-3 months, increased
cost due to printed circuit board revisions, and a lower performance, higher power consumption
design.

FPGA Development Software
FPGA Development
Tools

• Push Button 85%+ APR
• Multi-Chip Partitioning
• XNF/EDF/WIR Import
• Hierarchy Browser
• Floor planner
• Timing Driven Design
• Static Timing Analysis
• Bitstream Utilities
• Incremental Design Change
• Architecture Mapping
• Back Annotation support
• Extensive interactive help.
• Interactive Timing Analysis
• Interactive Layout Editor
• Library Manager
• Design re-use

14

Figure 14

In order to speed up the development time, and optimize the hardware and software, the system
designer should be able to develop both the hardware and software concurrently, with the ability
to evaluate the impact of each on the overall system. Figure 15 represents the impact on the
system design cycle by using co-verification design methodology. FPSLIC System Designer
incorporates a co-verification back plane, effectively connecting the FPGA hardware simulator to
the microcontroller instruction set simulator, as shown in figure 16. The use of co-verification
effectively eliminates the need for an in-circuit emulator (ICE) by facilitating the verification
process. This is possible by allowing the designer to make changes to the hardware/software and
seeing the resultant interaction and effect on the software/hardware. This is all done on a desktop
PC operating under Windows or NT.

System Design without Co-verification

Release to

 Manufacturing

Iteration Loop

1 to 3 Months

Hardware
Development

Physical
Implementation

Software
Development

System
Integration

15

Figure 15

Figure 16

System Design with Co-verification

Release to

 Manufacturing

Hardware
Development

Physical
Implementation

Software
Development

System
Integration

Iteration Loop
1 to 3 Hours

 System
Designer

Co-Verification

Co-Verification
Backplane

SW Simulation HW Simulation

Co-Verification* Software

A
P
I

Instruction-Set
Simulator

–Complete Instruction Set
–Interrupt
–Reset
–Instruction Timing

Model
Sim

Interface

Bus Interface
Model

–Peripherals

–Bus Cycle Timing

–Controllers

A
P
I

MTI
ModelSim
Simulator

*FPSLIC Co-Verification S/W is powered by Mentor Graphics

16

FPSLIC Configuration

The FPSLIC family of devices is designed to be implemented on a 0.35u and below
SRAM/ASIC process. The entire FPSLIC device is SRAM-based, which brings the benefit of
unlimited reconfiguration and update capability – for both the FPGA hardware and AVR
microcontroller software. This means that design (hardware and software) changes can be
implemented even after the system has shipped to the end-customer by using remote updates.
Also, as mentioned previously, the AVR microcontroller can actually reprogram all, or parts of
the FPGA – in system, on-the-fly, in real time. This allows adaptive hardware and hardware
acceleration for DSP and other computer intensive applications. In fact the FPGA can actually
be used as a reconfigurable co-processor or reconfigurable network processor for certain types of
applications.

Figure 17

FPSLIC Configuration Statistics

Device Configuration Bits* Configurator*

AT94K10 423K AT17LV512
AT94K20 524K AT17LV010
AT94K40 809K AT17LV010

Configurator AT94K

* = Can be reduced by using bit-stream compression option

17

In order to support this programming ability, it is necessary to store the FPSLIC configuration
data (instruction set for the AVR and FPGA) in a non-volatile external configuration memory.
The data can be serially loaded into the FPSLIC device at power-up, as well as any other time,
simply by downloading the data from the memory into the FPSLIC device. The data can be
loaded via an independent microcontroller or directly from an Atmel AT17C/LV series
Configurator. The Configurator is a family of devices that range from 65K-2M of Serial
EEPROMs, all of which contain all the handshaking logic required to program SRAM-based
FPGA and FPSLIC devices. Because the Atmel Configurator family are EEPROM-based, not
only is the FPSLIC capable of being reprogrammed in-system, but so is the Configuration
EEPROM itself. This capability makes the FPSLIC an ideal device for emerging internet
appliances and “subscription” products. The configuration requirements for FPSLIC are shown
in figure 17.

Summary

The FPSLIC family of products represents the next step in programmable design. FPSLIC
essentially brings to System-on-Chip design what the FPGA brought to the Gate Array market 15
years ago. Because FPSLIC is a standard, off-the-shelf product, there are no NRE charges
associated with it. A customer can purchase a single device or a million; there are no minimum
volume requirements such as those associated with a customer ASIC or CBIC (cell based IC).
The annual subscription cost for FPSLIC design tools are less than $1000, essentially removing
the tool cost barrier.

The FPSLIC combination of architecture and design tools include co-verification, enabling
concurrent software and hardware development. Important speed, power and density tradeoffs
can be made early in the design process, significantly reducing development time and cost.
Because FPSLIC is SRAM-based, it is infinitely reconfigurable, significantly reducing design
risk by allowing both software and hardware changes to be made late in the design cycle, even in
the field after shipment to the customer.

18

Figure 18

Another advantage of FPSLIC is the elimination of intellectual property issues relating to the
processor, memory and FPGA. All these functions are seamlessly integrated into the FPSLIC
device, further reducing design time and cost. Additional peripheral and logic can be created and
programmed into the FPGA, allowing product customization and differentiation.

The combination of features listed herein and the low cost of entry for design tools for FPSLIC
result in many benefits shown in figure 18. These include reduced board area, high speed, low
power and low cost.

• $0 NRE
• No minimum volume
 requirements
• Very low cost design tools
• Standard product
• Fast time-to-market
• Programmable design reduces
 design risk
• IP issues eliminated

>> System level integration for all customers

 Features/Benefits
Summary

	Programmable System Level Integration brings
	System-on-Chip Design to the Desktop
	PSLi Product Line Director
	Atmel Corporation
	F
	Figure 1
	FPSLIC Architecture
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	* The AT94K05 includes a 2K block.
	Figure 7
	Figure 8
	40K
	Figure 9
	FPSLIC Design Tools
	Figure 10
	Figure 11
	Figure 12
	Co-Verification
	Figure 14
	Figure 15
	Figure 16
	FPSLIC Configuration
	Figure 17
	Summary
	Figure 18

