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Features
• 8- and 16-bit Implementations
• Signed and Unsigned Routines
• Speed and Code-size Optimized Routines
• Runable Example Programs
• Speed is Comparable with Hardware Dividers 
• Extremely Compact Code

Introduction
This application note lists subroutines for division of 8- and 16-bit signed and unsigned
numbers for the AT94K Field Programmable System Level Integrated Circuit
(FPSLIC™) and the AT94S Secure FPSLIC. A listing of all implementations with key
performance specifications is given in Table 1.

Multiplication is not covered in this application note because the FPSLIC device
includes a hardware multiplier. For information on using the hardware multiplier, refer
to the “Using the FPSLIC Hardware Multiplier” application note, available at the Atmel
web site (http://www.atmel.com).

This application note listing consists of two files:

• “div_a.asm”: Code-size optimized divide routines.

• “div_b.asm”: Speed-optimized divide routines.

Table 1.  Performance Figures Summary

Application
Code Size 
(Words)

Execution Time 
(Cycles)

8/8 = 8 + 8-bit Unsigned (Code Optimized) 14 97

8/8 = 8 + 8-bit Unsigned (Speed Optimized) 66 58

8/8 = 8 + 8-bit Signed (Code Optimized) 22 103

16/16 = 16 + 16-bit Unsigned (Code Optimized) 19 243

16/16 = 16 + 16-bit Unsigned (Speed Optimized) 196 173

16/16 = 16 + 16-bit Signed (Code Optimized) 39 255
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8/8 = 8 + 8 Unsigned 
Division – “div8u”

Both program files contain a routine called “div8u”, which performs unsigned 8-bit divi-
sion. Both implementations are based on the same algorithm. The code-size optimized
implementation uses looped code, whereas the speed-optimized code is a straight-line
code implementation. Figure 1 shows the flowchart for the code-size optimized version.

Algorithm Description The algorithm for unsigned 8/8 division (code-size optimized code) is as follows:

1. Clear remainder and carry.

2. Load loop counter with 9.

3. Shift left dividend into carry.

4. Decrement loop counter.

5. If loop counter = 0, return.

6. Shift left carry (from dividend/result) into remainder.

7. Subtract divisor from remainder.

8. If result negative, add back divisor, clear carry and go to step 3.

9. Set carry and go to step 3.
2 Divide Routines
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Divide Routines
Figure 1.  “div8u” Flowchart (Code-size Optimized Implementation)

Usage The usage of “div8u” is the same for both implementations and is described in the fol-
lowing procedure:

1. Load register variable “dd8u” with the dividend (the number to be divided).

2. Load register variable “dv8u” with the divisor (the dividing number).

3. Call “div8u”.

4. The result is found in “dres8u” and the remainder in “drem8u”.
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Performance

Table 2.  “div8u” Register Usage (Code-size Optimized Version)

Register Input Internal Output

R15 – “drem8u” – Remainder

R16 “dd8u” – Dividend – “dres8u” – Result

R17 “dv8u” – Divisor – –

R18 – “dcnt8u” – Lop Counter –

Table 3.  “div8u” Performance Figures (Code-size Optimized Version)

Parameter Value

Code Size (Words) 14

Execution Time 
(Cycles)

97

Register Usage Low Registers – 1
High Registers – 3
Pointers – None

Interrupts Usage None

Peripherals Usage None

Table 4.  “div8u” Register Usage (Speed Optimized Version)

Register Input Internal Output

R15 – – “drem8u” – Remainder

R16 “dd8u” – Dividend – “dres8u” – Result

R17 “dv8u” – Divisor – –

Table 5.  “div8u” Performance Figures (Speed Optimized Version)

Parameter Value

Code Size (Words) 66

Execution Time 
(Cycles)

58

Register Usage Low Registers – 1
High Registers – 2
Pointers – None

Interrupts Usage None

Peripherals Usage None
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Divide Routines
8/8 = 8 + 8 Signed 
Division – “div8s”

The subroutine “mpy8s” implements signed 8-bit division. The implementation is 
code-size optimized. If negative, the input values shall be represented on two’s comple-
ment’s form. Figure 2 shows the flowchart for the signed 8/8 division.

Algorithm Description The algorithm for signed 8/8 division is as follows:

1. XOR dividend and divisor and store in a sign register.

2. If MSB of dividend set, negate dividend.

3. If MSB of divisor set, negate dividend.

4. Clear remainder and carry.

5. Load loop counter with 9.

6. Shift left dividend into carry.

7. Decrement loop counter.

8. If loop counter ≠ 0, go to step 11.

9. If MSB of sign register set, negate result.

10. Return.

11. Shift left carry (from dividend/result) into remainder.

12. Subtract divisor from remainder.

13. If result negative, add back divisor, clear carry and go to step 6.

14. Set carry and go to step 6.
5
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Figure 2.  “div8s” Flowchart (Signed 8/8 Division)

Usage The usage of “div8s” follows the procedure below:

1. Load register variable “dd8s” with the dividend (the number to be divided).

2. Load register variable “dv8s” with the divisor (the dividing number).

3. Call “div8s”.

4. The result is found in “dres8s” and the remainder in “drem8s”.
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16/16 = 16 + 16 
Unsigned Division – 
“div16u”

Both program files contain a routine called “div16u”, which performs unsigned 16-bit
division.

Both implementations are based on the same algorithm. The code-size optimized imple-
mentation uses looped code, whereas the speed optimized code is a straight-line code
implementation. Figure 3 shows the flowchart for the code-size optimized version. 

Algorithm Description The algorithm for unsigned 16/16 division (code-size optimized code) is as follows:

1. Clear remainder and carry.

2. Load loop counter with 17.

3. Shift left dividend into carry 

4. Decrement loop counter.

5. If loop counter = 0, return.

6. Shift left carry (from dividend/result) into remainder.

7. Subtract divisor from remainder.

8. If result negative, add back divisor, clear carry and go to step 3.

9. Set carry and go to step 3.

Table 6.  “div8s” Register Usage

Register Input Internal Output

R14 – “d8s” – Sign Register –

R15 – – “drem8s” – Remainder

R16 “dd8s” – Dividend – “dres8s” – Result

R17 “dv8s” – Divisor – –

R18 – “dcnt8s” – Lop Counter –

Table 7.  “div8s” Performance Figures

Parameter Value

Code Size (Words) 22

Execution Time 
(Cycles)

103

Register Usage Low Registers – 2
High Registers – 3
Pointers – None

Interrupts Usage None

Peripherals Usage None
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Figure 3.  “div16u” Flowchart (Code-size Optimized Implementation)

Usage The usage of “div16u” is the same for both implementations and is described in the fol-
lowing procedure:

1. Load the 16-bit register variable “dd16uH:dd16uL” with the dividend (the number 
to be divided).

2. Load the 16-bit register variable “dv16uH:dv16uL” with the divisor (the dividing 
number).

3. Call “div16u”.

4. The result is found in “dres16u” and the remainder in “drem16u”.
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Table 8.  “div16u” Register Usage (Code-size Optimized Version)

Register Input Internal Output

R14 – – “drem16uL” – Remainder
Low Byte

R15 – – “drem16uH – Remainder 
High Byte

R16 “dd16uL” – Dividend
Low Byte

– “dres16uL” – Result
Low Byte

R17 “dd16uH” – Dividend
High Byte

– “dres16uH” – Result
High Byte

R18 “dv16uL” – Divisor
Low Byte

– –

R19 “dv16uH” – Divisor
High Byte

– –

R20 – “dcnt16u” – Lop Counter –

Table 9.  “div16u” Performance Figures (Code-size Optimized Version)

Parameter Value

Code Size (Words) 19

Execution Time 
(Cycles)

243

Register Usage Low Registers – 2
High Registers – 5
Pointers – None

Interrupts Usage None

Peripherals Usage None

Table 10.  “div16u” Register Usage (Speed Optimized Version)

Register Input Internal Output

R14 – – “drem16uL” – Remainder 
Low Byte

R15 – – “drem16uH – Remainder 
High Byte

R16 “dd16uL” – Dividend
Low Byte

– “dres16uL” – Result 
Low Byte

R17 “dd16uH” – Dividend 
High Byte

– “dres16uH” – Result
High Byte

R18 “dv16uL” – Divisor
Low Byte

– –

R19 “dv16uH” – Divisor
High Byte

– –
9
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16/16 = 16 + 16 
Signed Division – 
“div16s”

The subroutine “mpy16s” implements signed 16-bit division. The implementation is
code-size optimized. If negative, the input values shall be represented on two’s comple-
ment’s form. Figure 4 shows the flowchart for the signed 16/16 division.

Algorithm Description The algorithm for signed 16/16 division is as follows:

1. XOR dividend and divisor high bytes and store in a Sign register.

2. If MSB of dividend high byte set, negate dividend.

3. If MSB of divisor set high byte, negate dividend.

4. Clear remainder and carry.

5. Load loop counter with 17.

6. Shift left dividend into carry.

7. Decrement loop counter.

8. If loop counter ≠ 0, go to step 11.

9. If MSB of sign register set, negate result.

10. Return.

11. Shift left carry (from dividend/result) into remainder.

12. Subtract divisor from remainder.

13. If result negative, add back divisor, clear carry and go to step 6.

14. Set carry and go to step 6.

Table 11.  “div16u” Performance Figures (Speed Optimized Version)

Parameter Value

Code Size (Words) 196 + return

Average Execution 
Time (Cycles)

173

Register Usage Low Registers – 2
High Registers – 4
Pointers – None

Interrupts Usage None

Peripherals Usage None
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Divide Routines

Figure 4.  “div16s” Flowchart (Signed 16/16 Division)

Usage The usage of “div16s” is described in the following procedure:

1. Load the 16-bit register variable “dd16sH:dd16sL” with the dividend (the number 
to be divided).

2. Load the 16-bit register variable “dv16sH:dv16sL” with the divisor (the dividing 
number).

3. Call “div16s”.

4. The result is found in “dres16s” and the remainder in “drem16s”.
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Table 12.  “div16s” Register Usage

Register Input Internal Output

R14 – – “drem16sL” – Remainder 
Low Byte

R15 – – “drem16sH” – Remainder
High Byte

R16 “dd16sL” – Dividend 
Low Byte

– “dres16sL” – Result
Low Byte

R17 “dd16sH” – Dividend
High Byte

– “dres16sH” – Result
High Byte

R18 “dv16sL” – Divisor 
Low Byte

– –

R19 “dv16sH” – Divisor 
High Byte

– –

R20 – “dcnt16s” – Lop Counter –

Table 13.  “div16s” Performance Figures

Parameter Value

Code Size (Words) 39

Execution Time 
(Cycles)

255

Register Usage Low Registers – 2
High Registers – 5
Pointers – None

Interrupts Usage None

Peripherals Usage None
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