
Programmable
SLI
AT94K/AT94S
Series

Application
Note

Rev. 1973B–11/01
Divide Routines

Features
• 8- and 16-bit Implementations
• Signed and Unsigned Routines
• Speed and Code-size Optimized Routines
• Runable Example Programs
• Speed is Comparable with Hardware Dividers
• Extremely Compact Code

Introduction
This application note lists subroutines for division of 8- and 16-bit signed and unsigned
numbers for the AT94K Field Programmable System Level Integrated Circuit
(FPSLIC™) and the AT94S Secure FPSLIC. A listing of all implementations with key
performance specifications is given in Table 1.

Multiplication is not covered in this application note because the FPSLIC device
includes a hardware multiplier. For information on using the hardware multiplier, refer
to the “Using the FPSLIC Hardware Multiplier” application note, available at the Atmel
web site (http://www.atmel.com).

This application note listing consists of two files:

• “div_a.asm”: Code-size optimized divide routines.

• “div_b.asm”: Speed-optimized divide routines.

Table 1. Performance Figures Summary

Application
Code Size
(Words)

Execution Time
(Cycles)

8/8 = 8 + 8-bit Unsigned (Code Optimized) 14 97

8/8 = 8 + 8-bit Unsigned (Speed Optimized) 66 58

8/8 = 8 + 8-bit Signed (Code Optimized) 22 103

16/16 = 16 + 16-bit Unsigned (Code Optimized) 19 243

16/16 = 16 + 16-bit Unsigned (Speed Optimized) 196 173

16/16 = 16 + 16-bit Signed (Code Optimized) 39 255
1

8/8 = 8 + 8 Unsigned
Division – “div8u”

Both program files contain a routine called “div8u”, which performs unsigned 8-bit divi-
sion. Both implementations are based on the same algorithm. The code-size optimized
implementation uses looped code, whereas the speed-optimized code is a straight-line
code implementation. Figure 1 shows the flowchart for the code-size optimized version.

Algorithm Description The algorithm for unsigned 8/8 division (code-size optimized code) is as follows:

1. Clear remainder and carry.

2. Load loop counter with 9.

3. Shift left dividend into carry.

4. Decrement loop counter.

5. If loop counter = 0, return.

6. Shift left carry (from dividend/result) into remainder.

7. Subtract divisor from remainder.

8. If result negative, add back divisor, clear carry and go to step 3.

9. Set carry and go to step 3.
2 Divide Routines
1973B–11/01

Divide Routines
Figure 1. “div8u” Flowchart (Code-size Optimized Implementation)

Usage The usage of “div8u” is the same for both implementations and is described in the fol-
lowing procedure:

1. Load register variable “dd8u” with the dividend (the number to be divided).

2. Load register variable “dv8u” with the divisor (the dividing number).

3. Call “div8u”.

4. The result is found in “dres8u” and the remainder in “drem8u”.

CLEAR CARRY

SET CARRY

DIV8U

CLEAR REMAINDER
AND CARRY

LOOP COUNTER < 9

DECREMENT LOOP
COUNTER

SHIFT LEFT DIVIDEND

REMAINDER <
REMAINDER + DIVISOR

LOOP COUNTER = 0?

RESULT NEGATIVE?

RETURN

Y

SHIFT LEFT REMAINDER

REMAINDER <
REMAINDER DIVISOR

N

Y

3
1973B–11/01

Performance

Table 2. “div8u” Register Usage (Code-size Optimized Version)

Register Input Internal Output

R15 – “drem8u” – Remainder

R16 “dd8u” – Dividend – “dres8u” – Result

R17 “dv8u” – Divisor – –

R18 – “dcnt8u” – Lop Counter –

Table 3. “div8u” Performance Figures (Code-size Optimized Version)

Parameter Value

Code Size (Words) 14

Execution Time
(Cycles)

97

Register Usage Low Registers – 1
High Registers – 3
Pointers – None

Interrupts Usage None

Peripherals Usage None

Table 4. “div8u” Register Usage (Speed Optimized Version)

Register Input Internal Output

R15 – – “drem8u” – Remainder

R16 “dd8u” – Dividend – “dres8u” – Result

R17 “dv8u” – Divisor – –

Table 5. “div8u” Performance Figures (Speed Optimized Version)

Parameter Value

Code Size (Words) 66

Execution Time
(Cycles)

58

Register Usage Low Registers – 1
High Registers – 2
Pointers – None

Interrupts Usage None

Peripherals Usage None
4 Divide Routines
1973B–11/01

Divide Routines
8/8 = 8 + 8 Signed
Division – “div8s”

The subroutine “mpy8s” implements signed 8-bit division. The implementation is
code-size optimized. If negative, the input values shall be represented on two’s comple-
ment’s form. Figure 2 shows the flowchart for the signed 8/8 division.

Algorithm Description The algorithm for signed 8/8 division is as follows:

1. XOR dividend and divisor and store in a sign register.

2. If MSB of dividend set, negate dividend.

3. If MSB of divisor set, negate dividend.

4. Clear remainder and carry.

5. Load loop counter with 9.

6. Shift left dividend into carry.

7. Decrement loop counter.

8. If loop counter ≠ 0, go to step 11.

9. If MSB of sign register set, negate result.

10. Return.

11. Shift left carry (from dividend/result) into remainder.

12. Subtract divisor from remainder.

13. If result negative, add back divisor, clear carry and go to step 6.

14. Set carry and go to step 6.
5
1973B–11/01

Figure 2. “div8s” Flowchart (Signed 8/8 Division)

Usage The usage of “div8s” follows the procedure below:

1. Load register variable “dd8s” with the dividend (the number to be divided).

2. Load register variable “dv8s” with the divisor (the dividing number).

3. Call “div8s”.

4. The result is found in “dres8s” and the remainder in “drem8s”.

DECREMENT LOOP
 COUNTER

NEGATE RESULT

DIV8S

SIGN REGISTER <
DIVIDEND XOR DIVISOR

LOOP COUNTER < 9

SHIFT LEFT DIVIDEND

SET CARRY

REMAINDER <
REMAINDER + DIVISOR

CLEAR CARRY

MSB OF
DIVIDEND SET?

MSB OF
DIVISOR SET?

LOOP COUNTER = 0?

REMAINDER <
REMAINDER – DIVISOR

SHIFT LEFT REMAINDER

RESULT NEGATIVE?

N

Y MSB OF SIGN
REGISTER SET?

RETURN

N

Y

Y

Y

NEGATE DIVISOR

N

NEGATE DIVIDEND

N

N

Y

6 Divide Routines
1973B–11/01

Divide Routines
Performance

16/16 = 16 + 16
Unsigned Division –
“div16u”

Both program files contain a routine called “div16u”, which performs unsigned 16-bit
division.

Both implementations are based on the same algorithm. The code-size optimized imple-
mentation uses looped code, whereas the speed optimized code is a straight-line code
implementation. Figure 3 shows the flowchart for the code-size optimized version.

Algorithm Description The algorithm for unsigned 16/16 division (code-size optimized code) is as follows:

1. Clear remainder and carry.

2. Load loop counter with 17.

3. Shift left dividend into carry

4. Decrement loop counter.

5. If loop counter = 0, return.

6. Shift left carry (from dividend/result) into remainder.

7. Subtract divisor from remainder.

8. If result negative, add back divisor, clear carry and go to step 3.

9. Set carry and go to step 3.

Table 6. “div8s” Register Usage

Register Input Internal Output

R14 – “d8s” – Sign Register –

R15 – – “drem8s” – Remainder

R16 “dd8s” – Dividend – “dres8s” – Result

R17 “dv8s” – Divisor – –

R18 – “dcnt8s” – Lop Counter –

Table 7. “div8s” Performance Figures

Parameter Value

Code Size (Words) 22

Execution Time
(Cycles)

103

Register Usage Low Registers – 2
High Registers – 3
Pointers – None

Interrupts Usage None

Peripherals Usage None
7
1973B–11/01

Figure 3. “div16u” Flowchart (Code-size Optimized Implementation)

Usage The usage of “div16u” is the same for both implementations and is described in the fol-
lowing procedure:

1. Load the 16-bit register variable “dd16uH:dd16uL” with the dividend (the number
to be divided).

2. Load the 16-bit register variable “dv16uH:dv16uL” with the divisor (the dividing
number).

3. Call “div16u”.

4. The result is found in “dres16u” and the remainder in “drem16u”.

DIV16U

CLEAR REMAINDER
AND CARRY

LOOP COUNTER < 17

SHIFT LEFT DIVIDEND

DECREMENT LOOP
COUNTER

SET CARRY

REMAINDER <
REMAINDER + DIVISOR

CLEAR CARRY

LOOP COUNTER = 0?

Y

RETURN

REMAINDER <
REMAINDER DIVISOR

SHIFT LEFT REMAINDER

RESULT NEGATIVE?

N

N

Y

8 Divide Routines
1973B–11/01

Divide Routines
Performance

Table 8. “div16u” Register Usage (Code-size Optimized Version)

Register Input Internal Output

R14 – – “drem16uL” – Remainder
Low Byte

R15 – – “drem16uH – Remainder
High Byte

R16 “dd16uL” – Dividend
Low Byte

– “dres16uL” – Result
Low Byte

R17 “dd16uH” – Dividend
High Byte

– “dres16uH” – Result
High Byte

R18 “dv16uL” – Divisor
Low Byte

– –

R19 “dv16uH” – Divisor
High Byte

– –

R20 – “dcnt16u” – Lop Counter –

Table 9. “div16u” Performance Figures (Code-size Optimized Version)

Parameter Value

Code Size (Words) 19

Execution Time
(Cycles)

243

Register Usage Low Registers – 2
High Registers – 5
Pointers – None

Interrupts Usage None

Peripherals Usage None

Table 10. “div16u” Register Usage (Speed Optimized Version)

Register Input Internal Output

R14 – – “drem16uL” – Remainder
Low Byte

R15 – – “drem16uH – Remainder
High Byte

R16 “dd16uL” – Dividend
Low Byte

– “dres16uL” – Result
Low Byte

R17 “dd16uH” – Dividend
High Byte

– “dres16uH” – Result
High Byte

R18 “dv16uL” – Divisor
Low Byte

– –

R19 “dv16uH” – Divisor
High Byte

– –
9
1973B–11/01

16/16 = 16 + 16
Signed Division –
“div16s”

The subroutine “mpy16s” implements signed 16-bit division. The implementation is
code-size optimized. If negative, the input values shall be represented on two’s comple-
ment’s form. Figure 4 shows the flowchart for the signed 16/16 division.

Algorithm Description The algorithm for signed 16/16 division is as follows:

1. XOR dividend and divisor high bytes and store in a Sign register.

2. If MSB of dividend high byte set, negate dividend.

3. If MSB of divisor set high byte, negate dividend.

4. Clear remainder and carry.

5. Load loop counter with 17.

6. Shift left dividend into carry.

7. Decrement loop counter.

8. If loop counter ≠ 0, go to step 11.

9. If MSB of sign register set, negate result.

10. Return.

11. Shift left carry (from dividend/result) into remainder.

12. Subtract divisor from remainder.

13. If result negative, add back divisor, clear carry and go to step 6.

14. Set carry and go to step 6.

Table 11. “div16u” Performance Figures (Speed Optimized Version)

Parameter Value

Code Size (Words) 196 + return

Average Execution
Time (Cycles)

173

Register Usage Low Registers – 2
High Registers – 4
Pointers – None

Interrupts Usage None

Peripherals Usage None
10 Divide Routines
1973B–11/01

Divide Routines

Figure 4. “div16s” Flowchart (Signed 16/16 Division)

Usage The usage of “div16s” is described in the following procedure:

1. Load the 16-bit register variable “dd16sH:dd16sL” with the dividend (the number
to be divided).

2. Load the 16-bit register variable “dv16sH:dv16sL” with the divisor (the dividing
number).

3. Call “div16s”.

4. The result is found in “dres16s” and the remainder in “drem16s”.

DECREMENT LOOP
 COUNTER

NEGATE RESULT

DIV16S

SIGN REGISTER <
DIVIDENDH XOR DIVISORH

LOOP COUNTER < 17

SHIFT LEFT DIVIDEND

SET CARRY

REMAINDER <
REMAINDER + DIVISOR

CLEAR CARRY

MSB OF
DIVIDEND SET?

MSB OF
DIVISOR SET?

LOOP COUNTER = 0?

REMAINDER <
REMAINDER – DIVISOR

SHIFT LEFT REMAINDER

RESULT NEGATIVE?

N

Y MSB OF SIGN
REGISTER SET?

RETURN

N

Y

Y

Y

NEGATE DIVISOR

N

NEGATE DIVIDEND

N

N

Y

11
1973B–11/01

Performance

Table 12. “div16s” Register Usage

Register Input Internal Output

R14 – – “drem16sL” – Remainder
Low Byte

R15 – – “drem16sH” – Remainder
High Byte

R16 “dd16sL” – Dividend
Low Byte

– “dres16sL” – Result
Low Byte

R17 “dd16sH” – Dividend
High Byte

– “dres16sH” – Result
High Byte

R18 “dv16sL” – Divisor
Low Byte

– –

R19 “dv16sH” – Divisor
High Byte

– –

R20 – “dcnt16s” – Lop Counter –

Table 13. “div16s” Performance Figures

Parameter Value

Code Size (Words) 39

Execution Time
(Cycles)

255

Register Usage Low Registers – 2
High Registers – 5
Pointers – None

Interrupts Usage None

Peripherals Usage None
12 Divide Routines
1973B–11/01

© Atmel Corporation 2001.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Product Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-7658-3000
FAX (33) 4-7658-3480

Atmel Heilbronn
Theresienstrasse 2
POB 3535
D-74025 Heilbronn, Germany
TEL (49) 71 31 67 25 94
FAX (49) 71 31 67 24 23

Atmel Nantes
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 0 2 40 18 18 18
FAX (33) 0 2 40 18 19 60

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Atmel Smart Card ICs
Scottish Enterprise Technology Park
East Kilbride, Scotland G75 0QR
TEL (44) 1355-357-000
FAX (44) 1355-242-743

Atmel Programmable SLI Hotline
(408) 436-4119

Atmel Programmable SLI e-mail
fpslic@atmel.com

FAQ
Available on web site

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

 Printed on recycled paper.

1973B–11/01/xM

Atmel® and AVR® are the registered trademarks of Atmel; FPSLIC™ is the trademark of Atmel.

Other terms and product names may be trademarks of others.

	Features
	Introduction
	8/8 = 8 + 8 Unsigned Division – “div8u”
	Algorithm Description
	Usage
	Performance

	8/8 = 8 + 8 Signed Division – “div8s”
	Algorithm Description
	Usage
	Performance

	16/16 = 16 + 16 Unsigned Division – “div16u”
	Algorithm Description
	Usage
	Performance

	16/16 = 16 + 16 Signed Division – “div16s”
	Algorithm Description
	Usage
	Performance

