
10K - 40K Gates
of AT40K FPGA
with 8-bit
Microcontroller
and 36K Bytes
of SRAM

Application Note

Rev. 1971A–01/01
Using the FPSLIC™ Hardware Multiplier

Features
• 8- and 16-bit Implementations
• Signed and Unsigned Routines
• Fractional Signed and Unsigned Multiply
• Executable Example Programs

Introduction
The FPSLIC is a series of new devices in the programmable system-level integration
family that includes, among other new enhancements, a hardware multiplier. This mul-
tiplier is capable of multiplying two 8-bit numbers, giving a 16-bit result using only two
clock cycles. The multiplier can handle both signed and unsigned integer and frac-
tional numbers without speed or code size penalty. The first section of this document
will give some examples of using the multiplier for 8-bit arithmetic.

To be able to use the multiplier, six new instructions are added to the AVR instruction
set. These are:

• MUL, multiplication of unsigned integers

• MULS, multiplication of signed integers

• MULSU, multiplication of a signed integer with an unsigned integer

• FMUL, multiplication of unsigned fractional numbers

• FMULS, multiplication of signed fractional numbers

• FMULSU, multiplication of a signed fractional number and with an unsigned
fractional number

The MULSU and FMULSU instructions are included to improve the speed and code
density for multiplication of 16-bit operands. The second section will show examples of
how to efficiently use the multiplier for 16-bit arithmetic.

The component that makes a dedicated digital signal processor (DSP) specially suit-
able for signal processing is the multiply-accumulate (MAC) unit. This unit is
functionally equivalent to a multiplier directly connected to an arithmetic logic unit
(ALU). The FPSLIC is designed to give the programmable logic family the ability to
effectively perform the same multiply-accumulate operation. This application note will
therefore include examples of implementing the MAC operation.

The multiply-accumulate operation (sometimes referred to as multiply-add operation)
has one critical drawback. When adding multiple values to one result variable, even
when adding positive and negative values to some extent cancel each other, the risk
of the result variable to overrun its limits becomes evident, i.e. if adding 1 to a signed
byte variable that contains the value +127, the result will be -128 instead of +128. One
solution often used to solve this problem is to introduce fractional numbers, i.e. num-
bers that are less than 1 and greater than or equal to -1. The final section presents
some issues regarding the use of fractional numbers.

A listing of all implementations with key performance specifications is given in Table 1.
1

8-bit Multiplication Doing an 8-bit multiply using the hardware multiplier is simple, as the examples in this
section will clearly show. Just load the operands into two registers (or only one for
square multiply) and execute one of the multiply instructions. The result will be placed in
register pair R0:R1. However, note that only the MUL instruction does not have register
usage restrictions. Figure 1 shows the valid (operand) register usage for each of the
multiply instructions.

Example 1 – Basic Usage The first example shows an assembly code that reads the port B input value and multi-
plies this value with a constant (5) before storing the result in register pair R17:R16.

in r16,PINB ; Read pin values

ldi r17,5 ; Load 5 into r17

mul r16,r17 ; r1:r0 = r17 * r16

movw r17:r16,r1:r0; Move the result to the r17:r16

; register pair

Figure 1. Valid Register Usage

Table 1. Performance Summary

8-bit x 8-bit Routines: Word (Cycles)

Unsigned multiply 8 x 8 = 16 bits 1 (2)

Signed multiply 8 x 8 = 16 bits 1 (2)

Fractional signed/unsigned multiply 8 x 8 = 16 bits 1 (2)

Fractional signed multiply-accumulate 8 x 8 += 16 bits 3 (4)

16-bit x 16-bit Routines:

Signed/unsigned multiply 16 x 16 = 16 bits 6 (9)

Unsigned multiply 16 x 16 = 32 bits 13 (17)

Signed multiply 16 x 16 = 32 bits 15 (19)

Signed multiply-accumulate 16 x 16 += 32 bits 19 (23)

Fractional signed multiply 16 x 16 = 32 bits 16 (20)

Fractional signed multiply-accumulate 16 x 16 += 32 bits 21 (25)

R0
R1
R2
R3
R4

R6
R5

R7
R8
R9

R10
R11
R12

R14
R13

R15
R16
R17
R18
R19
R20

R22
R21

R23
R24
R25
R26
R27
R28

R30
R29

R31

MUL

R16
R17
R18
R19
R20

R22
R21

R23
R24
R25
R26
R27
R28

R30
R29

R31

R16
R17
R18
R19
R20

R22
R21

R23

MULS MULSU
FMUL

FMULS
FMULSU
2 FPSLIC
1971A–01/01

FPSLIC
Example 2 – Special Cases This example shows some special cases of the MUL instruction that are valid.
lds r0,variableA; Load r0 with SRAM variable A

lds r1,variableB; Load r1 with SRAM variable B

mul r1,r0 ; r1:r0 = variable A * variable B

lds r0,variableA; Load r0 with SRAM variable A

mul r0,r0 ; r1:r0 = square(variable A)

Even though the operand is put in the result register pair R1:R0, the operation gives the
correct result since R1 and R0 are fetched in the first clock cycle and the result is stored
back in the second clock cycle.

Example 3 – Multiply-
accumulate Operation

The final example of 8-bit multiplication shows a multiply-accumulate operation. The
general formula can be written as:

; r17:r16 = r18 * r19 + r17:r16

in r18,PIND ; Get the current pin value on port D

ldi r19,b ; Load constant b into r19

mulsr19,r18 ; r1:r0 = variable A * variable B

add r16,r0 ; r17:r16 += r1:r0

adc r17,r1

Typical applications for the multiply-accumulate operation are FIR (Finite Impulse
Response) and IIR (Infinite Impulse Response) filters, PID regulators and FFT (Fast
Fourier Transform). For these applications the FMULS instruction is particularly useful.
The main advantage of using the FMULS instruction instead of the MULS instruction is
that the 16-bit result of the FMULS operation always may be approximated to a (well-
defined) 8-bit format. This is discussed further in the “Using Fractional Numbers”
section.

16-bit Multiplication The new multiply instructions are specifically designed to improve 16-bit multiplication.
This section presents solutions for using the hardware multiplier to do multiplication with
16-bit operands.

Figure 2 schematically illustrates the general algorithm for multiplying two 16-bit num-
bers with a 32-bit result (C = A • B). AH denotes the high byte and AL the low byte of the
A operand. CMH denotes the middle high byte and CML the middle low byte of the
result C. Equal notations are used for the remaining bytes.

The algorithm is basic for all multiplication. All of the partial 16-bit results are shifted and
added together. The sign extension is necessary for signed numbers only, but note that
the carry propagation must still be done for unsigned numbers.

c n() a n() b c n 1–()+×=
3
1971A–01/01

Figure 2. 16-bit Multiplication, General Algorithm

16-bit x 16-bit = 16-bit
Operation

This operation is valid for both unsigned and signed numbers, even though only the
unsigned multiply instruction (MUL) is needed. This is illustrated in Figure 3. A mathe-
matical explanation is given:

When A and B are positive numbers, or at least one of them is zero, the algorithm is
clearly correct, provided that the product C = A • B is less than 216 if the product is to be
used as an unsigned number, or less than 215 if the product is to be used as a signed
number.

When both factors are negative, the two’s complement notation is used; A = 216 - |A| and
B = 216 - |B|:

C = A • B = (216 - |A|) • (216 - |B|) = |A • B| + 232 - 216 • (|A| + |B|)

Here we are only concerned with the 16 LSBs; the last part of this sum will be discarded
and we will get the (correct) result C = |A • B|.

AH AL BH BLX

AL * BL

AL * BH

AH * BL

AH * BH+

+

+

= CH CMH CML CL

(sign ext)

(sign
ext)

(sign
ext)
4 FPSLIC
1971A–01/01

FPSLIC
Figure 3. 16-bit Multiplication, 16-bit Result

When one factor is negative and one factor is positive, for example, A is negative and B
is positive:

C = A • B = (216 - |A|) • |B| = (216 • |B|) - |A • B| = (216 - |A • B|) + 216 • (|B| - 1)

The MSBs will be discarded and the correct two’s complement notation result will be C =
216 - |A • B|.

The product must be in the range 0 ≤ C ≤ 216 - 1 if unsigned numbers are used, and in
the range -215 ≤ C ≤ 215 - 1 if signed numbers are used.

When doing integer multiplication in C language, this is how it is done. The algorithm
can be expanded to do 32-bit multiplication with 32-bit result.

16-bit x 16-bit = 32-bit
Operation

Example 4 – Basic Usage
16-bit x 16-bit = 32-bit Integer
Multiply

Below is an example of how to call the 16 x 16 = 32 multiply subroutine. This is also
illustrated in Figure 4.

ldi R23,HIGH(672)

ldi R22,LOW(672) ; Load the number 672 into r23:r22

ldi R21,HIGH(1844)

ldi R20,LOW(1844); Load the number 1844 into r21:r20

callmul16x16_32 ; Call 16bits x 16bits = 32bits

; multiply routine

AH AL BH BLX

AL * BL

AL * BH

AH * BL+

+

= CLCH

1

2

3

5
1971A–01/01

Figure 4. 16-bit Multiplication, 32-bit Result

The 32-bit result of the unsigned multiplication of 672 and 1844 will now be in the regis-
ters R19:R18:R17:R16. If “muls16x16_32” is called instead of “mul16x16_32”, a signed
multiplication will be executed. If “mul16x16_16” is called, the result will only be 16 bits
long and will be stored in the register pair R17:R16. In this example, the 16-bit result will
not be correct.

16-bit Multiply-
accumulate Operation

Figure 5. 16-bit Multiplication, 32-bit Accumulated Result

AH AL BH BLX

AL * BL

AL * BH

AH * BL

AH * BH+

+

= CH CMH CML CL

(sign
ext)

(sign
ext)

1 + 2

3

4

AH AL BH BLX

AL * BL

AL * BH

AH * BL

AH * BH+

+

+

(sign ext)

(sign
ext)

(sign
ext)

= CH CMH CML CL

+ CH CL (Old)

(New)

CMH CML
6 FPSLIC
1971A–01/01

FPSLIC
Using Fractional
Numbers

Unsigned 8-bit fractional numbers use a format where numbers in the range [0, 2> are
allowed. Bits 6 - 0 represent the fraction and bit 7 represents the integer part (0 or 1), i.e.
a 1.7 format. The FMUL instruction performs the same operation as the MUL instruction,
except that the result is left-shifted 1 bit so that the high byte of the 2-byte result will
have the same 1.7 format as the operands (instead of a 2.6 format). Note that if the
product is equal to or higher than 2, the result will not be correct.

To fully understand the format of the fractional numbers, a comparison with the integer
number format is useful: Table 2 illustrates the two 8-bit unsigned numbers formats.
Signed fractional numbers, like signed integers, use the familiar two’s complement for-
mat. Numbers in the range [-1, 1> may be represented using this format.

If the byte “1011 0010” is interpreted as an unsigned integer, it will be interpreted as
128 + 32 + 16 + 2 = 178. On the other hand, if it is interpreted as an unsigned fractional
number, it will be interpreted as 1 + 0.25 + 0.125 + 0.015625 = 1.390625. If the byte is
assumed to be a signed number, it will be interpreted as 178 - 256 = -122 (integer) or as
1.390625 - 2 = -0.609375 (fractional number).

Using the FMUL, FMULS and FMULSU instructions should not be more complex than
the MUL, MULS and MULSU instructions. However, one potential problem is to assign
fractional variables right values in a simple way. The fraction 0.75 (= 0.5 + 0.25) will, for
example, be “0110 0000” if 8 bits are used.

To convert a positive fractional number in the range [0, 2> (for example 1.8125) to the
format used in the AVR, the following algorithm, illustrated by an example, should be
used:
Is there a “1” in the number?
Yes, 1.8125 is higher than or equal to 1.

Byte is now “1xxx xxxx”
Is there a “0.5” in the rest?

0.8125 / 0.5 = 1.625

Yes, 1.625 is higher than or equal to 1.
Byte is now “11xx xxxx”
Is there a “0.25” in the rest?

0.625 / 0.5 = 1.25
Yes, 1.25 is higher than or equal to 1.

Byte is now “111x xxxx”

Is there a “0.125” in the rest?
0.25 / 0.5 = 0.5

No, 0.5 is lower than 1.

Byte is now “1110 xxxx”
Is there a “0.0625” in the rest?

0.5 / 0.5 = 1

Yes, 1 is higher than or equal to 1.
Byte is now “1110 1xxx”

Table 2. Comparison of Integer and Fractional Formats

Bit Number 7 6 5 4 3 2 1 0

Unsigned integer bit
significance

27 = 128 26 = 64 25 = 32 24 = 16 23 = 8 22 = 4 21 = 2 20 = 1

Unsigned fractional number
bit significance

20 = 1 2-1 = 0.5 2-2 = 0.25 2-3 = 0.125
2-4 =

0.0625
2-5 =

0.3125
2-6 =

0.015625
2-7 =

0.0078125
7
1971A–01/01

Since we do not have a rest, the remaining three bits will be zero, and the final result is
“1110 1000”, which is 1 + 0.5 + 0.25 + 0.0625 = 1.8125.

To convert a negative fractional number, first add 2 to the number and then use the
same algorithm as already shown.

16-bit fractional numbers use a format similar to that of 8-bit fractional numbers; the high
8 bits have the same format as the 8-bit format. The low 8 bits are only an increase of
accuracy of the 8-bit format; while the 8-bit format has an accuracy of ±2-8, the16-bit for-
mat has an accuracy of ±2-16. Then again, the 32-bit fractional numbers are an increase
of accuracy to the 16-bit fractional numbers. Note the important difference between inte-
gers and fractional numbers when extra byte(s) are used to store the number: while the
accuracy of the numbers is increased when fractional numbers are used, the range of
numbers that may be represented is extended when integers are used.

As mentioned earlier, using signed fractional numbers in the range [-1, 1> has one main
advantage to integers: when multiplying two numbers in the range [-1, 1>, the result will
be in the range [-1, 1], and an approximation (the highest byte(s)) of the result may be
stored in the same number of bytes as the factors, with one exception: when both fac-
tors are -1, the product should be 1, but since the number 1 cannot be represented
using this number format, the FMULS instruction will instead place the number -1 in
R1:R0. The user should therefore assure that at least one of the operands is not -1
when using the FMULS instruction. The 16-bit x 16-bit fractional multiply also has this
restriction.

Example 5 – Basic Usage
8-bit x 8-bit = 16-bit Signed
Fractional Multiply

This example shows an assembly code that reads the port D input value and multiplies
this value with a fractional constant (-0.625) before storing the result in register pair
R17:R16.

in r16,PIND ; Read pin values

ldi r17,$B0 ; Load -0.625 into r17

fmuls r16,r17 ; r1:r0 = r17 * r16

movw r17:r16,r1:r0; Move the result to the r17:r16

; register pair

Note that the usage of the FMULS (and FMUL) instructions is very similar to the usage
of the MULS and MUL instructions.

Example 6 – Multiply-
accumulate Operation

The example below uses data configured so that the format of the data is compatible
with the fractional two’s complement format.

ldi r23,$62 ; Load highbyte of

; fraction 0.771484375

ldi r22,$C0 ; Load lowbyte of

; fraction 0.771484375

in r20,DATA_LOW ; Get lowbyte of data

in r21,DATA_HIG ; Get highbyte of data

callfmac16x16_32;Call routine for signed fractional

; multiply accumulate

The registers R19:R18:R17:R16 will be incremented with the result of the multiplication
of 0.771484375 with the data. In this example, the data result is treated as a signed frac-
tion number. We could also treat it as a signed integer and call it “mac16x16_32” instead
of “fmac16x16_32”. In this case, the 0.771484375 should be replaced with an integer.
8 FPSLIC
1971A–01/01

FPSLIC
Implementations Function

mul16x16_16

Description

Multiply of two 16-bit numbers with a 16-bit result.

Usage

R17:R16 = R23:R22 • R21:R20

Statistics

Cycles: 9 + ret

Words: 6 + ret

Register usage: R0, R1 and R16 to R23 (8 registers)
Note: Full orthogonality, i.e. any register pair can be used as long as the result and the two

operands do not share register pairs. The routine is non-destructive to the operands.

mul16x16_16:

 mul r22, r20 ; al * bl

 movw r17:r16, r1:r0

 mul r23, r20 ; ah * bl

 add r17, r0

 mul r21, r22 ; bh * al

 add r17, r0

 ret

Function

mul16x16_32

Description

Unsigned multiply of two 16-bit numbers with a 32-bit result.

Usage

R19:R18:R17:R16 = R23:R22 • R21:R20

Statistics

Cycles: 17 + ret

Words: 13 + ret

Register usage: R0 to R2 and R16 to R23 (11 registers)
Note: Full orthogonality, i.e. any register pair can be used as long as the 32-bit result and the

two operands do not share register pairs. The routine is non-destructive to the operands.

mul16x16_32:

 clr r2

 mul r23, r21 ; ah * bh

 movw r19:r18, r1:r0

 mul r22, r20 ; al * bl

 movw r17:r16, r1:r0

 mul r23, r20 ; ah * bl

 add r17, r0

 adc r18, r1

 adc r19, r2

 mul r21, r22 ; bh * al

 add r17, r0
9
1971A–01/01

 adc r18, r1

 adc r19, r2

 ret

Function

muls16x16_32

Description

Signed multiply of two 16-bit numbers with a 32-bit result.

Usage

R19:R18:R17:R16 = R23:R22 • R21:R20

Statistics

Cycles: 19 + ret

Words: 15 + ret

Register usage: R0 to R2 and R16 to R23 (11 registers)
Note: The routine is non-destructive to the operands.

muls16x16_32:

 clr r2

 muls r23, r21; (signed)ah * (signed)bh

 movw r19:r18, r1:r0

 mul r22, r20; al * bl

 movw r17:r16, r1:r0

 mulsu r23, r20; (signed)ah * bl

 sbc r19, r2 ; Sign extend

 add r17, r0

 adc r18, r1

 adc r19, r2

 mulsu r21, r22; (signed)bh * al

 sbc r19, r2 ; Sign Extend

 add r17, r0

 adc r18, r1

 adc r19, r2

 ret

Function

mac16x16_32

Description

Signed multiply-accumulate of two 16-bit numbers with a 32-bit result.

Usage

R19:R18:R17:R16 += R23:R22 • R21:R20

Statistics

Cycles: 23 + ret

Words: 19 + ret

Register usage: R0 to R2 and R16 to R23 (11 registers)
mac16x16_32: ; Register Usage Optimized

 clr r2

 muls r23, r21 ; (signed)ah * (signed)bh
10 FPSLIC
1971A–01/01

FPSLIC
 add r18, r0

 adc r19, r1

mul r22, r20 ; al * bl

 add r16, r0

 adc r17, r1

 adc r18, r2

 adc r19, r2

 mulsu r23, r20 ; (signed)ah * bl

 sbc r19, r2

 add r17, r0

 adc r18, r1

 adc r19, r2

 mulsu r21, r22 ; (signed)bh * al

 sbc r19, r2 ; Sign extend

 add r17, r0

 adc r18, r1

 adc r19, r2

 ret

mac16x16_32_method_B: ; uses two temporary registers (r4,r5), Speed /
Size Optimized

 ; but reduces cycles/words by 1

 clr r2

 muls r23, r21 ; (signed)ah * (signed)bh

 movw r5:r4,r1:r0

 mul r22, r20 ; al * bl

 add r16, r0

 adc r17, r1

 adc r18, r4

 adc r19, r5

 mulsu r23, r20 ; (signed)ah * bl

 sbc r19, r2 ; Sign extend

 add r17, r0

 adc r18, r1

 adc r19, r2

 mulsu r21, r22 ; (signed)bh * al

 sbc r19, r2 ; Sign extend

 add r17, r0

 adc r18, r1

 adc r19, r2

 ret
11
1971A–01/01

Function

fmuls16x16_32

Description

Signed fractional multiply of two 16-bit numbers with a 32-bit result.

Usage

R19:R18:R17:R16 = (R23:R22 • R21:R20) << 1

Statistics

Cycles: 20 + ret

Words: 16 + ret

Register usage: R0 to R2 and R16 to R23 (11 registers)

Note: The routine is non-destructive to the operands.

fmuls16x16_32:

 clr r2

 fmuls r23, r21 ; ((signed)ah * (signed)bh) << 1

 movw r19:r18, r1:r0

 fmul r22, r20 ; (al * bl) << 1

 adc r18, r2

 movw r17:r16, r1:r0

 fmulsu r23, r20; ((signed)ah * bl) << 1

 sbc r19, r2 ; Sign extend

 add r17, r0

 adc r18, r1

 adc r19, r2

 fmulsu r21, r22; ((signed)bh * al) << 1

 sbc r19, r2 ; Sign extend

 add r17, r0

 adc r18, r1

 adc r19, r2

 ret

Function

fmac16x16_32

Description

Signed fractional multiply-accumulate of two 16-bit numbers with a 32-bit result.

Usage

R19:R18:R17:R16 += (R23:R22 • R21:R20) << 1

Statistics

Cycles: 25 + ret

Words: 21 + ret

Register usage: R0 to R2 and R16 to R23 (11 registers)
fmac16x16_32: ; Register usage optimized

 clr r2

 fmuls r23, r21 ; ((signed)ah * (signed)bh) << 1

 add r18, r0

 adc r19, r1
12 FPSLIC
1971A–01/01

FPSLIC
 fmul r22, r20 ; (al * bl) << 1

 adc r18, r2

 adc r19, r2

 add r16, r0

 adc r17, r1

 adc r18, r2

 adc r19, r2

 fmulsu r23, r20 ; ((signed)ah * bl) << 1

 sbc r19, r2

 add r17, r0

 adc r18, r1

 adc r19, r2

 fmulsu r21, r22 ; ((signed)bh * al) << 1

 sbc r19, r2

 add r17, r0

 adc r18, r1

 adc r19, r2

 ret

fmac16x16_32_method_B: ; uses two temporary registers (r4,r5), speed /
Size optimized

 ; but reduces cycles/words by 2

 clr r2

 fmuls r23, r21 ; ((signed)ah * (signed)bh) << 1

 movw r5:r4,r1:r0

 fmul r22, r20 ; (al * bl) << 1

 adc r4, r2

 add r16, r0

 adc r17, r1

 adc r18, r4

 adc r19, r5

fmulsu r23, r20 ; ((signed)ah * bl) << 1

 sbc r19, r2

 add r17, r0

 adc r18, r1

 adc r19, r2

 fmulsu r21, r22 ; ((signed)bh * al) << 1

 sbc r19, r2

 add r17, r0

 adc r18, r1

 adc r19, r2

 ret
13
1971A–01/01

Comment on
Implementations

All 16-bit x 16-bit = 32-bit functions implemented here start by clearing the R2 register,
which is just used as a “dummy” register with the “add with carry” (ADC) and “subtract
with carry” (SBC) operations. These operations do not alter the contents of the R2 regis-
ter. If the R2 register is not used elsewhere in the code, it is not necessary to clear the
R2 register each time these functions are called, but only once prior to the first call to
one of the functions.
14 FPSLIC
1971A–01/01

© Atmel Corporation 2001.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex
France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Atmel Smart Card ICs
Scottish Enterprise Technology Park
East Kilbride, Scotland G75 0QR
TEL (44) 1355-357-000
FAX (44) 1355-242-743

Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex
France
TEL (33) 4-7658-3000
FAX (33) 4-7658-3480

Atmel FPSLIC Hotline
1-(408) 436-4119

Atmel FPSLIC e-mail
fpslic@atmel.com

FAQ
Available from Website

Fax-on-Demand
North America:
1-(800) 292-8635

International:
1-(408) 441-0732

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

 Printed on recycled paper.

1971A–01/01/xM

AVR and FPSLIC are trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

	Features
	Introduction
	8-bit Multiplication
	Example 1 – Basic Usage
	Example 2 – Special Cases
	Example 3 – Multiply- accumulate Operation

	16-bit Multiplication
	16-bit x 16-bit = 16-bit Operation
	16-bit x 16-bit = 32-bit Operation
	Example 4 – Basic Usage 16�bit�x 16-bit = 32-bit Integer Multiply

	16-bit Multiply- accumulate Operation

	Using Fractional Numbers
	Example 5 – Basic Usage 8�bit�x 8-bit = 16-bit Signed Fractional Multiply
	Example 6 – Multiply- accumulate Operation

	Implementations
	Comment on Implementations

