
Integrated Development System - Figaro
User Guide

June 2002

i

Welcome to the Integrated Development System (IDS) from Atmel
Corporation. This versatile system works with a variety of CAE
platforms, providing a range of design entry and simulation op-
tions when designing an Atmel field programmable gate array
(FPGA). ViewLogic’s Workview Office and Powerview products,
and OrCAD Express for Windows are supported for schematic
entry and simulation. Simulation platforms supported also include
Vital VHDL systems from Model Technology, and the Verilog-XL
simulator.

Synthesis tools from Synopsys, Viewlogic, Everest Design
Systems and Exemplar Logic are integrated into the system to
provide optimum results. Atmel's IDS lets designers create fast,
efficient, and predictable designs with AT40k Series FPGAs.

IDS has integrated an HDL planning environment to create effi-
cient, technology independent VHDL and Verilog designs on
Atmel FPGAs. Currently Synopsys, Exemplar, and Everest synthe-
sis software is supported.

IDS also supports designs in the Xilinx XNF format. It provides
the user with the ability to translate a Xilinx XC3000, XC4000, or
XC5200 family design into an AT40k device. Most of the XBLOX
components in a XNF design are automatically mapped to Atmel
Macro Generator components. XNF import is integrated into the
Viewlogic design flow.

Operation of the IDS is controlled by a single graphical interface,
the Figaro Desktop. Figaro integrates the programs, links them
through a unified data base, and provides a seamless working
environment that allows the user to move easily among the
programs. While the system is configured to help the user design
and layout the chip by invoking the appropriate design modules,
the user can also run programs independently from the Shell
Window command-line.

It is recommended that the user also browse through the AT40k
IDS Tutorial. The manual details steps to set up and implement
sample designs using Figaro and the supported CAE interfaces. It
also discusses ways to optimize designs for the AT6000 and
AT40k architecture, so the user can create the chip in the most
efficient manner.

ii

Conventions Used in This Manual

The following typographical conventions are used in this guide:

� File names, and program names are in Helvetica type, e.g.
atmel.ini, PLA2Cdb

� Variables are in italics, e.g. DesignName.lib

� Text to be entered in input boxes are enclosed in “ ”, e.g.
“4bitalu”

� Italic text is used for names of buttons on the Flow Bars, e.g.
Open

� Keyboard functions are shown as <Key>, e.g. <Enter>

� Buttons to execute functions are shown as pictograms, e.g.
Run

iii

Product Updates

Updates are made available to users during the maintenance pe-
riod at no charge to the user. Each update comes with its own in-
stallation program, release notes, and any special instructions that
might be necessary to make the transition to the new software
version.

Sales Representatives

Atmel sales representatives are ready to assist with pre-sales questions,
product literature, price information, and product availability. To
contact a local sales representative, please call Atmel at
408.441.0311 during normal business hours.

Customer Service

Atmel Corporation Customer Service provides software and hard-
ware support and assists customers in uploading and downloading
files.

Assistance with any matter related to the IDS can be obtained by
the following methods:

1. Calling Customer Service at 408.436.4119 between 9 am
and 5 pm, Pacific Standard Time

2. Sending electronic mail to fpga@atmel.com

3. Accessing Atmel’s web site at http://www.atmel.com

4. Faxing to 408.436.4200

5. Writing to:
Atmel Customer Service
2325 Orchard Parkway
San Jose, CA 95131
USA

iv

System Basics

1-1

System Basics

The Integrated Development System (IDS), otherwise known as
Figaro, is designed to provide push-button capability in the design
of Atmel FPGAs. This allows the user to either automate the de-
sign process, or optimize the design by invoking manual place-
ment and routing options.

IDS supports many forms of design entry which include schemat-
ics, equation entry, and high-level language design. The system
then automatically places, routes and optimizes the design to fit
into the target device. Once that is completed, the user has a
choice of either downloading the data onto the FPGA, Serial
Configuration Memory, or creating a library of user defined mac-
ros (UDMs) for future applications. Expanded design analysis
features provide delay estimates across the chip, as well as export
timing reports and back annotation files for many different
simulators.

The general concepts and organization of the design phases are
discussed in this chapter, along with the following topics. To learn
how to enter, simulate, compile, and back annotate a sample de-
sign with different menu options, refer to the IDS Tutorial for more
information.

� IDS Design Flow
� Designs and User Libraries
� Common Design Information
� On-line Help
� The Transcript Window
� The Shell Window
� Starting and Ending a Session

System Basics

1-2

IDS Design Flow

The following diagram summarizes the IDS design flow functions
for bitstream creation.

IDS Design Flow

System Basics

1-3

Designs and User Libraries

The design directory holds all files related to the design. This
directory allows grouping of related designs and provides a
consistent structure so that Figaro can handle design management
tasks for the user. By Viewlogic and Intergraph convention, the
design directory is analogous to the project directory.

Design files include all schematic-related and Figaro data base
files. A design directory must be set up before schematic entry,
simulation, or layout of a design can commence. This directory is
the only place searched by Figaro for the design files.

See the IDS Tutorial for details on setting up a design. As a part of
the process, the directory for storing all the design data must be
identified to the system.

User Libraries

IDS supports the application of user libraries. The user library
management features are intended to facilitate design reuse and
help create high performance circuits. These libraries are reposito-
ries for user defined components which have been created by the
Macro Generators, user schematics, or language-based entry. The
system allows the user to specify as many libraries as needed. A
common practice is to set up a design-specific library and main-
tain another that contains common macros shared by different
designs.

A library consists of several parts which include the layout files,
the CAE system specific files (schematics, symbols, etc.), and any
related files that were used to produce the layout. Figaro will
maintain all files that go into and out of libraries as well as set up
the appropriate control files for the CAE system to access the
libraries.

The Library>Library Setup dialog box is used to create a user li-
brary. Once specified, Figaro will create the layout library file as
well as the library sub-directory for storing the rest of the library
information. The Figaro chapter in the IDS Tutorial will provide
details on this structure. Also refer to specific platforms under
“CAE Interfaces” in the Tutorial for details on design related files
that are stored in the library.

System Basics

1-4

Sample structures for the PC and Workstation environments are
provided below.

For the PC

If a layout library was defined as c:\AtUser\4bitalu\user.lib the fol-
lowing structure would be created:

c:\AtUser\4bitalu\
user.lib

user\

macro1\

macro1 design files
CAE system files

macro2\

macro2 design files
CAE system files

CAE system files\

For the Workstation

/AtUser/4bitalu/
 user.lib
 user/

 macro1/

macro1 design files
CAE system files

 macro2/

macro2 design files
CAE system files

 CAE system files/

System Basics

1-5

Common Design Information

Figaro.ini

The user can customize projects by configuring such items as pin
package specifications, design check rules, automatic place and
route performance, design analysis parameters, bitstream format,
and numerous ancillary screen output functions. The user can de-
termine the default setting each time when beginning a new
design.

In the design settings, the user can define such things as libraries
for design data, and where output is to be stored for each design.

Figaro utilizes two configuration files, the figaro.ini and
DesignName.ini files, to store user and design settings.

The user environment is defined in the figaro.ini file. This file con-
tains such information as individual user defined (or default) dis-
play threshold and color assignments, and tracks all designs from
a single location. The contents of the figaro.ini file can be changed
under the Options>Options and Options>Display Options menus.
This file is stored in the directory where Figaro is run from. The
user should ensure that the program is started from the same
directory each time so the required setup information can be
reloaded.

DesignName.ini

The DesignName.ini file contains design settings that directly af-
fect the design data, independent of the user’s environment. This
file is maintained as needed. It is updated when changes to any
design specific setting, such as defining a user library, are made.

The DesignName.ini file is stored in the design directory. It will be
loaded whenever the design is selected via the File>Design Setup
or Open Design menu options. The file is given the same name as
the design. For the example design called “4bitalu”, there will be
a file named 4bitalu.ini in its design directory.

The following output files contain information that reflect the op-
erations of the software:

System Basics

1-6

DesignName.log

The DesignName.log file contains a list of all operations initiated
for a design. Diverse information about the design setup, design
checks done when a design is opened, placement and routing sta-
tistics and many other details are stored in this file. All infor-
mation that is displayed in the transcript window will be stored in
the log as well. A toolbar button is available for viewing of the log
file. This file should be reviewed when any problem is encoun-
tered during execution of the design flow.

Program Output Files

The Integrated Design System is composed of many different pro-
grams, and the user will encounter a good variety of files in the
design directory. A detailed list of all program output files will be
found in the following documentation:

� IDS Tutorial, Figaro - Figaro Files.
� Technical Reference & Release Notes, Design Files.

Backup Files

Programs that modify the data base files generate a backup file.
When a new copy of most any file in the design is produced, the
previous copy is saved, with a “~” character as the last character
of the file extension. For example 4BITALU.LOG, would be saved
as 4BITALU.LO~.

On-line Help

The Help function contains detailed information on all parts of the
IDS. This function is context sensitive, but can also be invoked di-
rectly from the menu bar. The “Figaro” section of the IDS Tutorial
contains detailed information on how to invoke and get Help on
specific topics. An example of the Help window is shown below.

System Basics

1-7

The Help Window

The Transcript Window

All information about processes within IDS is displayed in the
transcript window. The information displayed here is also stored
in the design log file. Normal design information will be
displayed in a standard font in black. All warnings are displayed
in a bold font in blue. All errors are displayed in the same bold
font in red. The user should check this window first to determine
the progress of a design.

Refer to the “Figaro” section of the IDS Tutorial for more details
on the transcript window.

System Basics

1-8

The Shell Window

The New Shell Window button in the vertical menu bar will create
a window for manipulation of files in the design directory.
Common operations such as editing simulation command files or
creating constraint files can easily be done, as the shell is invoked
in the design directory.

Starting a Session

Before beginning a session, verify that the appropriate environ-
ment variables are set for Figaro and the selected CAE system.
These variables are discussed in the “Installation Guide” as well
as the Tutorial for the specific CAE System.

To invoke Figaro from within Windows, double click on its icon,
or enter the command “figaro” if in UNIX. Set the active design
by using the icon or File>Design Setup menu option.

Subsequent chapters will discuss each design phase or activity
represented by the Flowbar buttons.

Ending a Session

Select the File>Exit menu option to end the Figaro session. A
prompt will be displayed to confirm exiting from the Desktop. If a
design has been modified in any way, an additional prompt will be
issued to save the design.

Design Entry

2-1

Design Entry

The Integrated Development System (IDS) offers a wide array of
interfaces to work with design input processes such as schematic
capture, equation entry, macro generation, and HDL planning and
entry. Once the design is entered, it can be simulated. A netlist
can then be created and the layout completed based on the
specified CAE system.

Figaro supports Viewlogic tools for schematic capture. This plat-
form is fully integrated with IDS so the interface is transparent to
the user when moving between Figaro and the third party system
during all phases of the design.

Designs requiring equation entry are also supported by IDS. Al-
though ABEL and CUPL users must run these tools on PCs outside
of Figaro they can bring the resulting *.tt1, *.tt2, or *.pla, formatted
files into IDS for optimization and/or conversion into schematics or
components for the user library in the PC. The macros created can
optionally be simulated with any of the supported CAE tools.

The user can also take advantage of the Macro Generators in IDS
to create efficient and optimized building blocks for the design.
These functions range in complexity from simple gates to complex
parallel pipelined multipliers. The vast array of Generators will
provide more opportunities and flexibility when implementing a
design.

Another possible method of design input is via high level design
language (HDL) entry. HDLPlanner offers an environment that
fosters code portability and facilitates the use of optimized macros.
The user can take advantage of functional modules previously
optimized for the AT40k architecture and apply them to current or
future designs.

To support HDL Entry, the Atmel macro library has been trans-
lated for third party vendors of synthesis tools such as Viewlogic,
Synopsys, Everest, and Exemplar Logic. These synthesis tools are
integrated into Figaro to facilitate the high level design entry
process. As a result, performance can be optimized through op-
erator inferencing and use of the Atmel Macro Generators .

Design Entry

2-2

The AT40k library of components can be divided into 2 types of
macros: functional and dynamic. Functional macros are compo-
nents with fixed functions, such as the 2 input AND gate.
Dynamic macros are designed to allow user specification of any
desired function, to be attached as an attribute via an equation
string, on the symbol. This should be used only when a specific
function for an AT40k core cell is required. Designs targeted to
AT40k can use a mix of dynamic and functional macros. Please
refer to the AT40k Macro Library for more details on the list of all
macros and the attributes available.

Once a design has been entered and synthesized with optional
tools, a netlist can be generated and used for placement and
routing.

Schematic Entry

2-3

Schematic Entry

The Integrated Development System is set up to provide the user
direct access to a variety of schematic capture tools from the
Figaro Desktop. The products supported are:

� Viewlogic PC products Workview Office, PROSeries, and
WorkviewPlus; Sun workstation products Powerview, and
Workview

� OrCAD Express for Windows

To start schematic entry from Figaro, click on the Schematic
Entry button on the Flowbar as shown. The CAE tool of choice
will be brought up within the Figaro environment.

Schematic Entry

Schematic Entry

2-4

System Setup

Figaro automatically sets up the paths and directories needed for
the Atmel libraries, user libraries, and the design directory to in-
terface with the CAE system specified.

The Atmel FPGA library is used to reference logical and timing
models for every cell in the library, while the user libraries con-
tain custom macros created for functions specific to current or
prior designs. The design directory houses all the output files from
both the schematic tool and Figaro that are related to the design.

Figaro also automatically calls up the CAE tools in the IDS envi-
ronment and integrates the process into the design flow for netlist
creation.

Viewlogic

IDS controls the complete process of entering schematics with the
Viewlogic tool. Once a design has been set up via the icon or
File>Design Setup dialog box, the Schematic Entry button can be
used to bring up the schematic editor on the current design.

As part of the process, Figaro will update the project.vpj, registry,
and viewdraw.ini files for Workview Office, or the project.lst and
viewdraw.ini files for other Viewlogic systems. It will also invoke
the appropriate Viewlogic tool for schematic entry. The following
table lists the platform and the tool invoked:

CAE Platform Tool

Workview Office Viewdraw

PROSeries PROcapture

WorkviewPlus Viewdraw

Powerview Viewdraw

Workview Workview

Schematic Entry

2-5

Once in the schematic tool, all macros used must be: a) Atmel
FPGA library components, b) user library components, or
c) hierarchical blocks that have been created with the Atmel
FPGA library. Viewlogic BUILTIN library elements cannot be
used as the Figaro placement and routing tools will not recognize
them.

Once the design has been captured, the user can proceed to simu-
late or compile. For compilation, the Viewlogic Wir files are read
directly by Figaro using the Open button.

OrCAD Express for Windows

IDS controls the complete process of entering schematics with the
OrCAD tool. Once a design has been set up via the icon or
File>Design Setup dialog box, the Schematic Entry button can be
used to bring up the schematic editor on the current design.

Once in the schematic tool, all macros used must be: a) Atmel
FPGA library components, b) user library components, or
c) hierarchical blocks that have been created with the Atmel
FPGA library.

It is important to attach “hierarchical ports” to all input and
output pins at all levels of the design. The user should also change
the name and type for each port used. This ensures proper creation
of the ports and corresponding directions by the netlist generator for
Figaro to perform placement and routing.

Once the design has been captured, the user can proceed to
compile (Pre-layout Functional Simulation is not supported for
designs using the dynamic macros). For compilation, the OrCAD
EDIF files are read directly by Figaro using the Open button.

A VITAL VHDL library is supported for Post-layout Simulation of
OrCAD designs. For more details please refer to the OrCAD
tutorial.

Schematic Entry

2-6

PLA Optimization

2-7

PLA Optimization

The Integrated Development System provides the interface to PLA
formatted designs from the Figaro Desktop. Before invoking this
function the user needs to enter, edit, and translate their equation based
designs to the PLA format. Equation entry provides a compact way of
transferring logic descriptions to the Atmel FPGA design tools. The
PLA optimization function allows the user to perform logic minimi-
zation, technology mapping, and layout optimization from Figaro.
The resulting output can be converted into a hard macro or a sche-
matic for use in the design and simulated as needed. The PLA
compilers supported are:

� DATA I/O ABEL

� CUPL

The ABEL and CUPL compilers are PC based products, and the
resulting files can be set up to interface directly with the Figaro
software on either the PC or the workstation.

Click on the PLA Optimization button on the Flowbar as shown to
initiate the optimization and conversion process.

PLA Optimization Dialog Box

PLA Optimization

2-8

Design Flow

This module is invoked as another means of design entry when an
optimized equation-based function is needed for a design.

The Figaro design flow allows a mixed method of design entry.
The design sub-modules are specified in ABEL or CUPL format,
optimized individually, and become sub-blocks or complete de-
signs. The individual sub-modules are then instantiated in a top
level schematic with the appropriate I/Os added to form a com-
plete design. Optionally the PLA description can constitute a
complete design with I/Os automatically inserted by this tool.

The design flow utilizing PLA entry is illustrated and described in
detail below.

PLA Design Flow in IDS

PLA Optimization

2-9

System Setup

PLA Optimization is tailored for compiling optimized user-defined
blocks. To ensure that the ABEL or CUPL PLA outputs are sent to
the correct directories, the design files should be in place prior to
initiating Optimize PLA. Refer to the CAE Interfaces section in the
IDS Tutorial for a detailed description of the Setup process.

Conversion and Optimization

The process of creating a design starts with the design and library
setup as already mentioned. The design is partitioned into sub-
modules and an ABEL or CUPL description is written for each of
them. This is done independent of the Figaro environment. The
user should run the appropriate program and options to generate
the files needed. These files should be stored in the design direc-
tory. When the Optimize PLA button is selected, a dialog box
appears in the Figaro Desktop which looks like the following.

The PLA Optimization and Mapping Dialog Box

The options in the dialog box are explained in detail below.

PLA Optimization

2-10

Insert IO The user can invoke the automatic pad insertion algo-
rithm by selecting this option. By default, ITTL, OD and ODEN
pad buffers are inserted. However, if the file designName.pin is
placed in the design directory, it can be specified to override the
default pad types. This file should contain a signal name and a
pad type, each on a separate line. An example .pin file is given
below.

IN1 ITTLP

IN2 ITTLP

OUT1 ODF

OUT2 ODF

Generate ViewLogic Schematic This switch is used to create a
ViewLogic Schematic.

CUPL This switch is used to read *.pla files produced by the
CUPL compiler. By default, the *.tt1 or *.tt2 files produced by
ABEL compilers are used.

Technology If Technology is set to AND XOR, pre-optimized
PLA files (*.tt1 for ABEL and *.pla for CUPL) are taken as input
and AND-XOR optimization is performed

Some designs can be more efficiently optimized as AND-OR
equations instead of AND-XOR equations. Although AND-OR
minimization is not done using PLA optimization, it will still
accept files that are optimized within the ABEL environment. After
such optimization in ABEL, a PLA file with the extension *.tt2
will be created and should be placed in the design directory. This
file will be used for technology mapping of AND-OR equations.

Note to Users of ABEL 5.X Software

The ABEL compiler version 5.1 onwards does not produce a *.tt1
file. Therefore, a *.tt1 file cannot be used for AND-XOR optimiza-
tion. If AND-XOR optimization is needed, users can copy and
rename the *.tt2 file as *.tt1 and perform AND-XOR optimization.

Macro Generators

2-11

Macro Generators

The Macro Generators module provides the user with the ability
to construct highly efficient counters, adders, and other structured
blocks. It is designed to allow easy inclusion of new Generators
from Atmel and other third party vendors in the future. The core
set of Generators is based on the EIA Library of Parameterized
Macros (LPM) standard. This core set has been enhanced to
achieve a superset to this specification.

A complete explanation of each Generator available at the time of
release is provided in the Technical Reference & Release Notes.
Because of continuous additions to the Macro Generators, some
new functions may not be covered in the manual. On-line Help
provides the most current information, and is discussed in this
chapter. Both on-line Help and the Technical Reference manual
provide information on the parameters available, pin type descrip-
tions, and truth tables. Statistics on speed, delay, size, gates per
cell, and power consumption are also addressed.

The basic user interface and details of how to get more informa-
tion about a specific Generator are explained below. A step by step
description on how to run a Generator is also available in the
AT40K IDS Tutorial manual.

Design Flow

A design and its associated user library must be set up prior to the
initiation of this module. Once the Macro Generators button is se-
lected, the following dialog box will appear in the Figaro Desktop
as shown below.

Macro Generators

2-12

Macro Generators Dialog Box

The tabs along the bottom represent the various categories of
Macro Generators available. The arrow buttons along the bottom
allow the user to scroll through the entire selection. The tabs
along the side display the Generator functions. A function may be
available for more than one category. The arrow buttons along the
side allow the user to scroll through the entire selection.

The user must enter the name of the macro to be created before
the Generators can put it into the library. Specify the appropriate
values for the parameters such as the input or output widths of the
function. If any required field is not filled in prior to selecting the

Generate button an error message will be displayed.

Macro Generators Error Message

Macro Generators

2-13

To get details on component functionality and the associated
parameters, press the Help button.

Verify the library path in the User Library list box or specify a
new library by pressing the Browse button.

When Macro Generators is run, IDS will typically create a sche-
matic automatically for the specified CAE system. However, for
certain CAE platforms, a schematic is not required and so sche-
matic generation is an optional step which is controlled through a
check box in the Macro Generators dialog box.

The Macro Generators create a fixed layout hard macro for
Figaro and the corresponding CAE systems symbol and simulation
models. In the Macro Generators dialog box, the user has an op-
tion to generate just a schematic and simulation model for the de-
sired macro by clearing the Hard Macro check box. This allows
the user to edit the schematic and change the logic of the macro
generated. However, the layout for the macro is not generated. It
is most efficient to use the output of the Macro Generators as a
hard macro.

The default pin names on the components generated by the Macro
Generators can be changed by specifying the user defined pin
names in a file and providing the name of that file as the value for
the Pin Map File Name option in the Macro Generators dialog
box. The optional pin map file allows alternate pin names to be
specified.

Press the Help button in the dialog box to get information on the
default pin names of the component. The pin map file syntax is as
follows:

map default_pin_name user_defined_pin_name

As an example, the default pin names generated for a 4 bit adder
component are DATAA[3:0], DATAB[3:0], SUM[3:0], CIN, COUT. To
change these pins to A[3:0], B[3:0], Q[3:0], RCI, RCO respectively the
corresponding pin map file should contain the following lines.

map DATAA A

map DATAB B

map CIN RCI

map COUT RCO

Macro Generators

2-14

map SUM Q

Several macros can be generated in batch mode by using the Add To
Batch function in the Macro Generators dialog box. To use the Macro
Generators Add To Batch function follow the steps below.

� Store the macro settings in the batch by pressing Add To
Batch after specifying the parameters for each macro. The
Batch Size on the lower right corner of the Macro Generators
dialog box will get incremented by one.

� Review the macros by pressing View Batch to bring up the
following dialog box. To remove a macro from the batch list,
select a macro and press Remove. Press Close to return to the
Macro Generator dialog box.

View Batch Dialog Box

� Press Generate when all macros are configured to the appro-
priate settings and Batch Size shows the final count. After
each macro is generated and stored in the user library, the
Batch Size counter is decremented accordingly. The following
dialog box appears after successful completion of the Macro
Generators batch run.

Completed Batch Run Dialog Box

Macro Generators

2-15

User Library Structure

Although user libraries are discussed at great length elsewhere,
some important information that relate to the Macro Generators
are highlighted below.

Output Files

Once all of the needed information is specified, Macro Generators
can be invoked to create a complete user library component with
the associated output files as follows:

Layout Except for the I/O modules, all Generators create a hard
layout by default which is stored in the Figaro format user library.
Clearing the Hard Macro option instructs Figaro to leave the cir-
cuit as a soft macro.

Schematic The Generators produce schematics for the Viewlogic
platform. For Viewlogic, the schematic is optional as the actual
connectivity information is provided in the netlist (wir) files.

Simulation All Generators produce information which can be
used to provide correct functional simulation. For Viewlogic, this
is contained in the design specific wir file. For all other tool flows,
either a Verilog or vhdl file is produced to provide the functional
model.

Symbol To facilitate design entry using the Generators, symbols
are automatically created for all supported schematic entry tools.
The symbols will contain all the interface pins for the macros gen-
erated, with inputs on the left and outputs on the right.

HDL Support To support users who enter their designs with
VHDL, a template of the macro is created. This template will con-
tain the macro name and a list of the input and output pins in
VHDL syntax. It can be found in the library directory inside the
component’s sub-directory with the extension *.vht. Structural
Verilog and VHDL descriptions of the macros are provided for
Tool Flows that require them. These will be found in the library
directory under the verilog and vhdl sub-directories. . The postsim
directory contains descriptions with buses flattened in order to
facilitate Post-layout Simulation.

Macro Generators

2-16

Statistics

After the Macro Generator has completed running, a dialog box
will be displayed showing statistics of the macro. It will look like
the following.

Macro Generators Statistics Box

The information displayed in this dialog box can also be found in
a file, identically named as the user library directory, with the
*.sts extension. For example a library named user.lib will have a
statistics file named user/user.sts. Additionally in the library
directory under each component will be a file called macro.lst.
This file will contain details of the parameters used to generate
the macro. It will also contain a file called macro.sts with the
above statistics for the macro.

HDL Planner

2-17

HDL Planner

This section presents a design development environment, called
HDLPlanner, for planning and creating HDL designs for Atmel
FPGAs. Special HDLPlanner features allow the incorporation of
technology specific information during the early planning stages
so a 100% technology independent design can be maintained.
Additionally, HDLPlanner prepares the input data to take
advantage of the synthesis software for optimum results.

The software’s interface can define and instantiate pre-verified
VHDL/Verilog modules in the design files quickly. The modules
can be parameterized for bit-widths and clock/reset schemes.

The HDL Planner software is tightly integrated with the back-end
layout generation engines. Using the Macro Generators, design
modules can be automatically translated into hard macros with
efficient implementation in Atmel FPGAs. On-line module
statistics on area and delays can be accessed easily and used to
estimate design performance.

Finally, HDL Planner is an open system. Using its IPEditor user
interface, users can integrate their modules within HDL Planner
and access them as if macros were supplied from the factory

It is an open knowledge archival system. Previously synthesized
modules become an effective resource because they can be reused
in future designs.

Synthesis Technology Limitations

The benefits of hardware description languages (HDL) include the
ability to parameterize modules and create technology
independent designs. Parameterization allows generic definition
of a module to be defined once but used multiple times with
different parameters. The support for parameterization encourages
design reuse and simplifies design maintenance. Technology
independence in HDL also allows designs to be written once and
then targeted to a large number of FPGAs or ASICs.

HDL Planner

2-18

However HDL descriptions must be synthesized and optimized to
realize their gate level implementation for placement and routing.
Often, that means relying on synthesis software capabilities for
module inferencing and logic optimization. Unlike manually en-
tered circuits, HDL designs are more inefficient because of the
inability of synthesis tools to fully incorporate technology specific
information during optimization. A notable improvement is
operator inferencing. This methodology identifies arithmetic and
boolean operators from a design and links them to their preferred
implementation from the technology library. However operator
inferencing does not guarantee optimal results, as illustrated
below.

process (clock, reset)

begin
if(reset = ‘b0) then

sum <= “00000000”;
else if(clock = ‘1’ and clock’event)

sum <= a + b;
end if;

end process;
(a)

+ +

Register Bank Register Bank

A B A B

(b) (c)

(a) VHDL template of registered adder, (b) Optimized implementation, (c)
Preferred implementation.

Operator Inferencing Limitations

Additionally, only operators that are supported in the language
can be inferred. Macros such as counters and FIFOs cannot be
inferred. They must be instantiated using modules defined in a
technology specific library, and technology independence is
compromised in the process.

HDL Planner

2-19

FPGA Technology Specific Considerations

Synthesis tools perform architecture specific optimization without
considering the technology contents of the FPGA. Such items
include clocks and resets, tri-states, wired logic, I/O buffers, on-
chip configurable memory resources and their address decoding
circuitry. A cost driven optimization of these resources,
unavailable from synthesis tools, is important for achieving
optimum performance from the underlying FPGA technology.

HDL Planner’s design planning environment encourages the users
to follow meet-in-the-middle methodology for creating HDL
designs. It contains a set of well defined methodologies that can be
used to create technology independent descriptions. The graphical
interface allows the user to address architecture, technology, and
layout specific issues earlier in the design process, resulting in a
simplified and shortened design cycle. It also provides area and
delay statistics for corresponding performance estimates.

Graphical User Interface

HDL Planner Graphical user interface can be divided into three
separate components as outlined below.

HDL Planner Graphical User Interface

HDL Planner

2-20

Design Editor

The built-in editor contains buttons to create and save projects, as
well as support basic text editing operations such as cut, copy,
paste, search, and find etc. This UI specification conforms to the
Windows 97 standard.

Module Definition and Instantiation Panes

Special list boxes and buttons are provided to select, define, and
instantiate modules. (Refer to the Graphical User Interface above).
Select a module and press the Define button. This inserts a
generic definition of the module in the text window. Use the
Instance button to instantiate a macro selected from the
Component list box. Once the macro is instantiated, its parameters
can be set by modifying the instantiation statement in the file.

HDL Planner Dialog Box

A module can be parameterized to account for the clock edge
(positive or negative), as well as the set or reset pins and their
polarities (high or low). The appropriate options should be
selected before the component is defined or instantiated.

HDL Planner

2-21

Resource Estimation and Automatic Macro Generation

Menu buttons are provided to access area and macro statistics of
the component selected. Refer to the Table Description of
Important Menu Buttons for further details.

The menu button Invoke Macro Generators is provided to create
layouts for all components instantiated in the design. The Macro
Generators dialog box is shown below.

NOTE
Only those options that determine the physical properties
can be supplied by the user. All other options are grayed
out.

Macro Generators Dialog Box

HDL Planner

2-22

Menu Item Menu Button Brief Description

VHDL1 Entity Add HDL template for VHDL entity

Architecture Add HDL template for VHDL
architecture

Comp Declaration Add component declaration
statement

Comp Instantiation Add component instantiation
statement

Process Add a process Statement

Clocked Process Add a clocked process statement

If Add if statement

Case Add case statement

While Loop Add while loop statement

For Loop Add for loop

Signal Add signal definition statement

Variable Add variable definition statement

Constant Add constant definition statement

Type Add type declaration statement

library Add library statement

Package Add package statement

Verilog Module Definition Add a module definition statement

Module Instantiation Add module instantiation statement

Always Add an always statement

Clocked Always Add clocked always statement

If Add if statement

Case Add case statement

CaseX Add casex statement

Casez Add casez statement

For Add for loop

Repeat Add repeat loop

1 This item will be overlaid with Verilog if Verilog HDL is selected

HDL Planner

2-23

Menu Item Menu Button Brief Description

While Add while loop

Continuous Assignment Add continuous assignment
statement

Blocking Assignment Add blocking assignment statement

Non Blocking
Assignment

Add non blocking assignment
statement

Register Add reg statement

Wire Add wir statement

Tristate Add tri statement

Define Add define statement

Parameter Add parameter statement

Defparam Add defparam statement

include Add include statement

Design Invoke Macro
Generators

Invoke layout generator GUI

Report Macro
Information

Report information on modules used
in design

Generate Synthesis
Script

Generate synthesis script

Exemplar 2 Synthesis Tips Access synthesis experience

Integrate a User Macro Invoke a software to integrate
macro in HDL PLanner

Views Behavioral Display a behavioral description of a
module

Structural Display structural description of a
module

Layout Display a layout of a module layout
in MGL

Reports Area Display area information for a
module

Delay Display delay information for a
module

Description of Important Menu Buttons

2 Item Synopsys will be displayed if Synopsys synthesis software is selected

HDL Planner

2-24

Planning HDL Designs

The process begins with a well thought out partitioning of a
system into a set of modules as illustrated below. HDL Planner
integrates the design planning philosophy into the process so the
user can write a modular and hierarchical design description.
Upon synthesis, a gate level netlist that is optimized for the target
technology will be created. HDL Planner allows the user to
estimate design resources and help avoid assumption changes late
in the design cycle.

HDLPlanner

yes

Is partitioning acceptable?

Partition design into set of modules

Define and Instantiate modules

Estimate Design Resources

Generate Module LayoutsLibrary

Constraints

Generate Synthesis Script

Synthesize the design into a netlist

Perform Placement and Routing

HDL Planner Design Flow

HDL Planner Features and Benefits

Important features of the HDL Planner software and its built in
methodology are outlined below.

Design Entry Specific

Design Editing The software has an editing environment for plan-
ning, entering, and maintaining HDL descriptions. Its
comprehensive set of pre-verified templates of complex HDL
constructs can be used to speed up design entry. Refer to the Table
Description of Important Menu Buttons above. HDL templates can
also be used to facilitate the learning of VHDL and Verilog
language syntax.

HDL Planner

2-25

Technology Independent Design Entry Designs created in HDL
Planner are 100% technology independent, conform to vendor laid
out synthesis guidelines, and contain complete simulation models
(so there are no black boxes).

Design Reuse HDL Planner has a User Interface to easily define
and instantiate pre-verified functional modules. These modules
can be parameterized for bit-widths as well as clock and reset
schemes.

Technology Specific

Links to Layouts The Macro Generators interface of HDL
Planner translates functional modules into layouts that are highly
optimized for the architecture and technology.

Management of Clock and Reset Resources HDL Planner
simplifies the task of managing the vast clock, set/reset resources
on the FPGA. This feature is especially useful as no known
synthesis system supports module parameterization around clocks
and resets.

Synthesis Tools Specific

Overcomes Synthesis Technology Limitations HDL Planner can
set up the data for synthesis to obtain the best output.

Tightly integrated with Synthesis Tools Synthesis scripts
generated by HDL Planner do not require user knowledge of
technology specific directives that are needed for efficient
synthesis.

Productivity Specific

Performance Estimation On-line reports and statistics of reusable
modules allow quick generation of performance estimates.

Shorter Design Cycle Pre-verified, reusable components and
automatic template generation minimizes the design cycle.

Software Architecture Specific

Completely Transparent HDL Planner is an open system. Users
can integrate their components and use them in their design
process as if they were shipped from the factory.

HDL Planner

2-26

Knowledge Archival HDL Planner has an open help system. The
user can take advantage of previously synthesized modules and
reuse them in future projects.

HDL Planner

2-27

HDL Entry

2-28

HDL Entry

With significant improvements in the quality of designs produced
by synthesis tools, increasing numbers of circuit designers are
adopting a top down methodology based on Hardware Description
Languages (HDL) over the traditional design methodology of de-
sign entry with schematic capture systems. The top down design
methodology (also called high level or textual design methodol-
ogy), consists of working towards the physical implementation, by
specifying the design behavior in HDL, and allowing synthesis
tools to automatically translate it to optimized gate level connec-
tivity under a set of design constraints. The gate level connectivity
produced by synthesis tools is compiled by placement and routing
programs.

This top down design methodology, which allows working at a
higher level of design abstraction, has many advantages. A few of
the important advantages are shorter design cycles, exploration of
many architectural alternatives, ease of design maintenance and
debugging, design re-use, and generation of hardware which is
correct by construction.

Today's synthesis tools have the ability to synthesize designs
under a wide range of design constraints. By specifying
technology specific constraints, layout related information can be
incorporated during synthesis to produce designs meeting desired
performance criteria. Therefore, the ability of a synthesis tool to
perform optimization under technology constraints is an
important component of top down methodology. In this fashion,
the constraint directed synthesis combines advantages of the top
down approach as well as bottom up approach, an approach in
which layout related issues are given more importance.

One important aspect of the latest synthesis products is the ability
to support operator inferencing. With this feature, the tools can
recognize functions such as adders, multipliers, comparators, etc.
in a design. The process allows the synthesis tools to identify spe-
cific components that can be better optimized by the FPGA layout
software.

HDL Entry

2-29

This technique is fully supported in Figaro through the Macro
Generators Interface (MGI) and specific libraries for the sup-
ported synthesis tools. HDL synthesis tools from Viewlogic,
Everest, Synopsys (currently without MGI support), and Exemplar
Logic can be used with Figaro and subsequent designs imported
via a netlist interface.

HDL Entry

2-30

Viewlogic

Viewlogic synthesis tools are supported via a technology specific
library. These libraries are stored in the Atmel library directory
and must be copied to the appropriate Viewlogic locations before
synthesis is invoked. The currently supported tools include
VHDLDES, PROSyn, Vsyn, and Aurora. All of these programs
read as input the *.sml technology files and produce as output wir
files. These files can then be read in directly by Figaro.

In addition to the *.sml files, other files are needed to run MGI.
See the tutorial on Viewlogic synthesis for more details.

The basic design flow for synthesis is to first define the design via
the Figaro File>Design Setup dialog box. This will set up the
Viewlogic environment. Next, push the Synthesis button on the
Flowbar to invoke the synthesis tool. Use the program to create
various hierarchical levels of the design mapped to the Atmel
FPGA architecture. Through operator inferencing, adders, multi-
pliers, and comparators can be automatically placed in the output
netlist. For any other structural components, the Macro Generators
should be used in the design to provide the best possible perform-
ance for the FPGA.

Automatic pad insertion using the Viewlogic synthesis tools for the
Atmel architecture is available. An outline of the process can be
found in the Tutorial.

Refer to the “CAE Interfaces” section in the AT40K IDS Tutorial
for design entry with the Viewlogic synthesis tools using the
“averager” example. This will describe in detail the set up of the
design, library, and technology files; hierarchical synthesis, crea-
tion and use of the Macro Generators components, MGI flow, and
the final preparation of the design for placement and routing.

HDL Entry

2-31

Synopsys

The Synopsys FPGA/Design Compiler is a powerful synthesis and
optimization environment which can perform design synthesis un-
der the user-specified constraints. It can be used with the
Integrated Development System to optimize the layout and design
of Atmel FPGAs.

Synopsys synthesis is supported via a technology specific library.
These libraries are stored in the atmel/lib/synopsys directory, and
must be set as a Technology Library before synthesis can be per-
formed. The user should follow the appropriate Synopsys flow to
synthesize the design and produce an EDIF netlist which can be
read into Figaro.

The basic design flow for synthesis is to first define the design via
the Figaro File>Design Setup dialog box. This will execute the
appropriate design directory setup. Next, the synthesis tool is run
using the Synthesis button on the Flowbar and can be used to cre-
ate the various hierarchical levels of the design mapped to the
Atmel architecture.

The Macro Generators should be used to replace structures such
as adders, multipliers, etc. in the design to provide the best
possible performance for the FPGA. Because automatic I/O
insertion is available, there is no need to bring the results into a
schematic capture tool for final assembly.

Refer to the CAE Interfaces section in the AT40K IDS Tutorial for
design entry with the Synopsys synthesis tools using the
“averager” example. This will describe in detail the design and
library setups, hierarchical synthesis, creation and use of the
Macro Generators components, and final preparation of the
design for placement and routing.

HDL Entry

2-32

Synopsys FPGA Express

The Synopsys FPGA Express can be used with the Integrated
Development System to optimize the layout and design of Atmel
FPGAs.

The user should follow the Synopsys FPGA Express flow to syn-
thesize the design and produce an EDIF netlist which can be read
into Figaro.

The basic design flow for synthesis is to first define the design via
the Figaro File>Design Setup dialog box. This will execute the
appropriate design directory setup. Next, the synthesis tool is run
using the Synthesis button on the Flowbar and can be used to cre-
ate the various hierarchical levels of the design mapped to the
Atmel architecture.

Macro Generator components should be used to replace structures
such as adders, multipliers, etc. in the design to provide the best
possible performance for the FPGA. Because automatic I/O inser-
tion is available, there is no need to bring the results into a sche-
matic capture tool for final assembly.

Refer to the CAE Interfaces section in the AT40K IDS Tutorial for
design entry with the Synopsys FPGA Express synthesis tools
using the “averager” example. This will describe in detail the
design and library setups, hierarchical synthesis, creation and use
of the Macro Generators components, and final preparation of the
design for placement and routing.

HDL Entry

2-33

Everest

The Everest synthesis tool can be used with the Integrated
Development System to optimize the layout and design of Atmel
FPGAs.

The user should follow the appropriate Everest flow to synthesize
the design and produce an EDIF netlist which can be read into
Figaro.

The basic design flow for synthesis is to first define the design via
the Figaro File>Design Setup dialog box. This will execute the
appropriate design directory setup. Next, the synthesis tool is run
using the Synthesis button on the Flowbar and can be used to cre-
ate the various hierarchical levels of the design mapped to the
Atmel architecture.

Everest synthesis tool can infer Atmel Macro Generator compo-
nents for adders, counters, multipliers, comparators and ROM’s in
a design. Those Atmel Macro Generator components are black
boxes and hence designs using inferred components cannot be
simulated until the design netlist is read into Figaro. Once the
design netlist is read into Figaro, the inferred components are
automatically identified and the Macro Generators (also called
MGI) dialog box will be brought up. The MGI dialog box lists all
the inferred components and their parameters like width and func-
tion. In the MGI dialog box, users can change layout related
parameters like area/speed optimization, or layout folding, and
create a hard layout for the inferred components.

Because automatic I/O insertion is available, there is no need to
bring the results into a schematic capture tool for final assembly.

Refer to the CAE Interfaces section in the AT40K IDS Tutorial for
design entry with the Everest synthesis tools using the “averager”
example. This will describe in detail the design and library setups,
hierarchical synthesis, creation and use of the Macro Generators
components, and final preparation of the design for placement and
routing.

HDL Entry

2-34

Exemplar Logic

Exemplar Logic synthesis is supported via a technology specific
library. Technology libraries are provided for the Exemplar syn-
thesis tools Leonardo and Galileo Extreme. These libraries are
stored in the atmel/lib/exemplar/leonardo and
atmel/lib/exemplar/galileo subdirectories and must be copied to the
correct location ($EXEMPLAR/lib) before synthesis is invoked.
Exemplar’s ModGen Library for the Atmel FPGA is also provided
along with the synthesis library.

The appropriate Exemplar flow should be followed to synthesize
the design and produce an EDIF netlist which can be loaded into

Figaro. Exemplar’s synthesis tools can infer ModGen
Components for arithmetic and relational operators in a design
from the Module Generation Library provided for the Atmel
FPGA. Those Atmel FPGA ModGen Library components are black
boxes and hence designs using ModGen components cannot be
simulated until the design netlist is read into Figaro. Once the
design netlist is read into Figaro, the ModGen components are
automatically identified and the Macro Generators (also called
MGI) dialog box will be brought up. The MGI dialog box lists all
the ModGen components and their parameters like width and
function. In the MGI dialog box, users can change layout related
parameters like area/speed optimization, or layout folding, and
create a hard layout for the ModGen components.

The basic design flow for synthesis is to first define the design via
the Figaro File>Design Setup dialog box. This will execute the
appropriate design directory set up. Next, the synthesis tool is run
using the Synthesis button in the Flowbar. It can be used to create
various hierarchical levels of the design for mapping to the Atmel
architecture.

HDL Entry

2-35

Although the ModGen Library provides support for the arithmetic
and relational operators in the design, the Macro Generators
should be used to replace other regular structures to provide the
best possible performance for the FPGA. The structural
vhdl/Verilog files that are created at the time of the macro
generation simplify this procedure. Because automatic I/O
insertion is available, it is unnecessary to bring the results into a
schematic capture tool for final assembly.

Refer to the CAE Interfaces section in the AT40K IDS Tutorial for
design entry with the Exemplar Logic synthesis tools using the
“averager” example. This will describe in detail the design and
library setups, hierarchical synthesis, creation and use of the
Macro Generators components, MGI flow, and final preparation
of the design for placement and routing.

XNF Entry

2-36

XNF Entry

Figaro supports designs in the Xilinx XNF format by use of a
technology mapper. It allows the user to translate a Xilinx 3000,
4000, 4000E and 5200 family design into an AT40k device.

The Xilinx XNF design flow is integrated as part of the synthesis
flow and is available for both the PC and Workstation. Viewlogic
WIR files, VHDL or Verilog back annotation files can be exported
for Post-layout Simulation as part of the process.

Most of the Xilinx XBLOX components can be mapped to the
Atmel Macros. Once a design has been imported, it can be used
for placement and routing. A schematic must be first translated
into an XNF file with Xilinx software before it can be used by IDS.

XNF import is integrated into the Viewlogic design flow. Basic
information on the user interface and design set up is briefly
described below. An explanation of each XBLOX cell and library
component available is provided in the Technical Reference &
Release Notes. The manual also provides information on the
available parameters and pin map descriptions.

Design Flow

To initiate XNF import, first define the design via the Figaro
File>Design Setup dialog box. The user must specify the
Viewlogic environment, AT40k configuration and XNF import
format as shown below. It is recommended that a user library be
set up before opening the design as the Macro Generators will be
called automatically, when applicable, to map the XBLOX cells.

XNF Entry

2-37

Design Setup Dialog Box

The import process can be started with either the Open button or
File>Open as Design from the menu. The option Open as Macro
cannot be used for the XNF flow. During XNF import, the Macro
Generators dialog box will show up as needed. Create the macros
by pressing the Generate button. Follow the standard Figaro
flow to perform placement and routing.

Although Figaro does not export XNF netlists, the output file can
be in Viewlogic, VHDL or Verilog format based on the simulator
used for Post-layout Simulation.

Netlist Generation

2-38

Netlist Generation

Netlist generation is available via the Figaro Flowbar. This button
will invoke the needed processes to generate a netlist that can be
read into the system to perform placement and routing. This step
needs to be performed before a design is opened.

To ensure the netlist is up-do-date before proceeding to the layout
phase of the design, click on the Create Netlist button in the
Flowbar.

The netlist format varies with the CAE system specified. Please
refer to the appropriate “CAE Interfaces” section in the AT40K IDS
Tutorial manual or Technical Reference & Release Notes for
details. Currently the system takes as input Viewlogic wir files or
EDIF netlists from Synopsys, Everest, and Exemplar Logic. Auto-
matic generation of these files is supported for Viewlogic.
Synopsys, Everest and Exemplar Logic users must use the appro-
priate functions in these tools to prepare the netlist for Figaro.

Simulation

3-1

Simulation

The Integrated Development System offers the user both Functional
Simulation and Post-layout Simulation. Functional or pre-layout
simulation helps the user ensure circuit validity. This allows the
user to identify potential functional problems and rectify them in
the circuit before placement and routing.

The Post-layout Simulation module performs the same analysis as
Functional Simulation, except the results reflect the final physical
design complete with timing information.

Figaro is designed to interface with simulation tools from CAE
systems such as Viewlogic, Model Technology, and Cadence.
These platforms can be used to perform Functional or Post-layout
Simulation on a design entered through any of the methods dis-
cussed in the “Design Entry” chapter of this User’s Guide.

Functional Simulation

Simulation

3-2

Functional Simulation

3-3

Functional Simulation

Functional Simulation provides functional verification of the cir-
cuit's characteristics. The simulation predicts real-world behavior
by accounting for physical circuit nodes.

Figaro will prepare all configuration files and netlists as well as
run all processes needed to invoke the simulator for the specified
CAE system. However the user must provide the correct stimulus
file or inputs to the simulator to verify circuit functionality.

The AT40k library of components can be divided into 2 types of
macros: functional and dynamic. Functional macros are compo-
nents with fixed functions, such as the 2 input AND gate.
Dynamic macros are designed to allow user specification of any
desired function, to be attached as an attribute via an equation
string, on the symbol. This should be used only when a specific
function for an AT40k core cell is required. Designs targeted to
AT40k can use a mix of dynamic and functional macros.

Simulating With Dynamic Macros

Designs which use Dynamic Macros cannot be simulated directly
from schematics or synthesis. This is because the various simula-
tors do not have models for the Look Up Tables (LUT) which
these macros emulate. Therefore any design which contains these
components must first be read into Figaro, mapped (as needed),
and brought through to initial placement before the appropriate
netlist can be generated for simulation.

Figaro Interface

Figaro provides a totally integrated environment so the user can
access the simulation tool of the specified CAE system directly
from the Desktop. Simulation is supported by the Atmel FPGA
library. The appropriate library is automatically set up according to
user specification from the Desktop.

Functional Simulation

3-4

To start, press the Functional Simulation button on the Flowbar.
Figaro will proceed to prepare all inputs and invoke the simulator.
The user should refer to the documentation for the CAE system on
how to simulate the design before proceeding. For designs
containing Dynamic Macros, use Tools>Post Mapping Simulation
to verify the functionality of the design. Post Mapping Simulation
can only be performed after initial placement, as explained in the
section “Simulating with Dynamic Macros” above.

The next section will describe the processes in general for the re-
spective CAE systems. Refer to the AT40K IDS Tutorial and
Technical Reference manuals for more details.

Viewlogic Simulators

The Viewlogic simulators for the PC and Workstation are fully
supported by IDS. The underlying functionalities are similar. In
either case, Functional Simulation executes two programs, check
and vsm, before running PROsim or ViewSim/Fusion. The check
program ensures that all wire files are current, and vsm creates
input files for the simulation.

The Atmel libraries for the Viewlogic simulators are created using
parameterized attributes in order to support the speed bins and the
speed ranges. Before vsm can be run successfully, the attributes
file must be copied to the current design directory. This is handled
by IDS internally. The file, located in the Atmel lib directory, is
named spbin40k.var. It is copied to the design directory and
renamed designName.var.

Model Technology V-System

The Model Technology V-System/VHDL simulator is a VITAL
compliant VHDL based simulator. It is integrated into IDS as part
of the Exemplar Tools Flow.

Input for Functional/Post-Mapping Simulation is a VHDL netlist
file generated by the user or as a result of synthesis on the original
HDL design.

For VHDL design simulations, VITAL 95 compliant Atmel FPGA
libraries are provided along with IDS. The modelsim.ini file has to
be modified accordingly to point to the Atmel library. The library
is called AT40K and is installed in the atmel/lib/mti directory.

Functional Simulation

3-5

The design VHDL files should first be compiled and then simu-
lated with the command prompt in the Shell Window. The V-
System simulator cannot be invoked from the push buttons on the
IDS desktop.

Functional Simulation

3-6

Cadence Verilog-XL

Verilog-XL is the simulator supported by IDS for the Cadence
CAE system. However Atmel Verilog libraries can also be used
with other Verilog simulators as well.

Input for Functional/Post-Mapping Simulation is a Verilog netlist
file generated by the user or as a result of synthesis on the original
HDL design..

For Verilog design simulations, Verilog libraries for Atmel FPGA
components are provided along with IDS. The library is called
AT40K and is installed in the atmel/lib/verilog directory. The file
prim.v contains the simulation models for the user-defined Verilog
primitives in the Atmel FPGA Verilog library. This file can be
specified in the command-line using the -v option.

The Verilog-XL simulator cannot be invoked from the push
buttons on the IDS desktop. The design’s Verilog files should be
simulated with the command prompt in the Shell Window.

The command-line syntax should include all user and Atmel librar-
ies, the min/typ/max Speed Range specification, and the design’s
Verilog files.

Post-mapping Simulation

3-7

Post-mapping Simulation

Designs which use Dynamic Macros cannot be simulated directly
from schematics or synthesis. This is because the various simula-
tors do not have models for the Look Up Tables (LUT) which
these macros emulate. Therefore any design which contains these
components must first be read into Figaro, mapped (as needed),
and brought through to initial placement before the appropriate
netlist can be generated for simulation.

Figaro Interface

Figaro provides a totally integrated environment so the user can
access the simulation tool of the specified CAE system directly
from the Desktop. Simulation is supported by the Atmel FPGA
library. The appropriate library is automatically set up according to
user specification from the Desktop.

Figaro will proceed to prepare all inputs and invoke the simulator.
The user should refer to the documentation for the CAE system on
how to simulate the design before proceeding. To start post-
mapping simulation, use Tools>Post Mapping Simulation to ver-
ify the functionality of the design. Post Mapping Simulation can
only be performed after initial placement.

Post-mapping Simulation

3-8

Post-layout Simulation

3-9

Post-layout Simulation

Post-layout Simulation performs post-layout timing and functional
verification to provide an accurate estimate of the circuit's input to
output timing characteristics. It notes the post-layout wire delays,
including pin-to-pin delays, setup and hold times, and actual wire
delays, to predict device timing and performance.

Figaro will prepare all necessary configuration files, netlists and
delay files, as well as run all processes required to invoke the
simulator for the specified CAE system. The user will need to pro-
vide the correct stimulus file or inputs to the simulator to verify
the circuit functionality.

A new simulation netlist is needed whenever a design has gone
through placement and routing. This is required to support the
design transformations resulting from the compilation process.
The netlist is a flattened representation of the design as all
hierarchy will have been removed and buses mapped to their
scalar components. Because the various components of the design
have been mapped into the LUT architecture, the internal signals
are often changed. As the internal nodes will be typically
unavailable, all stimulus for the circuit should be at the I/O level
for correct simulation of the design.

In addition to the simulation netlist, a back annotation file
containing information on macro delays intrinsic to the
components, as well as routing delays, is generated for Post-
layout Simulation. This file will be output in a format that
matches the flattened netlist created by Figaro as discussed
previously.

Figaro Interface

Figaro provides a totally integrated environment so the user can
access the simulation tool of the specified CAE system directly
from the Desktop. Simulation is supported by the Atmel FPGA
library. The appropriate library is automatically set up according to
the part chosen..

Post-layout Simulation

3-10

To start, press the Post-layout Simulation button on the Flowbar.
The Post-layout Simulation dialog box will appear, and the user is
asked to set the Speed Range as shown below. Select the desired
option and initiate the process.

Post-layout Simulation Dialog Box

The Speed Range indicates whether the delay values to simulate
are Minimum, Typical, or Maximum case scenarios. A Maximum
Speed Range represents the worst case analysis. The program will
default to Maximum.

Once the above values have been specified, press the Run but-
ton to prepare all inputs and invoke the simulator. The user
should refer to the documentation for the CAE system on how to
simulate the design before proceeding.

The next section will describe the processes in general for the re-
spective CAE systems. Refer to the AT40K IDS Tutorial and
Technical Reference & Release Notes for more details.

Viewlogic Simulators

For Post-layout Simulation, Figaro will generate the back annota-
tion files and needed netlists before running vsm. The same
stimulus files used for Functional Simulation can be used to test
the circuit, provided that no internal nodes are being accessed. The
simulators will be invoked as discussed in Functional Simulation
with the following differences.

Post-layout Simulation

3-11

A new set of wir files will be created by Figaro to support transfor-
mations that result from the mapping of the original circuit to the
AT40K architecture. The netlists will be flat as discussed in the
Post-layout introduction. These new files are found in the figba
sub-directory for the design. The system will automatically modify
the viewdraw.ini file to point to the correct set of files when Post-
layout Simulation is invoked.

Along with the above files, a designName.dtb file (or separate
*.dtb files for the partitioned designs) is created in the figba direc-
tory which contains all of the routing delays between the macros
in the design. Again, this information is created and accessed
during Post-layout Simulation.

Model Technology V-System

The Model Technology V-System/VHDL simulator is a VHDL
based simulator. It is integrated into IDS as part of the Exemplar
Tools Flow .

For Post-layout Simulation, both a back annotation file (or sepa-
rate *.sdf files for the partitioned designs) in the Standard Delay
File (SDF) format and a new VHDL netlist are created. These files
are output to the design/figba directory. The simulator is then in-
voked in a similar fashion as in Functional Simulation.

The SDF file, which contains routing delay information as well as
the intrinsic delays for the macros referenced in the design, will
match the new flattened netlist.

NOTE
When a design is flattened, all buses used will be split out
into their individual components. The stimulus files
should be changed appropriately to take this into
consideration before the simulator is invoked by the user.

Cadence Verilog-XL

For Post-layout Simulation, both a back annotation (or separate
*.dtb files for the partitioned designs) in the Standard Delay File
(SDF) format and a new Verilog netlist (if required as outlined in
the Post-layout introduction) are created. These files are output to
the design/figba directory. The simulator is then invoked in a
similar fashion as in Functional Simulation.

Post-layout Simulation

3-12

The SDF file contains routing delay information as well as the in-
trinsic delays for the macros referenced in the design. The SDF
file will either match the original input hierarchy or the new flat-
tened netlist as needed.

NOTE
When a design is flattened, all buses used will be split out
into their individual components. The stimulus files
should be changed appropriately to take this into
consideration before the simulator is invoked.

Other Simulator Flows

The Flowbar buttons are provided to be used with various sup-
ported simulator tools and flows. Simulation with other platforms
is still supported but not in the automatic fashion as for the above
systems. After the design has been placed and routed (with the
EDIF input that is generated by the tools), the user can create the
needed back annotation files via the File>Export dialog box. This
dialog box allows the specification of many different back annota-
tion formats such as SDF, DBA, and DTB for flattened designs.
These files can then be read into the simulator as needed.

Design Implementation

4-131

Design Implementation

This section serves as an overview to Figaro as it pertains to the
design implementation functions of Open, Map, Parts, and
Compile. Step by step instructions on how to execute a design are
discussed in the Figaro section of the AT40k IDS Tutorial.

The preceding modules in the Flowbar allows the user to perform
the preliminary functions of design entry and verification through
to netlist generation. Once the netlist is created, Figaro can
generate a data base for automatic and/or manual placement and
routing.

Open

The Open module is used to either create a data base for the
design by opening a netlist, or load in a previously saved data
base. Figaro takes the netlist created from the Netlist button and
converts it into a data base file for use as a Design or Macro. This
directs Figaro to either prepare the design for eventual bitstream
output, or leave it as a macro for library check-in.

The other application for this module is to provide access to a
previously created design. The user can then resume work on
manual placement, routing, or other tasks needed for
implementation of the layout.

The Open Button

Design Implementation

4-231

Map

Selection of the Map button will cause IDS to search for an open
design before proceeding. If none is found, Figaro will bring up
the Open as Design dialog box. Once a design has been loaded,
the optional mapping step can proceed.

Mapping is the process of optimizing design logic and adapting it
to the Atmel architecture. It can be used to achieve area
optimization for a netlist created with the AT40k library.
Although it is an optional step, mapping should be run to achieve
the best possible circuit speed and density.

Mapping takes the instances from the design netlist and:

a) Converts the instances to a technology-independent form.
b) Performs area optimization to reduce the space utilization. It

will try to pack the input design into the core cells.
c) Generates instances specific to the selected device.

The Design Browser and the Map Browser can be used to view the
results of this process.

The Mapper Button

Design Implementation

4-331

Selecting Parts

Selection of the Parts button will cause IDS to search for an open
design before proceeding. If none is found, Figaro will bring up
the Open as Design dialog box. If mapping has been enabled, the
design will first be mapped before Part Selection is invoked. Once
a design is available, the program will display the Parts
Assembler window and Part Select dialog box. The Parts
Assembler serves three important functions by: a) allowing the
user to select the part or parts needed for the design, b) providing
the user with the means to pre-place I/Os by assigning pin locks
for the design, and c) partitioning the design.

The user can specify the Atmel part(s) and package(s) as well as
select the speed grade. The suitability of a certain part for ease of
compiling is presented by the visual display on the screen and in
the Part Selection dialog box. The amount of logic and RAM
resources needed are represented by the left and right bar graphs
respectively in Parts Assembler window. A high demand on the
chip resources will increase the need for manual pre-placement
and routing to complete the design.

The Add Parts Button

Design Implementation

4-431

Compiling

The Compile function directs Figaro to place, route, and generate
a bitstream (or check-in a macro) automatically. Figaro will
automatically call up the Open, Map, and Parts modules in
sequence if only the Compile button is selected for design
implementation.

Depending on the specification of the circuit as Macro or Design,
the result will either be a bitstream for downloading, or a
component for the macro library.

The Compile Button

Device Programming

5-1

Device Programming

Following placement and routing, the design is ready for the user
to generate the bitstream file for programming the Atmel FPGA
device. The user can program and download the design as needed.
There are two parts to Device Programming. The first is the actual
creation of the bitstream file. This is done as part of the Compile
for Design process. The second part involves utilities which can
manipulate and or check the bitstream.

Device Programming brings the design from building the bit-
stream through downloading it to the FPGA or Serial Configuration
Memory device on the Prototype Board. Other utilities included
allows the user to reduce the output data into a smaller format
(Compress Bitstream), change the design from one base design to
other optional designs (Window Bitstream), combine several
designs into one bitstream (Cascade Bitstream), and download to the
FPGA or Serial Configuration Memory (DownLoad Bitstream).

IDS Bitstream Utilities

Device Programming

5-2

Build Bitstream

5-3

Build Bitstream

Build Bitstream is the final stage of the Compile for Design proc-
ess, where the physical data base is converted into the bitstream
file. Build Bitstream is invoked after all layout applications are
completed. It can be invoked via the Flow>Compile>Bitstream
menu option or the BitStr button on the Device Flowbar.

Compile Menu

The various options for controlling bitstream generation are avail-
able under the Options>Options AT40k Bitstream dialog box as
shown below.

Build Bitstream

5-4

Global Options Dialog Box

In order to store the correct setup configuration features and
options in the bitstream file, as well as generate the bitstream pro-
gramming file, the user must determine how configuration data
will be loaded into the SRAM of the FPGA. There are thirty-two
configuration control register bits for this purpose. Control
register option values are drawn from the AT40k Bitstream
Options. Consult the AT40k Datasheet for more information on
control register loading.

Build Bitstream

5-5

In addition to the Configuration Register bits, there is a RAM
Initialization checkbox in the AT40k Bitstream Options. If this
box is checked, the user-configurable RAM units on the FPGA
will be cleared during device programming. If it is un-checked,
the RAM contents will retain their previous contents.

Creating a Bitstream

Bitstream creation is the last step in design compilation. Before
pressing the Compile button on the main Flowbar or the BitStr
button on the Device Window Flowbar, verify that the options
have been set appropriately as discussed in the previous section. A
bitstream can only be created after a design has been completely
placed and routed. If Open as Macro was used to create the lay-
out, the bitstream option will be unavailable.

The process of creating a bitstream is one of translating the Figaro
based design into an Atmel specific bitstream. Results of the bit-
stream process are displayed in the transcript window.

The bitstream creation process generates three files; DesignName.bst,
DesignName.hex, and DesignName.hxr. DesignName.bst is an
Atmel bitstream format file, DesignName.hex is an MCS-86
format file, and DesignName.hxr is an MCS-86 format file
designed for use with third-party programmers for serial
configuration memory devices.

Build Bitstream

5-6

Bitstream Utilities

5-7

Bitstream Utilities

Bitstream Utilities provide the ability to compress, window, cas-
cade, and download files that have been created with Bitstreaming
from the Compile module. An FPGA device can have its changed
behavior programmed and re-programmed with data windows in
Window Bitstream. Compress Bitstream compresses the bitstream
into windows, programming only areas of the chip which are
being used. Cascade Bitstream allows the user to generate a
bitstream to program multiple cascaded devices. The download
process is specifically set up to support the transfer of the
bitstream to the Atmel prototype or serial configuration memory
boards.

Bitstream Utilities

NOTE
The bitstream utilities are not available until at least one
bitstream has been created for any of the designs specified
in the File>Design Setup dialog box.

Bitstream Utilities

5-8

Window Bitstream

5-9

Window Bitstream

Window Bitstream is used to program or re-program a portion of
the FPGA device. This tool is an important step in the support of
cache logic as it can determine which parts of the design have
changed, and create a bitstream to configure only that part of the
chip. A maximum of 255 windows can be produced.

Window Bitstream Dialog Box

The user prepares two similar designs and creates separate bit-
stream files. The program compares the bitstreams and the result-
ing differences are placed into a new bitstream file. This new file
contains only the information required to transform the baseline
design into the new design. The data in this file is in a windowed
format, and it will only program the changed portions of the
design.

Window Bitstream

5-10

Starting a Session

Pull down the menu option Tools>Bitstream>Window to bring up
the dialog box. As seen in the above dialog box there is a bit-
stream for the active or current design. The user must pick among
the baseline bitstreams for the one which will be compared against
the active design. The operation will result in a new bitstream for
the active design. This contains the windows which will transform
the selected baseline bitstream into the current design.

Select to initiate Window. The process runs to completion
and ends without user intervention.

Further details on the Windowing process can be found by select-
ing the button.

Compress Bitstream

5-11

Compress Bitstream

The Compress program allows the user to compress the bitstream
output for faster loading, and to fit into a smaller memory device
as needed. For larger devices of the Atmel FPGAs, it is recom-
mended that the bitstream be compressed.

NOTE
Use compressed bitstreams to program a device only im-
mediately following power-up, or configuration reset, or
when programming two completely independent functions
that are to work simultaneously.

Compress Bitstream Dialog Box

Starting a Session

Pull down the menu option Tools>Bitstream>Compress. Select
the bitstream to compress and click on to initiate the pro-
gram. The process runs to completion and ends without user
intervention. The output of this program will be a new bitstream,
with the same file name, that is smaller than the original.

Input to Compress must be in BST format but output will be in
HEX, HXR and BST format. The HXR format is for use with third
party serial configuration memory programmers.

Compress Bitstream

5-12

Select to initiate Compress. The process runs to completion
and ends without user intervention.

Further details on the Compress process can be found by selecting
the button.

Cascade Bitstream

5-13

Cascade Bitstream

The Cascade module allows the user to concatenate several bit-
stream files into a single file with the appropriate control register
settings. This single file can then be downloaded to a master
FPGA which will subsequently load other devices in the system.

Cascade Bitstream Dialog Box

Starting a Session

Pull down the menu option Tools>Bitstream>Cascade. The
Design Bitstreams list box displays all design directories in the
system that contain bitstream files. To create a list of bitstream
files for cascading, click on bitstream file names from Design
Bitstreams to place them under the Selected Design Bitstreams
list box. Click on a file in the Selected Design Bitstreams box to
remove it from the box. Cascading of the bitstream files will be
executed in the order shown.

Select to initiate Cascade. The process runs to completion
and ends without user intervention.

Cascade Bitstream

5-14

NOTE
When creating entries for Cascade, the total file number is
not allowed to exceed 8, to avoid potential problems when
programming the FPGA parts.

Input to Cascade must be in BST format but output will be
in both HEX and BST format.

The Sequence Files and EPROM Size options are not
available for AT40k series FPGAs.

Further details on the Cascade process can be found by selecting
the button

.

Download Bitstream

5-19

DownLoad Bitstream

The DownLoad option is the last step in designing and laying out
a programmable device. This function is available for use when
doing design prototyping. The user can download the data
through the specified parallel port on a PC to an Atmel prototype
board, Atmel serial configuration memory board, or to any
download board supplied by the user.

DownLoad Bitstream Dialog Box

The DownLoad process requires a special download cable that is
part of the Download Assembly shipped with the Atmel Integrated
Development System. To ensure successful execution of the
download process, the user should check all hardware
connections.

The DownLoad button on the Figaro Flowbar is only active on the
PC platform. For workstation users, the download program
(downld40.exe) can be found in the atmel/bin directory. This pro-
gram, along with the bitstream file, must be transferred to a PC
for downloading. Refer to the Command Reference section of the
Technical Reference & Release Notes for further details on run-
ning the program from the command-line.

Download Bitstream

5-20

Another option is to download the bitstream to Atmel’s Serial
Configuration Memory. This assumes that the memory prototype
board is connected to the PC. The program used for this purpose is
cf.exe which is in the atmel/bin directory. Both the program and
the bitstream file must be transferred to a PC for downloading.
Refer to the Command Reference section of the Technical
Reference & Release Notes for further details on running the
program from the command-line.

Starting a Session

Pull down the menu option Tools>Bitstream>DownLoad or select
the DownLoad button from the Figaro Flowbar.

DownLoad in the Flowbar

Specify the appropriate parallel port and then select to initi-
ate DownLoad. The process runs to completion and ends without
user intervention.

Download Bitstream

5-21

Stand-alone Session

The stand-alone Downld40 program can be ported to multiple
computers. With this feature, the user can carry out the circuit
testing process at any site.

In executing Downld40 from the DOS command-line, a typical run
is similar to the following example:

c:\> Downld40 /p lpt2 DesignName.bst

A comparable means to run the cf program for the Serial Configura-
tion Memory is available. In executing cf from the DOS command-
line, a typical run is similar to the following example:

c:\> cf /p /i /g DesignName.bst

Macro Generator Language

6-1

MGL

The Figaro software is shipped with a range of Macro Generators
for the AT40k series FPGAs. (For more information, please refer
to the “Design Entry, Macro Generators” section in this User’s
Guide). The Generators are written in a new language called
MGL (Macro Generator Language). The language is specially
developed by Atmel to allow the programmatic creation of user
macros. Designers can write their own Macro Generator
programs using this language to produce parameterized macros
with hard layout and routing. A compiler, editor, and debugging
tools for MGL are included to facilitate this process.

This section provides a brief overview of MGL and its associated
tools. For a more thorough description of the language, refer to
the MGL section of the Technical Reference & Release Notes.

Language Overview

MGL is a highly specialized language, whose principal purpose is
the creation of hard user macros. The various language constructs
have been optimized specifically for this task, and superfluous fea-
tures have been avoided as much as possible. The language does,
however, support a range of features that are common to most
high-level design languages (HDLs) as listed below.

� “If .. then .. else ..” and “case” statements for conditional
branching

� “For” and “while” loops
� User-defined functions
� Printing and error handling
� Arithmetic operators and built-in arithmetic functions
� File input and output
� Common data types such as integer, float, boolean, string and

array

Macro Generator Language

6-2

MGL differs from other HDLs in its ability to describe the physical
properties of a macro, including its placement and routing. Macro
creation is performed in two distinct stages:

� Defining the macro interface.
� Defining the contents of the macro in terms of component in-

stantiations, as well as their logical and physical connectivities.

The macro interface is described using an interface block as illus-
trated below.

counter : macro;
...

interface “Count”{width} of counter is
 inputports(“CLOCK”, “RESET”);
 for i in 0 to (width-1) loop
 outputports(“Q”{i});
 end loop;
end interface;

Interface block

The figure above describes the interface of a variable-width
counter macro, with CLOCK and RESET inputs, and an output bus
Q[width-1:0]. A graphical representation of the interface pro-
duced is shown below.

Count4
Q2

Q3

Q1

Q0

RESET

CLOCK

Macro Symbol

The contents of a macro is described using a contents block as in
the following example.

Macro Generator Language

6-3

contents of counter is

 ... statements ...

end contents;

Contents Block

The process of defining the contents of a macro (i.e. its underlying
implementation) consists of three main tasks:

� Instantiating components
� Connecting components together via nets
� Specifying the physical routing resources used by those nets

To instantiate a component within the macro contents, the first
step is to specify a component from either a library, or another
MGL program. An instance block is then used to describe the in-
stantiation of that component as shown below.

// Get macro from vendor library
aMacro : macro := getmacro(“FGEN1RF”);

instance “Cell0” of aMacro is
 location(0, 0);
 functiong(“!FB”);
 connections(“CLK”->“CLOCK”,
 “RS”->“RESET”,
 “G”->“Q0”);
end instance;

Instance Block

The instance block creates an instance of an FGEN1RF macro (a
generic cell consisting of a 4-input LUT, a register and a feedback
connection) called “Cell0”. It places the cell at location (0,0).
Next the cell is programmed to negate the feedback connection
and feed it into the register. Then the ports on the cell are con-
nected to the appropriate nets within the macro. The schematic of
the instance block is shown below.

Macro Generator Language

6-4

Q2

Q3

Q1

Q0

RESET

CLOCK

CLOCK

RESET

Q3

Q2

Q1

Q0

Cell0

Instance Block Schematic

The routing within a macro is defined using a route block, such as
the one shown below.

route of “CARRY1” is
 nodes((0, 1, “yOut”),
 (0, 2, “yIn));
end route;

Route Block

The route taken by the net “CARRY1” is described by attaching
route nodes to the net. The net is connected from the Y (orthogonal)
output of the core cell at location (0,1) to the Y input of the core
cell at location (0,2).

Cell1

Cell2

CARRY1

(0,1)

(0,2)

Graphical View of Route Block

The above is a brief outline of how to create a user-customized
macro using MGL. Additional MGL features that support the pro-
grammatic generation of entire designs (including I/Os) are
covered in the Technical Reference & Release Notes.

Macro Generator Language

6-5

MGL Editing and Debugging tools

An MGL editing environment can be reached from the Tools
menu in Figaro, under MGL Editor. Figaro must be set up with an
AT40k design before the MGL Editor can be invoked. The editor
allows MGL files to be edited, debugged and compiled.

MGL Viewer

The following buttons are available on the MGL Editor toolbar:

Updates the file being edited with the latest saved version.

Creates a new MGL file for editing.

Opens a new MGL file.

Saves the file being edited.

 Prints the current MGL file.

Macro Generator Language

6-6

Cuts the selected text and places it in the clipboard.

Copies the selected text and places it in the clipboard.

Pastes the contents of the clipboard.

Multi-level Undo function.

Multi-level Redo function.

Searches for a given string in the current file.

Searches for a given string and replaces it with another.

Places the cursor at the start of the file.

Places the cursor at the end of the file.

Increases the indent level of the selected text.

Decreases the indent level of the selected text.

Text size menu button - Allows the user to select the font
size for displaying the MGL file.

Switches dynamic syntax highlighting on and off.

Comments out the selected text.

Globally switches all user breakpoints (set using the
setbreak() function) on or off.

Single-steps through the MGL code, bring up the MGL
Debugger window after each command is executed.

Compiles the current MGL file and, if successful, gives
the user the option of running the generated macro
through the UDM (User-Defined Macro) flow in IDS.

Macro Generator Language

6-7

Most of these features can also be accessed through the menu bar.
In addition, the Edit menu allows the user to Go To a selected line
and toggle on and off the Auto Indent feature. The Insert menu
provides several of the most common MGL constructs as
templates, which can be inserted into the user’s code and then
modified as needed.

The Debugger Window

The Debugger window is split into three main sections as shown
below. The top allows the user to inspect the value of variables
and constants at various scopes in the program. The middle
displays the source code with the current execution point
highlighted. The bottom provides controls for: a) stepping into the
next statement,
b) over the next statement, or c) proceeding with normal code
execution.

MGL Debugger Window

	Title
	Introduction
	System Basics
	Design Entry
	Schematic Entry
	PLA Optimization
	Macro Generators
	HDL Planner
	HDL Entry
	XNF Entry
	Netlist Generation

	Simulation
	Functional Simulation
	Post-mapping Simulation
	Post-layout Simulation

	Design Implementation
	Device Programming
	Build Bitstream

	Bitstream Utilities
	Window Bitstream
	Compress Bitstream
	Cascade Bitstream
	Download Bitstream

	Macro Generator Language

