
Integrated Development System - Figaro
Tutorial

June 2002

i

The Tutorial

Welcome to the IDS Tutorial. This manual provides detailed examples on working with Figaro, all supported
interfaces, and the AT40K/AT6K architecture. It is intended to help users explore the system’s full potential, so they
can design Field Programmable Gate Arrays (FPGAs) in the most efficient and cost-effective manner.

Conventions Used in This Manual

The following typographical conventions are used in this guide:

§ File names, and program names are in Helvetica type, e.g. atmel.ini, PLA2Cdb

§ Variables are in italics, e.g. DesignName.lib

§ Text to be entered in input boxes are enclosed in “ ”, e.g. “4bitalu”
§ Italic text is used for names of buttons on the Flow Bars, e.g. Open
§ Keyboard functions are shown as <Key>, e.g. <Enter>

Customer Service

Assistance with any matter related to the IDS can be obtained by the following methods:

Calling the PSLI Hotline at 408-436-4119 between 9 am and 5 p.m., Pacific time.

Sending an electronic mail with your question to fpga@atmel.com.

About Figaro and this Guide

i

About Figaro and this Guide

Function

Figaro implements your design for downloading to an FPGA. It can:

§ Read in Viewlogic or EDIF netlists.
§ Map to retarget designs to the Atmel architecture.
§ Let you select the target FPGA device(s), then partitions logic between these.
§ Automatically places and routes the design, producing an optimized result for the target device architecture.
§ Outputs either a bitstream for programming an FPGA, or a macro for adding to a user macro library.

In addition, Figaro can:

§ Read in macros from user macro libraries.
§ Check the timing across the device, display the delays on signal nets and produce timing reports.
§ Output back-annotation files for the Viewlogic, Verilog-XL, VHDL and Mentor simulators.

Operation

You can either leave Figaro to run automatically, or intervene to perform the following operations manually:

§ Read in mapping, partition, pinout and timing constraints.
§ Assign I/O functions to specific pins.
§ Optimize the placement and routing.
§ Output timing reports.
§ Define user macros to build your own macro library.

IDS Figaro Tutorial

ii

The Figaro Flows

The product of Figaro is either a bitstream or a user macro. When you import a design, you have to specify which of
these you want as the end result. Your choice affects your final product and both the way in which Figaro operates
and some of the functions available during the session.

The diagram below summarizes the bitstream flow, with Figaro's Flowbar buttons pictured:

The Figaro Bitstream Flow

The Bistream flow consists of four easy steps: Set Up a Design Directory, Open, Parts and Compile.

When Figaro needs information, a dialog appears asking you to supply it. Toolbar buttons and menu commands let
you perform more specialized tasks.

You can add up to 30 parts as required, then partition logic between these manually or automatically. Partition, like
mapping and pinout, can be controlled using a constraints file.

In the diagram, the information shown on either side of the flow buttons represents other Figaro inputs/outputs:
some of these are optional while others are used automatically.

About Figaro and this Guide

iii

The user macro flow is illustrated in the picture below:

The Figaro User Macro Flow

There are two main differences from the bitstream flow:

§ Figaro adds a suitable part for you, so there’s no need to press the Parts button.
§ Rather than compiling the design automatically, Figaro opens a Compile window in which you can optimize your

design manually. The diagram shows the five buttons available in the Compile window in the user macro flow:
you can combine the use of the four Place and Route buttons with manual placement and routing functions.

The reason for producing your own macros is that when you use a macro in another design, you get the benefits of
the manual optimization. To make proper use of this, you need a good knowledge of the device architecture.

IDS Figaro Tutorial

iv

Figaro Tools

Figaro has four main interactive tools:

Design
Browser

The Design Browser shows the logic instances in the design imported into Figaro. For
hierarchical designs, the hierarchy of instances is preserved within the Design Browser
display.

The Design Browser indicates any item that has been partitioned into a part with an
unfilled rectangle inside the box that represents it. If an instance has been placed, the
rectangle is filled.

Parts Window The Parts window shows the target FPGA device package. When compiling for a
bitstream, use the Parts window to select the target device(s) and, if necessary, to lock
the pinout. You also partition logic between devices in this window.

If you are compiling for a macro, Figaro just adds a suitable device for you and
proceeds to the fourth tool, the Compile window.

Map Browser The Map Browser shows the logic elements and hierarchy of your design, taking
account of changes made to the original design during mapping. (The Design Browser
always shows the pre-mapping design.) These changes are evident in the different
names of associated items in the two browsers.

The Map Browser uses the same graphic conventions as the Design Browser in
representing partitioned and placed instances.

Compile
Window

Compilation is the combination of placement and routing. The Compile window shows
the architecture of the target device and the results of compilation: the placement of
design logic in the device and the routing used by nets.

As the last step in bitstream compilation, you output a bitstream file for each device for
later downloading it to an FPGA. In a user macro compilation, you check the routed
macro into a user macro library for use in other designs.

When you want to optimize the placement and routing manually, rather than leaving it
to Figaro, use the Compile window. You can change Figaro’s placement and/or routing.
When you change routing, the window switches into Manual Routing.

If you import timing constraints for your design, you can look at the delays on signal
nets. The Compile window switches into Timing Analysis mode.

About Figaro and this Guide

v

Using this Manual

In this tutorial you will learn how to use Figaro to implement designs for FPGAs. This guide assumes that you
already know how to describe circuits or produce schematic designs for FPGAs.

This manual has the following sections:

Getting Started Shows how to start Figaro, then describes the user interface and shows how to use the on-line
help. This section also shows how to import your design.

Quick
Implementation

Describes how to implement a design in a few easy steps using Figaro's automatic tools.

Timing-Driven
Implementation

Takes you through the implementation of a complex design, this time using many more of
Figaro's functions. You look at the design with the Design Browser, cross-highlight between
windows and find objects in the placed and routed design. Finally, you output timing reports
and files for back-annotation to a simulator.

Manual Editing
and User Macros

Illustrates manual placement and routing techniques and shows you how to produce user
macros, check them into and out of libraries and incorporate them in a larger design.

Mapping Provides a brief introduction to the principles used in mapping design logic to a specific target
device architecture. Includes a look at the effects of the various options on the final mapped
design.

Mapping AT6K
Designs to
AT40K

An introduction to using the "AT6K Mapped to AT40K" configuration.

Partitioning Provides details on Figaro's functions for partitioning design logic between different devices.

Additional
Features

Provides information on some useful tasks not covered in other tutorials, such as saving and
restarting a session or changing Figaro options.

Troubleshooting
and Support

Describes problems you may encounter and shows how to contact your technical support.

The appendices contain additional information:

Appendix A Summarizes the menu commands and keyboard or button shortcuts.

Appendix B Describes the files Figaro uses or outputs. These include the . INI files, the log file, timing
reports, constraint files and statistics files.

Getting Started

1-1

Getting Started

This chapter tells you:
§ How to start up Figaro.
§ How to use on-line help.
§ About the user interface.

This briefly describes the parts of the Figaro window: menus, buttons and tool windows and so on

Starting Up Figaro

From the Start Menu, choose Programs>Atmel>IDS 7.5 . This starts up Figaro, briefly displaying the "Copyright"
box.

Using On-line Help

If you’re running Figaro, pull down the command Help>Figaro Overview.

Here are a few tips to help you use the online help:

§ Remember that the help is context-sensitive. Use the command Help>Using the Current Window to display help
on the tool you're running.

§ Keep the help window just wide enough for its six buttons to fit on one line. This leaves space for you to look at
Figaro and the help page simultaneously.

§ Most help topics fit on a single page, so there's no need to scroll through masses of text. To reduce the need to
scroll, make the help window as deep as the screen itself.

§ Click on phrases shown in underlined and/or colored text. This displays more information either as an overlay or
a new page.

§ Many diagrams in the help show additional information when you click on specific areas of them.
§ Return to your previous page by clicking Back .
§ For a description of any menu command, pull the menu down, click-hold the command and press SHIFT+F1 keys

together.
§ Use help's Search facility to find information on a topic quickly. Click on the Search button at the top of the help

screen, then specify the topic you want. All significant areas are listed.
§ Use the "Browse" buttons marked << and >> to move backwards and forwards quickly through a series of

related topics.

IDS Figaro Tutorial

1-2

The User Interface

When you start Figaro for the first time, a single window appears. This is the "Figaro window". Most of this window
is empty when you first start up. This blank area is called the Figaro desktop.

The Figaro Window
After starting up Figaro for the first time, take a couple of minutes to examine the Figaro window shown as follows:

The Figaro Window at Startup

Getting Started

1-3

Figaro Window Features

The main features of the Figaro window are:

Title Bar This contains the word Figaro and the design name. Before you open a design, the name
is "Untitled".

Menu Bar The menus run from File to Help. These "pull-down" menus let you perform all
operations. The toolbar buttons (see below) are a quick way of performing the three main
operations.

To display the list of options under a menu, click on the menu name. To run an option,
click on it in this list, or press the key combination, if one is shown next to it. To get help
on an option, click-hold it and press the SHIFT and F1 keys simultaneously.

Options are "grayed out" when they are not available or do not apply. The range of
menus available changes as you open up Figaro tools. The Compile menu only becomes
available when you move into the Compile window, for example.

Flowbar This bar is located below the pull-down menus. It contains four buttons in a horizontal
row. You can turn the Flowbar display on or off: pull down Options>Flowbars.

The Flowbar buttons let you perform the main Figaro operations without using menu
options. These buttons change color as you use them: see the on-line help for details.

Toolbar This vertical column of buttons is located at the left of the window. You can turn this
toolbar display on or off using Options> Toolbars.

For quick information on a button, move the cursor over it and look at the status bar. For
more details, Search for Toolbar in the on-line help.

Desktop When you open a Figaro tool, its window overlays the desktop. You can change the size
of the desktop relative to the transcript by dragging the boundary between them up or
down.

Transcript This area shows messages describing Figaro's progress. Errors and warnings are shown in
color. You can scroll back to see messages from earlier in a Figaro session. As the session
goes on, early messages are removed, although they do remain in the log file, described in
Appendix B.

You can turn the transcript display on or off using Options>Transcript. You can resize
the transcript vertically using the mouse.

Status Bar This is located at the bottom of the screen. It is blank when you first start up. If you click-
hold the cursor on a menu option, this area shows what the option does.

As you move the cursor around Figaro the status bar displays various explanatory texts
(for example on pin names and types, grid locations) and useful hints (for example on
toolbar and Flowbar buttons). It also incorporates a percentage complete bar, enabling
you to monitor the progress of the operations being performed.

The representation of the following three buttons may differ depending on the platform you are using

Control
menu

Click on the button to display commands which let you move or resize the window, reduce
it to an icon, or close it.

Minimize
Button

Click to reduce the window to an icon.

Maximize
Button

Click to expand the Figaro window to fill the screen, or a tool window to fill the desktop.

IDS Figaro Tutorial

1-4

Desktop Options
You can turn on/off the display of the Flowbar, toolbar, transcript and status bar by pulling down Options>Display
Options and selecting “Desktop”. Check the boxes to set items on or off. This is different to the commands under
the View menu because the settings become the defaults for use in future sessions.

Scroll bars
Scroll bars are not shown in the above diagram. They may appear at the right side or
base of a window, depending on its size and contents. Use scroll bars to move
horizontally or vertically in the window: either drag the square along the bar or click on
the arrows at the ends of the bar.

Tool Windows
The tool windows have their own control menus, title bars and minimize/maximize buttons. These operate in the same
way as for the Figaro window.

Tool windows do not have a separate transcript or status bar. They do not have a separate menu bar: the menu
options on the Figaro window menu bar change to reflect the tool window you are in.

The Parts window has its own Flowbar with specialized buttons. The Compile window has its own Flowbar and
toolbar. The toolbar buttons provide shortcuts for common Compile window operations. (For more details, Search
for Toolbar in the on-line help.)

Dialog Boxes
A dialog box appears to ask you to enter information or select something. This example shows the main features:

Dialog Box Features

Getting Started

1-5

Multiple and “Lost” Dialogs
When you use some commands, for example Edit>Find and Edit>Info , you may have to open a series of dialogs,
each showing different information. If you then click on the desktop again, these dialogs may disappear behind the
Figaro window. To bring them back into view, use the command Window>Dialogs to Front.

To close all open dialogs in one step, use the command Window>Close Dialogs.

Running Multiple Windows
When you open any Figaro tool, a new window appears, overlaying the Figaro desktop.

After a while you may find you have three or four windows open at once. If you have several windows open, but are
only working in one of them, you can make more space for it by reducing the other windows to icons. To do this for
any window, click on its Minimize button. The icons remain within the global Figaro window.

You can arrange the windows or icons in several ways, using the Arrange Icons, Cascade and Tile options under the
Window pull-down menu. A display with three windows tiled, for example, looks like this:

Tool Windows Tiled

IDS Figaro Tutorial

1-6

Resizing Windows
There are two ways to make a window the exact size you want. Click in the window to make it the current window,
then:

§ Move the mouse to the window edge, where it changes to a "↔" shape. Holding down the left mouse button,
drag the window boundary to the new location and release the button.

§ Move the mouse to a window corner, where it changes to a "corner" shape (for example, in the bottom right-
hand corner). Holding down the left mouse button, drag the window boundary to the new location and release
the button.

The Cursor

The shape of the cursor is usually an arrow, but changes, depending on the task being performed. For more
information, open the on-line help and Search for "cursor".

If the cursor changes to a trashcan or hourglass shape, this means Figaro is compacting memory or just processing.
Do not abort the operation.

Colors

Colors tell you a lot about a window. For example, an object changes color when you click on it in a window to show
that it’s been selected.

You can change the colors of many features shown in the windows. To change default color settings for a particular
window, pull down Options>Display Options. Don't change colors yet: wait until you've run through the exercises
in the next chapter, so you can assess the default colors Figaro starts with. (Instructions on changing colors are
given in "Changing Figaro Options" in Chapter 9, and in the on-line help.)

NOTE
All references to colors in this manual assume you are using the default colors. If the defaults for your
system have been modified by another user, you can reset all colors to their initial defaults by renaming the
file FIGARO.INI stored in the directory from which Figaro was invoked (usually Figaro's BIN directory).

Other Types of Window
You can open two types of Window which are independent of the Figaro desktop.

The Log Viewer

You can use Window>New Viewer>Log File to open a separate Log Viewer window containing all the session's log
messages. This window is independent of other Figaro windows. You can

§ Update the display to show messages output by Figaro since you last used Update.
§ Print the log.
§ Search the log for a string. This displays a pop-up box: type in the text you're looking for and press ENTER.
§ Save the log to a file.

To move within the Log Viewer window, use the scroll bars, arrow keys and Page-Up and Page-Down keys.

There are also similar viewers that you can use to look at path analysis reports, net delay tables and statistics files.

A Quick Implementation

2-1

A Quick Implementation

This first tutorial shows you how to implement a design with a minimum of effort, leaving almost everything to
Figaro.

All Screenshots in this tutorial only represent AT40K examples.

The steps are:

1. Preparing Input to Figaro
2. Setting Up the Design Directory
3. Opening the Design
4. Specifying the Target Device
5. Compiling the Design
6. Looking at the Implementation
7. Saving the Design and Exiting Figaro

Work through all the sections in the sequence given. This tutorial uses the buttons on the Figaro window Flowbar.
If this is not visible, display it by pulling down Options>Flowbars.

If Figaro is already open, you can go straight to the next section. If not, repeat the process described under "Starting
Up Figaro" in the previous chapter.

Preparing Input to Figaro

As well as its own saved design sessions (*.FGD files), Figaro also accepts netlists in various other formats as input.
You probably already have netlists for your own designs, produced using a schematic editor, but run the tutorials in
this manual first using the examples provided.

For AT40K devices: The example used here is a Viewlogic design called TEST40K, which has been installed
automatically in /SYSTEMDESIGNER/EXAMPLES\AT40K\VLOGIC\TEST40K under your main Figaro directory.

For AT6K devices: The example used here is a Viewlogic design 4BITALU, which has been installed automatically in
/SYSTEMDESIGNER/EXAMPLES\VLOGIC\4BITALU under your main Figaro directory.

NOTE
When you come to import your own designs, and you want details on the interface between Figaro and a
particular schematic editor, refer to the section Interfaces to Figaro . This details netlist formats, the
design checks Figaro runs and other information.

Before You Begin
Figaro provides various time-saving features designed to save you having to re-enter the same standard information
each time you work with a particular design. However, this tutorial assumes that you are working with the system for
the first time, so before you begin, please check the following:

The 4BITALU.RCT/TEST40K.RCT files
If other users on your system have used the Figaro tutorials already, check whether there is a file named
4BITALU.RCT or TEST40K.RCT in the design directory.
This file contains repeat constraints saved from previous Figaro sessions with this design and, if the "Auto-
import Repeat Constraints" option is enabled, Figaro will import this file and automatically add the part and lock
any pins it specifies.
You will find out more about this file in later tutorials and in Appendix B, "Figaro Files": for now, delete or
rename it before starting the tutorial yourself.

The Viewlogic symbol file
The Viewlogic symbol file for this example may specify part and package attributes to be used in the
implementation of the design. Figaro uses these attributes to add the appropriate part from the AT40K library
automatically when the design is imported.

IDS Figaro Tutorial

2-2

However, in this tutorial you should add the part manually, so pull down Options>Options, select the topic
"Viewlogic Import" and clear the check box labeled "Use Part/Package Attributes".

Unconnected Reset Ports
The TEST40K design includes a number of unconnected reset ports, which by default are reported on import as
errors by the design checker. To be able to read in the design, you will have to disable these unconnected
resets. Pull down Options>Options, select "Design Checker" from the topic list and then "Disable" for the
"Reset Ports" option.

Setting Up the Design Directory

You must set up a design directory before you can open a design. The design directory is the only place Figaro will
look for the design. Pull down File>Design Setup. The Design Directory Setup dialog is displayed:

Design Directory Setup Dialog Box

If this is the first time you’ve opened Figaro since installation, no directory will be listed. Click the New Design
button to add the directory which contains the supplied 4BITALU or TEST40K example.

The New Design dialog box is displayed:

New Design Dialog Box

A Quick Implementation

2-3

Do the following:

1. If you are using a PC and have installed the examples on a different drive to that shown under "Drives", select
that drive in the pull-down list.

2. Under "Design Directory" specify the directory /SYSTEMDESIGNER/EXAMPLES\VLOGIC\4BITALU for 6K
devices or /SYSTEMDESIGNER/EXAMPLES\AT40K\VLOGIC\TEST40K for 40K devices. To do this, click on
successive directories in the path name: each time you do this, the relevant subdirectories are shown. Use the
scroll bar if necessary.

3. Under "Files of Type", select the type for the schematic editor used: for this example this is "Viewlogic Wir
(*.1)".
When the “Design Name" list displays all the files in the directory, select 4BITALU.1 or TEST40K.1.

4. Under "Tools Flow" select "Viewlogic WIR". These are the systems used to produce the example design on the
different platforms.

5. Under "Configuration", select AT6K or AT40K.
6. Click OK. This returns you to the first dialog, where /SYSTEMDESIGNER/EXAMPLES\VLOGIC\4BITALU or

/SYSTEMDESIGNER/EXAMPLES\AT40K\VLOGIC\TEST40K is listed under "Design Directory" and 4BITALU
or TEST40K under "Design Name". Click OK to finish design directory setup.

Opening the Design

To read in the design, do the following:

1. Click the Open button on the Flowbar. The button turns yellow to show you've started opening a design.
2. You are asked whether you want to open the netlist as a design or a macro. Click Design to enter compile for

bitstream mode, meaning that the end result will be a bitstream file rather than a user macro. Figaro displays the
Open as Design dialog.

3. Make sure "Files of Type" is set to "Viewlogic Wir (*.1)". The directory and file names will change to the ones
you specified.

4. Click OK to load the design. This causes the following to happen:
§ Figaro writes messages to the transcript showing the design is being opened (these may include warnings from

the Design Checker, depending on how the options are set).
§ A Design Browser is opened on the Figaro desktop. This lists the logic elements in the netlist(s).
§ The Open button turns green, showing that the design opened successfully. (If an error did occur, the button

will turn red and the transcript will provide information on the reason.)
The display looks like this:

Figaro Window with Opened Design

IDS Figaro Tutorial

2-4

Note that this flow does not include the Map step, so the corresponding Flowbar button is grayed out. The button is
enabled and disabled using the "Mapping" options in the Options dialog.

Specifying the Target Device
The Parts window is a representation of the PCB that holds the FPGA. It is a virtual board to let you visualize the
orientation of the part and you use it to specify the target device, which is then displayed in the window.

To select the target device (called a "part" by Figaro), click the Parts button in the Flowbar. This displays an empty
Parts window and the Part Select dialog:

The Part Select Dialog Box

The Package, Application and Speed lists filter out unwanted device types from the list. You can, for example, list
just those devices suitable for commercial applications.

NOTE
You cannot change the architecture in this dialog: if you want to use an AT6K part in your implementation,
you have to return to the Design Directory Setup dialog. You cannot mix AT6K and AT40K parts in a sin-
gle implementation.

A Quick Implementation

2-5

To add a part, do the following:

1. Scroll down the "Part Name" list and select "AT6003-2JC" or "AT40K05-2JC".
2. A green bar appears below the gray bar at the base of the dialog, showing whether the part is large enough to

hold the design. One part will be large enough for 4BITALU or TEST40K.
3. Click Add to add one of these parts and then OK to return to the Parts window. An image of the selected part

appears in the Parts window, which becomes the current window:

Parts Window Displaying Target Device

The part is labeled "A" and is followed by its name. Clock and reset pin locks may be assigned automatically.

IDS Figaro Tutorial

2-6

Compiling the Design

Click on the Compile button to implement the design on the part that you just added. As compilation proceeds, look
at the progress reports in the status bar and transcript to see what Figaro is doing.

Compilation for bitstream involves the following steps:

Partitioning As only one part was added, this involves moving all the design instances to that part.

Placement This step positions the design instances in logic blocks in the device, producing an optimized re-
sult for the device architecture. Placement is run in three stages: initial placement then two opti-
mize placement passes (global and detailed).

Routing Makes connections between logic blocks using available routing resources on the device. Optimal
routes are used. Routing is also run in three stages, two initial routing passes then optimized
routing. In non-timing-driven implementations like this one, optimized routing runs only if initial
routing leaves routing contention.

Bitstreaming Outputs a bitstream for downloading to an FPGA. The file containing the bitstream is written to
the design directory and is called design.BST.

When compilation finishes the Compile button turns green, indicating that the run was successful.

Looking at the Implementation

To see the result of compilation, pull down the menu Window>New Compile Window. This opens a window like that
shown below depicting the device architecture. The compiled design has its logic placed and routes completed:

The Compile Window after Compilation

Larger boxes covering more than one sector are RAM blocks. Use View>Zoom to Area to take a closer look. Don't
worry if your implementation of the design does not match the picture exactly: continuous improvements to Figaro's
placement and routing algorithms may mean the pattern is different.

In the next tutorial you'll look at the Compile window in more detail, including its toolbar and the meaning of the
various colors used.

A Quick Implementation

2-7

Saving the Design and Exiting Figaro

To save the implementation under the original design name, simply pull down File>Save. Figaro saves the session
in a file called design.FGD, which you can reload at a later time.

To save the session under a name other than the original design name, pull down File>Save As and enter the new
name in the field provided.

If you don't intend to start the next tutorial immediately, save the session using either of the above methods and then
pull down File>Exit. When you are asked if you really want to exit Figaro, click Yes.

Summary

In this tutorial you clicked the Open, Parts and Compile buttons in turn (Map was disabled). You could have
implemented the design just by clicking the Compile button on the Figaro window's toolbar instead: this would have
run the Open and Parts steps too, with Figaro prompting you for input as required.

The following tutorials look in greater detail at the steps introduced here.

Timing-Driven Implementation

3-1

Timing-Driven Implementation

This tutorial works through a process similar to that described previously, but this time you intervene more actively in the
process. You compile the design in stages and learn how to set timing constraints that will drive the way Figaro implements
the design. There are also extra steps between the main tasks of the previous exercise:

§ Looking at the meaning of colors in the display.
§ Cross-highlighting between the Browser and the Compile windows.
§ Zooming in to look more closely at the device structure.
§ Using Edit>Find to find named nets in the design.

These tasks are optional and can be skipped without affecting the tutorial flow. You should look at these sections at some
stage however, as they contain valuable information on Figaro's user interface and search features.

The individual steps in this tutorial are:

1. Opening the Design and Adding a Part
2. Browsing the Hierarchy
3. Setting Up for Timing-Driven Design
4. Running Initial Placement
5. Analyzing Timing After Placement
6. Importing Timing Constraints
7. Running Optimize Placement
8. Routing
9. Interactive Timing Analysis
10. Bitstream and Export
11. Troubleshooting Timing-Driven Compilation

You can use the keyboard shortcuts shown to the right of commands in a menu. For a full list, see “Command Shortcuts” in
Appendix A, or Search for "Key Shortcuts" in the on-line help.

Opening the Design and Adding a Part

Before you begin, make sure there are no repeat constraints from a previous design session in the design directory.

To read in the 4BITALU/TEST40K design, do the following:

1. Pull down File>Open As Design to display the Open as Design dialog box.
 2. Select \SYSTEMDESIGNER\EXAMPLES\VLOGIC\4BITALU or

\SYSTEMDESIGNER\EXAMPLES\AT40K\VLOGIC\TEST40K from the pull down design directory list.
If you need to set up the design directory first, refer to Chapter 3, "Setting Up a Design Directory".

2. Set "Files of Type" to "ViewLogic Wir (*.1)" and click OK. Figaro reads in the netlist and opens a Design Browser.
3. Click Parts to open the Parts window and use the Part Select dialog to add a single AT6003-2JC or AT40K05-2JC device.

Use the green and gray bars at the bottom of the dialog to check whether the part is large enough to accommodate the
design.

4. Click OK to close the dialog and return to the Parts window.
5. Go to the Parts window and click Partition to assign the design logic to the selected part. In AT40K, part fill is
represented by two separate blocks, logic on the left and memory on the right.

IDS Figaro Tutorial

3-2

Browsing the Hierarchy

First look at the Design Browser:

The Design Browser

Note the following:

§ The Design Browser shows the design hierarchy as a tree structure.
§ Logic elements in the design are shown as labeled boxes and the hierarchical relationships between them as lines.

Indentation is used to illustrate the hierarchical level.
§ Hierarchical instances are represented in a different color from macro instances.
§ The 4BITALU or TEST40K element at the top is a hierarchical instance (i.e. one that contains other instances), as are

REGISTR4 and CONTROL for AT6K devices or MULT8 and OUT8 for AT40K devices.
§ For macros, the ViewLogic instance and library names are shown. For example, for the tenth element in the picture shown

above, these are (for AT40K Devices):

$1I45 Instance name from ViewLogic (i.e. the name given to the symbol in ViewLogic, or a label
supplied by the engineer, e.g. "MULT").

GLCKBUF ViewLogic symbol master name.

Timing-Driven Implementation

3-3

Expanding the Hierarchy
You can change the way the design is displayed in the Design Browser. Scroll down the list to find $1I72(CONTROL) (for
AT6K Devices) or FIFO(RAMCONT) (for AT40K Devices) and click on it. When you select it, a box surrounds it and its color
changes to the selection color. Pull down View>Expand One Level to dis play the next level of hierarchy for this element. You
can also use double-click on the selected element as a quick method of expanding and contracting branches.

Expanded Branches in the Browser (for AT40K Devices)

Now select instance MULT8 and pull down View>Expand Branch. This time, Figaro expands all the sub-levels of hierarchy
under the selected instance.

Use View>Collapse Branch to contract the branches again. Experiment by selecting other elements and expanding and
contracting these using both double-click and menu commands until you're familiar with the Browser commands.

Setting Up for Timing-Driven Design

Enable the timing-driven mode by checking the appropriate box in the "Place and Route" options dialog. In timing-driven
mode, Figaro seeks to optimize frequencies for all primary, secondary and derived clocks in the design. To enable it to do this,
you need to specify the assertions against which you want the placement and routing functions to run:

Primary clock
assertion

Defines a regular clock cycle for the design. You can define only one primary clock and it
must be placed on an input to the design.

Secondary clock
assertion

Defines a regular clock cycle referenced to the primary clock. Like primary clocks, these
must be placed on inputs, but you can define as many secondary clocks as you require.

Derived clock
assertion

Required wherever a primary or secondary clock signal passes through other logic on the
path between the external input and the port driving the internal clock net. You need as
many of these as there are primary or secondary clocks reaching the port.

IDS Figaro Tutorial

3-4

If you've specified input and/or output assertions that take into account off-chip areas of a design, these will also be
optimized:

Input assertion Specifies a required time for arrival of an external input signal at a device I/O.

Output assertion Specify a required arrival time for an internal signal going through an I/O out to the board.

NOTE
Using timing driven compilation on a purely combinatorial design will not yield a better solution than non-
timing-driven, as asynchronous delay assertions (like cut cycle and false path assertions) are not optimized
by this function.

There are two main ways of specifying timing assertions:

§ interactively, by using Figaro's Constraints Editor.
§ by importing a timing constraints (*.TMG) file you produced earlier.

You'll use the former method in the course of this tutorial, but rather than enter your own assertions just now, the next section
shows how you can have Figaro generate essential defaults using the Timing Analysis options.

NOTE
If you want Figaro to generate default assertions, you must set these options before you open the
Constraints Editor for the first time. If you open the Constraints Editor first, Figaro will not subsequently
overwrite your entries, even if those "entries" are blank.

Before you Proceed
Before you create default assertions for your design:

§ If you haven't already done so, pull down Options>Options, select "Place and Route" from the Topic list and enable
timing-driven mode.

Creating Default Assertions in the Constraints Editor
To have Figaro generate essential timing assertions automatically, do the following:

1. Pull down Options>Options and select "Timing Analysis" from the Topic list. Figaro displays the Timing Analysis
options:

Timing Analysis Options Dialog Box

2. Look at the first two options in the "Constraints" section: "Create default assert ion for single clock" and "Default IO
assertions to full clock period". Where a design contains only one clock, the first option will cause Figaro to place a
default clock assertion of 1ns on that clock, unless you specify otherwise.

Timing-Driven Implementation

3-5

The second option controls whether Figaro creates default input and output assertions where these would be required by
the design. Initially, these defaults are symbolic values, indicating that true values will be computed and entered when
timing analysis is actually run.

3. Set the options as shown and click OK to return to the desktop.
4. Pull down Edit>Timing Constraints and look at the defaults Figaro has entered. On the "Clocks" page, Figaro has

entered the CLOCK1 input and net:

Constraints Editor

Figaro adds a 1 ns Period, 0.5 ns Half Period and Edge Rising. This will happen only if there is 1 clock in the system. If
there are multiple clocks, or derived clocks, they will be shown in the dialog, but not be assigned values.
Now look at the "Inputs" and "Outputs" pages (the latter is shown below). Both include automatically generated entries
that will be substituted with actual values when timing analysis is run. This will happen for single or multiple clocks:

Default Output Constraints

5. When you have finished browsing, click Done to close the Constraints Editor without changing any of the default
assertions.

IDS Figaro Tutorial

3-6

Running Initial Placement

Placement positions design instances in the FPGA's logic locations. It is run in two distinct stages: initial placement and
optimize placement. Before you start, ensure that timing-driven mode is enabled and that the quality level is set to 2 ("Place
and Route" options).

The previous tutorial showed you how to use the flowbar buttons to compile your design, but this time you'll use the Flow
menu to run the individual steps. This allows you to compile the design without opening a Compile window, which may be
useful if your computer is close to the recommended minimum criteria required for Figaro.

Pull down Flow>Compile>Initial Placement to perform initial placement.

NOTE
If Figaro had not successfully generated default timing, it would produce an error message and ask you to enter the
required constraints. .

Progress is displayed in the status bar at the bottom of the desktop and the Compile button in the Figaro flowbar turns yellow
to show that compilation is in progress.

When initial placement is finished, view the transcript to see where the global clock and reset nets have been allocated. You'll
also see that each of the boxes representing the instances in the Design Browser is filled with a solid rectangle to show it has
been placed in the device. The Compile button in the Figaro window flowbar has gone back to gray.

Open the Compile window using Window>New Compile Window:

The Device after Initial Placement

The Compile window also includes a flowbar with buttons for each of the main compile steps. Initially, all the flowbar buttons
were gray, but now the Ini Place button is colored green to indicate that the step has been run successfully. As you compile
the design in stages, detail is added and the other buttons also change color. The individual stages are described in turn
below.

Timing-Driven Implementation

3-7

4. Expand the Compile window to fill the remaining desktop space. The Figaro window should now look something like this:

Compile Window and Design Browser

Note the following:

§ Besides the gray unused locations, there are now locations in several different colors (these are the darkest areas in the
above example).

§ Some of the pads at the sides of the device have also changed color.

To understand this display, you need to:

§ Find what the different colors mean.
§ Locate objects from the design shown in the Design Browser.

Finding What Colors Mean (Optional)
This section shows how to find out about colors in displays:

1. Pull down Options>Display Options from the Compile window. In the dialog scroll down past the "Miscellaneous"
parameters which control background color and so on. The main types of object in the window are listed like this:

Compile Window Display Options

For more information on what the various objects are, click Help. (Note that you probably will not see all the objects
listed in the dialog in any one Compile window.)

IDS Figaro Tutorial

3-8

2. Drag the dialog to one side of the screen so that you can see the Compile window at the same time. (To do this, click-hold
in the dialog's title bar and drag it.)

3. Compare the colors in the scrolling list to the items in the Compile window. (Where three numbers replace the name of a
color, these are red, green and blue values, each in the range 0 to 255.) The list begins with locations and instances, and
then shows net colors. The third item under “Instances” is orange, the same color as most of the instances that changed
color after Initial Place. The dialog shows that this is the color of logic locations (physical parts of the device into which
design logic has been placed).

4. Scroll down the list until you find an instance type that uses cyan. The list shows that these are “contention locations”.
5. To find the meaning of a particular color, search for that color in the dialog and see what type of component it represents.

For example, magenta is used to represent locked instances, green for locations used to accommodate routing between
instances.

6. Click OK to close the dialog box.

In summary, this inspection showed that:

§ Most logic locations which have design instances placed in them are colored orange or pink. (Design instances are from
your netlist, as shown in the Design Browser.) Macros and hierarchical instances are shown in the same color as in the
Design Browser.

§ The third location color is cyan. This shows where multiple parts of the design have been placed in a single location.
This situation is called contention. If there's no contention in the design, do not worry, this means Figaro has placed
everything correctly first time.

§ The pads connected to the ports you locked using the Parts window are colored magenta.

Cross Highlighting (Optional)
Another problem is finding where individual objects from the design have been placed. Cross highlighting makes it easy to
identify objects in different windows. It means that selecting an object in one window also selects it (and changes its color) in
other windows. You'll look at this briefly here.

Do the following:

1. In the Browser find instance $1I69\A0 (FULL_ADD) (for AT6K devices) or FIFO\$1I6 (for AT40K devices).
To do this, select $1I69 (ADD4) (for AT6K Devices) or FIFO(RAMCONT) (for AT40K devices) and double-click to
expand it. Select A0 (FULL_ADD) (for AT6K devices) or $1I6(ENABLE) (for AT40K devices) and double-click to expand
it.
The Browser should now look like the picture below, with A0 (for AT6K devices) or $1I6 (for AT40K devices) highlighted
and boxed and its component items dis played. (These components are not highlighted in the Browser, but they are in fact
selected).

Design Browser Displaying Components of $1I6

Timing-Driven Implementation

3-9

2. Look closely at the Compile window. Several objects in it are highlighted in yellow, the default color for selected items.
These are the components cross-highlighted from Browser to Compile window. Note that the individual items change to
the selection color in the Compile window, but not in the Browser.

3. Select G5 (OR3) (for AT6K devices) or $1I132(AN3I1) (for AT40K devices) in the list below the expanded item in the
Design Browser. Just one object in the Compile window remains yellow: this is the only selected object now.

4. Click in the title bar of the Compile window to make it the current window and pull down View>Zoom to Selected. The
instance type shown in the Compile window is OR3 (for AT6K devices) or AN3I1 (for AT40K devices): this text appears
in the top left-hand corner of the macro. The displays in the two windows should look something like this:

Cross-highlighting with $1I32(AN3I1) Selected

The Zoomed View
When you zoom in on an area, as you did just now, small scale detail of the device is shown. This is not shown before you
zoom in because the mass of detail would make it impossible to see relevant items at the larger scale. The “display threshold”
which can be set for each instance or net type controls this concept. You change the value for the "Display Threshold" under
Options>Display Options. For more information, jump from the on-line help index to "Glossary of Terms", and then scroll to
"Display Threshold".

The zoomed view shows the elements of the Atmel architecture.

What is Contention? (Optional)
Using the interactive flow, it is very likely that you will come across contention. This is a technique used by the automatic
placement and routing algorithms allowing design instances and routes to be temporarily stored in the same place on the
device until a solution is found for them. The default color for cell and routing resources in contention is cyan.

After initial placement, it is likely that your design contained a lot of contention. You don’t need to worry about this as the
optimize placement step will usually remove all or most of it.

For more information on resolving contention, see the troubleshooting section at the end of this chapter.

IDS Figaro Tutorial

3-10

Analyzing Timing after Placement

This section describes how you can obtain information on the timing that can be achieved by the current implementation of
your design:

Using Show Analyzed Paths
1. Pull down Timing>Show Analyzed Paths and confirm that you want to run timing analysis. Figaro displays the Find

Paths of Type dialog box.
2. Select "Critical Long" from the list and click OK. Figaro lists the ten paths with the most critical long path slack values.

These values are logic delays only, as we have not done any routing yet.

Critical Long Paths in Compile Dialog Box

The Max. Slack column tells you how much slack is available to accommodate the routing for the path. A positive value
means that the path can be routed within the current timing constraints, but here all the slack values are negative,
meaning that Figaro will not be able to compile the design given the current timing constraints.

NOTE
You can, of course, still go ahead and compile the design, examine the best case, then manually adjust any nets that
are over the limit. Remember: if you have already done some manual routing, you may not be getting purely logic
delays.

3. Click Done to return to the desktop before proceeding.

Timing-Driven Implementation

3-11

Examining Path Values in the PDL Viewer
Show Analyzed Paths provided some basic information on the critical paths, but if you want more details on how the figures
were arrived at, you have to look at the Path Analysis Report:

1. Pull down File>Export and check the box marked "Path analysis (*.pdl)":

Exporting a Path Analysis Report

2. Click OK to export the file.
3. Now pull down Window>New Viewer>Path Analysis Report. Figaro opens the PDL Viewer and loads the file

"4BITALU.PDL" (for AT6K devices) and TEST40K.PDL" (for AT40K devices).
4. In the PDL Viewer, pull down Edit>Find and use it to find the second occurrence of the text "Long critical path analysis"

(the search is case-sensitive) in the file.
Figaro scrolls to the appropriate section of the PDL file.

5. Look at Path #1 which will look similar to the extract below:

For AT6K devices:

Path #1

Slack = 35.3ns
Type = Flop - Flop (''$1I213\$1I8 CLK'->'$2I73\$1I10\$1I34 D'')

Clock Edge: 'FINISH' on '$1I72\OR0 Q' _/ 7.30ns
Clock Delay: '$1I72\OR0 Q' -> '$2I73\$1I10\$1I34 CLK' _/ 0.00ns
Clock Period: gcd(FINISH, CLOCK) 100.00ns

Required Arrival Time: _100.30ns

Clock Edge: 'CLOCK' on '$1I187 A' _/ 0.00ns
Clock Delay: '$1I187 A' -> '$1I213\$1I8 CLK' _ 9.50ns
Data Path: '$1I213\$1I8 CLK' -> '$2I73\$1I10\$1I34 D' _ 60.40ns
Setup '$2I73\$1I10\$1I34 D' _ 2.10ns

Actual Arrival Time: _ 72.00ns

IDS Figaro Tutorial

3-12

For AT40K devices:

Long critical path analysis

Path #1

Slack = -34.39ns
Type = Flop -> Output ('FIFO\$1I5\$1I3 CLK' ->'$1I194\IOB15 PAD')

Clock Edge: 'CLOCK' on '$1I45 PAD' _/ 0.00ns
Asserted Required Time: 'MULT_OUT15' on '$1I194\IOB15 PAD' _/ 1.00ns

Required Arrival Time: _ 0.96ns

Clock Edge: 'CLOCK' on '$1I45 PAD' _/ 0.00ns
Clock Delay: '$1I45 PAD' -> 'FIFO\$1I5\$1I3 CLK' _/ 1.02ns
Data Path: 'FIFO\$1I5\$1I3 CLK' -> '$1I194\IOB15 PAD' _ 34.33ns

Actual Arrival Time: _ 35.35ns

The path report provides breakdown of how the timing analysis values were calculated. The required arrival time is
computed by adding the clock edge to the delay and the period. The calculation of the actual arrival time replaces the clock
period with the delay along the data path and the setup value where appropriate

The slack value at the very top is calculated by subtracting the actual arrival time from the required arrival time and is the same
as that listed in the dialog. Figaro also gives you the path type and its start and end points.

The data path delay is broken down into further detail directly after the summary. Scroll down the PDL file to see how it is
represented.

The path shown leads from CLOCK to an output pad.

NOTE
It is recommended that you check the viability of your timing constraints after the initial placement step, and before
routing delays are added to complicate the situation.

You should always check that any default assertions and constraints entered by Figaro are appropriate for your
design. Automatically generated constraints are set to the period of the most appropriate external clock. If you are
using derived clocks, the default output assertions may not be appropriate.

Changing the Default Constraints
You can change the timing constraints set for your design either in the Constraints Editor, or by creating and importing an
ASCII .tmg file containing the corrected constraints:

1. Return to the Figaro desktop and pull down Edit>Timing Constraints.
2. In the “Clocks” page, change the Period to 40 ns and Half Period to 20 ns. Click Accept. The logic delay was ~35 ns, so

setting the delay to 40 ns leaves 5 ns for routing. This may not be enough, but gives the tool a more realistic value to
work with.

3. Click Done on the Timing Constraints dialog.
4. Now re-run timing analysis by exporting the path analysis report again and look at the updated PDL file. The slack values

are now all positive.

This example highlights the problems of relying too heavily on auto-generated constraints. Always take care when defining
IO assertions and be aware of the interaction of the clocks in the design, particularly where you are dealing with multiple clock
domains.

Remember that the default constraints generated by Figaro are intended as a starting point for timing-driven compilation. To
get the most out of your implementation, it is likely that you will want to define your own assertions.

Timing-Driven Implementation

3-13

Running Optimize Placement

Optimize placement is the second compile stage. It can be split into two phases: global placement and detailed placement. In
timing-driven mode, both will seek to meet your clock frequencies and eliminate contention.

1. Pull down Flow>Compile>Optimize Placement or click the Opt Place button in the Compile window. The status bar and
transcript keep you informed of Figaro's progress.

2. When the Opt Place button turns green, pull down Window>New Viewer>Log File and take a closer look at the timing
reports output at various stages of the optimize placement step.

3. Scroll back to the two Timing Reports sections. An example of one is shown below.
Clock domain: CLOCK
Asserted period: 40.00ns (25.00MHz)
Estimated best period: 36.89ns (27.10MHz)
Target period: 40.00ns (25.00MHz)

The pre-place delay model assumes that direct connects can be made for all routes, so the estimated frequency given here
is the absolute best case that the design can achieve. If the timing constraints have not been met at this stage, you need
to check that the assertions were entered correctly or rethink your design.

4. Scroll down to the "Timing report using phase 1 place delay model". This model is less critical and provides an approxi-
mate indication of the routing delays after the global placement step.

Routing

Routing makes connections between logic locations using available routing resources on the circuit. Routing is split into two
stages, Initial Route and Optimize Route.

Initial Route
Before performing initial routing, workstation users should pull down Window>New Shell Window and use the more
command to view the messages written to the "4BITALU.LOG" (for AT6K devices) “TEST40K.LOG" (for AT40K devices) file
while initial route is running (PC users must wait until initial routing is complete before viewing this information in the log file).

Click the Ini Route button or pull down Flow>Compile>Initial Route. This step has five phases: after phase 3, the log file
will show a timing report using the initial route delay model. This is the best possible routing for each path in the design given
the current placement, with each path routed in isolation and no other nets taken into consideration.

If routing is taking a long time, then it is worth checking this value to see if it is close to meeting the constraints. If Figaro fails
to meet the constraints at this stage, you may want to terminate routing early and return to the placement step and make some
improvements there.

If the Log Viewer is still open from the previous section, you can update the contents using File>Update. If you closed it
before starting initial route, re-open it as before or using the appropriate toolbar button.

Scroll down the log file to the second set of timing data. This is the first report of actual values, namely those obtained after
initial routing. Together with the route contention score, these values provide a good indication of whether or not optimize
routing is likely to meet the constraints you set. In this case, the signs are not good.

Optimize Route
When using timing-driven compilation you must run optimize route, since it can almost always improve on the timing obtained
by initial routing. For non-timing-driven designs, this step need only be run if there is contention left after the initial route
step.

Click Opt Route or pull down Flow>Compile>Optimize Route to run the step.

IDS Figaro Tutorial

3-14

Interactive Timing Analysis

When your design has completed, you can view the final clock frequencies in the log file. There are also a number of other
ways of examining timing information interactively within Figaro.

The Path Analysis Report
You have already looked at an example of this report earlier in this tutorial. Its contents are affected by the assertions you set:

§ With no assertions specified, the report lists the longest and shortest paths in the design.
§ With clock and/or input and output assertions specified, the longest and shortest critical paths are also reported.
§ With asynchronous delay assertions, you will get a report on asynchronous longest and shortest critical paths.

You can changes the types of reports and the numbers of paths reported in the Timing Analysis options dialog.

The Net Delay Table
The net delay table lists the delay between the source and destination of every net. You export in the same way as the path
analysis report:

1. From the Compile window, pull down File>Export:

Export Dialog Box

2. Under “Timing”, check the “Net delay table” box, as shown above.
3. Enter a name and path for the file, then click OK. If you leave this set to “4BITALU” (for AT6K devices) or “TEST40K”

(for AT40K devices), as in the above example, the table is written to a file called 4BITALU.NDL (for AT6K devices) or
TEST40K.NDL (for AT40K devices) in the current design directory. Examples of the timing reports are shown in
Appendix B.

Timing-Driven Implementation

3-15

Performing Interactive Timing Analysis
Figaro's main interactive timing analysis features are the commands in the Timing menu and the Paths in Compile and
associated dialogs. These dialogs summarise the information contained in the "Data Paths" sections of the Path Analysis
Report, and facilitate interactive investigation of individual paths in the design:

1. Make sure the Compile window is the current window.
2. Pull down Timing>Show Analyzed Paths.
3. Select "Critical Long", then select the first path in the table.

This selects the path and its components in all Figaro windows. Now click on the Inst/Nets button to see a more detailed
breakdown of this path.

4. Pull down View>Zoom to Selected.
Figaro zooms to the source of the selected path in the Compile window. With the normal display, it may be prove difficult
to discern the source and destination of the path. The Timing Display mode filters all extraneous information from the
display.

5. Pull down Timing>Timing Display.
This filters out unused resources and turns all instances gray.

6. Pull down Timing>Measure Delay, with the path still selected.
The colors used to represent the selected path change: the source instance is now blue, intermediate nets and instances
green, and the destination red. (In this example the source is a clock, so the appropriate pad is colored blue as is the input
to the first instance on the path.)
The cursor is now followed by a small green clock. This is a visual reminder that you are in Measure Delay mode. Use the
function keys to move within the window: F6 to center, F7 and F8 to zoom in and out respectively. If you take the cursor
to the edge of the window, it will scroll, assuming there is more device off-screen. If you hold the SHIFT key down, it will
scroll one page at a time.

7. Look again at the selected path and click on one of the green intermediate instances on the path.
Note that the path from the source to this point changes color and the delay for this section is reported in the transcript.
This can be useful for examining complex paths, where individual path sections are not easy to follow. You can step
backwards or forwards in the path.

8. Exit Measure Delay mode either by clicking on a destination of the path (red instance) or by clicking the right mouse but-
ton. You must reselect the source to enter Measure Delay mode again.

If you want to examine paths that are not in the Paths in Compile dialog, select the source instance and pull down
Timing>Measure Delay. This will show you a list of paths from that source. The number of paths listed is controlled by the
"Measure Delay Paths Limit" parameter in the Timing Analysis options (default is 10).

You can also select single or multiple nets in the design, either interactively or using Edit>Find and Edit>Info , and the pull
down Timing>Show Net Delays. The results are written to the transcript.

All these functions are available even if you are not in Timing Display mode, however, the simplified display makes them much
easier to use.

Using Manual Editing to Improve Timing on a Path
Experienced Figaro users with a detailed knowledge of the AT40K/AT6K architecture can use the following manual editing
techniques to improve the timing along a particular path in the design:

§ Search for areas where route-throughs have been used and see if you can swap ports on the macros to get better
connections.

§ Look for adjacent instances using bus routing to connect, and try swapping ports to get direct connects.
§ Reduce the number of bus turns being used by moving elements so that they are in the same row or column.
§ For IO routing, align within the IOs that connect to a particular row or column.
§ Manually move instances closer together to reduce the required routing. Remember though, that once you get to this

stage, you will probably be affecting more than just the net you're working on.

IDS Figaro Tutorial

3-16

Changes to the timing of a path caused by these manual operations are reported in the transcript immediately. This lets you
see straight away if you have actually improved the situation. If you are changing critical paths, always re-run timing analysis
to see the changes in the dialog - they will not be updated automatically. Running timing analysis can take some time on
larger devices, so it is advisable to make a few changes at a time and then re-test them all together.

Examining the Placed and Routed Design (Optional)
In this section, you will examine the placed and routed design in more detail. Zoom in on an area of the device. There are two
main changes to the display:

§ A number of green squares have appeared. These are routed locations, i.e. logic locations whose resources used for
routing only and not for design instances themselves. It may also be that the cell is rendered unusable for logic because
of the exe cution of a bus turn nearby. (For full details refer to your IDS documentation.).

§ Lines appear representing the nets in the design. Use View>Zoom to Area to focus on a small area of the device to see
these.

The following picture shows routing in one area of the device:

Part of the Device after Optimized Routing

Looking at Nets in the Design (Optional)

The routed design is now ready for you to produce a bitstream file for eventual downloading to an FPGA. First, though, take a
look at the nets in the design.

Finding Named Nets (Optional)

To learn how to locate nets, you'll look for the nets W1 to W4 from one of the adders in $1I69 (ADD4) (for AT6K devices) or
READ3 and WRITE3 (for AT40K devices) from the FIFO component of the design: So far you have used the Browser and
cross-highlighting to select items in other windows, but you can't find nets in this way. You have to use the Edit>Find
command.

Timing-Driven Implementation

3-17

Do the following:

1. Pull down Edit>Find (CTRL+F) to display this dialog:

The Find Dialog Box

2. With the “Net” radio button selected, try to find the first net. Type “*W1” (for AT6K devices) or "FIFO*" (for AT40K
devices) in the “Name” text box (the “*” is a wildcard) and click Find.

3. A Found in Compile dialog appears, listing nets that match your entry:

The Found in Compile Dialog Box

In this case, Figaro lists over 37 nets matching the search criteria. You can either scroll down the list and find the entries
you want, or use the Find command again and try to specify the nets more precisely.

4. Pull down Edit>Find, enter the search string "*3" and click Find.
This time Figaro lists the 31 nets in the design that end with the character "3".

5. Narrow down the search still further by entering "*FIFO*3" and clicking Find.
This time, only five nets are listed and you can quite easily see the two you wanted:

IDS Figaro Tutorial

3-18

Five Entries in the Found in Compile Dialog Box

Note that the "#" wildcard replaces any single character in the string. Shift-click on both items in the list. This selects in
yellow the nets in the Compile window. To view them, look at the Compile window.

Keep the nets selected in the Compile window, click in it to make it the current window and click View>Zoom to Selected to
focus on the area containing the selected nets.

NOTE
You can click More in the Find dialog to select items on the basis of more parameters than just their names.

Using Display Options to Identify Net Types

You used View>Display Options earlier to find what the colors of instances meant. The zoomed display now shows several
types of net:

§ Normal, clock and reset nets.
§ Direct routed, local bus and express bus nets.

To find out which is which, make the Compile window the current window and pull down View>Display Options.

Drag the dialog box to one side of the screen so that you can see the Compile window too. This time scroll down the list of
objects until you reach nets. Compare the colors shown with the nets in the Compile window. Note that the list shows all
possible types of net: these may not all be present in your Compile window.

Look at the pattern of direct routed, local bus and express bus nets. There's no need to change any color; just use the list as a
color key (note that there are two types of direct routed net). Don't close the dialog, though: you'll use it again in the next
section.

Timing-Driven Implementation

3-19

Dynamic Highlighting (Optional)
It is not always easy to distinguish a single net from the mass of nets. One way to do this is to click to select the net: it will
change color to yellow, and will be the only net of this color. A faster way to see where nets begin and end is to turn on
dynamic highlighting. This highlights the element under the cursor in white. To use this, do the following:

1. Pull down Options>Display Options you looked at in the last section.
2. Check the box labeled "Dynamic highlighting", click Apply and then OK.

The Dynamic Highlighting Check Box

Return to the Compile window and move the cursor over the dis play. As you do this, individual items - instances, sections of
routing resource, or nets - are highlighted.

Bitstream and Export

Outputting a Bitstream
This section shows how to produce a bitstream file with the finished design for downloading to the FPGA. Do the following:

1. Open the Options dialog and select "AT40K Bitstream" from the "Topic" list. The options, which control the bitstream
format, appear in the dialog box.

2. Don't change any options now: just take a look at any you think you'll want to set in future for your own designs. Note
that the option "Reset Addresses" is set by default. When you finish looking at the options, click OK.

3. In the Compile window, click the Bit Str button. (You can only do this after Optimize Route has completed successfully.)

Bitstream Results
Bitstreaming writes the bitstream file 4BITALU.BST (for AT6K devices) or TEST40K.BST (for AT40K devices) to the Figaro
directory. The first part of the file name comprises the design name and, where the implementation comprises more than one
part; this is followed by the letter used to designate that part. (For example, the bitstream file for the third part added would be
called design_C.BST.) PC users will see file names exceeding eight characters in length truncated appropriately.

This is the file that you would download to an FPGA. Please refer to your IDS documentation for a description of this
procedure.

Note that the Compile button on the Figaro window now changes color, because you have completed all its component
stages in the Compile window.

Exporting a Design for Back-Annotation
This section shows how to produce back-annotation files for use by ViewSim, one of the simulators Figaro supports. (For
details of the files for other simulators, Search the on-line help for “Back-annotation” then read its sub-topic “Files for Back-
annotation”.) You can only produce the files after you have routed the design and removed all contentions.

IDS Figaro Tutorial

3-20

ViewSim requires two types of file, which you export from Figaro using File>Export. These are:

ViewLogic WIR files A set of files similar to those you read in from the WIR directory. The export files are
different from those in the netlist WIR directory, however, because back annotation is
done at the core cell level and not the original functional macro level. Thus the only parts
of the design that match the original are the primary input and output nets.

ViewLogic delay file A single file with post-layout delay timing information. This is in Delay Table Back-
annotation (DTB) format and has the extension “.DTB”. (For full details of the file, see
the on-line help or your ViewLogic documentation.)

Running ViewSim is outside the scope of this exercise, but it lets you inspect the timing behavior of your design, then modify
Figaro's placement and routing on the basis of this.

To output the files, do the following:

1. Make the Compile window the current window.
2. Pull down File>Export to display this dialog. (Note that different parameters will be grayed out if you are not in the

Compile window with a fully routed device.)

Exporting Back-Annotation Files

3. Leave "4BITALU" or "TEST40K" as the file base name. A new WIR directory holding the exported WIR files is created in
a new directory FIGBA under the design directory.

4. Check the "Flat WIR and DTB” radio button as shown above and click OK. (You can export only flat WIR and DTB back-
annotation files when using the AT40K configuration.)

NOTE
Before you can use ViewSim, change the directory statements in your VIEWDRAW.INI file to point to the exported
WIR files; Search the on-line help for VIEWDRAW.INI and read its sub-topic “Modifying the VIEWDRAW.INI File”.

Timing-Driven Implementation

3-21

Troubleshooting Timing-Driven Compilation

If your timing assertions have not been met, check the flow chart below for your best course of action:

Timing
Assertions not

Met

Running timing-
driven mode?

Pre-place delay
model fails?

Running at
Quality 5 ?

Using fastest
speed grade?

No

Yes

Initial route delay
model fails

Post optimize
route delay fails

Check constraints are
entered correctly

Re-design

Re-run place and route
at a higher quality

No

Re-compile design in
timing-driven mode

Yes

Change speed gradeNo

Best Case Value for
This Design

Re-place the design:-
Try some manual

pre-placement
Define user macros

Yes

Try some manual
pre-placement

Define user macros

If utilization is high:-
Try a larger device

Multi-chip flow
Modify design

Best Case Value for
 Current Placement

Yes

IDS Figaro Tutorial

3-22

Resolving Contention after Placement
If your design contains contention even after optimize placement has run, check the flowchart below for the best course of
action:

Contention
after optimize

place?

Instances locked
in contention?

Too many design
IOs in device?

Manual edit
feasible?

Clock and reset
contention?

Unlock IOs and
re-run place or

manual edit

Yes
Use package

 with more IOs.

Yes

Perform manual edit
 to resolve contentions

Review C/R
in design

No

Yes

User macros
Manual pre-place
Use bigger device

Multi-chip flow
Modify design

Yes

IOs locked in
contention?

Unlock instances
and re-run place
or manual edit

Running at
 Quality 5?

Re-run initial and
optimize place at

higher quality level

Yes

Timing-Driven Implementation

3-23

Resolving Contention after Routing
If your design contains contention even after optimize routing has run, check the following flowchart for the best course of
action:

Contention
after optimize

route

Routing at
Quality 5?

Placement at
Quality 5?

Is contention
score low?

Rerun optimize route
Unlock locked routing

Check primitive
alternatives

Manual routing

Re-run place and
route at quality 5

Re-run optimize
route at a higher

quality level
No

Yes

User macros
Manual pre-place
Use bigger device

Multi-chip flow
Modify design

Clock and reset
contention?

Review C/R
in design

Yes

No

IDS Figaro Tutorial

3-24

Summary

This tutorial showed you how to:

§ Add a part.
§ Apply timing constraints.
§ Place and route the design in timing-driven mode.
§ Use the Design Browser to select objects in a window.
§ Identify objects by their color.
§ Find objects in a window.
§ Export constraints and back-annotation files and timing reports.
§ Resolve placement and routing contention in your design.

If you want to learn how to place and route manually, or produce user macros, work through the next tutorial as well. In either
case, look at the contents of “Additional Features”. This describes some other tasks you might want to perform, but which
are outside the scope of the tutorials.

You should now be able to compile a design of your own using the techniques described here. If you have problems, refer to
“Troubleshooting and Support”, or from the on-line help Contents page jump to “Troubleshooting”.

Manual Editing and User Macros

4-1

Manual Editing and User Macros

Introduction

Work through this tutorial if you intend to use the manual editing functions or produce user macros for your design.

Once again, you will use components of the 4BITALU or TEST40K design used in the previous tutorials to learn about manual
placement and routing techniques, particularly in relation to the creation of user macros. You will check the completed user
macro into a library, where it becomes available for use with other designs. Finally, you will incorporate your user macro in the
overall design and examine some of the different ways in which you can manipulate it in the final implementation.

Summary of Topics

This tutorial contains the following topics:

1. When to Use Manual Editing
2. When to Define User Macros
3. Creating a User Macro Manually
4. Checking a User Macro into a Library
5. Creating a User Macro Automatically
6. Incorporating User Macros in a Design

Functions already used in previous tutorials are not covered in detail again here except where considered relevant. Please
refer to the appropriate chapters for more detailed information.

NOTE
Do not confuse the terms ‘macro’ and ‘user macro’. The instances used here may contain macros from the vendor
library, but the overall groupings you lay out in this exercise are user macros.

When to Use Manual Editing

Manual editing allows you to specify how design instances are placed and routed. You might use manual editing immediately
after opening a design to optimize some sections and lock the results before running the automatic tools to complete the task;
or you may prefer to run the automatic tools first, study the results and then improve layout and routing using the manual
functions.

Manual editing is particularly useful in the following situations:

In the user macro flow

§ During placement.
§ When permuting ports to obtain better connections using low-cost nets.
§ In manual routing of direct connects through cells (if there is a one-to-one direct connect, the automatic router will find it).

Note that bus routing from user macros is not preserved in the final design.

In the design flow

§ To allow preliminary placement of part of the design.
§ In resolving contention.
§ When adjusting timing to meet constraints.

NOTE
You can use any of the manual tools before or after any of the automatic steps, however the automatic steps must
always be performed in the correct sequence.

IDS Figaro Tutorial

4-2

When to Define User Macros

User macros allow expert users to exploit the design hierarchy to obtain better and more predictable results in terms of timing
and routability. You can optimize a commonly used part of a design, then save it as a user macro and check it into a user
macro library where it can be used in other designs. To get the best from your user macros, you need a detailed knowledge of
the target architecture.

There are three main reasons for creating user macros:

§ To place and route a frequently used piece of functionality and store it for use in other designs.
§ To optimize placement and routing of a block of structured logic in your design that you know should be grouped

together closely, or in a specific way.
§ To guarantee the timing of the user macro.

There are four main steps in producing a user macro:

1. Open the netlist, which must consist of only logic and memory functions. I/O macros cannot be included in the netlist for
a user macro.

2. Wait for Figaro to select an appropriate part that will be used as a template for the design space. The selection is made
based on the size of the macro netlist.

3. Place and route the design in a small area of the device.
4. Export the design to an external library that will be loaded when the macro is instantiated in the design later.

The following sections show you how to produce a user macro using Figaro's manual editing techniques and automatic
placement and routing tools.

Creating a User Macro Manually

In this section, you will create a user macro for the JKFP2 (for AT6K devices) or RAMCONT (for AT40K devices) component
of the 4BITALU/TEST40K design we have used throughout these tutorials. You will get to know many of the manual
placement and routing tools and will find out how to get information on selected objects in the design.

Setting up the Design Session
To set up this design session, start up Figaro as described in Chapter 3 and proceed as follows:

1. Pull down File>Design Setup and click New Design.
2. Select JKFP2.1 from \SYSTEMDESIGNER\EXAMPLES\VLOGIC\4BITALU (for AT6K devices) the RAMCONT.1 netlist

from \SYSTEMDESIGNER\EXAMPLES\AT40K\VLOGIC\TEST40K (for AT40K devices) and set the Tools Flow to
"ViewLogic WorkView Office". Click OK in both dialogs to return to the desktop.

3. Pull down File>Open as Macro and set "Files of Type" to "ViewLogic Wir (*.1)". Macro name JKFP2 (for AT6K devices)
or RAMCONT (for AT40K devices) is entered automatically in the appropriate field.

Manual Editing and User Macros

4-3

4. Click OK to load the macro netlist. Figaro reads in the netlist, adds a suitable part and opens a Compile window with the
view zoomed in to show a section of open core cells surrounded by closed core cells:

Compile Window Showing Open Locations

Figaro has assessed the size of the netlist and limited the space available for logic and memory placement by closing surplus
locations on the device template added. Pads and I/O logic have also been closed so that no design instances can be placed
on them.

The section left open should be large enough to accommodate placement and routing for the macro, however you can change
its size and shape as required using the Open Location and Close Location commands from the Edit menu.

NOTE
When loading macro netlists, you may encounter some transcript and log file warnings about nets that will ulti-
mately connect to the final design but are presently unconnected. For the purposes of this tutorial, you can ignore
any messages, although ordinarily you would check carefully any nets specified before proceeding.

IDS Figaro Tutorial

4-4

Placing Instances in a Selected Hierarchy for AT40K Designs
You can place an instance manually by selecting it in the Design Browser, dragging it over the Compile window and dropping
it in the required cell location.

In addition to this, Figaro also provides a place by hierarchy feature that allows you to place all the instances contained in
particular level of hierarchy. This function is particularly useful with large and complex hierarchical designs, and is activated
automatically when you drag one or more hierarchical instances from the Browser to the Compile window:

1. Make the Design Browser the current window and use SHIFT-click to select instances $1I4 and $1I5 and drag them over
the Compile window.
Figaro opens a Place Instances dialog, listing the instances contained in the hierarchies you selected.

Components of $1I4 and $1I5

2. Rearrange the windows so that you can see the Compile window and then move the cursor over it.
The first instance in the Place Instances dialog is "attached" to the cursor. You might have to click once to activate the
Compile window.)

3. Move the cursor over sector (3,4) and click once to "drop" the instance at this location (the status bar shows the sector in
the bottom right corner of the screen).

4. Move the cursor over the Compile window again. The instance is now attached to the cursor - place it in sector (3,3).
5. Repeat this procedure to place the remaining instances as follows:

$1I4/$1I53 Grid (12,13)
$1I4/$1I55 Grid (12,9)
$1I5/$1I2 Sector (4,4)
$1I5/$1I3 Sector (4,3)
$1I5/$1I53 Grid (16,13)
$1I5/1I55 Grid (16,9)

When all the instances have been placed, the Place Instances dialog closes automatically. You have now placed the
hierarchical instances in the macro.

6. Look at the Design Browser again: the placed instances have a filled rectangle in the box that represents them. The
rectangle is colored magenta to indicate that the placement is locked.

Manual Editing and User Macros

4-5

Placing Instances in a Selected Hierarchy for AT6K Designs
Figaro also provides a place by hierarchy feature that allows you to place all the instances contained in particular level of
hierarchy. This feature is similar to Place By Net and is particularly useful with large and complex hierarchical designs.

It is activated automatically when you select and drag a hierarchical instance from the Design Browser to the Compile window.
In this example there is only one hierarchical instance, JKFP2:

1. Make the Design Browser the current window.
2. Select the top level JKFP2 instance and drag it over the Compile window.

Figaro displays the Place Instances dialog containing all the instances contained within the hierarchical instance you
selected. This dialog works in the same way as the Place by Net dialog you just used.

3. Use the dialog to place only the remaining unplaced instances as follows:
$1I10 in cell location (10,10)
$1I15 in cell location (8,12)
$1I16 in cell location (9,10)
$1I6 in cell location (11,10)

Please do not move any of the instances you have already placed.
4. Click Done to close the Place Instances dialog.

You have now placed all the instances on the device without contention, so the Ini Place and Opt Place buttons have turned
green.

Placing Instances Associated with a Particular Net AT40K Designs
With larger designs or macros, you may find it useful to place instances associated with one or more selected nets.

You can do this using the Edit>Place By Net command:

1. Make sure the Compile window is the current window and that nothing in it is selected (use Edit>Deselect All).
2. Pull down Edit>Place By Net.

Figaro displays the Place By Net dialog listing all the nets in the RAMCONT macro.
3. Scroll down the list and select the net READ_ENABLE. Figaro displays the Place By Net READ_ENABLE dialog, listing

all the unplaced instances associated with the net you selected. The first instance in the list is already highlighted:

Place By Net READ_ENABLE Dialog Box

The Place By Net dialog functions in the same way as the Place Instances dialog you looked at earlier.
4. Rearrange the windows so that you can see the Compile window and then move the cursor over the Compile window.

Again the first instance, $1I2\$1I2, is attached to the cursor. (PC users click once to activate the Compile window.)
5. Move the cursor over cell location (11,10) and click once to drop the instance at this location.

IDS Figaro Tutorial

4-6

6. Move over the Compile window again.
$1I2\$1I3 - the next instance in the dialog - is now attached to the cursor. Place this in cell location (11,11).

7. Repeat the above procedure to place the remaining instances as follows:
$1I2\$1I4 in cell location (11,12)
$1I2\$1I5 in cell location (11,13)
$1I7 in cell location (11,14)

The Place By Net READ_ENABLE dialog is now empty so it closes automatically and the "READ_ENABLE" entry is re-
moved from the Place By Net dialog.

8. Now select WRITE_ENABLE in the Place By Net dialog and repeat the above procedure for its associated instances:
$1I3\$1I2 in cell location (15,10)
$1I3\$1I3 in cell location (15,11)
$1I3\$1I4 in cell location (15,12)
$1I3\$1I5 in cell location (15,13)
$1I8 in cell location (15,14)

The Place By Net WRITE_ENABLE dialog is now empty and closes automatically and the "WRITE_ENABLE" entry is re-
moved from the list in the main Place By Net dialog.

9. Click Done to close the Place By Net dialog box.
There are now only three unplaced instances in the Design Browser. You will use the automatic tools to complete the
macro. Using Edit>SelectinArea and Edit>CloseLocations, close off the 5 unused sectors which are still open. The re-
maining open area on the device should be the 4 sectors containing the RAM IO.

The Compile window now looks like this:

Components of RAMCONT Placed

10. Pull down Edit>Route Unrouted Nets to route the pre-placed sections of your design.

Manual Editing and User Macros

4-7

Components of RAMCONT Routed

You now have the choice of locking these before running the automatic tools.

Placing Instances Associated with a Net for AT6K Designs
You can place an instance manually simply by selecting it in the Design Browser, dragging it over the Compile window and
dropping it in the required cell location. However, with larger designs or macros, you may find it useful to place instances
associated with one or more selected nets.

You can do this using the Edit>Place by Net:

1. Make sure the Compile window is the current window and pull down Edit>Place By Net.
Figaro displays the Place by Net dialog listing all the nets in the JKFP2 macro.

2. Select $1N19, the first net in the list.
Figaro displays the Place by Net $1N19 dialog. This lists all the unplaced instances associated with that net. The first
instance in the list is highlighted.

3. Rearrange the windows so that you can see the Compile window and then move the cursor over the Compile window.
You will see the first instance, $1I14, is "attached" to the cursor.

4. Move the cursor over cell location (10,12) and click once to "drop" the instance at this location (the status bar shows the
cell location in the bottom right corner of the screen.)

5. Click on the Compile window again. You see that $1I9 - the next instance in the dialog - is now attached to the cursor.
Place this instance in cell location (9,12).
The Place by Net $1N19 dialog is now empty so it closes automatically and the "$1N19" entry is removed from the Place
by Net dialog.

6. Select net $1N26 in the Place By Net dialog and repeat the above procedure for its associated instances:
$1I2 in cell location (12,9)
$1I4 in cell location (11,12)

7. Close the Place By Net dialog box.

Look at the Design Browser. You have placed four of the eight instances in the JKFP2 macro and the placed instances now
have a filled rectangle in the box that represents them. The rectangle is colored magenta to indicate that the placement is
locked.

IDS Figaro Tutorial

4-8

Port Permutations
The unique design of the AT40K core cell means that many of the functions performed by macro instances can be
implemented using different permutations of the various ports available in the core cell. Together with the ability to connect
directly to both orthogonally and diagonally-adjacent cell locations, this allows you significant freedom when swapping nets
between ports of a similar type.

Figaro's placement and routing tools take full advantage of this flexibility by automatically permuting ports in order to achieve
optimal results in the compiled design. feature is controlled by the place and route option Allow auto-pin swap on locked
macros, which allows Figaro to permute ports on manually-placed or otherwise locked macros in order to achieve direct
connects.

NOTE
The auto-pin swap option is defaulted to on and it is recommended that you keep it activated at all times. If you
switch it off, Figaro would be able to perform port permu tations only on unlocked macros, significantly reducing the
effectiveness of the automatic tools.

Manual Port Swapping
This example is for AT40K devices only.

You can swap ports manually on placed macro instances in routed, partially routed and unrouted designs. When you swap a
port, the macro instance in question is automatically locked and the new port configuration for that instance will be retained if
you subsequently move it to a new location.

This section shows you how you can swap ports to optimize the connections between adjacent instances:

1. Go to the Compile window and select instance $1I4\$1I53 (INV).
2. Move the selected instance up one location so that it is immediately right of $1I7.

Figaro automatically re-routes the net connecting the two instances using local buses and the delay, as reported in the
transcript, shows a significant increase:
The net was re-routed automatically because the place and route option Auto re-route after manual move is switched on.
However, this feature does not incorporate auto-pin swap, so Figaro was forced to use the existing port configuration and
use local buses instead.

3. Select the arrowhead entering the X-input of instance $1I4\$1I53 (INV) and hold down the left mouse button to drag the
port.
When you move the cursor, you see the name of the port, X(A\$1I4\$1I53\A), written next to it. Figaro also displays a
number of other resources in blue: these are the legal destinations for this port.

4. Holding down the left mouse button, drag the port to the Y-input entering at the left of the same cell, and release the
mouse button to "drop" the port there (use the middle section of the status bar to see which port you are at).
Figaro swaps the port and re-routes the net between $1I4\$1I53 and $1I7 on a direct connect:

Note also that the delay reported in the transcript shows a significant reduction.

Changing the Placement
If you want to make any changes to the way a particular instance is placed, use the left mouse button to select the instance in
question in the Compile window, hold it down to drag it to its new location and let go to drop it there.

If you change your mind while still "holding" the instance, use the right mouse button to cancel the action and return it to its
original location. If you have already dropped the instance, pull down Edit>Undo to reverse the previous action.

If you want to drag the instance to a position not currently dis played in the window, pick up the instance, move the cursor to
the edge of the window and watch the display scroll automatically. Pressing the SHIFT key at the same time means Figaro
scrolls a window at a time. You can also use the Zoom and Pan functions to get to the required location.

If you want to move more than one instance, use the SHIFT or CTRL keys and click the left mouse button to pick up all the
objects you want.

Manual Editing and User Macros

4-9

You will get to know some of the other manual placement commands later when you incorporate the user macro in a full
design. For now, try out some of the basic operations described above and then return the instances to their original
locations.

Before You Proceed
Once you have finished experimenting with manual placement, click the Opt Place button to place the remaining logic on the
device and then click Ini Route to route the nets in the design.

Manual Routing Display
To route nets manually, you have to enter manual routing display mode. This feature simplifies manual routing tasks using
special graphics and colors to help you find your way through the diverse routing resources available in the device.

To enter manual routing display mode, select a net in the Compile window and pull down Edit>Edit Net Routing. The
Compile window display changes, highlighting the resources associated with the selected net and suppressing everything
else:

Source and Destination Instances

The source of the net is displayed in blue, while its destination is colored red (there may be more than one destination).

Working Net

The net you selected is called the working net and is displayed in green. If you have already run initial routing, this net
will be connected, so you'll have to discard the existing connection using Edit>Discard Route before you can route it
manually.

Interconnect

The interconnect between the two instances is denoted by an angled flightline between the source and destination. This
flightline remains until you find a valid route from the source to the destination, or until you pull down Edit>Finish Net
Routing.

Current Point

If you zoom in on your source instance you will see some orange-colored outputs from the cell. The place you are routing
from at any time is called the current point and its default color is orange.
After you discard an existing route, but before you click anywhere, the current point reverts to the source. When you
start manual routing, the current point is always the last point you clicked on.

Dynamic Highlighting

As you move the cursor around the Compile window, you will see Figaro dynamically highlight different resources. This
facility shows which resource will be used when you click the mouse button. Use it to make sure you are selecting what
you intended.
There are also many internal connection possibilities within the cell that you can also use. These are not highlighted,
however: simply select the bus or net you want to use and see what happens. Consult the relevant data book for
guidelines.

Routing Manually
When you start manual routing, the net will start from the source, and connect to any routing or cell resource you click in the
device. You don't have to click on every resource you want to use: Figaro works out intermediate stations automatically.

If you make a mistake, Edit>Undo removes the last connection you added. You can also use Edit>Discard From to step
back along the route to the last correct point, or you can click on a point along the route and discard the rest of the net from
there.

If you select a resource that would require ports to be swapped on either the source or destination, Figaro will make the
required swap automatically, provided this still allows a legal configuration of the cell.

NOTE
It is advisable to have the data book diagram of core cell connectivity to buses at hand when routing manually. You
would normally use these functions only if you are completely familiar with the architecture being used.

IDS Figaro Tutorial

4-10

You can now either go on and experiment with the techniques described to route more of the nets in the macro manually, or
have Figaro complete the routing for you using Edit>Route Unrouted Nets.

When you have finished, click the Opt Route button to optimize the routing in the macro and remove any remaining
contentions.

Contention and Locked Routing
Bear in mind that any nets you route manually are automatically locked and cannot be changed by the automatic tools. This
constrains the operation of these tools, and can lead to some unorthodox routes or even failure at optimize routing stage. If
you do encounter any contention problems at this stage, you may have to unlock some of the manual placement and routing
you performed to allow the automatic tools to operate more freely.

Checking a User Macro Into a Library

When you've finished compiling your macro, you have to check it into a library where it is made available for use with other
designs. The check-in procedure moves the design files related to the macro into the specified library directory and closes all
the windows on your desktop.

You can set up the library either right at the beginning of the flow, using Library>Library Setup and steps 2 and 3 below, or
directly from the Check-In User Macro dialog:

1. Click the Check-In button on the Compile window flowbar. Figaro opens the Check-In User Macro dialog.
2. Click Library Setup to display the following dialog:

Library Setup Dialog Box

3. Click Add Before and set up the design directory ...\SYSTEMDESIGNER\EXAMPLES\AT40K\VLOGIC\TEST40K.

Manual Editing and User Macros

4-11

Add Library and Path Dialog Box

4. Enter "user.lib" in the "Library Name" field, click OK and confirm that you want to create the library "user.lib".
The library name and search path are added to the Library Setup dialog.

5. Click OK to return to the Check-In User Macro dialog. The new library is entered in the field provided:

Check-In User Macro Dialog

6. Click OK again to check-in the user macro.
Figaro checks the macro and raises a dialog warning you of any problems:

Warning Summary for Macro Check-In

Here, several of the RAM ports in the macro are reported as "blocked": this is because the macro contains no data
connections to the RAM cells, and Figaro has chosen to use some of these resources for macro routing. Although not
critical at the moment, these blockages will cause difficulties when you incorporate the macro in the final design.
To resolve the problem here would result in some complex and inefficient manual routing, so unless you are an
experienced user of the AT40K architecture, it is advisable to proceed with macro check-in and then soften the macros at
design level later (see "Softening Library Routing").

NOTE
If routing at the design level still fails to produce a satisfactory result, you may want to consider checking-in the
macro with no routing at all and allowing Figaro to allocate all the routing at the design level.

7. Click Yes to proceed with the check-in and clear the desktop.
To edit this macro again, you must first check it out of the library. This moves all the relevant files back and restores the
desktop to allow you to work. Scroll back in the transcript to see details of the files that were moved during check-in.
This is explained in more detail in "User Macro Files and Directories" below.

IDS Figaro Tutorial

4-12

User Macro Files and Directories
Creating a user macro changes your file setup, creating some directories and files and moving others to new locations. In the
above example, the file structure changes as outlined below (directories are shown in bold text, files in lighter text).

Before compiling the user macro, the file structure is as follows:

The following diagram shows the new files and directories created when you produced the macro RAMCONT:

The sequence is:

1 When you set up the library, Figaro creates the USER directory and the user macro library file USER.LIB.
The directory will contain the macro design files while the .LIB file contains information on the macros that have been
created and checked into this library. Its format is the same as that of design FGD files, although it contains different
information, used when an instance of the macro is incorporated in a design: ports, instances and nets along with
placement and routing data for each macro cell.

2 When you check macro JKFP2 (AT6K) or RAMCONT (AT40K) into the library, subdirectories SCH, SYM and WIR are
created. Directory JKFP2 or RAMCONT is also created to hold the files that contain and control the user macro.

3 Under JKFP2 or RAMCONT, a new WIR sub-directory is created and the files from the original design directory (previous
diagram) are moved there. These files are not changed in any way and are moved rather than copied to ensure only one
copy of the component exists, either in a design directory, or in a library.

Manual Editing and User Macros

4-13

NOTE
If you use Library>Delete Macro to delete the user macro, Figaro deletes all the files associated with the user macro,
including any original design files.

4 If you subsequently check other user macros into the USER library, Figaro creates a separate sub-directory to hold all the
files for this macro. Again, a new sub-directory WIR is created and the files from the original design directory are moved
there. The existing SCH, SYM, and WIR directories are updated as required.

Hierarchical macros
If the macro has a hierarchy of design cells, Figaro does not move the entire hierarchy, in case the lower-level cells are used
elsewhere in the design. This kind of macro is non-portable: it cannot be checked into a library from one design directory and
then checked-out for editing when used in another design directory.

Creating a User Macro Automatically

Although you will generally use manual editing when producing user macros, you can of course also use Figaro's automatic
functions. For example, you might use the automatic tools

§ To obtain a preliminary layout as a starting point before optimizing the design manually
§ To finish off compilation after you have placed critical sections by hand.

To use the automatic tools, open the macro netlist in the usual way and wait for Figaro to add a part to be used as a device
template. Then, simply click the Compile button in the Figaro window and respond to the questions Figaro asks.

In some circumstances, the automatic tools place instances on the closed locations and report these as being in contention.
This is usually because there is too much congestion within the boundaries of the open locations, or with large multi-cell
macros, the placer only ensures that the origin is in an open location. For either case you can resolve the contention by

a) opening the locations concerned.
b) moving the offending instance to one of the open cell locations.
c) locking the instance.

If you manually place a cell on a closed location, then it will not be reported as contention, as it is taken to be a user constraint
that overrides the automatically closed location. It is still best to open the locations you wish to use, along with a few
surrounding them. If the router is required to go through cells, it will have difficulty, as it tries not to use closed locations.
This may result in some unorthodox routes.

Incorporating User Macros in a Design

In this section you will re-open the your design and incorporate the user macro you have just created. You will learn about
some of the Compile window functions you can use to make manual adjustments to this and other instances, before using the
automatic tools to compile the design.

Opening the Design
To open a design containing user macros, do the following:

1. Pull down File>Design Setup and enter 4BITALU (AT6K) or TEST40K (AT4-K) in the Design Name field (use New
Design to set this up if necessary).
Click OK to return to the desktop.

2. Pull down Library>Library Setup and set up the path to the library you created in the previous section, USER.LIB.
Click OK to return to the desktop

3. Open the options dialog, go to the "Design Constraints" topic and check the box marked "Auto-import Repeat
Constraints".
When you saved this design at the end of the previous tutorial, Figaro saved a record of the part you used in the file
4BITALU.RCT (AT6K) TEST40K.RCT (AT40K). This is called a repeat constraints file. When you open a design for which
there is a .RCT file, Figaro automatically adds the part specified in the file and makes locks for any pins defined. Using the
constraints file can save time, especially when you've locked pins.

IDS Figaro Tutorial

4-14

. (If the file 4BITALU.RCT (AT6K) or (If the file TEST40K.RCT(AT40K) has been moved or deleted, you'll have to add an
AT6003-2JC (AT6K) or AT40K05-2JC (AT40K) part as before. Refer to “Specifying the Target Device” in Chapter 3.)

4. Pull down File>Open as Design, set "Files of Type" to "ViewLogic Wir (*.1)" and click OK to load the design.
Figaro loads the design and adds the part specified in the repeat constraint file.

5. Click Partition.

User Macros in the Design
1. In the Design Browser, you should see the hierarchical instance $1I72(CONTROL) (AT6K) or FIFO(RAMCONT)

(AT40K).
Note the different shape used to represent user macros in the Design Browser:

User Macros in the Design Browser

2. Open a Compile window, select $1I46(JKFP2) (AT6K) or FIFO(RAMCONT) (AT40K) from the Design Browser and, with
the left mouse button held down, drag it over the Compile window. You see the shape of the macro you created earlier.

3. Release the mouse button over the center four sectors of the device to drop the macro.
The macro cannot legally be placed in this location, so it automatically snaps to the nearest legal location.

4. Zoom in to get a better view of your user macro and look at the toolbar on the left-hand side of the Compile window.
Move the cursor over the individual buttons and look in the status bar at the bottom of the desktop to see what each one
does.

5. With the JKFP2 (AT6K) or RAMCONT (AT40K) macro selected, press the toolbar button to flip it horizontally.

Figaro issues an error message in the transcript informing you that it failed to change the orientation of the RAMCONT
macro. This is because the RAM locations in the AT40K architecture have alternating addressing layout and therefore
components can only be placed on a region with an appropriate layout. Because the proposed manual move is illegal,
Figaro rejects it outright.
Try moving the RAM one sector to the right. It does not move as this is not a legal location.
Now try moving it up two sectors. Here, the device layout is suitable to accommodate the macro, so Figaro completes the
manual move.

Compiling the Design
Experiment further by placing a few of the non-I/O instances in the Design Browser by hand. Once you have placed an item,
look at the box next to it in the Design Browser: note that it now contains a filled rectangle, allowing you to see which ones
have already been placed.

Manual Editing and User Macros

4-15

With smaller designs, it is advisable to try and place the instances reasonably close together so that you can zoom in to a
higher magnification yet still work with them all in view:

1. Make the Compile window the current window.
2. Find the toolbar button used to Display or Hide Unrouted Nets and set it to Display. (When it is set to Display it is a

lighter gray color.)
You will see green flightlines showing the interconnect between the instances you placed.

3. Zoom in on this area using View>Zoom to Area.
Try moving the instances around relative to each other and watch the flightlines change.

4. Pull down Edit>Route Unrouted Nets and see if there are any bus connections that could become direct connects with
different port permutations.

5. When you have finished experimenting, press Ini Place.
This will place all the remaining instances along with the design I/Os. Instances placed by Figaro will be displayed in a
different color because they are not locked.

NOTE
You must use automatic placement if you want to retain any pin locks you assigned your I/Os in the Parts window. If
you place the I/Os manually, Figaro assumes you want to override these constraints.

6. Press Opt Place, which will move the logic and I/Os closer together. Note that none of the manually placed instances
have been moved.

7. Now press Opt Route, to route the design.
Figaro is unable to remove all of the contention in the design because of the blocked RAM ports you were warned about
in the "Checking a User Macro Into a Library" section. To solve this problem, see "Softening Library Routing" below.

Softening Library Routing
Macro nets often have routes predefined for them in user or vendor macro libraries. Figaro uses this library description as a
blueprint for creating locked routing for these macros in the implementation. If the routes of two such nets coincide, the
automatic tools will soften the library routing.

To soften all macro routing in the design, switch on the place and route option "Auto-soften conflicting hard routing in
Optimize Route". Nets are softened at the start of the optimize route step. You can also soften library routing manually as
described. .

Softening macro routing involves unlocking the predefined routing for user and/or library macros to afford the automatic tools
more freedom to resolve route contention in the final implementation.

You soften macro routing for selected macros using the Edit>Soften Library Routing command:

1. Switch off the options "Auto-select input nets" and "Auto-select output nets" in the desktop toolbar.
2. Select each of the resources showing contention, either in turn or using SHIFT-click to select them all at once.
3. Pull down Edit>Soften Library Routing. You could then rerun the automatic routing.

You can still perform manual placement after routing if you wish and you can also swap ports (as described in the macro
section) at the design level.

If your manually-placed instances make the design impossible to place and/or route, you may have to unlock some or all of
these to allow the automatic tools to operate more freely. Use Edit>Find to create a list of locked instances and unlock these
as required using Edit>Unlock .

Summary

Below is a summary of the main steps in manual editing:

1. Place any critical sections of your design manually.
2. Route any unrouted nets.
3. Use manual port permutations as required to achieve the best connections.

IDS Figaro Tutorial

4-16

4. Move instances again if necessary.
5. Use automatic placement and routing to compile the rest.
6. Make any final manual improvements required.

Mapping

5-1

Mapping

Mapping is the process of optimizing design logic and adapting it to a specific vendor architecture.

You can use mapping:

§ To reduce the area required to accommodate a design netlist created using the same library as the target device.
You should run mapping for all AT40K designs. The only exception is when you are using dynamic macros to
specify the function of each core cell and do not wish the mapper to make any changes to these.

§ To read in a design created using a different library from the target device, for example when implementing an
AT6K design on an AT40K part. In this situation, you have to map the design to convert the device library
information to be compatible with the new device, so Figaro automatically enables the Mapping step.

In both cases, mapping takes the instances from the design netlist and performs some reduction of the area required
by the design, and then converts them to instances that are specific to the selected device.

You can use the Map Browser to view the results of this process. Note that many of the names will have been
changed by mapping, but that associations between the original and mapped versions are indicated by cross-
highlighting between the two browsers.

This tutorial describes when to use the mapping function, introduces the cross-highlighting feature and highlights
the potential benefits of using the various preservation features. If you are using an AT40K device, this tutorial uses
the TEST40K design stored under \SYSTEMDESIGNER\EXAMPLES\AT40K\VLOGIC\TEST40K in your main Figaro
directory. If you are using an AT6K device, use the 4BITALU design stored under
\SYSTEMDESIGNER\EXAMPLES\VLOGIC\4BITALU in your main Figaro directory

Use File>Design Setup to set up a new version of this design now, using the AT6K or AT40K configuration -
depending on the device you are using- and "Viewlogic-Workview Office" tools flow.

When To Map the Design

Design and Device use the Same Library
If your design uses the same library as the target device, mapping is optional but nevertheless strongly encouraged.
If you do not want to map the design, you have to disable the function manually in the Options dialog.

Example: Mapping from ViewLogic. For a more detailed example of mapping a design from ViewLogic, see below.

The benefits of mapping in this situation depend largely on the quality of the original design.

For a rough design, mapping will improve the implementation: this might be the case if the designer is unfamiliar with
the architecture, or has devised the schematic with no particular device in mind.

Even if the original design is well-planned and has been conceived specifically for the current architecture, the Map
step may still be able to find scope for improvement by performing some local optimization of the functions defined
for any FGEN cells used. For example, if the design contains the equation:

A*B*!C + A*!B + A*B*C

Then the mapper will optimize away the redundant logic driving the B and C inputs and reduce the equation to the
more optimal A.

The sections following cover the steps in mapping a ViewLogic design that uses the same library as the target
device. It shows you how to set mapping options and map the design, before examining the effects of preservation
in more detail.

Design and Device use Different Libraries
There may be some cases where the design you want to import uses a library different from that of the target device
(for example, when implementing AT6K designs on AT40K parts). In cases like this, the design must be mapped:
Figaro detects this situation on import and automatically enables the mapping option for you.

IDS Figaro Tutorial

5-2

Mapping Options

Before you can map the design, you have to enable mapping in the Options dialog. To open this dialog, pull down
Options>Options and select Mapping from the topic list. Figaro displays the dialog below:

Default Mapping Options

Mapping Control
The "Mapping Enabled" checkbox enables and disables the Map step within the design flow. If you load a design
using a library different to that used by the target device, Figaro enables this option automatically.

The second checkbox is labeled "Clock/Reset network only", meaning that Figaro will optimize only inversions on the
clock/reset distribution network. This prevents inversions that could be implemented directly on these resources
from being implemented as derived clocks/resets.

Preservation
The options in the "Preservation" pane allow you to "protect" certain features of the original design through the map
step Checking a box means the relevant feature is preserved, clearing it allows the mapper more freedom.

In addition to using these global options, you can also preserve items:

§ Using the Edit>Constraints command for selected objects within Figaro.
§ Using Atmel library defaults to preserve certain types of cell.
§ Using attributes in the original schematic or design file.
These are described in more detail below.

Setting and removing constraints on selected instances
While the mapping options described above are applied globally to all the instances in the design, you can preserve
individual or selected hierarchical or macro instances using the Edit>Constraints command:

1. Open the Options dialog, select "Design Constraints" from the Topic list and switch off the "Auto-import Repeat
Constraints" option. (This means that when you import the test design, Figaro will not import any existing .RCT
file from a previous session.)

2. Use File>Open as Design to import the 4BITALU netlist (AT6K) or TEST40K netlist (AT40K).

Mapping

5-3

3. Make the Design Browser the current window, select one of the hierarchical instances and pull down
Edit>Constraints.
Figaro displays the Constraints dialog with the following checkboxes (for non-hierarchical instances, only the
"Mapping Preserve" constraint is displayed):

Setting Constraints for Hierarchical Instances

"Mapping Preserve" preserves the selected instances through the Map step, while in multichip designs, the
"Partition Preserve" constraint tells Figaro that the component parts of the selected cell or instance are not to be
split between the different devices in the implementation.
"Mapping Preserve Boundary" has no meaning in the AT40K configuration.

4. To set constraints, check the relevant boxes and click Apply. The transcript reports the constraints applied.
5. When you have finished, simply click OK to close the dialog.

You can also use the Edit>Constraints command to remove constraints placed on selected instances, including
those set by library defaults (see below). Simply select the instances, call up the dialog and clear the checkbox.
You'll see how this is done in the section "Overriding the Defaults".

Before you go on, make sure you remove any constraints you set above.

Atmel library defaults
There are several types of macros to which Figaro does not map in AT40K, most notably multi-output macros. These
macros would always be mapped to a series of single-output equivalents, leading to an overall increase in the area
required to accommodate your design.

To avoid this, Atmel library definitions for generic multi-output macros default the mapping preservation constraint
to "On". This means that when you import a design containing an instance of a multi-output macro, the mapping
preservation constraint is set automatically for that instance.

You can, of course, still map these macros by removing the default constraint using the Edit>Constraints command
described above.

IDS Figaro Tutorial

5-4

Mapping a Design

1. Load the netlist \SYSTEMDESIGNER\EXAMPLES\VLOGIC\4BITALU\4BITALU.1 (AT6K) or
\SYSTEMDESIGNER\EXAMPLES\TEST40K\TEST40K.1 (AT40K) if you haven't already done so. (Again, make
sure the RCT import option is switched off before you do so.)

2. Pull down Options>Options and select "Mapping" from the Topic list.
Enable mapping, but leave the other options switched off:

Mapping Options Dialog Box

3. Click OK to confirm your selection and return to the desktop.
You see that the Map flowbar button has been activated.

4. Click the Map button.
Figaro maps the design and opens a Map Browser where you can view the results.

The Map Browser

The Map Browser shows the logic elements of your design, taking account of changes to the original after mapping.

Associations and Cross-Highlighting
Wherever possible, Figaro maintains associations between the instances and nets displayed in the Design Browser
and their counterparts in the Map Browser. When you select an instance in one browser, Figaro automatically
highlights and scrolls to its associated instances in the other one. This allows you to trace original components in
the current implementation of your design. These associations might be:

One-to-One Single design cell to single mapped cell.

One-to-Many Single design cell to multiple mapped cells.

Many-to-One Multiple design cells to single mapped cell.

Many-to-Many An instance broken down into several components which are mapped to several larger instances,
which may also include other instances from the original design.

One-to-Zero Here, an instance is mapped out of the design entirely (for example, a double inversion).

Clearly, using the Design Browser to place components of a mapped design could lead to several, one or no mapped
instances being dragged from the Map Browser. To avoid confusion, you should always use the Map Browser when
performing manual partitioning and placement. It represents the physical implementation of your design, and each
instance displayed there can be placed individually in the target device.

Mapping

5-5

Using Cross-highlighting
1. Find instance FIFO(RAMCONT) in the Design Browser and double-click on it to expand the hierarchy.
2. Expand instance $1I70(MULT4)\SUM3(ADD8)\$1I18(FULL_ADD) (AT6K) or $1I6(ENABLE) and the select

instance $1I131 (AT40K).
Figaro highlights two instances in the Map Browser. This is an example of a one-to-many association:

One-to-Many Mapping Association

3. In the Map Browser now, click on one of the highlighted instances.
Figaro highlights three leaf instances in the Design Browser. This is an example of a many-to-one association:

Many-to-One Mapping Association

IDS Figaro Tutorial

5-6

Mapping Information in the Log File

This portion of the tutorial only refers to examples for AT40K devices

For more detailed information on what has happened to your design, consult the log file:

1. Pull down Window>New Viewer>Log File to open the log viewer. Figaro scrolls to the end of the file.
2. Use Edit>Find to search for the term "Mapping Report" (remember, the search utility is case-sensitive).

Figaro scrolls to the first mapping report (see extract below), listing the different types of cells used and
summarizing the number of instances used and the area required on the device:

Cells Used

#Insts #Ins #Outs #Cost #Cores Cell Name (Description)
10 2 1 1 1 FGEN1 (Macro)
4 1 1 1 1 INV (Combinational Inverter Macro)
2 0 1 1 1 ZERO (Combinational Ground Macro)
1 1 1 1 1 RSBUF (Input Pad Macro)
1 3 1 1 1 AN3I1 (Combinational Macro)
2 2 1 1 1 AN2I1 (Combinational Macro)
4 2 1 1 1 AN2 (Combinational Macro)
4 17 4 1 1 RAMDSYNC (Sequential Macro)
1 3 1 1 1 AN3 (Combinational Macro)
1 1 1 1 1 GCLKBUF (Input Pad Macro)
8 2 1 1 1 XN2 (Combinational Macro)
3 3 1 1 1 FGEN1RF (Sequential Macro)

PRESERVED
6 4 2 1 1 FGEN2RF (Sequential Macro)

PRESERVED
41 1 1 1 1 OBUF (Output Pad Macro)
15 3 2 1 1 FGEN2 (Macro) ## PRESERVED ##
49 4 2 1 1 MGEN (Macro) ## PRESERVED ##
18 1 1 1 1 IBUF (Input Pad Macro)

Total #Instances: 170
Total Area: 170

Note also that several cell types are marked as being ##PRESERVED## (like FGNEN2 and MGEN above). This is
the default, taken from the Atmel library definition for the cell type.

3. In the Log Viewer, scroll down to the next "Mapping Report", giving you the post-mapping figures:

Cells Used
#Insts #Ins #Outs #Cost #Cores Cell Name (Description)
41 1 1 1 1 OBUF (Output Pad Macro)
18 1 1 1 1 IBUF (Input Pad Macro)
4 17 4 1 1 RAMDSYNC (Sequential Macro)
18 4 1 1 1 FGEN1 (Macro)
6 4 2 1 1 FGEN2RF (Sequential Macro)

PRESERVED
3 3 1 1 1 FGEN1RF (Sequential Macro)

PRESERVED
2 0 1 1 1 ZERO (Combinational Ground Macro)
15 2 2 1 1 FGEN2 (Macro) ## PRESERVED ##
49 4 2 1 1 MGEN (Macro) ## PRESERVED ##
1 1 1 1 1 RSBUF (Input Pad Macro)
1 1 1 1 1 GCLKBUF (Input Pad Macro)

Total #Instances: 158
Total Area: 158

Many of the cell types used in the implementation are now different, but those preserved by default have
remained unchanged. The total number of instances in the design and the area required to accommodate them
have both been reduced.
All the AN2, INV, and XN2 etc. have been mapped to FGEN1. There is only a small reduction in area in this case
because many of the components were generated using the Macro Generators.

Mapping

5-7

Overriding the Defaults

This portion of the tutorial only refers to examples for AT40K devices

You can remove mapping constraints set automatically via the cell definition in the Atmel library using the
Edit>Constraints command. This is known as "unpreserving" the cells in question:

1. Leave the Log Viewer open and make the Design Browser the current window.
2. Expand the hierarchical instance $1I134(MULT8) and select the 7 “Product” terms at the top..
3. Pull down Edit>Constraints, clear the "Mapping Preserve" check-box and click OK to confirm the change.
4. Now click the Map button and confirm that you want to re-run mapping.
5. When Figaro is finished, go back to the Design Browser and select one of the “Product” instances from the

$1I134(MULT8) hierarchy.
Figaro highlights two instances in the Map Browser.

6. Try selecting any of the other product instances. Overriding the Atmel preservation defaults has effectively
doubled the number of instances in this section of your design. This is because the AT40K mapper cannot map
to multi-output macros, only to single-output macros.

7. Go back to the log file and pull down File>Update to load the latest version.
Scroll back up to the latest mapping report and note the increase in the total number of instances and the area
required to accommodate them.

Of course, the increase seen over the whole design will not necessarily be double, and you may even find an overall
decrease if the registers/logic can be merged with any of the other components.

Summary

In this tutorial you saw:

§ The purpose of the map step and when you might consider using it.
§ How to set mapping options.
§ How to map the design.
§ How to use the Map Browser.
§ How associations are maintained between the original and mapped designs.
§ The default preservation constraints defined for certain cell types in the Atmel library.
§ How to place and remove constraints on selected design instances and effects this can have on your

implementation.

Mapping AT6K Designs to AT40K

6-1

Mapping AT6K Designs to AT40K

If you want to implement older designs on parts belonging to the AT40K family, you can do so using the "AT6K mapped to
AT40K" configuration.

This retargets your original design so that its components are compatible with the AT40K architecture, and at the same time
performs some local optimization of the functions defined for any FGEN cells used in your design. For example, if the design
contains the equation:

A*B*!C + A*!B + A*B*C

then the mapper will optimize away the redundant logic driving the B and C inputs and reduce the equation to the more optimal
A.

NOTE
You cannot map an AT40K design to the AT6K architecture.

This chapter shows you how to set up your design session for this flow and how you can find information on your retargeted
design. It also highlights some of the potential pitfalls of using older designs with the new architecture.

Setting up the AT6K to AT40K Mapped Flow

1. Pull down File>Design Setup to open the Design Setup dialog.
2. Set up the 4BITALU design.

NOTE
If you've already completed the macro section in Chapter 5, you should use a new version of the design for this tutorial.

3. Under "Configuration", select "AT6K mapped to AT40K".

Design Directory Setup Dialog Box

The map step is compulsory in this configuration, so when you click OK and return to the desktop, you will see that the
Flowbar button labeled Map has been enabled.

IDS Figaro Tutorial

6-2

Before Going Further
Before loading your design, you should consider the following:

Part and package attributes

If you attempt to add an AT6K part to the AT40K flow, Figaro will report an error. So if your Viewlogic design uses the
part and package attributes in the symbol file to add a part automatically, this should be disabled before you load the
design.
To do this, open the Options dialog and select the topic "Viewlogic Import". Clear the checkbox labeled "Use
part/package attributes" and click OK to save the new settings.

Repeat constraints files

Similarly, if you auto-import an old repeat constraints file specifying an AT6K part, Figaro will reject the design on import.
Again, open the Options dialog, select the topic "Design Constraints", and make sure the check-box labeled "Auto-import
Repeat Constraints" is clear.

Pin assignments

If you try to transfer existing pin assignments made for an AT6K to an AT40K part, you are likely to encounter problems
as the pin layouts of the two families are not entirely compatible.
Figaro will report any inconsistencies it finds and you can resolve these by manually editing the constraints file.
However, for improved design layout it is recommended that you either allow Figaro to re-assign pins for the new
architecture automatically, or make your own AT40K-specific pin assignments using the procedure outlined in Chapter 8.

Running the AT6K to AT40K Mapped Flow

The AT6K to AT40K mapped flow is run in the same way as any other:

1. Pull down File>Open as Design and set "Files of Type" to Viewlogic Wir (*.1).
Figaro enters the file 4bitalu.1 in the "Existing Design File" field.

2. Click OK to open the design. Figaro opens a Design Browser.
3. Click the Map button to map the design to the AT40K architecture.

Figaro opens a Map Browser displaying the components of the mapped design:

Map Browser

Mapping AT6K Designs to AT40K

6-3

4. Select one or two instances in the Design Browser and use the cross-highlighting feature to see how these are
represented in the mapped version of the design.

Restrictions
The following restrictions apply when mapping AT6K designs to the AT40K architecture.

Multi-output cells
The mapper is designed to map to single-output cells only. Any multi-output AT6K cells (for example, FDHA) will be mapped
to two separate single-output AT40K macros

AT6K pads with no AT40K equivalent
There are a number of AT6K pads that cannot be mapped to an AT40K equivalent:

BCOCEN BTPFEN

BCOCFEN OOCEN

BCPEN OOCFEN

BCPFEN OPEN

BTOCEN OPFEN

BTOCFEN

To map the design successfully, you will have to remove instances of these pads from your design.

Optimization
As mentioned previously, the mapper performs only local optimization of the functions defined for the different FGEN cells. It
does not perform any cross-cell optimization for your design.

User macros and generated macros
AT6K user macros and generated macros cannot be mapped directly to multi-cell equivalents. However, in the case of
generated macros, you can use the Library>Translate Library command to search through an existing AT6K user library,
find all generated components, and invoke the AT40K generator with similar options.

For user macros, each macro must be checked out of its library and recompiled using the "AT6K mapped to AT40K" flow,
before being checked back into a new library containing only AT40K components. To re-import the design, remove the old
library from the search path and add the new library containing the AT40K components. The design will now map
successfully using the "AT6K mapped to AT40K" flow.

Finding Information on the Mapped Design

The Log File
The best source of information on the changes made to the design by mapping is the log file.

Pull down Window>New Viewer>Log File to open the Log Viewer for this design. If you scroll backwards through the file,
you will find two mapping reports. The first of these summarizes the pre-mapping design, comprising only AT6K components:

Mapper: info - Mapping Report
Cells Used
#Insts #Ins #Outs #Cost #Cores Cell Name (Desc.)
24 0 1 1 1 ZERO (Comb Gnd Mac)
19 1 1 1 1 INV (Comb Inv Mac)
1 1 1 1 1 CLKBUF (Inp Pad Mac)
1 1 1 1 1 RSTBUF (Inp Pad Mac)
27 3 1 4 4 OR3 (Comb Macro)
6 2 1 3 3 OR2 (Comb Macro)
3 2 1 1 1 AN2L (Comb Macro)
105 2 1 1 1 AN2 (Comb Macro)
8 3 1 1 1 AN3 (Comb Macro)
19 3 1 1 1 FD (Seq Macro)
52 2 1 1 1 XO2 (Comb Macro)
2 0 1 1 1 ONE (Comb Pwr Mac)
8 1 1 1 1 OD (Output Pad Mac)
9 1 1 1 1 ITTL (Inp Pad Mac)

Total #Instances: 284
Total Area: 377

IDS Figaro Tutorial

6-4

The second report shows the mapped version, comprising only AT40K components:
Mapper: info - Mapping Report
Cells Used
#Insts #Ins #Outs #Cost #Cores Cell Name (Desc.)
8 1 1 1 1 OBUF (Outp.Pad Mac)
9 1 1 1 1 IBUF (Inp Pad Mac)
35 4 1 1 1 FGEN1 (Comb Macro)
19 4 2 1 1 FGEN1R (Seq Macro)
1 1 1 1 1 RSBUF (Inp Pad Mac)
1 1 1 1 1 GCLKBUF (InpPad Mac)

Total #Instances: 73
Total Area: 73

Note the significant reduction both in the number of instances required for the design (284 to 73) and the area required to
accommodate it on the device (377 to 73).

The Info Window
You will find more detailed information on individual components using the Info window.

For example, you might look at the Map Browser and note the number of FGEN1 and FGEN1R components: these are basic
components of the AT40K architecture and can be used to implement any 4-input function. To find out more about the actual
function being performed:

1. Select instance fig1003 in the Map Browser.
2. Pull down Edit>Info to open an Info window on the selected object:

Info Window on fig1003(FGEN1R)

The field labeled "Function G" shows the Boolean equation for the combinational part of the output.
If the equation overflows the right hand edge of the window, either resize the Info window or position the cursor
somewhere on the equation and use the direction keys to scroll left and right.

Mapping AT6K Designs to AT40K

6-5

Compiling the Mapped Design

To compile the mapped AT6K design, proceed as follows:
1. Use the Part Select dialog to add a single AT40K05-2QC device and then partition the logic into the part.

You will see some transcript warnings informing you that some incompatible pin locks have been removed.
2. Click the Compile button to compile the design.
3. When Figaro is finished, pull down Window>New Compile Window to open a Compile window.
4. Use View>Zoom to Area to magnify an area of nine core cells:

Compile Window Showing X and Y Direct Connects

The red and blue lines indicate diagonal and orthogonal direct connects. The addition of diagonal direct connects in the
AT40K architecture means that a single core cell can now be connected directly to any of the eight cells surrounding it.

Timing

When performing timing analysis or compiling a retargeted design in timing-driven mode, timing assertions and constraints
referring to external signals (for example external clock constraints or IO assertions) can be re-used in the AT40K flow.

However, since mapping will have changed the names of many of the internal components, any derived clock or
asynchronous delay assertions you try to apply to the design will result in errors being reported to the transcript.

If you import a TMG file that contains both legal and illegal constraints, Figaro will apply the legal ones correctly and issue
warnings drawing your attention to the others. You should check and modify any assertions rendered invalid by mapping.

Partitioning

7-1

Partitioning

Partitioning is the process of allocating your design logic to parts on the board. You can partition in two ways:

§ Manually

Drag and drop design instances into individual parts from the Design Browser. The emphasis here is on user control: you
can specify certain logic functions to be performed by a particular part or keep particular components of your design
together.

§ Automatically

Figaro allocates design logic for you. Use this method if there are no constraints on which part instances are placed in.

You can, of course, combine the two methods. Automatic partitioning respects any manual partitioning you have performed.

This tutorial comprises the following sections:

1. Adding Multiple Parts
2. Assigning Pin Locks
3. Partitioning Design Logic
4. Exporting Partitioning and Pinout Information
5. Compiling a Design with Multiple Devices

Although you will use the same design as before, you need not have completed the previous tutorials before starting this one.
However, functions already used in previous tutorials are not described in detail again here, except where considered
particularly relevant. Please refer back to the appropriate sections for detailed information.

Before You Start

This section describes preliminary steps to check before embarking on the tutorial itself.

Checking the Design Setup

If Figaro is not already running, open it as described in "Starting up Figaro", then do the following to set up the desktop for
this tutorial:

1. Pull down File>Design Setup to display the Design Directory Setup dialog box. The Design Directory list contains all the
directories you have worked with so far.

2. Make sure that the "Tools Flow" is set to "Viewlogic Workview Office and select
\SYSTEMDESIGNER\EXAMPLES\VLOGIC\4BITALU (AT6K) or
\SYSTEMDESIGNER\EXAMPLES\AT40K\VLOGIC\TEST40K (AT40K) from the design directory list.

3. Click OK to accept these entries.

Disregarding an Existing Repeat Constraints (.RCT) File

When you saved your design at the end of the previous tutorial, Figaro saved a record of the part and any pin locks you made
in a file named design.RCT. This is called the repeat constraints file.

When you open a design for which a repeat constraints file exists, and the "Auto-import Repeat Constraints" option is
enabled, Figaro automatically adds the part and makes any pin locks specified in that file. Using this file can often save time,
especially when you have locked pins.

IDS Figaro Tutorial

7-2

However, in this tutorial you want to run the design as if it were new, so you have to make sure that the existing repeat
constraints file is disregarded during import:

1. Open the Options>Options dialog and select "Design Constraints".
2. Make sure "Auto-import Repeat Constraints" is not checked.
3. Click OK to accept these options.

Figaro will now ignore any existing repeat constraint files when reading in design netlists.

You will find more information on the repeat constraint file in Appendix B "Figaro Files".

Opening the Design
To read in the design netlist, proceed as follows

1. Click on the Open button.
Figaro asks whether you want to open the design as a design or as a macro.

2. Click Design to display the Open as Design dialog box.
3. Select \SYSTEMDESIGNER\EXAMPLES\VLOGIC\4BITALU (AT6K) or

\SYSTEMDESIGNER\EXAMPLES\AT40K\VLOGIC\TEST40K (AT40K) from the pull-down design directory list. (If you
can't see it, set it up again using New Design.)

4. Make sure the "Files of Type" is set to "Viewlogic Wir (*.1)" and then select 4BITALU (AT6K) or TEST40K (AT40K) in
the "Design Name" field.
Figaro displays 4BITALU.1 or TEST40K.1 in the "Existing Design File" field.

5. Click OK to open the design.
The Design Checker writes information and warning messages to the transcript depending on the options set. If there is
an existing repeat constraints file, Figaro issues a message to the transcript informing you that it was ignored.

Mapping is enabled, and you are now ready to start partitioning.

Adding Multiple Parts

As you saw in Chapters 3 and 4, the Parts window is a representation of the PCB that holds the FPGA and is designed to help
you visualize the orientation of the part.

You use the Part Select dialog to specify the parts you want for your design and these are then displayed along with the
design's I/O signals in the Parts window. The part is represented by a line drawing of the device while I/O connections to the
outside world are represented by stylized drawings of pins, with input functions to the left and outputs to the right. If you
add multiple parts, the window shows all of these and the connections between them.

To add a part, proceed as follows:

1. Click on the Parts button. Figaro opens an empty Parts window and the Part Select dialog box.
2. Select "AT6003-2JC" (AT6K) or "AT40K05-2AJC" (AT40K) in the "Part Name" list and click Add.

Figaro adds the selected part to the Parts window and displays a green bar below each of the gray bars at the base of the
Part Select dialog.
The green bars represent the capacity of the selected part (logic capacity above and memory capacity below). The gray
bars illustrate the (logic and memory) capacity required for the design. The relative lengths of the bars indicate whether
the part is large enough to accommodate the design. In this example, the design will fit on to a single part, but we’ll add
more logic to demonstrate partitioning.

3. In the Part Select dialog, select "AT6003-2JC" (AT6K) or "AT40K05-2AJC" (AT40K) again.
You see that the capacity of the parts (green bars) now exceeds design size (gray bars), even though Figaro has not yet
added the part to the Parts window. This allows you to check whether the capacity of the selected part will meet your
requirements.

4. Now click the Add button twice to add two further parts to the Parts window.
5. Click OK to close the Part Select dialog box.

The Parts window now contains three parts as shown:

Partitioning

7-3

The Parts Window with Three Parts Added

Changing the P&R Utilization for a Part
You can also the use P&R utilization to change the percentage of a part's resources made available for the placement and
routing of logic and memory. For example, you might lower the utilization to prevent your devices becoming too congested
and therefore more difficult to place and route, or you might increase the utilization of a particular part to allow it to
accommodate a design that is otherwise just too large.

You change the P&R utilization in the Options dialog under "Partitioner". Use the slider to set the figure as required and click
OK to accept settings and return to the Parts window.

Change the value for a single part by selecting the part in the Parts window and using Edit>Constraints.

Assigning Pin Locks

In this tutorial, you are not producing the FPGA in isolation, but need to take account of its position relative to the other
FPGAs on the board. This means you need to specify what pins on the device are to perform what I/O functions. This is
called assigning pin locks.

Locking pins restricts Figaro during placement and routing, so for your own designs you should only do this as the PCB
layout dictates, For example if the board design specifies that certain I/Os (for example, a clock input) must be associated with
particular package pins, or that a number of input or output functions must be handled by adjacent pins.

This section describes how to assign pin locks for the three parts you selected for the design. You'll use the Parts window to
assign different output functions to specified pins on the devices.

IDS Figaro Tutorial

7-4

Assign Pin Locks Dialog
Make sure the Parts window is the current window and pull down Edit>Assign Pin Locks to display the following dialog:

Assign Pin Locks Dialog

Hint: You can enlarge this dialog vertically to display the full list of Design I/Os. This makes the subsequent tasks much
easier to perform.

The “Design I/Os” box lists the design's I/O functions, while the “Usable Pins” list shows the pins available for these I/Os:
this list excludes pins reserved for other functions (e.g. VDD).

The pin names are prefixed by the letters "A", "B", and "C" indicating which part they belong to. Some pins have text in
brackets after their name, showing the pin's dedicated function.

Use this dialog to lock the output I/O "O0" to pin C.56 (AT6K) or "ADD_OUTPUT0" to pin C.72 (AT40K). Do the following:

1. Select this entry. Select "O0" 56 (AT6K) or "ADD_OUTPUT0" (AT40K), from the I/O list.
2. Select the entry "C.56" (AT6K) or "C.72" (AT40K) in the "Usable Pins" list.
3. Click Lock . Package pin "C.56" will now carry the "O0" (AT6K). 72 on part C now carries the "ADD_OUTPUT0" function

(for AT40K). The name of the associated pin or I/O appears in parentheses after each of the items, like this:

Output ADD_OUTPUT0 and Pin C.72 Locked

The Parts window provides visual feedback on the actions performed in the Assign Pin Locks dialog: as you selected the
"O0" board I/O and pin 56 of part C (AT6K) or "ADD_OUTPUT0" board I/O and pin 72 of part C (AT40K), these were
highlighted in the Parts window. When you clicked Lock , the two were connected by a line indicating the pin lock
constraint.

4. Repeat the procedure until the following I/Os have been assigned:

Partitioning

7-5

Lock design I/O... To usable pin... Device

O1 C.57 AT6K

O2 C.58 AT6K

O3 C.59 AT6K

O4 C.62 AT6K

O5 C.63 AT6K

O6 C.64 AT6K

O7 C.65 AT6K

ADD_OUT1 C.77 AT4K

ADD_OUT2 C.78 AT4K

ADD_OUT3 C.79 AT4K

ADD_OUT4 C.80 AT4K

ADD_OUT5 C.81 AT4K

ADD_OUT6 C.82 AT4K

ADD_OUT7 C.83 AT4K

ADD_OUT8 C.84 AT4K

The dialog list will then look like this:

Assigned Pin Locks

Click OK to accept the pin locks you have just assigned and return to the Parts window.

In the Parts window, you'll see lines connecting the IOs and pins: these reflect the pin lock constraints you've placed on the
design and were updated each time you clicked Lock . The package pins themselves remain unchanged until after partitioning
(see next section), when they will also change color to indicate that they are locked. The colors used depend on the settings
in Options>Display Options.

IDS Figaro Tutorial

7-6

Undoing Pin Locks
The dialog also incorporates two Unlock buttons, allowing you to unlock individual pins without first selecting the items in
both lists. Just select one and click the Unlock button under that column.

If you are unhappy with the pin locks you have made, you can undo all the changes since opening the dialog by pressing
Cancel. To save the pin locks, press OK.

Drag and Drop Pin Lock Assignment
The above method is useful if your board layout is strictly predefined. However, you can also use Figaro's drag and drop
facility to reposition parts and IOs and assign pin locks directly in the Parts window.

To move parts:

1. Select part C and click-hold the left mouse button to drag it so that the parts are arranged in a horizontal row in the
sequence A, B and then C.

2. Release the mouse button to drop the part at your desired location.
Figaro uses the cursor position as a reference when positioning the part. If the cursor happens to be positioned over
some other resource (i.e. another part or IO) when you release the mouse button, Figaro will return the part to its original
location and report the error in the transcript.

3. The board IOs are now badly positioned. Pull down Edit>Arrange IOs to redraw them.

To assign pin locks:

1. Use View>Zoom to Area to zoom in on the left side of device A and the input board Ios.

2. Find pin A.30 on part B (AT6K) 24 on part A (AT40K) (when you move the cursor over a pin, the status bar displays its
name and type).

3. Select (AT6K) and drag it over to pin A.30. Select IO "A0" (AT40K) and drag it over pin 24. The line joining the two
instances indicates the constraint.

4. Use this method to lock IB[2:0] to pins A.29 through A.27 and IA[0:3] to pins A.24 through A.21 (AT6K) or "B0" to 19,
"WEN" to 20, "REN" to 23 and "CLOCK" to pin 29 (or GCK2, shown in green) (AT40K).

Pin Lock Constraints on Part A

Partitioning

7-7

5. Pull down View>Zoom Fit to view the final board layout:

PCB Layout with Assigned Pin Locks

Partitioning Logic

In this section, you will use manual and automatic partitioning to allocate design logic to the three parts on to the board. You
will get to know the Design Info dialog and the Sub-Design Browser, and learn how to interpret the information provided by
Figaro.

Design Info Dialog Box
Make the Parts window active, select Edit>Design Info , and click the More>> button. This opens the extended Design Info
dialog, providing information while you are carrying out manual partitioning.

Using Manual Partitioning
1. Select part B (AT6K) or part A (AT40K) in the Parts window.
2. Pull down Window>New Sub-Design Browser. This lists all the logic instances currently allocated to the selected part.

At the moment it is empty, so only the part name is shown.
3. Open a sub-design browser for part B as well, and then pull down Window>Tile so that you can view all your tool

windows.
4. Make the main Design Browser the current window and select instance $1I72(CONTROL) (AT6K) or ADDER8 (AT40K).

Click-hold the left mouse button, drag the instance over part B (AT6K) A (AT40K) in the Parts window then release.
The Sub-Design Browser for the selected part is updated to include these instances as is the information displayed in the
Design Info dialog. Figaro adds extra pads as required to carry intermediate signals.

5. You can also drag and drop directly between browsers. Using either method, perform the following partitions:

Partition instance... To part... Device

REGISTR4 (both) A AT6K

MULT8 B AT40K

If, at any stage, you are unhappy with the way your efforts are developing, just pull down Edit>Unpartition Design and
Figaro will remove all partitioning information and you can start again.
You cannot partition IO buffers as these will be automatically partitioned to go with the appropriate logic.

IDS Figaro Tutorial

7-8

Modifying the Partition
1. Go to the Parts window and look at the green arrows showing the interconnect between parts A and C.

The thickness of the arrows reflects the number of signals being carried, with the exact number displayed next to it.
2. Use drag and drop from either browser to move the "CONTROL" (AT6K) "ADDER8" (AT40K) component from part B to

part A (AT6K) or from part A to part B (AT40K).
Note that the interconnect line between A and C disappears.

3. The Sub-Design Browser for the selected part displays only the part name, indicating that the part is now empty.
4. Use either Edit>Remove Unused Parts or select it and use Edit>Remove Part to remove it from the Parts window.
5. Use the auto-partitioning function to complete the rest of the partitioning of your design.

NOTE
Some manual moves might be restricted, for example, if you have already locked an I/O that connects
directly to the instance you are moving. To unlock pin assignments like these, use the Assign Pin Locks
dialog described earlier.

Using Automatic Partitioning
Once you have completed the required manual partitioning, click Partition (or pull down Edit>Auto-Partition Design into
Parts in the Parts window) and Figaro will complete the process.

You can exert control over the automatic partitioning function using the following parameters contained in the partitioner's
Options dialog:

Quality: Determines the relative emphasis given to resolving pin contention and minimizing chip-to-
chip interconnect during partitioning. The higher the quality, the harder Figaro tries to
minimize interconnect.

P&R utilization: Specifies the percentage of the part's logic to be made available for placement of design logic.

Dual function
pins:

Specifies whether any dual function pins on the part are to be made available for placement.

Pinout contention: Controls whether Figaro takes account of pinout contention during partitioning

Part swapping: Controls the management of swap files in multi-chip designs.

Manually partitioned logic is locked and remains unaffected during automatic partitioning. You can also use
Edit>Constraints from the Design Browser and the Parts window to place constraints on particular levels of hierarchy to
ensure these are kept together.

NOTE
You can also use the auto-partitioner to achieve preliminary results if you do not already have a firm plan of
how you want to partition your design. You can then modify the results as required using the manual
techniques described.

Partitioning

7-9

Exporting Partitioning and Pinout Information

Once you have completed partitioning and pinout, you can export this information in several forms. This section shows you
how to export the information from Figaro and describes the content of the different outputs:

1. Make sure the Parts window is the active window.
2. Check that none of the parts is selected (if there is, click ESC to deselect).
3. Pull down File>Export to display the following dialog box:

Exporting a Pinout Constraints File and Report

4. Leave the file base name as it is.
5. Check the boxes for the information you want to export:

a) Constraints
"Locked pinout (*.pin)" creates a constraints file listing the pinout locks for use in subsequent sessions (this is a
subset of the .RCT file you looked at earlier).
"Partition (*.ptn)" produces a constraints file listing the design instances and the part to which they have been
allocated.

b) Reports
"All pinout (*.pir)" is a record of the full pinout, whether locked or not.

6. Click OK to export the selected files.
Figaro automatically adds the appropriate extensions to the file base name and creates the files requested.

NOTE
Note that only locked pinouts will be used as constraints the next time you run the design. After
partitioning the design, you can use the Lock All button in the Assign Pin Locks dialog box to ensure that
all pin assignments are repeated.

Any manual partitioning information is also written to the RCT file and is used the next time you run the
design.

For more information on the individual file types, refer to Appendix B "Figaro Files".

IDS Figaro Tutorial

7-10

Compiling a Design with Multiple Devices

After partitioning, simply click Compile to run the automatic placement and routing functions. These are described in more
detail in Chapters 3 and 4.

With a multi-chip implementation like this one, Figaro compiles one device at a time. When the first one is complete it is
"swapped out" to release memory resources and obtain better performance. Figaro creates a .SWP file for each part swapped
out. These files are written to a directory FGSWAP under the design directory. When it needs to, Figaro moves the part back
into memory.

You can control part swapping using the Partitioner options in the Options>Options dialog box:

Figaro Controlled Figaro swaps parts out of memory as required

On Figaro always swaps parts out

Off Figaro never swaps parts out

When compilation is complete and as long as swapping is not active (i.e. Figaro Controlled or Off), you can view both
devices at the same time by opening a Compile window for each. If swapping is On, you will be able to view only one device
at a time.

Summary

This tutorial showed you how to:

§ Disregard an existing repeat constraints file for a design.
§ Adjust the P&R utilization for selected parts.
§ Add multiple parts using the Part Select dialog.
§ Assign pin locks.
§ Partition the design manually.
§ Partition the design automatically.
§ Export partitioning and pinout information.

You should now be able to add multiple parts and partition your design logic between them using the techniques described
here.

If you have problems, refer to Chapter 10 “Troubleshooting and Support”, or from the on-line help Contents page jump to
“Troubleshooting”.

NOTE
Before moving on to any of the other tutorials contained in this guide, open the Partitioner options dialog
again and ensure the P&R utilization is reset to 100%.

Additional Features

8-1

Additional Features

This chapter tells you about a few areas not covered by the tutorials, but which you might need:

§ How to abort a task.
§ How to save and restart a design session, or undo changes made during a session.
§ How to incorporate design changes.
§ How to change Figaro options.

Aborting a Task

If you mistakenly start an operation which takes some time to run, you can stop it by pressing CTRL+C keys simultaneously.
This stops the current operation and displays one of two dialogs:

Stop dialog This asks whether you really want to stop the current process. Click Yes or No.

User Interrupt dialog Click Proceed if you want to continue the process, or Abort if you want to stop it.

In the Compile window this has different effects depending on the task being performed: some operations cannot safely be
interrupted and will stop at the first safe point. Figaro writes a message to the transcript if this is the case.

For more details, search for the on-line help on “Aborting an Operation”.

Saving and Restarting a Session

You can save a Figaro design session to a file. The saved session includes a record of tasks you've performed during the
session and the desktop state, for example, the number, type and size of open windows.

There are two ways of saving a design session:

§ Keep a single file, updated regularly.
§ Make a series of saves to different files, for example one after each design step. This means you can restore the design to

its state at any intermediate stage.

Saving a Design Session
To save your design session, pull down File>Save. Figaro creates a file with the extension FGD (Figaro design), which you
can re-open in the future. The file is stored in the design directory.

Each time you use File>Save, Figaro automatically creates a backup copy of the original save file to a file with extension .FG~.
It then overwrites the existing FGD file with the latest state of the design.

Saving a Series of Snapshots of a Session
To make a series of saves within a single design session, use File>Save As and enter a different file name each time. The file is
saved in the design directory.

Enter the file name you want in the dialog box shown below:

Saving a Design Session with a New Name

IDS Figaro Tutorial

8-2

Using File>Save As lets you restart the session at a number of different points. It's best to save to a new file after major steps
like assigning pin locks or performing placement.

Restarting a Saved Session
To restart a saved design session, click the Open button to display the Open as Macro dialog or the Open as Design dialog
(shown here):

Opening a Saved File

Do the following:

1. Select the directory containing the saved design file from the “Design Directory” list (or use New Design to add it to the
list).

2. Specify “Figaro Design (*.fgd)” in the “Files of Type” box.
3. Specify the name of the saved design session in "Design Name". Figaro enters the appropriate name in the field "Existing

Design File".
4. Click OK to restore the design session at the required stage.

Undoing Changes made during a Session
To go back to the stage at which you last saved the design session, pull down File>Revert to Saved. You are asked “Do you
want to discard your changes to design “yourdesign?”. Click Yes.

If you saved the session to different files at different times and want to go back to an earlier save than the last one, click the
Open button. You are asked whether you want to save any changes to the current design, before Figaro displays the Open as
Design dialog. Use the dialog to specify the name of the file you want. (The dialog is described in the previous section,
“Restarting a Saved Session”.)

Incorporating Engineering Change Orders (ECO)

After you have compiled a design using Figaro, you may find you need to go back and make some modifications to the
original netlist. Rather than having to rerun all the steps again for the changed design, Figaro supports a function for making
incremental design changes called Engineering Change Order (ECO).

You can use ECO with single-chip, multi-chip and mapped designs of all netlist formats. Simply specify the extent to which
unchanged instances and routing are to be preserved in the new version (see "ECO Options" below) and read in the modified
netlist using the Open as ECO function.

Figaro compares the new design with the one it previously implemented, establishes what changes have been made and
preserves and locks any unchanged elements as stipulated in the ECO options. You can then place and route any altered
sections either manually or automatically. Pressing Compile will compile the remainder of the design for you.

Additional Features

8-3

ECO Options
Before running ECO, take a closer look at the ECO options: open the Options>Options dialog and select the entry "ECO" from
the Topic list. Figaro displays the ECO options as illustrated below:

Default ECO Options

The "Auto-proceed" option is switched off, meaning that after the modified netlist has been loaded, Figaro will prompt you to
start ECO. This provides you with an opportunity to study the comparison summaries in the transcript before proceeding.

The "Preservation" options specify how much of the original implementation is to be preserved during ECO. Generally the
more you preserve, the faster Figaro will be able to complete any subsequent compilation of the design.

The "Locking" options control whether preserved instances and nets are automatically locked in the new version of the
design.

Make sure the options are set as in the picture above i.e. with the maximum level of preservation and all preserved objects
locked.

ECO and Mapping

You can use ECO on mapped designs of all formats, however it is important to note the following:

• Running ECO on mapped designs may not always achieve the expected level of preservation because mapping is not
always able to maintain associations between netlist design instances and Figaro's implementation of them. As a result,
ECO cannot preserve the implementation of some instances, even if they are identical in the original and new versions.
As the level of instance preservation degrades, so does the preservation of nets and routing.

• When running ECO on a mapped design, ensure the mapping options match those used when the design was originally
compiled.

ECO and User Macros

You can also run ECO with user macros. Do the following:

Step

Compile the original user macro and check it into a library

Open and compile the design containing the user macro

Check the macro out of the library then make the necessary changes to the netlist

Open the new macro netlist as ECO

Compile the changed macro and check it back into the library

When you restore the original design containing the user macro, Figaro automatically uses the latest version of the macro and
places it in the same orientation as the old one. It also issues a message warning you that it has used a changed version of
the macro.

IDS Figaro Tutorial

8-4

If the new version of the macro is much bigger than or a different shape from the old one, you should check the instantiation
of the macro for contention.

Changing Figaro Options

You can change many of the parameters that control Figaro's operation. Many of these control window displays, some
control the default entries in dialogs, and others control the way Figaro imports and exports files.

These options can be split into two groups, accessed using different commands in the Options menu. The first of these is the
Options command, which accesses the following parameters:

Option Name Controls

AT40K Bitstream Bitstream format

AT6K Bitstream Bitstream format

Delay Calculator Delay range, input slew rate, output load

Design Checker Error checks for opened design

Design Configuration Rebuild hierarchy

Design Constraints Auto-import repeat constraints

ECO ECO flow, preservation, locking

Export Formats Default selections in export dialog

HDL Planner Parameterization of clock/reset schemes and design customization

Mapping Mapping control and preservation options

MGI Support Automatic macro generation as specified by the EDIF netlist

MGL Editor MGL Editor setup

Part Selection Sets defaults for the filters in the Part Select dialog

Partitioner Partitioner quality and control

Place and Route Compile quality and other options

Synthesis Tool Invocation Tool flow and interface options for running synthesis

Timing Analysis Graph type, paths listed, paths to ignore, report format

Viewlogic Import Processing and use of attributes from ViewLogic netlists

Xilinx Opening, processing and exporting of the XNF netlists

Parameters Set in the Options Dialog Box

Additional Features

8-5

The Display Options command allows you to view and change the display characteristics of the windows listed in the table
below:

Option Name Controls

Browser Design and Map Browser windows.

Compile Compile window(s) (see below).

Desktop Message colors, toolbar display etc.

Parts Parts windows (see below)

Selecting Selection of nets or ports with an instance.

Parameters Set in the Display Options Dialog Box

The list is adapted dynamically depending on the windows open on your desktop. When you first open the dialog, the entry
for the current window is always highlighted.

Window options control the colors and display thresholds of tool windows. The display threshold is the magnification at
which a particular item is shown in the window.

Changing window options changes the settings for the specified window and not for all the windows of that type that are
open. It only changes the default settings if you click the Save As Default button.

Changing Figaro Options: Examples

The following sections show how to change two sets of Figaro options:

§ The design checks carried out when a design is loaded (under Options)
§ The Compile window display (under Display Options) .

The procedures for changing other options are similar. Use on-line help for detailed instructions on a particular set of options.

Changing the Design Checker Options

This section shows how to use the Options dialog to change the checks that are run when you open a design. For example,
you might want to instruct Figaro on what to do when it finds a net without a source in the design.

This example shows how to make Figaro issue a warning if it finds an unconnected input port in the design. Do the following:

1. Call up the Options dialog as displayed below:

Specifying the Options to Change

IDS Figaro Tutorial

8-6

2. Select “Design Checker" from the "Topic" list. The current settings are shown, as follows (this is not the full list):

Default Design Checker Options

3. Under “Unconnected Ports” click on the "Input Ports" pull-down list and change the setting from “Error" to "Warning”.
The Design Checker will now report unconnected input ports as a warning, write the warning to the transcript and
continue. Previously it would have reported an error and stopped opening the design.

4. Click OK to effect the change.
This comes into effect immediately and will remain in effect in future sessions.

When you open the design, Figaro’s view of it will be modified by the Design Checker in the way these options specify. For
more information, see the on-line help on "Design Checks".

Changing the Compile Window Display
This example shows how to change the color of nets using express buses in the current Compile window. (You might do this ,
for example, to distinguish these nets from others displayed in the same color.) The procedure is the same for all window
display options. Do the following:

1. Pull down Options>Display Options and select "Compile" in the topic list to display this dialog box:

Compile Window Display Options

After the miscellaneous parameters, "Unused Locations" is the first instance parameter. Its entry shows a color entered
as a sequence of three numbers in the range 0-255. These are the values for red, green and blue respectively. This is the
alternative to typing in a color by name.

Additional Features

8-7

2. Scroll down the list until you reach “Express Bus Routed Nets”:

Color and Display Threshold for Express Bus Routed Nets

3. Click on the colored button. This displays the palette of colors you can choose from (the “color” radio button will be
selected here):

Color Palette

4. Use the cursor to select a color that is easily recognizable and is not being used by another type of net. A black outline
appears around the button and the preview rectangle on the right of the dialog box changes to the selected color.

5. If you want to see what this color looks like in relation to another one, click the “contrast” radio button then choose the
other color. This appears as a border to the main color in the preview box, so you can check the contrast and visibility of
the combination.
You might use this to test the contrast between two colors used for different routing resources, for example. The
“contrast” color has no effect on the display once you leave this dialog.

6. Click OK (or ENTER) to return to the Display Options dialog.
7. Click Apply to view the new color in the Compile window before you accept it. Click on the Compile window: any express

bus routed nets will change to the color selected.
8. Click OK to accept the change and leave the dialog. (To change settings for future Compile windows as well as this

window, click Save as Default in the Display Options dialog - this new setting will be added to the FIGARO.INI file and used
the next time you start up Figaro.)

Resetting Figaro Options
If you make changes to Figaro options and then decide you preferred the original settings, you can retrieve these by removing
or editing the file FIGARO.INI stored in your Figaro BIN or startup directory.

Troubleshooting and Support

9-1

Troubleshooting and Support

This chapter tells you:

§ Answers to some frequently asked questions.
§ What to do when you see an error message.
§ What to check before you report a problem.
§ How to report a problem.
§ How to install an update (patch) to Figaro.

Using the Transcript and Log File

During a session messages are output to the transcript and log file. Look here first if you have problems: refer to the
on-line help on "Error Messages". Use Window>New Viewer>Log File to open a separate window displaying the
log file: this is easier to use than the transcript, shows more information and provides useful search and edit
functions.

Introduction

This section lists some common problem areas.

Performance

If Figaro runs slowly in interactive mode, empty memory may still be allocated. Pull down Help>Compact Memory to
use memory more efficiently.

Mapping

If a design is not mapped as you'd expected, check the help on "Mapping" or "Retargeting".

Placement, Routing and Timing

The most common problem is failure to complete placement and routing of a design. For details see the help on
"Troubleshooting", particularly the jumps to "Design cannot be placed" and "Design cannot be routed".

Colors

Figaro uses colors to provide much of its information. If your system has few colors available, this may cause
problems, particularly in the Compile window display. For example, if your system only has one shade of green,
express buses may be shown in gray, which normally shows unused routing.

To avoid problems pull down Options>Display Options and select "Compile". Click the first color button in the list.
This shows the color palette available on your system. If there are very few colors or they are badly distributed (for
example, lots of reds but no greens), do one of the following:

As a short-term measure, use the color button to change the colors of any resources that look confusingly close.
(For a list of the defaults, see the help on "Colors in Figaro".)

Consider reconfiguring your system:

§ If you are on a PC running Windows it is a good idea to use a display driver with at least 256 colors.
§ If you're running X-Windows on a UNIX platform, close down Figaro then use one of the following (see the

xtdcmap "man page" for details.):

"xstdcmap -all" or "xstdcmap -default".

Restart Figaro, which should now have a wider selection of available colors.

Display

If a PC has problems displaying graphics in the Compile window, pull down Options>Display Options and select
"Compile", then uncheck the "Faster complex graphics" option.

IDS Figaro Tutorial

9-2

Frequently-Asked Questions

This list gives answers to some frequent questions asked by Figaro users. (This list is also available on-line: from the
Figaro Overview help screen, click on Troubleshooting, then on Frequently Asked Questions.)

Q. The menu option I want to use is grayed out. Why?
A. This is probably because you are not in the correct tool window for the command, or because you have not

selected the object you want to work on. Click-hold the mouse on the command and look at the status bar for a
simple explanation; press SHIFT+F1 for further details.

Q. Elements of the design seem to be hidden from view. Why?
A. Check the setting of Options>Display Options for the tool window. You may have turned off the display of

some wiring, net, port or other element.

Q. Figaro is "hanging". The last thing I was doing was using a dialog, which has now disappeared from view.
What should I do?

A. This occurs when a window other than the dialog becomes the current window. For example, this happens if you
click in a window belonging to a different application. Use your PC facility for listing open tasks to return to the
open Figaro dialog.

Q. I have several dialogs open, but they keep disappearing below the windows. Why?
A. Use Window>Dialogs to Front to bring all your dialogs back into view.

Q. I have selected an object in the Edit>Find dialog box and it doesn't show up in the Compile window. Why not?
A. Not all objects are drawn to prevent the display becoming unnecessarily cluttered. For example the global

clock/reset resources are not shown since they are attached to all core cells.

Q. I displayed information on the same instance in the Design Browser and Parts (or Compile) windows. However,
the instance and net names shown in the two dialogs are different.

A. This is because only the Design Browser shows the original design. Other browsers and windows show Figaro's
implementation of the design: for details, see the on-line help on "Association".

Q. My design structure is not maintained after compilation. Why?
A. You can compile individual blocks of your design separately by compiling them as user macros and storing them

in a user macro library. The macros will be used when you compile the whole design.

Q. I can't export the type of file I want. Why not?
A. The files you are able to export depend on which is the current window. For example, you can only export a

pinout constraints file if the Parts window is the current window and none of the parts in the window is selected.
See the help on File>Export for more details.

Q. My design has one error on import but it's perfectly all right. Why?
A. Scroll up the transcript window or check the log file to see if there are other errors. The design checker gives a

summary of the number of errors it finds. If you opened as a macro a design which has pads, there will be a
single error.

Q. Multiple design instances are in contention in the Compile window. How can I select just one of them to move it?
A. Select the location in the Compile window. All the objects placed there will be highlighted in the Design

Browser. Now select just one of them in the Design Browser and drag it to a new location in the Compile
window. This leaves the other object(s) behind. Repeat this as necessary until there's just one object at the
location in question.

Q. I clicked the mouse in the transcript and a small menu appeared. What's this for?
A. You only need to use this if you're reporting a problem. It's for pasting from the transcript into the report form.

Q. Since I mapped my AT6K design, Figaro's performance has slowed down. Why?
A. Mapping large AT6K designs can greatly increase the size of the footprint left by Figaro on your computer's

memory, making performance sluggish. Before proceeding, save your mapped design and exit Figaro to free up
this extra memory. This does not apply for AT40K designs.

Troubleshooting and Support

9-3

Before you Report a Problem....

If you have a problem, work through this section, point by point, before you report it:

Have you installed Figaro properly?

Check against the Installation section of this manual. You should have all the files listed there.

Is the system set up correctly with all the necessary files? If you're using a PC does it have enough memory?

Did you try to load an illegal or corrupted netlist?

Check the on-line help on "Netlists as Input".

Check the transcript or log file for messages beginning "Design Checker:". Some of these mean that the design
cannot be read in by Figaro: see the section "Design Check Error Messages" for details.

Is the file you're looking for really in the directory you think?

Quick checks

Is there an easy answer to the problem? Check against the list of Frequently Asked Questions (above). This shows
some places where it's possible to misunderstand Figaro.

Has the problem already been reported?

The Figaro Known Problems and Solutions document contains descriptions of problems which Figaro technical
support knows about. Methods of avoiding these are given, allowing you to work around a problem.

This document can be accessed on-line using the Help>Review KPS pull down.

Reporting a Problem

Once you're sure your problem is not something you can solve yourself (see above), pull down Help>Report a
Problem. This displays a Report Form for sending to technical support.

The layout of the form, shown below, is straightforward, but if you do need more information, click on its Help
button.

The Problem Report Form

IDS Figaro Tutorial

9-4

Enter your details and a summary of the problem. In the "Report in Detail" text box, give a fuller description,
including:

§ What you were doing when the problem appeared.
§ How the problem looked.
§ A copy of the log file, design.LOG.

To paste in the log file, click the right mouse button and select paste file from the list, then type in the name of
the log file and press ENTER.

§ A copy of the Figaro stack file (FIGARO.DMP) which contains a record of previous functions executed.
§ Any relevant information from the transcript.

To paste from the transcript, move the cursor over the transcript space, click the right mouse button and select
copy from the menu. Then click in the report form, click the right mouse button and select paste from the menu.)

Once you've supplied all the information, click OK. Clicking OK produces a report file FCR.n, where n is the number
of this report. If it's your first report, it will be FCR.0. This file is written to the directory FIGARO\REPORTS and to
the current directory. Fax or e-mail a copy of this report to technical support.

Installing an Update to Figaro

Installing an update means patching your version of Figaro by applying a patch file sent by Technical Support to
solve a problem. You can patch permanently or just for one session (so that you can try out a patch).

For details of product updates, contact your supplier.

Installing an Update
To update your Figaro version permanently, do the following:

1. If Figaro is open and you have performed any operations since opening it, close it down. (You cannot patch
Figaro after opening a design.)

2. Copy your FIGARO.INI file to save it from being overwritten.
3. Restart Figaro, but don't open a design.
4. Pull down Help>Install Update, enter the patch file name and click OK.

Figaro installs the patch and displays the Install Upgrade dialog asking whether you want to update the release.
5. Click OK to update the release: the patch applies for this and all future Figaro sessions.

NOTE
If you want to make a permanent update on a workstation, you should only install it from Figaro's home
directory. If you install an upgrade from any directory other than the Figaro bin directory, you will create a
new FIGARO.IM file in the current directory but the source FIGARO.IM will remain unchanged with the
previous version.

To update the Figaro version just for one session to evaluate the patch, do the following:

1. If Figaro is open and you have performed any operations since opening it, close it down. (You cannot patch
Figaro after opening a design.)

2. Restart Figaro, but don't open a design.
3. Pull down Help>Install Update, enter the patch file name and click OK.

Figaro installs the patch and displays the Install Upgrade dialog asking whether you want to update the release.
4. Click Cancel: the patch applies for the current session only. When you close Figaro down, the patch will be

removed.

Installing Library Updates
There is a parallel function for updating the package and vendor libraries used by Figaro. Pull down Help>Update
Library and proceed in a similar manner as when installing an update.

Appendix A: Summary of Menu Commands

A-1

A Summary of Menu Commands

This appendix describes the Figaro menu commands and the shortcuts defined for frequently-used commands. For
full information on any command, use the on-line help. There are two easy ways to display help on a command:

§ Pull down the menu, move the cursor onto the command and press the SHIFT and F1 keys simultaneously.
§ Pull down Help>Search for Topic and type in the first few characters of the command name (on a workstation,

this field is case-sensitive: note that most words begin with a capital letter). Select the command name from the
list and click Show Topics. (If the help window is already open, click the Search button at the top of the
window.)

There are also buttons on the toolbars for commands you might use a lot, and keyboard shortcuts for many more
commands. These are listed in full next to the respective menu commands. If you hit an incorrect key, or a command
is not available, Figaro beeps.

NOTE
The window name in parentheses after the headings in the following list shows which tool "owns" the
menu. The entries in some menus, like Edit and View, change depending on which tool window is the
current window.

Menu Commands and Shortcuts

File Menu (Figaro Window)

Design Setup Specify the design directory.

Open as Design Open a design to compile a bitstream.

Open as Macro Open a design to compile a macro.

Open as ECO Read in new version of a previously- implemented netlist for quick update.

Close Close the current window.

Run Batch Open a Figaro batch file (*.fbf) to be run.

Save Batch File Produce a Figaro batch file for the currently loaded design.

Import Constraints Read in a constraints file.

Export Export a board report, back-annotation file or timing report files.

Save Save the design.

Save As Save the current design to a specified file.

Revert to Saved Discard all changes made to the design since the last save.

Print Print the current window.

Exit Close down Figaro.

IDS Figaro Tutorial

A-2

File Menu (Figaro Window)

Command Key Button

File>Open as Design Ctrl+O

File>Close Ctrl+F4

File>Export Ctrl+E

File>Save Ctrl+S

File>Print Ctrl+P

File>Exit Ctrl+Q

Edit Menu

Undo Return your design to the state it was in before you performed the last operation.

Redo Restore changes reversed using Undo.

Select in Area Select all the objects in an area you specify with the cursor.

Deselect in Area Deselect all the objects in a specified area.

Deselect All Deselect all selected items.

Timing Constraints Open the timing constraints editor dialog.

Constraints Edit browser, mapping or part constraints.

IO Pad Attributes Open the IO pad attributes editor dialog.

Find Find a specified object.

Info Display information on a selected object.

Design Info Display statistics on a design.

Edit Menu (Parts Window only)

Add Part(s) Add or replace the target device.

Change Part Speed or
Application

Replace the target device with another from the same family, but with a different speed or
application.

Remove Part(s) Cut selected part(s).

Remove Unused
Parts

Cut parts which hold no design logic.

Arrange I/Os Display I/Os neatly around part(s).

Rotate Parts Rotates the selected part(s) clockwise through 90 degrees

Assign Pin Locks Define pinout.

Auto-Partition Design
into Parts

Partition automatically.

Unpartition Design Undo partitioning.

Appendix A: Summary of Menu Commands

A-3

Edit Menu

Command Key Button

Edit>Undo Ctrl+Z

Edit>Redo Ctrl+Y

Edit>Select in Area Ctrl+A

Edit>Deselect All Esc

Edit>Constraints @

Edit>Find Ctrl+F

Edit>Info I

Edit>Design Info Ctrl+F1

Edit Menu (Compile Window)

Place by Net Place instances attached to a net.

Next Macro Alternative
(not AT40K)

Replace the selected macro(s) with a functionally equivalent macro.

Next Primitive
Alternative (not AT40K)

Replace the selected primitive (on a single logic block) with an equivalent.

Rotate R90 Rotate selected items 90° clockwise.

Rotate L90 Rotate selected items 90° counterclockwise.

Rotate 180 Rotate selected items 180°.

Flip Horizontal Reflect selected items on vertical axis.

Flip Vertical Reflect selected items on horizontal axis.

Close Location Prevent logic being placed in a location.

Open Location Re-open a closed location.

Route Unrouted Nets Route placed instances' nets.

Route Selected Nets Route the working net automatically.

Discard Route Discard the route of the working net.

Discard From
(manual route)

Discard the routed part of the working net (from the selection to destination(s)).

Tidy Net (manual
route)

Remove antennae from the working net.

Edit Net Routing
(normal mode)

Mark the selected net as the working net and enter manual routing mode.

Finish Net Routing
(manual route)

End manual routing and return to normal display.

Soften Library Routing Unlock all locked library routing associated with the selected nets.

Revert to Library
Routing

Discard current routing and reinstate library routing for the selected nets.

Lock Fix the selected object so automatic placement and routing cannot change it.

Unlock Free the selected object so automatic placement and routing can change it.

IDS Figaro Tutorial

A-4

Edit Menu (Compile Window)

Command Key Button

Edit>Place By Net N

Edit>Next Macro
Alternative

Ctrl+N

Edit>Next Primitive
Alternative

T

Edit>Rotate R90 R

Edit>Rotate L90 L

Edit>Rotate 180 U

Edit>Flip Horizontal H

Edit>Flip Vertical V

Edit>Close Location]

Edit>Open Location [

Edit>Route Unrouted
Nets

Edit>Route Selected
Nets

Ctrl+R

Edit>Discard Route D

Edit>Discard From Ctrl+D

Edit>Tidy Net C

Edit>Edit Net Routing W

Edit>Finish Net
Routing

E

Edit>Lock K
 (toggle)

Edit>Unlock J
 (toggle)

Appendix A: Summary of Menu Commands

A-5

View Menu

Zoom Fit Show the entire contents of the window.

Zoom In Zoom in at x2 on the center of the window.

Zoom Out Zoom out at x0.5 on the center of the window.

Zoom to Previous Return to the previous zoom setting.

Zoom to Area Zoom to a given area.

Zoom to Selected Zoom in on the selected object(s).

Pan to Selected Pan to the selected object.

Scale Zoom in at a particular scale factor.

Center Center the view on the next place you click.

Refresh Update the window contents.

Push Window Display the contents of this object in a new window.

Push Display the contents of this object in this window.

Return to Previous Display the level of hierarchy above this one (undo the last Push).

View Menu (Browsers only)

Expand One Level Expand a single level below this node.

Expand Branch Expand all levels below this node.

Collapse Branch Collapse all levels below this node.

View Menu

Command Key Button

View>Zoom Fit F4

View>Zoom In F7

View>Zoom Out F8

View>Zoom to
Previous

F3

View>Zoom to Area F9

View>Zoom to
Selected

F2

View>Pan to Selected P

View>Scale S

View>Center F6

View>Refresh F5

View>Push Window Ctrl+F7

View>Push Shift+F7

View>Return to
Previous

Shift+F8

IDS Figaro Tutorial

A-6

View Menu (Browsers only)

Command Key Button

View>Expand One
Level

+

View>Expand Branch *

View>Collapse
Branch

-

Timing Menu (Compile Window only)

Show Analyzed Paths Display delays on long/short/critical paths.

Show Net Delays Display delay information in the transcript.

Measure Delay Measure delays between two ports.

Timing Display Change Compile window to timing display.

Options Menu

Transcript Toggle display of the transcript on/off.

Flowbars Toggle flowbar display on/off.

Toolbars Show or hide Figaro and Compile window toolbars (dialog).

Options Display or change Figaro options.

Display Options Set display options for the current window.

Library Menu (Figaro Window)

Library Setup Change the library search path.

Check-In Macro Check user macro into user macro library.

Check-Out Macro Check macro out from user macro library.

Delete Macro Delete macro from a user macro library.

Translate Macro Translate macros from an AT6k to AT40k user macro library.

Timing Menu (Compile Window only)

Command Key Button

Timing>Show Net
Delays

=

Timing>Measure
Delay

M

Timing>Timing
Display (toggle)

Appendix A: Summary of Menu Commands

A-7

Options Menu

Command Key Button

Options>Flowbars F10 (not PC)

Options>Options O

Options>Display
Options

F11 (PC only)

Flow Menu

Open as Design or
Macro

Open a design to compile a bitstream or user macro.

Map Implement design mapped to selected vendor architecture.
Parts (sub-menu) Access commands in the Parts sub-menu.
Compile (sub-menu) Access commands in the Compile sub-menu.

Parts Sub-Menu
The Parts sub-menu contains the following entries.:

All Steps Run all the steps in the Parts sub-menu.

Add Part(s) Add or replace the target device.

Auto-Partition Design
into Parts

Partition automatically.

Compile Sub-Menu
The Compile sub-menu contains the following entries. The placement, routing and bitstreaming commands are part-
specific.

All Steps Run all the steps in the Compile sub-menu.

Auto Compile All Automatically program all parts.

Initial Placement Run initial placement.

Optimize Placement Run optimized placement.

Initial Route Run initial routing.

Optimize Route Run optimized routing.

Bitstream Output the design as a bitstream (bitstream mode only).

Check-In Macro Check user macro into user macro library (user macro mode only).

Compile Sub-Menu
The Compile sub-menu contains the following shortcuts. Both are part-specific.

Command Key Button

Compile>Optimize
Placement

Shift+F10 (not PC)

Compile>Optimize
Route

Shift+F11 (PC only)

IDS Figaro Tutorial

A-8

Window Menu (Figaro Window)

Arrange Icons Arrange the icons on the Figaro desktop.

Cascade Reorganize a stacked window display.

Tile Display all windows without any overlap.

New Design Browser Open a Design Browser.

New Parts Window Open a Parts window.

New Map Browser Open a browser displaying the logic elements of the mapped design

New Sub-Design
Browser

Open a browser displaying the logic partitioned to a selected part

New Compile Window Open a window on the target device.

New Viewer Open viewers for log files, path analysis reports, net delay tables, design
statistics.

New Shell Window Open a DOS, Xterm or cmdtool window.

Dialogs to Front Make dialog boxes for a tool visible.

Close Dialogs Close all dialog boxes.

List of open windows Toggle between windows currently open

Help Menu (Figaro Window)

How to Use Help Show how to use on-line help.

Figaro Overview Show the on-line help contents page.

Current Window Show on-line help tailored to the window.

Search for Topic Search for specific help information.

Review KPS Open known problems viewer.

Report a Problem Report a problem to Technical Support.

Install Update Install a new version of Figaro.

Update Library Install a library update.

Compact Memory Tidy up unused memory.

About Figaro Display version no. and copyright notice.

Window Menu (Figaro Window)

Command Key Button

Window>Arrange
Icons

Shift+F6

Window>Cascade Shift+F5

Window>Tile Shift+F4

Window>Dialogs to
Front

Shift+F3

Window>New
Viewer>Log File

Window>New Shell
Window

Appendix A: Summary of Menu Commands

A-9

Help Menu (Figaro Window)

Command Key Button

Help>Figaro Overview F1

Help>Using the
Current Window

?

Help>Search for Topic Ctrl+H

Additional Toolbar Buttons
Figaro also provides toolbar buttons for the following options and functions:

Function Button

Select input nets of instances (Display
Options: Selecting)

Select output nets of instances (Display
Options: Selecting)

Auto re-route after manual move (Options:
Place and Route)

Show or hide unrouted nets

Show or hide routed nets

Show or hide routing resources

IDS Figaro Tutorial

A-10

Standard Function Keys

The function keys labeled "F1 to "F11" do the following (F11 is relevant for PCs only, F12 is not used at all):

Key(s) Action

F1 Opens the help window

 Ctrl+F1 Edit>Design Info

 Shift+F1 Shows help on highlighted command in menu.

F2 View>Zoom to Selected

F3 View>Zoom to Previous

F4 View>Zoom Fit

 Ctrl+F4 File>Close

 Shift+F4 Window>Tile

F5 View>Refresh

 Shift+F5 Window>Cascade

F6 Center in window.

 Shift+F6 Window>Arrange Icons

F7 View>Zoom In

 Ctrl+F7 View>Push Window

 Shift+F7 View>Push

F8 View>Zoom Out

 Shift+F8 View>Return to Previous

F9 View>Zoom to Area

F10 Options>Flowbars (not PC)

 Shift+F10 Flow>Compile>Optimize Placement (not PC)

F11 Options>Display Options (PC only)

 Shift+F11 Flow>Compile>Optimize Route (PC only)

Appendix B: Figaro Files

B-1

Figaro Files

This appendix describes the following files:

§ The startup files FIGARO.INI and design.INI.
§ The log file design.LOG.
§ The constraints files design.RCT, design.PTN, design.PIN and design.TMG.
§ The pinout report design.PIR.
§ The statistics file design.STS.
§ The nets timing report file design.NDL or design.NDS.
§ The paths timing report file design.PDL or design.PDS.
§ User Macro library files *.LIB.

Most files are named design.*, where design is the name of the design you opened or, if you have saved the session with a
different name, the new name of the design. Files normally reside in the design directory, though you can write some files to
other locations.

Where the file contains information relevant to only one of the parts in a multi-chip implementation, the naming convention
incorporates the part letter as well: for example design_part.ext

Other files produced by Figaro are:

§ The bitstream file design.BST

§ Saved design session: design.FGD

§ Problem report files: FCR.*.

NOTE
For most files, when you produce a new copy, the previous copy is saved, with a "~" character as the last character
of the extension. 40KTEST.LOG, for example, would be saved as 40KTEST.LO~.

The Startup File: FIGARO.INI

The FIGARO.INI file resides in the directory from which Figaro was invoked (usually the bin directory) and records the following
information:

§ Any changes you make to default parameters or options using either of the options dialogs. The new values are stored in
the FIGARO.INI file for use in future Figaro sessions.

§ Design directory locations, and the tools flow and configuration used for each design.

The .INI file is written when you close a session during which you changed default parameters and is read in automatically
when you open a new Figaro session.

If you want to revert to Figaro's default values, change the name of the FIGARO.INI file. When there is no FIGARO.INI file in the
BIN directory the original defaults are reinstated.

IDS Figaro Tutorial

B-2

A simple FIGARO.INI file might look like this:
; Produced by Figaro version Atmel train2.1.12 on May 8,
 1997 at 2:31:54 pm
;
; Modified Options only
;
[Design Setup]
 Design Data = *c:\figaro\

examples\at40K\vlogic\40ktest<40ktest><viewlogic_wir_macro
 _level><atmel40k>c:\figaro\examples\4bitalu<4bitalu>
 <viewlogic_wir_macro_level><atmel6k>

[Timing Analysis]
 Measure Delay Paths Limit = 5

[Compile, Instances, Routed Locations]
 Color = 204 153 64

[Partitioner, Basic Options]
 P&R Utilization = 6

The design.INI File

The initialization file design.INI resides in the design directory and records the following information:

Design Flow Whether the design was compiled for bitstream or user macro.

Library Setup Library search path and library names.

Mapping Options Whether mapping is enabled or not.

To reset these options to their defaults, you can either change the name of the file or move it out of the design directory.
(When Figaro finds no file with this name, it automatically reverts to the defaults.)

A simple design.INI file might look like this:

Example
; Produced by Figaro version Atmel train2.1.12 on May 8,
 1997 at 2:31:54 pm
;
; All Design Specific Options
;

[Place and Route]
 Compile for User Macro = false

[Mapping, Mapping Control]
 Mapping Enabled = false
 Clock/Reset network only = false
 Map to Multi-Core Macros = false

[Library Setup]
 Library Search Path = c:\figaro\examples\design
 Library Names = user

The Log File: design.LOG

The log file records what happens during a Figaro session. (A subset of these messages is also shown in the transcript.) The
file resides in the design directory.

If you encounter any problems with the Figaro flow, look at the log file first. The best way to do this is to pull down
Window>New Viewer>Log File. The Log Viewer provides basic functions for updating and editing the log file and you can
also highlight error and warning messages in the file to make them easier to locate.

Appendix B: Figaro Files

B-3

Log File Format
For each design step in Figaro, the log file records:

§ The name of the step, like this:
===================
Name
===================

§ The values of options used by that design step:
------------- Options--------------
[Step options]

§ The progress of the design step:
Step: info - text

§ Any warnings associated with the design step:
Step:<<WARN>> - Text

§ Any errors:

Step: **ERROR** - Text

Saving the Previous Log File
When you produce a new copy of the file design.LOG, the previous copy of the file is saved as design.LO~.

Log File Example
This sample shows messages written to the log by the Optimize Placement step:
===
Optimize Placement: info - Starting on June 9, 1997 at 5:58:43 pm
===
; --------- Options for Place -----------

[Place and Route]
 Quality = 4
 Timing driven = false
 Route if Place contention = false
 Auto set parameters = false
 Equivalent port swap = true

[Place and Route, Manual Editing]
 Auto re-route after manual move = true

[Place and Route, Atmel 40K]
 Allow global clock/reset signals to use non-global
 resources = true
 Allow auto pin-swap on locked macros = false
 Auto-soften conflicting hard routing in Optimize
 Route = true

; ---- Constraints for Place (device A) ----

Place: info - Clock net $1N41 (external name CLOCK1) assigned to global clock location GCK4
Place: info - Derived clock nets: 3COUNT\Z0, 3COUNT\Z1, CLOCK2
Place: info - Reset net fig1000 (external name R) assigned to global reset location IO46
; --

Place: info - The quality setting (4) is greater than the estimated minimum (3)
Optimize Placement: info - Finished optimize Placement at June 9 1997 at 6:23:35 pm

The Repeat Constraints File: design.RCT

When you save your design, Figaro writes any pinout and timing constraints to the repeat constraints file design.RCT. This file
lets you reopen a design with the same pinout or timing, so there's no need to lock pins or import timing constraints again a
second time. The constraints are stored in the same format as in the pinout or timing constraints files.

If you want Figaro to import an existing repeat constraints file when you load a particular design, you should enable the auto-
import function in the design constraints options. To do this, open the Options dialog and select "Design Constraints", check
the box labeled "Auto-import Repeat Constraints" and press OK to accept the setting.

You can create a .RCT file from an existing .RCT file or another constraints file, then rename it and use the constraints for other
designs.

IDS Figaro Tutorial

B-4

Producing a design.RCT File
If you saved the design, there will be a design.RCT file already. If you did not, there are two other ways to produce this:

§ If you produced a pinout constraints file (see below) for a design, but did not save the design, you will not have a
design.RCT file. You can copy the pinout constraints file design.PIN to design.RCT, then use this as described above.

§ If the .RCT file does not have the part/pinout constraints you want, edit it with a text editor. (Take care to preserve the
format.) This may be quicker than setting new pin locks in Figaro. You can copy a different .RCT file to the name you
want, then edit this.

Saving the Previous Constraints File
When you produce a new copy of a constraints file from Figaro, the previous copy of the file is saved, with a "~" character as
the last character of the file extension: design.RC~, design.PI~, design.TM~ and so on.

The Partition Constraints File: design.PTN

Partition constraints control the partitioning of logic into devices. There are two ways to produce the file:

§ Using Figaro, either by partitioning manually or using Edit>Constraints. Output the file using File>Export.
§ Create an ASCII text file using an editor.

If you use the latter method, note that all names must be specified as full hierarchical names which include the top level
instance name (i.e. the design name) and that all strings must be enclosed in single quotes (').

Make sure that any partition constraints in the file are preceded by the appropriate part constraints, because partition locks
require that the part has already been defined.

Preserving Cells or Instances
You can preserve one or more specified design instances/cells, or all design instances/cells.
PartitionPreserveInstances ('instName')

PartitionPreserveInstances (ALL)

PartitionPreserveCells ('cellName')
PartitionPreserveCells (ALL)

For example, this two line file would preserve the two named instances and all the '<cell_name>' cells in the current design:
PartitionPreserveInstances ('alu/adder/add_1' 'alu/adder/add_2')
PartitionPreserveCells ('<cell_name>')

While this one line file would preserve all instances:
PartitionPreserveInstances (ALL)

Appendix B: Figaro Files

B-5

Changing Current Settings
If you have used a file with statements like those above to preserve instances, you can reset the mapping parameters by
importing a new file with an "unpreserve" statement:
PartitionUnpreserveInstances ([instName | ALL])

PartitionUnpreserveCells ([cellName | ALL])

NOTE
If you apply partition preserve constraints to particular instances before mapping the design, you must also apply
mapping preserve constraints to the same instances to ensure that they survive the map step unscathed.

Locking or Unlocking Partitioning
To lock partitioning use a PartitionLock statement.
PartitionLock ([instName | cellName] toPart <letter>)

This example specifies that instance '\test\I6' is to be locked in part A:
PartitionLock ('\test\I6' toPart 'A')

NOTE
When you use partition lock constraints in your .PTN file, remember to include the relevant part constraints as well.
You cannot apply partition lock constraints to pads.

To undo a lock set by a file read in earlier, use the "PartitionUnlock" statement:

PartitionUnlock ('\test\I6')

The Pinout Constraints File: design.PIN

Figaro can read in pinout constraints from a file. The file is named design.PIN. It lists the part used in the design along with any
manual pin locks (whether read in as constraints or assigned using the Parts window.) The file does not include pin locks
assigned by Figaro.

To produce a pinout constraints file, make the Parts window the current window then pull down File>Export and check the
“Locked Pinout (*.pin)” box. You can rename the exported file then import it for use in a different design. You can also create
or edit a file using a text editor.

The file can also be used as a repeat constraints file. To do this, edit the file according to the constraints syntax to add or
remove parts and pinouts, then save it as design.RCT. Also, you can read in pinout constraints from a .RCT file:
AddPartNamed ('AT40K10-2RC' 'A')
AddPartNamed ('AT40K10-2RC' 'A')

Pinout ('A_OUTPUT1' toPin 'A.152')
Pinout ('A_OUTPUT2' toPin 'A.153')
Pinout ('A_OUTPUT3' toPin 'A.154')
Pinout ('A_OUTPUT4' toPin 'A.155')

The Pinout Report: design.PIR

You can export a report showing the pinout constraints. Use this in documents or reports, or to lay out the PCB. The format
is the same as for the pinout constraints file, but the report shows all locks, not just those you lock manually. (If the design
has been placed and routed, the file will include the pinout chosen by Figaro.)

IDS Figaro Tutorial

B-6

The Timing Constraints File: design.TMG

Figaro can read in timing assertions and constraints from a timing constraints file, design.TMG using the File>Import
Constraints command. Figaro uses a sub-set of these constraints in timing-driven compilation and all of them when reporting
timing values during interactive timing analysis.

You can create this file in one of two ways:

§ Using a standard text editor to create a file from scratch.
§ Using the File>Export command to output a file of all the timing assertions and constraints currently valid for the design.

These may have been set either by importing an existing .TMG file or using the Figaro constraints editor (Edit>Timing
Constraints).

The following pages show an example timing file and a list of the keywords used. For a full description of the file syntax, open
the on-line help and Search for the keyword "Syntax" then the topic "Timing Constraints File Syntax".

Example Timing Constraints File Contents
This example shows an entry for each type of constraint:
PrimaryClock (
 'CLOCK1'
 dutyCycle (
 edge RISING
 halfPeriod (30)
 period (60)
)
)
SecondaryClock (
 'CLOCK2'
 dutyCycle (
 edge RISING
 halfPeriod (35 45)
 period (120)
)
 primaryClock (
 edge RISING
 offset (20)
)
)
DerivedClock (
 '3COUNT\$1I5 Q'
 dutyCycle (
 edge RISING
 halfPeriod (80)
 period (120)
)
 otherClock (
 'CLOCK1'
 edge RISING
)
)
AssertIO (
 'A'
 direction INPUT
 clock 'CLOCK1'
 edge RISING
 rise (5 10)
 fall (15 20)

)
AsyncDelay (
 from ('$1I12 Q')
 to ('$1I13 A')
 rise (10 25)
 fall (31)
)
FalsePath (
 '$1I193 Q'
)

Appendix B: Figaro Files

B-7

Valid Keywords Used in the Timing Constraints File
The timing constraints file parser is case-sensitive. It only accepts the following words, valid strings and numbers.

Keyword Function

AssertIO Starts definition of an I/O assertion.

AsyncDelay Start definition of an asynchronous delay assertion.

clock Starts definition of the clock referenced by an I/O assertion definition.

Cut Specifies the net to be cut disconnecting macro ports

direction Defines the direction of an I/O assertion (INPUT or OUTPUT).

dutyCycle Starts definition of the duty cycle.

edge Starts definition of an edge (RISING or FALLING).

fall Starts definition of an I/O assertion's fall delay(s).

FalsePath Starts definition of a new false path.

halfPeriod Starts definition of a half period (the rise or fall period).

offset Starts definition of an offset from the primary clock.

period Starts definition of a period.

PrimaryClock Starts definition of the primary clock.

primaryClock Starts definition of a secondary clock's relationship with the primary clock.

rise Starts definition of an I/O assertion's rise delay(s).

SecondaryClock Starts definition of a secondary clock assertion.

IDS Figaro Tutorial

B-8

The Statistics File: design.STS

The statistics file holds information on placement and routing. It is updated by Figaro at the end of each design step.

FIGARO STATISTICS FILE
=====================
Date And Time : June 9, 1997 at 11:15:47 am
Device Type : AT40K10-2RC
Figaro Version : Atmel train2.1.19
Design Statistics for " 40ktest "
Design Step : Initial Placement

Number of Macros : 359
Number of Nets : 386
Number of Pins : 1320
Average Pins per Net : 3.42
Maximum Pins per Net : 11
Number of Nets : 386 unrouted

0 routed
Number of Logic only Macros : 0 unplaced

309 placed
Number of Logic Cells : 309 used

0 needed
267 free

Number of macros with RAM : 0 unplaced
4 placed

Number of RAM Cells : 4 used
0 needed
32 free

Number of IO Macros : 0 unplaced
46 placed

Number of IO Cells : 46 used
0 needed
144 free

Number of Flip-Flops : 223
Number of Gates : 90
Number of Macro Wires : 0
Number of Route Wires : 0
Number of Buses : 0
 Local Buses : 0
 Express Buses : 0
Number of Clock and Reset Combinations : 1
Number of Cell Contentions : 834
Number of Net Contentions : 0

The fields in the statistics file are as follows:

Number of Macros

The number of macro design instances placed on the device.

Number of Nets

The number of design nets on the device.

Number of Pins

The total number of pins used (except pins on the global clock and reset nets).

Average Pins per Net

The number of pins divided by the number of nets.

Maximum Pins per Net

The number of pins in the most complex case. Multi-pin nets are more difficult to route.

Number of Nets

How many nets have not been routed, and how many have been.

Number of Logic only Macros

How many logic-only macros have not been placed, and how many have been.

Number of Logic Cells

"Used" shows how many locations are used for routing or logic.

"Needed" shows how many will be needed for logic which has still to be placed, if the default shape from the library is used
for each macro or primitive.

"Free" shows how many locations are still available.

Appendix B: Figaro Files

B-9

Number of Macros with RAM

How many of these macros have not been placed, and how many have been.

Number of RAM Cells

"Used" shows how many of the total number of RAM cells have been used. "Needed" shows how many will be required for
the design. "Free" indicates how many are still available.

Number of I/O Macros

How many of these macros have not been placed, and how many have been.

Number of I/O Cells

"Used" shows how many of the total number of I/O cells are used for routing or logic. "Needed" shows how many will be
needed. "Free" shows how many are still available.

Number of Flip-Flops

The number of logic locations that are being used as registers. (That is, the number of locations which are configured as flip-
flops and use the flip-flop outputs.)

Number of Gates

The number of logic locations that contain design logic (not used for flip-flops or purely for routing).

Number of Macro Wires

The number of logic locations which are part of a macro but also used for routing.

Number of Route Wires

The number of routed locations.

Number of Buses

The total amount of routing resource used (both internal and external to macros). Local buses and express buses are shown
separately.

Number of Clock and Reset Combinations

The number of different combinations of clock and reset lines used by the flip-flops in the design. (For example, if the only
combinations used were Clock 1 and Reset 1, Clock 3 and Reset 1, this would have a value of 2). The larger the number, the
more difficult the design is to place and route.

Number of Cell Contentions

The number of logic locations which currently have multiple design instances placed on them.

Number of Net Contentions

The total number of nets currently competing for routing resource.

IDS Figaro Tutorial

B-10

The Net Delay Table: design.NDL or .NDS

The net delay table gives a list of the net delays in the placed and routed design. The table contents are controlled by the
"Timing Analysis" options. You can produce a normal report (.NDL) or a report in spreadsheet format for Microsoft Excel
(.NDS).

The net delay table shows the following information:

§ Time of creation.
§ Design name.
§ Part.
§ Netlist file(s).
§ Environmental settings, such as delay range, derating factor, etc.
§ List of nets in order of delay (longest first). Net information in the normal report is shown as follows:

Net-name
 From: source-port
 To: destination-port rise-delay (R minimum maximum)
 fall-delay (F minimum maximum)

NOTE

Delay values are shown in nanoseconds.

The spreadsheet format presents the data in tabular form, with "R" and "F" as column headers; see the following
examples.

Examples
These examples show truncated files.

Normal Format (.NDL)
Net Delay Table June 6, 1997 at 3:37:56 pm
Design: adder
Part: A (AT40K10-2RC)
Imported from: #('c:\figaro\examples\adder\wir\adder.1')

 Delay calculator

 Mode = #MinMax
 derating factor = (1.0 1.0)

$1I69\W2
 From: $1I69\A1\G5 Q
 To: $1I69\A2\GO A R (6.58 15.24) F (6.49 15.47)
 To: $1I69\A2\G4 B R (2.03 4.5) F (2.39 4.98)
 To: $1I69\A2\G3 B R (2.03 4.5) F (2.39 4.98)

Spreadsheet Format (.NDS)

The spreadsheet format looks like this:
Net Delay Table June 6, 1997 at 3:37:56 pm
Design: adder
Part: A (AT40K10-2RC)
Imported from: #('c:\figaro\examples\adder\wir\adder.1')

Net From To R(min) R(max) F(min) F(max)
$1I69\W1 A0\G5 Q A1\GO A 4.83 11.69 5.55 12.66
$1I69\W1 A0\G5 Q A1\G3 B 4.43 10.69 5.06 11.56
$1I69\W1 A0\G5 Q A1\G4 B 3.90 9.17 4.59 9.89

Appendix B: Figaro Files

B-11

The Path Analysis Report: design.PDL or .PDS

The Path Analysis report lists the path delays in the placed and routed design. Its contents are controlled using the "Timing
Analysis" options. Again, you can export a normal report (.PDL) or a report in spreadsheet format for Microsoft Excel (.PDS).

The default values are the long and short path slack values for the 10 most critical paths, the 10 longest paths and the 10
shortest paths. Negative slack values always signify that the timing constraints set for the design have not been met.

You can select whether the times reported are rise/fall values or the maximum delay. The default is for timing analysis to
choose the values most appropriate for the design. If you have included clock assertions in the timing constraints file, the
delays obtained for the relevant paths are also reported.

The path analysis report is divided into three main sections:

§ A general section, including the date and time the file was created, the design name, the part used and the timing analysis
and delay calculator options valid when the report was produced.

§ A clock report section, reporting statistics on each asserted clock defined in the timing constraints file.
The clock arrival times show the minimum and maximum times for the clock signal to all the ports controlled by the clock.
Also listed are the asserted (required) period for the design and the current period obtained by the implementation. You
then see a summary of how these figures are computed followed by the individual delays for each path segment and
absolute and relative delays through the logic and routing for the overall path.

§ Path report sections summarizing the required and actual arrival times for each path followed by the delays along the
individual sections of the path and absolute and relative delays through the logic and routing.

Example
This truncated example shows the header section at the start of the file and a truncated longest path example, but no clock
report section:

Path Analysis June 6, 1997 at 3:37:56 pm
Design: adder
Part: A (AT40K10-2RC)
Imported from: #('c:\figaro\examples\adder\wir\adder.1')

Timing analysis options

Delay Range = MaxMax
Long critical path analysis -> Trace 10 most critical
Short critical path analysis -> Trace 10 most critical
Longest path analysis -> Trace 10 longest paths
Shortest path analysis -> Trace 10 shortest paths

Delay calculator options

Mode = MinMax
derating factor = 1

Clock Report Section

 Clock: CLK

 Min clock arrival time = 3.42ns
 Max clock arrival time = 3.42ns

 Total number of setup checks violated = 2 (out of 2)

 Asserted period = 2.0ns (500.0MHz)
 Current period = 25.83ns (38.71MHz)

Worstcase path:

 Path #1

 Slack = -23.83ns
 Type = Input -> Output ('ICMS_1 A' -> 'OD_1 Q')

 Clock Edge: 'CLK' on 'ICMS_2 A' _/ 0.00ns
 Asserted Reqd Time: 'OUT' on 'OD_1 Q' _ 2.00ns

 Required Arrival Time: _ 2.00ns

IDS Figaro Tutorial

B-12

 Clock Edge: 'CLK' on 'ICMS_2 A' _/ 0.00ns
 Asserted Arr. Time: 'IN' on 'ICMS_1 A' _ 2.00ns
 Data Path: 'ICMS_1 A' -> 'OD_1 Q' _ 23.83ns

 Actual Arrival Time: _ 25.83ns

Data Path:
 ICMS_1 A _ 0.00
 MACRO ICMS R 2.40 F 1.90
 ICMS_1 Q _ 1.90
 NET N1 R 5.52 F 6.09
 AN2_1 B _ 7.99
 MACRO AN2 R 1.10 F 1.10
 AN2_1 Q _ 9.09
 NET N5 R 4.26 F 4.84
 OD_1 A _ 13.93
 MACRO OD R 8.70 F 9.90
 OD_1 Q _ 23.83

 logic delay = 12.90ns (54%)
 route delay = 10.93ns (46%)
Short critical path analysis

 Path #1

 Slack = 5.0ns
 Type = Flop -> Flop ('FD_1 CLK' -> 'FD_2 D')

 Clock Edge: 'CLK' on 'ICMS_2 A' _/ 0.00ns
 Clock Delay: 'ICMS_2 A' -> 'FD_2 CLK' _/ 3.42ns

 Required Arrival Time: _ 3.42ns

 Clock Edge: 'CLK' on 'ICMS_2 A' _/ 0.00ns
 Clock Delay: 'ICMS_2 A' -> 'FD_1 CLK' _/ 3.42ns
 Data Path: 'FD_1 CLK' -> 'FD_2 D' _ 5.00ns
 Hold 'FD_2 D' _ 0.00ns

 Actual Arrival Time: _ 8.41ns

 Data Path:
 FD_1 CLK _/ 0.00
 MACRO FD R 1.80 F 2.20
 FD_1 Q _/ 1.80
 NET N2 R 0.12 F 0.13
 INV_1 A _/ 1.92
 MACRO INV R 2.90 F 3.00
 INV_1 QN _ 4.92
 NET N3 R 0.07 F 0.07
 FD_2 D _ 4.99

 logic delay = 4.80ns (96%)
 route delay = 0.19ns (4%)

For more detailed information on the PDL file and the computation of the values it contains, refer to the on-line help.

The format of the .PDS file makes it unsuitable for reproduction here. For full information, refer to the on-line help.

User Macro Library files: *.LIB

User macro library files have the extension .LIB and contain information on the macros you have been created and checked
into this library. Its format is the same as that of design FGD files, although it also contains different information required
when an instance of the macro is incorporated in a design: ports, instances and nets along with placement and routing data for
each macro cell.

When you create a new macro, use Library>Check-In Macro or the Check-In button to add the macro to a library using the
cell name you specify. If that cell name already exists, you can overwrite the previous definition, although you cannot create a
macro using the same name as an instance in the vendor library. You can set up a number of different library files.

For a design which is to use one or more of your macros, use Library>Library Setup to tell Figaro where the library file is.
This is then cached by Figaro, making your macros available. Macros in a user macro library will be used in preference to
netlist symbols/descriptions which have the same name.

Appendix B: Figaro Files

B-13

For a full description of the files and directory structure used, Search the on-line help for "User Macro" and jump to the topic
"User Macro Files and Directories".

Schematic Entry - OrCAD

10-1

Orcad

The Integrated Development System (IDS) is set up to provide a seamless interface for the OrCAD Express for Windows
product. The user can switch and choose easily between the OrCAD and IDS systems for design entry, circuit implementation,
and eventual download of the bitstream to an Atmel FPGA. Full VHDL simulation for OrCAD is supported.

This chapter of the “CAE Interfaces” section will detail the design process using OrCAD Express and the Atmel FPGA
(AT6000 or AT40K series) library. For details about the OrCAD tools, check the appropriate OrCAD User’s manuals. Please
refer to the “Figaro” section of this Tutorial for detailed instructions on running Figaro with the example design “test40K”.

The Atmel library files in this release will allow the user to work with OrCAD tools and target the design to either the AT6000
or AT40K series FPGAs. The design flow allows the user to invoke Express with the Figaro Schematic Entry button for design
entry. The design can then be netlisted and placed and routed using Figaro. Specific details on each topic will be discussed
later in this chapter.

Design Flow

This section will explain in detail the Figaro flow when integrating OrCAD tools into the design process. Though there are
different ways to design a circuit with OrCAD tools in conjunction with the Integrated Development System, the
recommended work sequence is as follows:

System Setup(Figaro)
§ Sets up the design directory and libraries

Design Entry (OrCAD Express)
§ Sets up the software environment
§ Enters the schematic for the design

Netlist Generation (OrCAD Express)
§ Outputs EDIF netlist for Figaro

Layout Generation (Figaro)
§ Invokes automatic/manual placement
§ Invokes automatic/manual routing
§ Writes delay values for back annotation

Post-layout Simulation

Device Programming (Figaro)
§ Creates bitstream output
§ Downloads onto Atmel part

IDS Figaro Tutorial – CAE Interfaces

10-2

The design flow for the Atmel FPGA with OrCAD tools is graphically shown below.

Figaro Design Setup

Netlist Generation
(EDIF)

Design Entry
(Or)CAD

Placement & Routing
(Figaro)

Biststream File
Generation

AT40K FPGA

Design Flow for OrCAD Platform

Schematic Entry - OrCAD

10-3

System Setup

The Figaro interface is built to facilitate user interaction with the required CAE platform from within Figaro. OrCAD tools
required in the design flow with an AT6000 or AT40K series FPGAs can be accessed from the buttons provided in the Figaro
Desktop.

Figaro Desktop (Main Screen)

Setup Files

In order to use the Atmel FPGA (AT6000 or AT40K Series) libraries, the design template new.dsn, stored in the
\SystemDesigner\lib\orcad directory must be copied to the design directory. This step is normally performed by Figaro and is
only required if the file is missing on completion of the design setup process.

Atmel Library

The Atmel OrCAD library is stored under a directory called orcad in the \SystemDesigner\lib area. IDS will automatically set
up the needed pointers to the OrCAD library as specified above. This library is named at6k.olb (for AT6000) or at40k.olb (for
the AT40K).

File Structure
IDS can be used to manage all files related to a design and any user libraries that may be associated with it. Most design files
will be found in the design directory that is identified to Figaro. Also IDS supports the idea of a user library in which all design
files associated with its components are stored in a common sub-directory.

The following two diagrams describe the file structures in the design and library directories respectively.

OrCAD Design Directory Structure

IDS Figaro Tutorial – CAE Interfaces

10-4

OrCAD Library Structure

Exercise

1) Copy the “test40k” exa mple from the Figaro \SystemDesigner\examples\at40k\orcad\test40k directory to the newly
created design directory location, e.g. \SystemDesigner\\atuser\test40k

2) In Figaro, select the icon or File>Design Setup from the main menu and click on the New Design button. Inside the
New Design dialog box:
§ Set Configuration to AT6K or AT40K.
§ Choose Orcad from the Tools Flow list box.
§ Set File of Types as EDIF Netlist (*.edf).
§ Enter the absolute path of the Design Directory where the “test40k” example will be copied to such as

“c:\atuser\test40k”.
§ Enter “test40k” as the Design Name .

An example of the dialog box with complete settings is shown below.

New Design Dialog Box

§ Click OK to return to the main screen.

3) The design set up is now complete.

Schematic Entry - OrCAD

10-5

Design Entry

OrCAD Express for Windows is the tool used for performing schematic entry. This tool can be invoked from the Schematic
Entry button on the Figaro desktop.

Inside Express, the project file (*.opj) of the design will be created and stated as the header of the Design Manager window.
Under the Design Resources folder in the Design Manager window will be shown the design file (test40k.dsn in this example)
and the Library folder. All the libraries used in the design will be added to this Library folder, and all the schematics of the
design will be in different folders under the design file.

Design Manager in OrCAD Express

Drawing Creation Guidelines

All components placed in the design sheets should be either selected from the Atmel FPGA library (AT6K or AT40K) or
hierarchical blocks that have been created with Atmel FPGA library components.

It is important to attach “hierarchical ports” to all input and output pins at all levels of the design. The user should also
change the name and type for each port used. This ensures proper creation of the ports and corresponding directions by the
netlist generator for Figaro to perform placement and routing.

Exercise

For the purpose of this exercise, the steps involved in creating three of the hierarchical components, an output pad, an Adder
and a Multiplier for the “test40k” example are shown. The output pad is a component in the logic block called out8 in test40k,
and is used to demonstrate the general process for entering a schematic with Express using the Atmel FPGA library. The
Adder and Multiplier, on the other hand, are used to illustrate the automatic macro generation capability of IDS. The
application of “hierarchical ports” to the top level schematic is also discussed below.

Entering an output hierarchical block
1. Follow the steps in the previous exercise to complete the design set up. The name of the design should be set to

“test40k”.

2. To start a new schematic:
§ Click on the Schematic Entry button from the Desktop to invoke Express on “test40k”.
§ Select test40k.dsn in the Design Manager window. Use Design>New Schematic, and enter “output8” as the new

schematic name.
§ Select the output8 folder, use Design>New Schematic Page to set the name of new schematic page as “output8”.

IDS Figaro Tutorial – CAE Interfaces

10-6

3. After the schematic page has been set up, output8 can be implemented by following steps:

§ Open Schematic Page - output8 by double-clicking it, and select Place>Part from the menu bar in Express.

§ Select the AT40K library from the Place Part dialog box. If it is not listed, click on the Add Library button and select
the file At40k.olb stored in the \SystemDesigner\lib\orcad directory.

§ Select and place the component OBUF in the schematic sheet. Repeat this 7 times. Meanwhile, place all the OBUFs
vertically in a column as illustrated below.

The output8 Block Schematic

§ Select Place>Bus from the menu and use the mouse to create a bus vertically on each side of the OBUFs. Use
Place>Net Alias to name buses as A[7:0] on the left and PAD[7:0] on the right.

§ Use Place>Wire to draw nets for all pins of OBUFs.

§ Select Place>Bus Entry to connect each net to a bus on either the left or right. Use Place>Net Alias to name each
bus net.

NOTE
Note: Hierarchical Ports are required for every net of a component referenced in higher levels of hierarchy in the
schematic in order to generate a correct and portable EDIF netlist. Netlist generation will be discussed in a later
section.

§ Use Place>Hierarchical Ports to create the connections to all of the interface pins (two bus pins). Apply
Edit>Properties to change the labels on these connectors to A[7:0] and PAD[7:0] and the Type of pins to Input, and
Output respectively. This process will place the necessary information in the EDIF netlist for Figaro to determine the
pin direction.

§ Save the schematic by using File>Save. Switch to the Design Manager window. After selecting the output8 folder,
use Tools>Annotate (with the default settings) to update the part references and Tools>Design Rules Check to
ensure the design has been entered correctly.

§ Finally use Save to save the design in the Design Manager Window.

4. A library has to be set up for the creation of the symbol for the schematic, output8 . To set up the library and generate the
symbol, follow the steps below:

Schematic Entry - OrCAD

10-7

§ Create a new library by using File>New>Library.

§ Pick the library file in the Library folder. Select File>Save as from the menu, and enter the file name (e.g.
“design.olb”). Set Files of Type to Capture Library. Click OK.

§ Select the design/design.olb folder, click on Design>New Part, and enter “output8” as the part Name.

§ Select Attach Implementation in the New Part Properties window. Inside the Attach Implementation dialog box,
select Schematic View as the Type of Implementation and specify output8 as the Name. Click OK in the dialog boxes
that follow to invoke the symbol editor.

§ Create and edit the symbol for the schematic “output8” in the symbol editor

NOTE
Type and Pin Number must be specified for every pin of the component’s symbol in order to generate a correct and
portable EDIF netlist.

The symbol should have two pins, A[7:0] and PAD[7:0]. Specify the Type of pins as “Input” and “Output”
respectively, and assign a number to the Number field of the pin properties as well. Choose Save to save the design.
The completed symbol is shown below.

Symbol of Output8

NOTE
To maintain a library that can be reused in other designs, copy the folder “dflop” from the design browser to the
design library “design.olb” browser.

5. Open up the test40k sheet and replace one of the out8 components with the newly created output8 from design.olb.
Select the output8 and use Edit>Properties to change the Primitive option from Default to No.

IDS Figaro Tutorial – CAE Interfaces

10-8

Schematic of Output8

6. Save the schematic by using File>Save. Next, switch to the Design Manager window and use Tools>Annotate to update
part references and Tools>Design Rules Check to ensure the design has been entered correctly. Finally choose Save
Design from the Design Manager Window.

7. Quit Express.

Using the Macro Generators
In this section, the Macro Generators will be used to replace a portion of the circuit with functions that have been optimized
for the Atmel architecture. Before using the Macro Generators, a user library must be first created. The user library is
composed of two parts. The first is a library file that stores the layouts created by:
a) the Macro Generators, or b) the user converting parts of the design to a hard layout. The second is a directory holding all
the files used to create the layout. These include various layout-related files as well as netlists that may be used for simulation.

To create a library, follow the procedures below.

§ Select Library>Library Setup from the Figaro menu. The Library Setup dialog box will come up as follows.

Library Setup Dialog Box

Schematic Entry - OrCAD

10-9

§ From the Library Setup dialog box, select Add Before and bring up the Add Library dialog box. Fill it in to specify the
location and name of the user library. To simplify design archival and file maintenance, a design specific user library
should be stored in the design directory. The following is a sample dialog box for this exercise where the Library Name is
set to “user.lib” and Directories set to “\SystemDesigner\atuser\test40k”.

§ Click OK to finish the library set up.

Library Dialog Box

Macro Generation
Two macros, mult8new and add8new, are going to be generated in this section with the use of Macro Generators. They will
be used to replace the original multiplier, MULT8, and adder, ADDER8, in the test40k design.

Once the library has been set up, press the Macro Generators icon on the Flowbar to bring up the Generators interface. The
notebook dialog box is shown below.

Macro Generators Dialog Box

IDS Figaro Tutorial – CAE Interfaces

10-10

To generate the mult8new macro,

1. Under the Arithmetic category, select the Multiplier-Unsigned tab on the notebook.

2 Enter “mult8new” as the Macro Name .

3 Enter “8” for both WidthA and WidthB. A sample of the completed dialog box is shown below.

Complete setup for mult8new

For details about the macro’s properties, press the ADD TO BATCH button then the VIEW BATCH button. This will provide
information on the Generator parameters, pin names and functions, as well as either a description of the function or a truth
table.

4. Press GENERATE to initiate the process.

The Macro Generators will then create a layout, an EDIF netlist, and an OrCAD symbol. Upon completion, a dialog box will be
displayed with statistics about the macro that was created. These statistics are stored in a file in the library as libName.sts .

Mult8new Statistics Box

Create the 8-bit adder macro, add8new, in a similar manner.

1. Under the same Arithmetic category, select the Adder-Ripple Carry tab on the notebook.
2. Enter “add8new” as the Macro Name .

Schematic Entry - OrCAD

10-11

3. Select Disabled for the CarryIn option.
4. Enter “8” for Width.

NOTE
These statistics only appear after a single macro has been generated. If an entire batch has been generated, statistical
information will not be provided.

Complete setup for add8new

5. Click GENERATE in the Macro Generators dialog box to initiate the generation process.

6. After both macros have been created, click CANCEL to exit the Macro Generators notebook dialog box.

Entering Top-level Schematics
The “test40k” schematic is the top-level schematic in this example. In this part of the exercise, the macros created in the
previous section will be used to replace the multiplier and adder that are currently in the schematic. Finally, a netlist containing
the design test40k will be generated for placement and routing in Figaro.

Setting up the Design

1. From Figaro use the icon or select File>Design Setup from the pull down menu.

2. Select test40k as the Design Name . Click on OK to return to the main screen.
3. Complete the library set up as outlined above. Check that the user.lib created for the Macro Generators is specified

correctly.
4. Click on the Schematic Entry button from the Figaro Desktop. Express will be invoked on the design test40k.

Replacing macros in the Schematic

The multiplier and adder macros, mult8new and add8new, can be placed into the schematic with the following steps.

1. Add the library file “\SystemDesigner\user\user.olb to the Library folder of the design test40k. It can be done by
selecting the Library folder in the Design Manager window, clicking on the right button of the mouse and choosing
user.olb inside the library directory, user.

2. Select mult8new from user.olb and place it in the schematic.
3. Modify the symbol mult8new according to the section, Modifying Symbols, below.

IDS Figaro Tutorial – CAE Interfaces

10-12

NOTE
To maintain a library that can be reused in other designs, modify the template of the symbols in the library file, e.g.
user.olb in this example, and instantiate them in the schematics, instead of modifying the same ones after they have
been instantiated.

4. Connect the pins of mult8new to the same buses that were hooked up to mult8 .
5. Delete mult8 .
6. Repeat steps 2 to 5 to replace the 8-bit adder with add8new.

NOTE
Since the symbols for the macros are automatically generated according to OrCAD configurations, some modification
may be needed for symbols. The symbol can be edited to provide information needed for creating a netlist, or provide
correct connectivity for the replacement macros.

Modifying Symbols

To modify the symbols, follow the steps described below:

1. Select the symbol after being instantiated in the schematic and use Edit>Part, or double-click on the symbol in the library
file to bring up the symbol Editor.

2. Specify the name of the symbol by double-clicking on {value} in the schematic and enter the Value field.
3. Number each pin of the symbol by selecting the pin, using Edit>Properties and entering the number in the Number field.
4. Close the symbol Editor and choose Update Current in the Save Part Instance dialog box. This section of the schematic

should look like the following when completed.

Using mult8new and add8new in Schematic

7. Save the schematic by using File>Save. Next, switch to the Design Manager window, use Tools>Annotate to update
part references and Tools>Design Rules Check to ensure the design has been entered correctly.

8. Choose Save Design from the Design Manager Window.

Schematic Entry - OrCAD

10-13

Netlist Generation

An EDIF netlist file is needed as input prior to Placement and Routing. This file must be generated from within the OrCAD
Express for Windows tool.

To generate a netlist, test40k.edf, from the OrCAD schematic tool, do the following steps:

1. Switch to the Design Manager window and select test40k.dsn.
2. Select Tools>Create Netlist. A dialog box should be invoked allowing the creation of an EDIF 2.00 netlist. Check the

following items in the Options field: Output pin names (instead of pin numbers) and Output Part Properties.
3. Change the Output File Extension from “.edn” to “.edf”. Click OK.
4. Use File>Exit to quit.

The design “test40k” is now ready to be imported into Figaro for compilation.

Figaro Place & Route

An EDIF netlist produced by OrCAD can be read into Figaro via the Open as Design pop-up box. Select the Open button or
File>Open as Design from the menu. Confirm the design directory and design name and specify the Files of Type as EDIF
Netlist (*.edf). Verify the input file name as test40k.edf and click on DESIGN to read in the design.

Open as Design Dialog Box

Press the Compile button to complete the design from placement and routing to bitstream generation. For step by step
instructions on how to select the Atmel part and implement a design in Figaro, please refer to the “Figaro” section of the IDS
Tutorial.

Post Layout Simulation

After the design has been implemented with the Compile function, Post-layout Simulation can be performed. OrCAD
simulation tools can be invoked with the provided post-layout wire delays, including pin-to-pin delays, setup and hold times,
as well as actual wire delays for evaluating the device timing and performance.

Please refer to the OrCAD tutorial for more details on Simulation of this design.

Engineering Change Order (ECO)

Figaro’s ECO feature supports revisions to the schematic, while recompiling only the modified areas of the chip. The process
allows repeated design changes to be compiled quickly and efficiently, while ensuring minimal changes to the timing of the
circuit.

For this exercise, a minor change will be made to the “test40k” schematic using ECO. In this case, the polarity of the RESET
signal will be reversed.

IDS Figaro Tutorial – CAE Interfaces

10-14

1. Bring up the “test40k” schematic by pressing on the Schematic Entry button. Once in Express, add an inverter to the
output of the RSBUF (which is bringing in the RESET signal) as shown below.

Modified Schematic with Inverter

2. Proceed with Tool>Annotate and Tool>Design Rules Check . Save the schematic.

3. When completed, write out the EDIF netlist to test40k.edf, the file previously generated. Save the design and then exit
Express.

4. To incorporate the change into Figaro use the File>Open as ECO option. The existing layout must already be loaded into
Figaro. It will then request to save the design as follows.

ECO Dialog Box

5. Answey Yes and bring up the Open as ECO dialog box. Change Files of Type to EDIF (*.edf) and ensure that test40k.edf
is specified as the input file name.

ECO Dialog Box

6. Press OK to initiate ECO. During this process, Figaro will report all differences and then request confirmation to proceed.

Schematic Entry - OrCAD

10-15

ECO Pop Up Box

7. Press Yes to execute changes to the design.

The Design Browser below shows that with the exception of the new inverter, which is inside a highlighted box, all
original instances are now locked and identified by a solid square preceding their names.

Changed Instance in Figaro Browser

8. Proceed with Compile after this point and the program will place and route the inverter while leaving everything else
locked down.

NOTE
 In some cases placement contention that cannot be resolved automatically, can occur after ECO due to the locking
of the unchanged macros in the original design. Use Manual placement to resolve any placement contentions left on
the device if the Compile step fails after ECO

Bitstream Generation

Besides performing placement and routing, the Compile button will also generate a bitstream file. The file can be found in the
design directory and is named test40k.bst.

Schematic Entry - Viewlogic Workview Office

1-1

Viewlogic

Figaro is set up to provide a seamless interface for Viewlogic Workview Office. The user can move easily between the
Viewlogic and Figaro tools for design entry, functional verification, circuit implementation, post-layout simulation, and the
eventual download of the bitstream to an Atmel device.

This tutorial will step the user through the various phases of entering a design using the Integrated Development System with
Viewlogic Workview Office. System setup requirements should be met before working on the tutorial example.

This chapter is a supplement to the Viewlogic documentation. For information on tool functions, check the respective
Viewlogic manuals. Please refer to the “Figaro” section of the AT40K IDS Tutorial for detailed instructions on running Figaro
with the example design “test40k”.

System Setup

It is important that the Design and Library files, with their respective root paths, be in place prior to opening a design. The
correct setup of the environment variables is also needed for proper execution of the programs.

Environment Variables

For IDS, there are 2 environment variables which must be set in order for the software to function properly. Also, the programs
must be specified in the user’s path. As an example, the following must be set.

ATMELDIR = \SystemDesigner\etc

FIGARO_HOME = \SystemDesigner

PATH = \SystemDesigner\bin;....

For Workview Office, the environment variables WDIR and LM_LICENSE_FILE must be set for the Viewlogic software to work
properly. The path must point to the location where the Viewlogic software is installed, as shown in the examples below.

PATH = \SystemDesigner\wvoffice;...

WDIR This variable is used by the Viewlogic tools to find important files, such as the license and message files. This variable
must be set before invoking Windows. By default, the installation program will set WDIR to point to the directory where
Viewlogic was installed, typically this would be:

\SystemDesigner\wvoffice\standard

The current setting of this variable can be retrieved by typing “set” at the DOS prompt. If it is required to have multiple paths
specified in the WDIR variable, a “;” should be used to separate the entries such as:

set WDIR=\SystemDesigner\wvoffice\standard;d:\wvoffice\standard

LM_LICENSE_FILE This variable is used by the Viewlogic tools to point to the license file. This variable must be set before
invoking Windows. By default, the installation program will set LM_LICENSE_FILE to point to the license.dat file in the WDIR

directory:

\SystemDesigner\wvoffice\standard\license.dat

Setup Files

There are two important setup files that Viewlogic uses to access design information. These are the designName.vpj and
viewdraw.ini files. These files are typically maintained by the IDS software. If the user prefers to maintain these files using the
Viewlogic tools, use Options>Options and clear the Figaro Controlled option under Viewlogic Import.

designName.vpj The designName.vpj file contains the locations of all design and library paths required to work on the
current design (which is analogous to “project” in Viewlogic terminology). This file is maintained by IDS, and updates by the
Viewlogic project management utilities, though possible, are unnecessary.

IDS Figaro Tutorial

11-2

The designName.vpj file can be found in the current design directory (analogous to “project directory” in Viewlogic
terminology). Upon setup of a new design, a new designName.vpj file will be created. The directory section will be updated to
contain the primary directory, any user libraries, and then the Atmel libraries. Any other directory settings that were in the
initial template will be placed at the end of this file. Any duplicate aliases will be deleted.

viewdraw.ini The viewdraw.ini file contains the locations of all design and library paths required for the current design
(which is analogous to “project” in Viewlogic terminology). This file is also maintained by IDS and updating is unnecessary.

The viewdraw.ini file will be located in the current design directory (analogous to “project directory” in Viewlogic
terminology). Upon setup of a new design, a new viewdraw.ini file will be created. The initial template will be taken from either
the current design directory, or the WDIR, whichever comes first. The directory section (found at the end of the viewdraw.ini
file) will be updated to contain the primary directory, any user libraries, and then the Atmel libraries. Any other directory
settings that were in the initial template will be placed at the end of this file. Any duplicate aliases will be deleted. The
following is an example of this section of the viewdraw.ini file.

Example:
DIR [p] \SystemDesigner\AtUser\test40k

DIR [r] \SystemDesigner\AtUser\test40k\user (user)

DIR [m] \SystemDesigner\lib\at40k (at40k)

Atmel Library

In order to use Viewlogic schematic capture and simulation tools for the Atmel FPGA, a pointer to the Atmel library must be
set up in the viewdraw.ini file. This is automatically done when a new design is specified to IDS. This library can be found in
the IDS installation directory under the sub-directories lib\at40k. The library files are in the Viewlogic mega file format for ease
of management.

This library is where all schematic symbols are found. The alias /at40k should be used when referring to this library in
Viewlogic. This is specified by the following entry in the viewdraw.ini file:

DIR [m] \SystemDesigner\lib\macro (at6k) or \SystemDesigner\lib\at40k (at40k)

Example Design

The first step in preparing for the tutorial is to copy the example design from its installation directory to a suitable location.

Copying the Example

The example design can be found in the IDS installation directory under the sub-directory examples\vlogic\test40k.

Design Setup

Once everything has been set up, the Figaro program can be invoked. Select START > ATMEL > IDS

If everything has been set up correctly, the Figaro Desktop should be shown as follows.

Schematic Entry - Viewlogic Workview Office

1-3

Figaro Desktop

The next step in the tutorial is to set up the design directory for Figaro to archive and retrieve all the files related to the design.
The Design Setup dialog box can be brought up by clicking on the icon on the Flowbar or under the File menu as follows:

File Menu Dialog Box

Choose the NEW DESIGN button and bring up the New Design dialog box.

In the Design Directory input box, enter the directory/path of the “test40k” example (\SystemDesigner\atuser\test40k). Enter
“test40k” as the Design Name. The Files of Type list box should show the Viewlogic WIR (*.1) selection. All the Wir files
created for “test40k” will be displayed under the Design Name pane. If this is a new design, no files will be shown.

The Tools Flow list box will show which CAE system is being used. The Tools Flow choice for this tutorial should be
Viewlogic-Workview Office. Tools Flow Description shows what files are used as input and what types of output will be
available from Figaro for back annotation to the simulator.

Once the information has been provided, click on the OK button.

IDS Figaro Tutorial

11-4

This will bring back the Design Directory Setup dialog box to show the following:

Design Directory Setup Dialog Box

Select OK to execute.

The sch/sym/wir directories in Viewlogic contain the “test40k” schematic, symbol, and netlist files respectively. The
viewdraw.ini, viewsim.ini, test40k.var and test40k.vpj files will be set up automatically, accompanied by other files used for
running various parts of IDS.

Library Setup

The next item to be set up is the user library. See “System Basics, User Libraries” of the User’s Guide for a detailed explanation
on the topic. A user library consists of a directory and a file where all the data about user-defined macros is stored. These
macros can be created with either the schematic entry tool or Macro Generators function in the Figaro Desktop. Both subjects
will be covered in this tutorial. To facilitate file management and design archival, it is advisable to keep the library in the same
directory as the design.

To create a library, the Library Setup option must be selected from the Library menu.

Library Setup Pull Down Menu

Once selected, the Library Setup dialog box is displayed.

Schematic Entry - Viewlogic Workview Office

1-5

Library Setup Dialog Box

Select the Add Before button in the “Library Search Path” pane to specify the path of the library. Enter information in the Add
Library and Path dialog box by using the path browser to point to the \SystemDesigner\atuser\test40k directory and set the
Library Name field to user.lib. Press OK.

Add Library and Path Dialog Box

At this point, a dialog box should pop up to confirm the creation of the library. Press YES to continue.

Create Library Confirmation Box

IDS Figaro Tutorial

11-6

The Library Setup dialog box is show below.

Library Setup Dialog Box

Press OK to have the library structure created. At this point, another dialog box will pop up to confirm updating of the cached
library. Press YES to continue.

Update Cached LibraryDialog Box

The system should have created a file called user.lib in the design directory as well as a sub-directory called user. The file
user.lib is used to store the hard layouts of any macros created. The directory user will contain the sch, sym, and wir files for
each macro in the library. It will also contain a sub-directory for each macro where important design data is stored for future
modifications of the component.

Finally, the viewdraw.ini and the test40k.vpj files will be updated to point to this new library. The Integrated Development
System controls the read/write access of all files in the library. The library is assigned a read only attribute [r], as it is
unnecessary for the user to update entries in the library.

Schematic Entry - Viewlogic Workview Office

1-7

Viewdraw.ini and Directory after System Setup

Schematic Entry

Figaro works with a number of Viewlogic CAE systems and allows the user to launch into Viewlogic schematic capture and
simulation tools. This Tutorial is based on the Viewdraw tool from Workview Office. The following section briefly introduces
some of the major concepts of using Viewlogic for schematic entry. It covers design hierarchy, file structure, commonly used
commands, and illustrates use of the Viewlogic tools by making some modifications to “test40k”.

For best results, it is recommended that the user first go through the Viewlogic Workview Office Viewdraw tutorial.

Viewdraw Schematics and Hierarchy

Schematic hierarchy in Viewlogic has the following attributes:

§ Every schematic may use several symbols.
§ Every symbol may contain a schematic.
§ Each schematic level may contain 1 or more sheets.

It is important to plan before starting the design. The way the hierarchy is constructed will have an effect on the hard macros
and layout.

Actual DOS File Structure

The file structures for Figaro and Viewlogic are shown in the following table:

Directory File Structure

AT40K Project Directory \SystemDesigner\AtUser\Project

Symbol Directory \SystemDesigner\AtUser\Project\Sym

Schematic Directory \SystemDesigner\AtUser\Project\Sch

Netlist Directory \SystemDesigner\AtUser\Project\Wir

Figaro File Structures

§ Every Symbol and Schematic is stored in the sub-directories Sym and Sch, respectively.

§ After every writing of the schematic sheet, that single sheet is checked and an associated wire file (or netlist) is created in
the Wir sub-directory.

IDS Figaro Tutorial

11-8

Viewdraw Commands

The following table contains a list of the most commonly used Viewlogic Viewdraw commands.

Workview Office Commands

Command Keybd Entry Function

View Pan <F6> Center the view to the cursor.

View In <F7> Zoom in one view level.

View Out <F8> Zoom out one view level.

View Area Select <F9> Zoom in on area as selected.

View Full Out <F4> Zoom out to entire sheet.

Add Component c Add the component named name.

Select Component Edit>Select>
Component

Select component(s) named name.

Replace Component Edit>Replace>
Component

Change to named component.

Draw Net n Enter a wire (net) drawing mode.

Draw Bus b Enter a bus drawing mode.

Copy ^C Copy currently selected component.

Move Drag the selected component.

Delete Object <Del Key> Remove, erase, delete se-lected item.

Label Double Click Label the “clicked on” component.

List Labels Project>Block>
Labels

List labels.

Text T Enter random text creation mode.

Attribute Double Click Enter Attribute addition mode.

Attributes Visible Project>Settings
>Attributes Dis-
play Attributes

Check to make Attributes Visible.

Attributes Invisible Project>Settings
>Attributes Dis-
play Attributes

UnCheck to make Attributes Invisible.

Change String Double Click Enter String (label,text,attr) mode.

Select Label Edit>Select>Lab
el

Find and select a label(s).

Select Group Edit>Select>
Expression

Enter group selection mode.

Make Global Label Double Click Make a net accessible through hierarchy by changing scope to global.

Schematic Entry - Viewlogic Workview Office

1-9

Enter Symbol's Sch Push Sch Button Push into the symbol's schematic.

Enter Symbol Edit Push Sym
Button

Push into the symbol for editing.

Enter the next
sheet

Next Sheet
Button

Push into next schematic sheet.

Return to level Close Window Pop back to symbol or schematic level.

Enter any Sch File>Open Enter a schematic by name.

Enter any Sym File>Open Enter a symbol by name.

Go back to last
action

^Z Undo the last action.

Save or Write file w Save+Check the schematic.

Quit Viewdraw File>Exit Exit Viewdraw.

Symbol Commands

Change Sheet Size Double Click
Background

Change avoidance area (symbol) using sheet size in dialog.

Draw Box B Enter a box drawing mode (symbol).

Add Symbol Pin p Enter a symbol pin drawing mode (symbol).

Special Commands

Information Help>Viewdraw
Help Topics

Bring up on-line help. Selecting a menu item in Help mode will yield information.

Mouse - LEFT :
Select

MIDDLE: RIGHT :
Short Cut Menu

Exercise

This part of the chapter will show the user how to create both a block of hierarchy (enable circuit), and 2 components (adder
and counter) with the Macro Generators, and place them in the “test40k” design. The enable circuit is used to demonstrate
the general process for entering a schematic with Viewlogic Viewdraw. The second exercise uses the IDS Macro Generators to
create a counter and an adder.

Entering a Schematic
To enter a design or a macro, click on the Schematic Entry button in the Figaro Flowbar. This will invoke Viewdraw on the
“test40k” design (see the “Example Design” section in this chapter for setting up the design). The following shows a
completed schematic of the “test40k” design.

IDS Figaro Tutorial

11-10

test40k Schematic

1. The default Viewlogic colors can be changed by choosing the menu option Project>Settings. This will bring up a tabbed
dialog box. Choose the “Color Palette” tab and the window will show the colors of various display objects that can be
changed. For the purposes of this exercise choose the Color Scheme Classic Black .

Project Settings Dialog Box

2. This exercise will go through the steps to create a schematic for a level of hierarchy in the design. In this example, it will be
one of output pads in the “test40k” design. The schematic of the output pad is shown below.

Schematic Entry - Viewlogic Workview Office

1-11

Schematic of output pads out8

3. To create a schematic,
§ Use the File>New dialog box and enter the name “outpads”. This should bring up a blank window for use in entering

the above schematic.

4. Get a component,
§ Select Add>Component from the menu. Choose the FD macro from the at6k Library

or

 Choose the OBUF macro from the at40k library as shown below.

Add Component Dialog Box

§ Click first on the symbol in the dialog box and then move the cursor to the blank schematic sheet. The symbol should
now be attached to the cursor. Use the mouse and click to place the component in the schematic.

§ Close Add Component dialog box.

5. To add a bus,
§ Select Add>Bus.

IDS Figaro Tutorial

11-12

§ Use the mouse to add a bus to the 2 pins. Buses are drawn by first clicking (and holding down the mouse button) on
one of the macro pins, dragging the mouse to the end point and then releasing the mouse button. Click on the Cursor
button in the upper left corner of the screen to exit the “bus” mode.

6. To add the labels A[7:0] and PAD[7:0], double click on any net or bus and a dialog box should then be displayed for
entering the net or bus name.
§ Type the appropriate string into the label box and then press OK.

7. To add the Array attribute, double click on the OBUF macro, go to the Attribute tab and enter the name as “$ARRAY” and
the value as “8”. The Array attribute creates 8 instances of the OBUF macro.

8. Save the schematic using “w” or File>Save+Check .

9. Create a symbol for the output pads as shown below,
§ Use the File>New dialog box and enter the name “outpads”. Also change the “New” field to “Symbol”. This should

bring up a blank window for use in entering the following symbol.

10. Draw a box,
§ Type: “B” and use the mouse to drag out a box by first clicking in the upper left hand corner of the symbol block and

releasing the mouse in the lower right corner. To modify the symbol border, double click on the background, change
the sheet size to “Z”, width to 140, and height to 70.

11. To add pins and labels:
§ Type: “p” and use the mouse to define the pins. The pins are lines drawn by dragging the mouse from the start point

to the end point.
§ Exit the “pin” mode by selecting the Cursor button in the upper left corner of the screen. Select the pin by double

clicking on it.
§ Type : “A[7:0]” in the label field to label the pin.
§ Repeat this process for the PAD[7:0] pins. When asked to expand the label, select the YES button.

Schematic Entry - Viewlogic Workview Office

1-13

12. To add text,
§ Type: “T” and then click at the location the text is to be placed.
§ Type: “OUTPUT PADS” in the label field and press OK to enter the text. To move the text block, exit the “text” mode

and drag it to the desired location.

13. To save and close the symbol window when done,
§ Use File>Save, close the information window, and then use File>Close.

14. Save and close the OUTPADS schematic using “w” and File>Close.

15. To place the symbol just created into the “test40k” design,
§ Select one or both of the OUT8 symbols.

§ Use the Edit>Replace dialog box to replace the component.

§ This is done by setting the Object Type field to Component, setting the Expression field to <Selected Components>,
setting the Replace With field to OUTPADS. and then pressing the REPLACE button.

Find or Edit/Replace Dialog Box

16. When complete,
§ Type: “w” to save the sheet.

17. To exit Viewdraw,
§ Use File>Exit.

Using the Macro Generators
1. This exercise first creates a multiplier, MULT8NEW, with the Macro Generators, which is then used to replace the MULT8

component in the “test40k” design. The user should do the same for the ADDER8 component.

2. The library should be set up in Figaro before proceeding with the Macro Generators. See the “Library Setup” section in
this chapter for information.

IDS Figaro Tutorial

11-14

3. Click on the Macro Generators button on the Figaro Flowbar, and bring up the following dialog box.

Macro Generators Dialog Box

§ Select the Arithmetic tab on the bottom of the notebook and then select the Multiplier-Unsigned tab along the side.
§ Type: “mult8new” for Macro Name .
§ Type: “8” for WidthA and WidthB. A sample of the completed dialog box is shown below.

Completed “Multiplier” Dialog Box

To get more details about the Macro Generators, the HELP button can be used. All Generators have Help
descriptions which describe the parameters of the Generator, the pin names and pin functions, and either a
description of the function or a truth table.

§ Press ADD TO BATCH to initiate the program. On completion, the following statistical data window will be shown.
Review the information and press OK to exit.

Schematic Entry - Viewlogic Workview Office

1-15

Statistics Data Window

The same process should be followed for creating an 8 bit adder.
§ Select the Arithmetic tab on the bottom of the notebook.
§ Select the Adder - Ripple Carry tab on the side of the notebook.
§ Type: “add8new” for Macro Name .
§ Select the Disabled option for the Carry In .
§ Type: “8” for Width.
§ Generate the component.
§ Click on the OK button in the Macro Generators dialog box to exit.

Besides creating a hard layout (fully placed and routed) for the multiplier and the adder, this step has also created three
files (symbol, schematic, and WIR) that contain all the functional information needed for simulation.

4. The newly generated macros, MULT8NEW and ADD8NEW can now be used to replace the existing components, MULT8 and
ADDER8, in the “test40k” schematic respectively. Press the Schematic Entry button on the Figaro Flowbar to bring up the
design schematic.

5. Locate the existing MULT8 in the schematic. The new component will have a different shape and the Edit>Replace
command cannot be used.
§ Select Add>Component from the menu.
§ Select the library (user) .
§ From the menu select the component mult8new.1 . Click on the symbol and then place MULT8NEW below the existing

MULT8 macro in the schematic.
§ Connect MULT8NEW to the same nets for MULT8.
§ Select the existing MULT8 and press to remove it from the schematic.

6. Repeat step 5 to replace adder8 with add8new.

7. To save and exit,
§ Type: “w” and use File>Exit.

Functional Simulation

The design can be verified with Workview Office Simulation using the Functional Simulation button from Figaro. Functional
Simulation executes two programs, check and vsm, before running ViewSim. The check program ensures that all wire files are
current, and vsm creates input files for the simulator.

It is highly recommended that the user first go through the Workview Office Simulation on-line tutorials (Help>Tutorials) to
learn about its event driven digital simulator before proceeding to the following exercise.

IDS Figaro Tutorial

11-16

Please refer to the “Simulation, Viewlogic Workview Office” chapter in the CAE Interfaces section of this Tutorial for more
details on simu lating this design.

Netlist Generation

The Netlist button extracts a net list from the completed Viewdraw schematic for use by the system. By pressing this button,
Figaro verifies that all Viewlogic Wir files are up to date prior to loading the design. The net list file created will have the
correct format and physical information necessary for proceeding to the place and route phase of the design.

The Netlist button will also create an EDIF netlist. This file should be used when Bus Rippers are employed in the Viewlogic
schematic.

Figaro

When the user is ready to create the design by automatic or manual placement and routing, click on the Open button in the
Flowbar and answer the first dialog box with the Design option.

Open as Design or Macro Dialog Box

Once specified, the Open as Design dialog box will be displayed. Verify that Files of Type is set to Viewlogic Wir (*.1) so the
files can be processed to create a Figaro database. However, Files of Type should be set to EDIF (*.edf) when employing Bus
Rippers in Viewdraw. A correctly set up Open as Design dialog box is shown below.

After the design is opened, follow the flow to go through the Parts and Compile buttons to finish placement, routing, and
bitstream generation.

Open as Design Dialog Box

Details on the Figaro processes as illustrated by the “test40k” example design can be found in the Figaro section of the IDS
Tutorial.

Post-layout Simulation

After the design has been implemented with the Compile function, Post-layout Simulation can be performed. Viewlogic
simulation tools can be invoked with the provided post-layout wire delays, including pin-to-pin delays, setup and hold times,
as well as actual wire delays, to predict device timing and performance.

Schematic Entry - Viewlogic Workview Office

1-17

Please refer to the “Simulation, Viewlogic Workview Office” chapter in the CAE Interfaces section of this Tutorial for more
details on Post-layout Simulation of this design.

Engineering Change Order (ECO)

Figaro’s ECO feature supports revisions to the schematic, while recompiling only the modified areas of the chip. The process
allows repeated design changes to be compiled quickly and efficiently, while ensuring minimal changes to the circuit’s timing.

For this exercise, a minor change will be made to the “test40k” schematic using ECO. In this case, the polarity of the REN
signal will be reversed.

1. Bring up the “test40k” schematic by pressing on the Schematic Entry button. Once in Viewdraw, add an inverter to the
output of the I/O buffer (which is bringing in the REN signal) as shown below.

Modified Schematic with Inverter

2. When completed, write the design using “w” and then exit Viewdraw.

3. Use the icon on the Flowbar to create an updated netlist.

4. To incorporate the change into Figaro use the File>Open as ECO option. The existing layout must already be loaded into
Figaro. It will then request to save the design as follows.

ECO Dialog Box

5. Answer YES and bring up the Open as ECO dialog box. Change Files of Type to Viewlogic WIR files (*.1) and ensure
that test40k.1 is specified as the input file name.

For designs which employ Bus Rippers, change Files of Type to EDIF (*.edf) and verify that design.edf is shown as the
input file name.

IDS Figaro Tutorial

11-18

ECO Dialog Box

6. Press OK to initiate ECO. During this process, Figaro will report all differences and then request confirmation to proceed.

ECO Pop Up Box

7. Press YES to execute changes to the design.

The Design Browser below shows that except for the new inverter, which is inside a highlight box, all original instances
are now locked and identified by a solid square preceding their names.

Changed Instance in Figaro Browser

8. Proceed with Compile after this point and the program will place and route the inverter while leaving everything else
locked down. The resulting design is shown below.

Schematic Entry - Viewlogic Workview Office

1-19

ECO Result

NOTE
In some cases unresolvable placement contention can occur after the ECO compile phase as the tool locks the
placement of the unchanged macros from the original design. To resolve these contentions manually move the
components or unlock some instances around the contention region and re-run the automatic placement.

HDLPlanner

12-1

HDLPlanner

HDLPlanner is a design entry software for entering VHDL or Verilog designs. It has a user interface to define and instantiate
frequently used components such as register banks and counters. There is also a user interface to automatically generate
layouts for macros that are instantiated in HDLPlanner. Please refer to the Design Entry chapter of the User’s Guide for details
on HDLPlanner capabilities and a description of the user interface options.

In this tutorial, a data averager design is first created in VHDL. The design will then be optimized using Exemplar’s Leonardo
software.

This tutorial assumes that the user is familiar with Atmel specific synthesis flow using the one of the following software tools:
Synopsys, Exemplar or Design Compiler. Refer to the HDL Entry, Design Entry chapter in the User’s Guide and CAE
Interfaces section in the IDS Tutorial for details.

Example Design

For this tutorial, the “averager” design will be used. This design implements a waveform smoothing function represented by:

The smoothing function is used in many DSP applications to filter out high frequency spikes. These spikes are the source of
noise commonly found in communication channels. They can be eliminated by taking the moving average of sample values
arriving at the input of the system.

The design in this example is an “averager” circuit with eight moving points. The hardware specific details of the design are
described below.

Interface The “averager” design has eight bit input and output data lines. The design also has a clock pin and a reset pin.

Assumptions and Other Details Only positive values can appear on the input data lines (the input is assumed to be level-
shifted). During the implementation of the system, a valid output waveform can be expected on the 9th clock. However, since
the outputs of the last and intermediate stages are registered, the actual output waveform starts occurring from the 11th clock
cycle onwards.

Invoking Figaro

Figaro can be started by selecting START > ATMEL > IDS

Figaro Design Setup

In the Figaro window, use the icon or File>Design Setup menu to set up the design and select its associated Tools Flow.
The Design Directory Setup dialog box will be brought up.

IDS Figaro Tutorial

13-2

Design Directory Setup Dialog Box

To create a new design click on the New Design button. The New Design dialog box is shown below.

New Design Dialog Box

In the New Design dialog box, type the name of the design as “averager”. Select the appropriate tool from the Tools Flow
menu. See the table below:

Tool Tool Flow Selection

Exemplar VHDL Exemplar-MTI

Synopsys VHDL Synopsys-VSS

Exemplar Verilog Exemplar-Verilog

Synopsys Verilog Synopsys-Verilog

Tools Flow Selection

Dismiss the New Design and Design Directory dialog boxes by pressing the respective OK buttons.

HDLPlanner

12-3

Library Setup

The “averager” design, once synthesized, will contain the macros that are either inferred automatically or instantiated in the
HDLPlanner software. These components will then be created automatically with the Macro Generators. The associated
FPGA layout and simulation models will also be produced. Figaro treats these components as library modules and inserts them
in the library. Consequently, a user library must be set up.

A design library can be established by executing the Library>Library Setup menu.

Library Setup Dialog Box

In Library Setup, press the Add Before button to display the Add Library and Path dialog box.

Add Library and Path Dialog Box

In the Add Library and Path dialog box, enter Library Name as “averager.lib” (or any name of choice). Dismiss the box by
pressing OK.

Dismiss the Library Setup dialog box by pressing OK.

So far, the design name has been entered as “averager” and the library name as “averager.lib”.

IDS Figaro Tutorial

13-4

Design Entry Using HDLPlanner

After the design and libraries are set up, HDLPlanner can be invoked by pressing the HDL button on the Flowbar.

HDL Button on Figaro Flowbar

The next two figures will be brought up for Verilog designs.

HDL Planner User Interface for VHDL

HDLPlanner

12-5

HDLPlanner User Interface for Verilog

Important menus and interface components are described below:

VHDL Contains predefined templates of commonly used constructs

Verilog Contains predefined templates of commonly used constructs

Tools Allows the user to invoke the Macro Generators on instantiated components and collect information on them.

Synopsys This can be used to access Synopsys specific synthesis tips.

Exemplar This can be used to access Exemplar specific synthesis tips.

Define Can be used to insert the definition of the macro displayed in the Component list box.

Instance Instantiates a component that is displayed in the Component list box.

NOTE
A VHDL package called components is automatically created by the HDL Planner software when a design is
saved. This is saved in the atmel.vhd file in the current directory and contains all components that are
automatically defined using HDL Planner. The default package and file names can be overwritten by using the
parameter VHDL Package Name in the Tools>Options window.

Organization of the Averager Design

The “averager” design is hierarchically organized into the following components.

module initadd This module adds two unit delays to the path of the input signal, which is then output via the dataout port.
The delayed signals are added together and sent out on the result port.

This module uses two register banks and an adder to implement delays and perform the addition.

module averager The averager module contains a serial chain of four initadd modules. The dataout port of the previous
module is connected to the datain port of the next module. The outputs of the adjacent modules are added using 9 bit adders.
The 2 resulting outputs are then added together using a 10 bit adder, and shifted right 3 bits to divide by eight. The shifted
sum is registered, which forms the moving average.

IDS Figaro Tutorial

13-6

Creating an initadd module

Defining Entity
On bringing up HDLPlanner, the Module/Entity template is displayed on the screen. Modify the template to add port
definitions for the initadd module.

Defining Entity

Defining Components
The initadd module contains two register banks and one adder. To add a register, set Category to Register and Component to
dff. Click on the Define button. Upon pressing Define, a parameterized module of the register bank will be inserted into the
design file as shown in the following. Use a similar method to insert the adder module.

Defining Components

HDLPlanner

12-7

Defining Signals
Using Verilog>Wire or VHDL>Signal (as appropriate for your specific design), insert the signal templates. Modify them to
look like the figure below.

Defining Signals

Instantiating Components
The components, once defined, can be instantiated in the module/architecture section of the initadd module. Select dff from
the Component list box. Position the cursor at the desired location in the file and press Instance. At the click of the button, an
instantiation statement for the dff module will be inserted. Modify the instantiation statement to create an 8 bit wide dff register
and connect the pins to the nets in the design.

Instantiating Components

NOTE
Comments containing the word “HDLPlanner” have special meaning to the software. Do not delete those lines.

IDS Figaro Tutorial

13-8

Instantiate another dff register and an adder module. The complete the design using VHDL is shown below:

-- Do not delete following library and use clauses.
--
library atmel;
use atmel.components.all;
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY initadd IS

generic(WIDTH : integer :=8);
 PORT (
 clk, rst : IN std_logic;
 datain : IN std_logic_vector(WIDTH-1 downto 0);
 dataout : OUT std_logic_vector(WIDTH-1 downto 0);
 result : OUT std_logic_vector(WIDTH downto 0)
);
END initadd;

ARCHITECTURE behaviour OF initadd IS

SIGNAL inta,temp_dataout : std_logic_vector(WIDTH-1 downto 0);
SIGNAL zero : std_logic;
SIGNAL unused : std_logic;

BEGIN
zero <= '0';

-- HDLPlanner Instance dff_prl
-- Do not **DELETE** previous line

u1 : dff_prl
GENERIC MAP (WIDTH => 8)
PORT MAP(
 DATA => datain,
 RN => rst,
 CLK => clk,
 Q => inta
);

-- Do not **DELETE** next line
-- HDLPlanner End Instance dff_prl

-- HDLPlanner Instance dff_prl
-- Do not **DELETE** previous line

u2 : dff_prl
GENERIC MAP (WIDTH => 8)
PORT MAP(
 DATA => inta,
 RN => rst,
 CLK => clk,
 Q => temp_dataout
);

-- Do not **DELETE** next line
-- HDLPlanner End Instance dff_prl

-- HDLPlanner Instance addSigned
-- Do not **DELETE** previous line

u3 : addSigned
GENERIC MAP (WIDTH => 8)
PORT MAP (
 DATAA => inta,
 DATAB => temp_dataout,
 CIN => zero,
 SUM => result(WIDTH-1 downto 0),
 COUT => result(WIDTH),
 OVERFLOW => unused

HDLPlanner

12-9

);

-- Do not **DELETE** next line
-- HDLPlanner End Instance addSigned

dataout <= temp_dataout;

END behaviour;

IDS Figaro Tutorial

13-10

The complete the design using VHDL is shown below:

module initadd (CLK, rst, datain, dataout, result);

parameter DATAWIDTH = 8 ;

input CLK;
input rst;
input [DATAWIDTH-1:0] datain;
output [DATAWIDTH-1:0] dataout;
output [DATAWIDTH:0] result;

wire [7:0] inta;
wire [7:0] temp_dataout;

// HDLPlanner Instance dff_prl
// Do not **DELETE** previous line

defparam u1.width = 8;
dff_prl u1 (.DATA(datain), .RN(rst), .CLK(CLK), .Q(inta));
// Do not **DELETE** next line
// HDLPlanner End Instance dff_prl

// HDLPlanner Instance dff_prl
// Do not **DELETE** previous line

defparam u2.width = 8;
dff_prl u2 (.DATA(inta), .RN(rst), .CLK(CLK), .Q(temp_dataout));
// Do not **DELETE** next line
// HDLPlanner End Instance dff_prl

// HDLPlanner Instance addSigned
// Do not **DELETE** previous line

defparam u3.width = 8;
addSigned u3 (.DATAA(inta), .DATAB(temp_dataout), .CIN(1'b0),
.SUM(result[DATAWIDTH-1:0]), .COUT(result[DATAWIDTH]));

// Do not **DELETE** next line
// HDLPlanner End Instance addSigned

assign
 dataout = temp_dataout;

endmodule

Listing 1 using Verilog

Creating the Averager Module

Using Verilog>Module Definition, or VHDL>Entity and VHDL>Architecture modules, define the entity and architecture of
the averager. In addition to the initadd module, the averager design uses a shift register, registered signed adder, and
register bank with enable. Add the following modules to the file:

shiftRegIserOser
addSignedReg
dffIen

Once defined, these modules can be instantiated in the architecture body and connected to each other.

NOTE
Components that are user-defined and inserted automatically (such as initadd) must be declared explicitly before they
can be used in the architecture. The components defined and instantiated using HDL Planner are declared in the
package file atmel.vhd that is created automatically when the design is saved.

HDLPlanner

12-11

Listing 2 using VHDL

-- Do not delete following library and use clauses.
--
LIBRARY atmel;
USE atmel.components.ALL;
library ieee;
use ieee.std_logic_1164.all;

ENTITY averager IS

GENERIC (WIDTH : integer :=8);
 PORT (
 clk, rst : IN std_logic;
 datain : IN std_logic_vector(WIDTH-1 downto 0);
 dataout : OUT std_logic_vector(WIDTH-1 downto 0)
);
END averager;

ARCHITECTURE behaviour OF averager IS

COMPONENT initadd
 GENERIC (WIDTH : integer := 8);
 PORT (
 clk, rst : IN std_logic;
 datain : IN std_logic_vector(WIDTH-1 downto 0);
 dataout : OUT std_logic_vector(WIDTH-1 downto 0);
 result : OUT std_logic_vector(WIDTH downto 0)
);
END COMPONENT;

SIGNAL resulta,resultb,resultc,resultd : std_logic_vector(WIDTH downto 0);
SIGNAL result9adda,result9addb : std_logic_vector(WIDTH+1 downto 0);
SIGNAL dout : std_logic_vector(WIDTH+2 downto 0);
SIGNAL inta,intb,intc : std_logic_vector(WIDTH-1 downto 0);
SIGNAL zero : std_logic;
SIGNAL enable : std_logic;
SIGNAL clkarrived : std_logic;

BEGIN

PROCESS (clk, rst)
BEGIN
 IF (rst = '0') THEN
 clkarrived <= '0';
 ELSIF(clk'event AND clk = '1') THEN
 clkarrived <= '1';
 END IF;
END PROCESS;

u1 : initadd
 GENERIC MAP (WIDTH => 8)
 PORT MAP (
 clk => clk,
 rst => rst,
 datain => datain,
 dataout => inta,
 result => resulta
);

u2 : initadd
 GENERIC MAP (WIDTH => 8)
 PORT MAP (
 clk => clk,
 rst => rst,
 datain => inta,
 dataout => intb,
 result => resultb
);

u3 : initadd

IDS Figaro Tutorial

13-12

 GENERIC MAP (WIDTH => 8) PORT MAP (
 clk => clk,
 rst => rst,
 datain => intb,
 dataout => intc,
 result => resultc
);

u4 : initadd
 GENERIC MAP (WIDTH => 8)
 PORT MAP (
 clk => clk,
 rst => rst,
 datain => intc,

 result => resultd

);

-- HDLPlanner Instance addSignedReg_prl
-- Do not **DELETE** previous line

u5 : addSignedReg_prl
GENERIC MAP (WIDTH => 9)
PORT MAP (
 CLK => clk,
 RN => rst,
 CIN => zero,
 DATAA => resulta,
 DATAB => resultb,
 SUM => result9adda(8 downto 0),
 COUT => result9adda(9)
);

-- Do not **DELETE** next line
-- HDLPlanner End Instance addSignedReg_prl

-- HDLPlanner Instance addSignedReg_prl
-- Do not **DELETE** previous line

u6 : addSignedReg_prl
GENERIC MAP (WIDTH => 9)
PORT MAP (
 CLK => clk,
 RN => rst,
 CIN => zero,
 DATAA => resultc,
 DATAB => resultd,
 SUM => result9addb(8 downto 0),
 COUT => result9addb(9)
);

-- Do not **DELETE** next line
-- HDLPlanner End Instance addSignedReg_prl

-- HDLPlanner Instance addSignedReg_prl
-- Do not **DELETE** previous line

u7 : addSignedReg_prl
GENERIC MAP (WIDTH => 10)
PORT MAP (
 CLK => clk,
 RN => rst,
 CIN => zero,
 DATAA => result9adda,
 DATAB => result9addb,
 SUM => dout(9 downto 0),
 COUT => dout(10)
);

-- Do not **DELETE** next line
-- HDLPlanner End Instance addSignedReg_prl

HDLPlanner

12-13

-- HDLPlanner Instance dffIen_prl
-- Do not **DELETE** previous line

u8 : dffIen_prl
GENERIC MAP (WIDTH => 8)
PORT MAP(
 DATA => dout(10 downto 3),
 RN => rst,
 CLK => clk,
 ENABLE => enable,
 Q => dataout
);

-- Do not **DELETE** next line
-- HDLPlanner End Instance dffIen_prl

-- HDLPlanner Instance shiftRegIserOser_prl
-- Do not **DELETE** previous line

u9 : shiftRegIserOser_prl
GENERIC MAP (WIDTH => 9)
PORT MAP(
 RN => rst,
 CLK => clk,
 ENABLE => zero,
 SHIFTIN => clkarrived,
 SHIFTOUT => enable
);

-- Do not **DELETE** next line

-- HDLPlanner End Instance shiftRegIserOser_prl

END behaviour;

Listing 2 using Verilog

module averager (CLK, rst, datain, dataout);

`define DATAWIDTH 8

input CLK;
input rst;
input [`DATAWIDTH-1:0] datain;
output [`DATAWIDTH-1:0] dataout;

reg clkarrived;

wire [`DATAWIDTH-1:0] inta;
wire [`DATAWIDTH-1:0] intb;
wire [`DATAWIDTH-1:0] intc;
wire [`DATAWIDTH-1:0] junk;
wire [`DATAWIDTH:0] resulta;
wire [`DATAWIDTH:0] resultb;
wire [`DATAWIDTH:0] resultc;
wire [`DATAWIDTH:0] resultd;
wire [`DATAWIDTH+1:0] result9adda;
wire [`DATAWIDTH+1:0] result9addb;
wire [`DATAWIDTH+2:0] dout;

always @(posedge CLK or negedge rst)
begin
 if(rst == 'b0)
 clkarrived = 'b0;
 else
 clkarrived = 'b1;
end

initadd u1 (.CLK(CLK), .rst(rst), .datain(datain), .dataout(inta),

IDS Figaro Tutorial

13-14

.result(resulta));initadd u2 (.CLK(CLK), .rst(rst), .datain(inta), .dataout(intb),

.result(resultb));
initadd u3 (.CLK(CLK), .rst(rst), .datain(intb), .dataout(intc),
.result(resultc));
initadd u4 (.CLK(CLK), .rst(rst), .datain(intc), .dataout(junk),
.result(resultd));

// HDLPlanner Instance addSignedReg_prl
// Do not **DELETE** previous line

defparam u5.width = 9;
addSignedReg_prl u5 (.DATAA(resulta),. DATAB(resultb), .CLK(CLK), .RN(rst),
.CIN(1'b0), .SUM(result9adda[8:0]), .COUT(result9adda[9]));

HDLPlanner

12-15

// Do not **DELETE** next line
// HDLPlanner End Instance addSignedReg_prl

// HDLPlanner Instance addSignedReg_prl
// Do not **DELETE** previous line

defparam u6.width = 9;
addSignedReg_prl u6 (.DATAA(resultc),. DATAB(resultd), .CLK(CLK), .RN(rst),
.CIN(1'b0), .SUM(result9addb[8:0]), .COUT(result9addb[9]));

// Do not **DELETE** next line
// HDLPlanner End Instance addSignedReg_prl

// HDLPlanner Instance addSignedReg_prl
// Do not **DELETE** previous line

defparam u7.width = 10;
addSignedReg_prl u7 (.DATAA(result9adda),. DATAB(result9addb), .CLK(CLK),
.RN(rst), .CIN(1'b0), .SUM(dout[9:0]), .COUT(dout[10]));

// Do not **DELETE** next line
// HDLPlanner End Instance addSignedReg_prl

// HDLPlanner Instance dffIen_prl
// Do not **DELETE** previous line

defparam u8.width = 8;
dffIen_prl u8 (.DATA(dout[10:3]), .RN(rst), .CLK(CLK), .ENABLE(enable),
.Q(dataout));
// Do not **DELETE** next line
// HDLPlanner End Instance dffIen_prl

// HDLPlanner Instance shiftRegIserOser_prl
// Do not **DELETE** previous line

defparam u9.width = 9;
shiftRegIserOser_prl u9 (.RN(rst), .CLK(CLK), .ENABLE(1'b0),
.SHIFTIN(clkarrived), .SHIFTOUT(enable));
// Do not **DELETE** next line
// HDLPlanner End Instance shiftRegIserOser_prl

endmodule

IDS Figaro Tutorial

13-16

Invoking Macro Generators

After the design is entered, the macros that are instantiated in the design can be generated by accessing the Tools>Invoke
Macro Generators panel.

Macro Generators Dialog Box

Press the GENERATE button to create the macros. On completion, Figaro will return to the HDL Planner user interface. Save
the file as averager.vhd.

Synthesizing the Design

Once the design is created, it can be synthesized using Exemplar Logic’s Leonardo software.

Invoke the Leonardo synthesis tool.

Leonardo Spectrum

HDLPlanner

12-17

Click open files and select averager.vhd

Click Run Flow

An averager.edf file which can be read into Figaro will be created.

Netlist Import

Once the netlist is created by synthesis, it can be imported into Figaro for gate level placement and routing.

On the Flowbar, press the Open button. Select Open as Design dialog box.

Open as Design Dialog Box

Set the Files of Type field to EDIF Netlist (*.edf) . This will display the string “averager.edf” in the Existing Design File field.
Dismiss the dialog box by pressing the OK button.

Placement and Routing

Press the Compile button to automatically complete the placement and routing of the design.

Specify the Atmel part by clicking on the Parts button. The Figaro interactive tool allows pin preplacement and pin lock
assignments on the device chosen. Select the appropriate part to fit the design.

Initiate placement and routing by clicking on the Compile button. The four phases are: Initial Placement, Optimized
Placement, Initial Route, and Optimized Route. For more detailed instructions on how to select the Atmel part and implement
a design in Figaro, please refer to the “Figaro” section of this Tutorial.

A complete listing of the averager.vhd and averager.v files can be found in the following directories:

/SystemDesigner/examples/at6k/hdlplan/verilog-sy or /atmel/examples/at40k/hdlplan/verilog-sy (for synopsys)

/ SystemDesigner /examples/at40k/hdlplan/verilog-ex (for exemplar)

Synthesis - Exemplar Logic

13-1

Exemplar

This Tutorial outlines the methodology for optimizing VHDL and Verilog designs using Exemplar Logic’s Synthesis System in
the workstation environment. A method of integrating components created by the Macro Generators and Module Generators
from Exemplar’s synthesis tool is also outlined. The Macro Generators instantiated in the VHDL/Verilog design and the
components inferred by Exemplar’s Module Generators are automatically identified by Figaro, which then creates an area or
speed efficient hard macro layout. The results are used to create more efficient placement and routing in Figaro.

The design flow suggested in this Tutorial spans across two tools: Figaro is responsible for the design management and back
end layout, while Exemplar Logic’s Ga lileo Extreme or Leonardo are used for synthesis and optimization of the design. A
suitable simulator such as the ModelSim from Model Technology Inc. (MTI) is required if functional simulation and/or post-
layout simulation of the optimized netlist is desired.

The following tools must be installed and running before starting this Tutorial.

1. Figaro
2. Exemplar Logic’s Leonardo with the Atmel Exemplar library
3. Simulator (optional) Model Technology VHDL simulator with the Atmel MTI Vital simulation library

Design Flow

The design flow is briefly summarized below.

System Setup (Figaro)
§ Sets up the design directory and libraries

Design Entry (Figaro)
§ Enters the design in VHDL or Verilog

Design Synthesis (Exemplar)
§ Sets up the software environment for synthesis
§ Reads in the design
§ Optimizes the design
§ Writes the post-synthesis VHDL/Verilog netlist

Functional Simulation (Any available simulator. MTI is used in this Tutorial)

§ Verifies functionality of the design

EDIF Netlist Generation

§ Converts the post-synthesis structural VHDL/Verilog to an EDIF netlist

Layout Generation (Figaro)
§ Invokes automatic/manual placement and routing
§ Writes delay values for back annotation

Post-layout Simulation (Any available simulator, MTI is used in this Tutorial)

§ Reads in delay file for simulation

Device Programming (Figaro)
§ Outputs Bitstream file
§ Downloads onto Atmel part (PC only)

IDS Figaro Tutorial

13-2

Tutorial Example

To work through the Tutorial, a design describing a moving point “averager” circuit is used. Both Verilog and VHDL versions
of the design are provided.

The “averager” has input and output ports which are 8 bits wide. The circuit smoothes out a noisy waveform arriving at an
input port by averaging the adjacent 8 values of the signal amplitude, and generating the averaged waveform at the output
port.

The “averager” example is partitioned into design components, each of which can be generated automatically using the Macro
Generators module in Figaro. While synthesis will still produce gate level connectivity for the components, Figaro will select
the hard layouts of these components from the layout library. In this way, a truly technology independent VHDL design can
be written for simulation and retargeting, and the optimized netlist can use the best layout implementations to produce
superior results.

Leonardo Spectrum can infer ModGen Components for arithmetic and relational operators in a design from the Module
Generation Library provided for the Atmel FPGA. Atmel FPGA ModGen Library components are black boxes and hence
designs using ModGen components cannot be simulated until the design netlist is read into Figaro. Once the design netlist is
read into Figaro, the ModGen components are automatically identified and the Macro Generators (also called MGI) dialog box
will be brought up. The MGI dialog box lists all the ModGen components and their parameters like width, function etc. In the
MGI dialog box, users can change layout related parameters like area/speed optimization, layout folding etc. and create a hard
layout for the ModGen components.

The VHDL files of the example design are located in /SystemDesigner/examples/at6k/exemplar/averager/vhdl or
/SystemDesigner/examples/at40k/exemplar/averager/vhdl directory which come as part of the Figaro installation.

The Verilog files of the example design are located in /SystemDesigner/examples/at6k/exemplar/averager/verilog or
/SystemDesigner/examples/at40k/exemplar/averager/verilog directory which come as part of the Figaro installation.

Creating and Setting up the Design Directory

In this first step, the user creates a design directory and assigns a CAE platform to the design so that tasks meaningful to the
chosen platform can be applied automatically during processing.

To create a new design, select the icon on the Flowbar or use File>Design Setup from the menu.

Select the New Design button to open the New Design dialog box.

Figaro will input the “averager” design in EDIF format for use. Use the steps outlined as follows to set up the environment.
The dialog box will resemble that shown below.

1. Under Design Directory, enter the path where the VHDL/Verilog files are to be located.

2. Enter the Design Name as “averager”.

3. Set Configuration to AT6K or AT40K.

4. Set Tools Flow to Exemplar-MTI if the design source is VHDL, or to Exemplar-Verilog if the design source is Verilog.

5. Under Files of Type, select EDIF Netlist (*.edf) and press OK.

6. Press OK again to complete the Design Setup.

Synthesis - Exemplar Logic

13-3

New Design Dialog Box

NOTE
Leonardo Spectrum is the default synthesis tool when Figaro is installed.

The synthesis tool Leonardo Spectrum, can be selected using Options>Options from the menu.

1. Select Synthesis Tool Invocation from the Topic list in the Options dialog box as shown below.

Options Dialog Box

2. Select the appropriate synthesis tool from the Exemplar group in the dialog box and press OK

IDS Figaro Tutorial

13-4

Library Setup

Figaro supports application of a user library in which hard macro layouts can be stored for use in current or future designs.
The Macro Generators create such hard layouts and require a library for storage of the information. Besides the hard layouts,
simulation information and other important files are stored in this library directory. A library for the “averager” design can be
created as follows:

1. Select the Library>Library Setup module to activate the Library Setup dialog box.
2. Press the Add Before button in the Library Search Path panel to activate the Add Library and Path dialog box.
3. Enter the Library Name as “user.lib” and press OK.

4. Proceed to create the library by pressing OK
5. Press OK again to complete the Library Setup.
6. Confirm Updated Cache Library by pressing OK

Component Generation

The “averager” design makes use of a number of components that can be automatically created using the Macro Generators
in Figaro. This function produces a component or design that is more compact in size and efficient in speed.

Examination of the averager.vhd file will reveal a very simple method of incorporating the Macro Generators in VHDL. The
process involves identifying the components that are going to be part of the design and inserting them one level deeper in the
design hierarchy. Care must be taken to ensure correspondence between the port names in the VHDL/Verilog designs and the
macros created by the Generators. It is also imperative to maintain the component names in the VHDL/Verilog design during
macro generation.

The following components must be generated for the “averager” design via the Macro Generators button on the Flowbar.
This will bring up the Generator Notebook . Choose the category of macros using the bottom tabs and the desired Generator
using the right side tabs.

To generate the macros one by one:

1. Choose the Generator according the type of macro.
2. Input the parameters for the macro.
3. Click Generate to start creating the macro. A statistics dialog box about that macro will appear upon completion.
4. Do the same procedures for all the other macros.
5. Click Cancel when all macros have been generated.

The macro names and their appropriate parameters are mentioned below. All other parameters should be left to their default
settings.

Generator Register
Register Type = Flip-Flop D-type,
Macro Name= reg8,
Width=8.

Generator Register
Register Type=Flip-Flop D-type,
Macro Name= reg8en,
Width=8,

Register Bank Enable=Group Enable.

The Macro Generators are designed to exploit Atmel’s register rich FPGA architecture, and produce a component that is more
compact in size and efficient in speed. The hard layouts for the above-generated components are stored in the user defined
library. They will be used by Figaro during Compile, when the EDIF netlist of the design is being processed.

Synthesis - Exemplar Logic

13-5

Design Entry

Once a design has been set up, the VHDL or Verilog files of the design description must be set up in the Design Directory for
synthesis to proceed. For the “averager” design, these files have been copied to the Design Directory from
/SystemDesigner/examples/at6k/exemplar or /SystemDesigner/examples /at40k/exemplar.

Exemplar’s Leonardo can now be brought up by clicking on the Synthesis Tool Invocation push button from the Flowbar on
the IDS desktop.

Optimization and Netlist Generation

Once the design files are created, optimization of the completed design can proceed hierarchically in a top-down fashion.

Once the design is created, it can be synthesized using Exemplar Logic’s Leonardo software.

1. Invoke the Leonardo synthesis tool.

Leonardo Spectrum

2. Click open files and select averager.vhd

3. Click Run Flow

An averager.edf file that can be read into Figaro will be created.

Functional Simulation

During the synthesis phase a structural VHDL/Verilog netlist can be output from the Exemplar tools. Pre-layout simulation can
be done on the post-synthesis Verilog/VHDL netlist generated by the synthesis tool. The Verilog simulation libraries are
provided along with IDS and are installed in /SystemDesigner/lib/verilog/at40k. The VITAL libraries provided with IDS are
installed in /SystemDesigner/lib/mti/at6k02 and /SystemDesigner/lib/mti/at6k04 or /SystemDesigner/lib/mti/at40k

IDS Figaro Tutorial

13-6

Netlist Creation

The structural VHDL/Verilog netlist created during the synthesis phase of the design flow can be converted into an EDIF
netlist using Exemplar’s synthesis tool.

1. Click on the Netlist icon on the Flowbar.
2. Select the VHDL or Verilog (structural VHDL/Verilog netlist from the synthesis tool) file to be converted to EDIF.

NOTE
When translating a structural Verilog netlist into EDIF, please note that Exemplar’s Leonardo Spectrum will generate
errors if any hierarchical modules in the Verilog netlist are not fully defined.

3. Click on OK in the Select VHDL/Verilog File dialog box to create the EDIF netlist.

Select VHDL File Dialog Box

Netlist Import

Once the design is verified with Pre-layout Simulation and netlisted, it can be imported into Figaro for compilation. To read
the averager.edf file into Figaro, click on the Open button in the tool bar and proceed with Open as Design. Specify Files of
Type to be EDIF Netlist (*.edf) and verify that the Existing Design File is averager.edf.

Open as Design Dialog Box for “averager” in VHDL

Click on OK for Figaro to load the EDIF file and generate a database file for the design. While loading the EDIF file, Figaro
identifies the ModGen components inferred by the synthesis tool (if any) and brings up a Macro Generators Interface dialog
box when applicable. The box displays the macro names as notebook tabs. The user can change the layout-related parameters
of the ModGen components. For more details on the list of ModGen components supported by the Macro Generators and
MGI, please refer to “Macro Generators Interface” chapter in the Technical Reference. The MGI dialog box for the example in
this Tutorial is shown below.

Synthesis - Exemplar Logic

13-7

MGI Dialog Box

The following is a brief description of the various buttons in the MGI dialog box:

Component Exists

This box will be checked if a macro with the same name already resides in the library. This may happen if the design has gone
through one iteration. If the component exists and it matches the displayed parameters, its generation is skipped.

Updated

This box is checked if the default settings of the macro have been changed. By default, the user interface displays options per
the following guideline. If the component exists in the library, the options that it was run with are displayed. If the component
does not exist in the library, the default settings that minimize the component area will be chosen.

Generate

This button is used to proceed with the generation of the macros.

Cancel

This button is used to skip the generation of the macros. If this button is pressed, the design will not contain the hard layout
of the macro. Instead, its soft implementation will be chosen.

Click on GENERATE to create the hard macros for the listed components and proceed with the EDIF netlist processing for the
design.

NOTE
To automatically generate hard macros for the identified Macro Generators components without bringing up the
graphical user interface, use the Options>Options menu. In the Options dialog box, check the Automatically
Generate Components option under MGI Support.

Mapping

In order to optimize the design and collect better synthesis results, it is recommended that mapping be performed. The netlist
from the synthesis tools contains functional macros that can be packed into Look Up Tables by the technology mapper in
Figaro. After opening the design, use Options>Options>Mapping and activate the Mapping Enabled option. Then push the
Map button on the Flowbar to map the design. Pleases refer to the Mapping section in the “Figaro” chapter of this Tutorial
for more details about this process and the options available.

IDS Figaro Tutorial

13-8

Placement and Routing

1. Specify an Atmel part by clicking on the Parts button. The Figaro interactive tool allows pin preplacement and pin lock
assignments on the device chosen. Select the appropriate part to fit the design.

2. Use Window>New Compile Window to bring up the Compile window. Step-by-step placement and routing can be
performed by clicking corresponding buttons in this window.

3. Perform initiate placement and routing by clicking on the Compile button. The four phases feature Initial Placement,
Optimized Placement, Initial Route, and Optimized Route. The last button can be either Bitstream (for designs) or
Check-in (for macros). Depending on the initial design setup, Figaro will create a bitstream file for download to the device,
or instantiate the component and store it in the user-specified library.

Details on the Parts Assembler and Compile modules are covered in the “Figaro” chapter in the Tutorial.

Post-layout Simulation

Post-layout Simulation can be performed by using the delay values extracted during Compile. The back annotation
information is then read into the design in the specified export file format. Figaro determines the file types to be exported based
on the selected tool flow and design implementation (whether the design is mapped or not, and if the implementation is for one
or more chips). If the design is mapped or partitioned into multiple chips, a flat VHDL (or Verilog) netlist and the
corresponding SDF netlist will be created. Otherwise a hierarchical SDF file will be generated and back annotated to the
structural post-synthesis VHDL (or Verilog) netlist from the synthesis tool. However even if the design is implemented on a
single chip and not mapped, the user can export a flat simulation netlist by using File>Export.

Click on the Post-layout Simulation button on the Flowbar. This will export the required simulation netlist and a SDF back
annotation file into a directory called figba in the current design directory. A pop up dialog box will appear as shown below.

Exported Netlists Dialog Box

The box will give the name of the exported netlists. These netlists have to be compiled and the simulator invoked on them from
a command shell outside Figaro.

NOTE
For Verilog users, if Post-layout Simulation is to be performed after Compile is completed, specify the export format
of flat Verilog and flat SDF using File>Export. Figaro will generate a design.v file and SDF file containing delay
information.

DownLoad Bit Stream

For more information on downloading and bitstream utilities, refer to the “Device Programming” and “Figaro” chapters in the
User’s Guide and Tutorial respectively.

NOTE
The DownLoad option will only download the bitstream file from a PC only. It is not available to Workstation users.

Synthesis - Synopsys

14-1

Synopsis

This tutorial outlines the methodology for optimizing HDL based designs with the Synopsys Design compiler or FPGA
Compiler. Atmel supplies a synthesis library, at40k.syn, for the AT40K FPGA series.

Design Flow

Figaro supports two design flows using Synopsys tools to compile the design. In the first flow, Synopsys tools are used to
perform synthesis, and a VITAL simulator is used to perform simulations. The second flow is identical, except any Verilog
simulator is used to perform design verification. These flows can be specified by selecting the appropriate Tools Flow while
setting up the design. The output simulation files, generated by Figaro, will depend on the selected flow. A typical flow is
given below.

System Setup (Figaro)
§ Sets up the design directory and libraries

Design Entry (Command Shell)
§ Enters the design in VHDL or Verilog

Functional Simulation (VITAL or Verilog)
§ Verifies functionality of the design

Design Synthesis (Synopsys)
§ Sets up the software environment
§ Reads in the design
§ Optimizes the design
§ Writes the netlist

Gate Level Simulation (VITAL or Verilog)
§ Verifies functionality of the design

Layout Generation (Figaro)
§ Invokes automatic/manual placement
§ Invokes automatic/manual routing
§ Writes delay values for back annotation

Post-layout Simulation (VITAL or Verilog)
§ Reads in delay file for simulation

Device Programming (Figaro)
§ Creates bitstream
§ Downloads onto Atmel part

System Setup

Atmel Library

A library for AT40K FPGA, at40k.syn, is supplied by Atmel. This library is located in the /SystemDesigner/ install/lib/synopsys
directory.

IDS Figaro Tutorial

14-2

Environment Variables

The synopsys_dc.setup file contains the environment variables which set up the execution environment during synthesis. A
sample template of this file is provided in the directory /SystemDesigner/examples/at40k/synopsys/averager/vhdl, where all
other tutorial files are kept. Optionally, this file can also be kept in the directory /SystemDesigner/lib/synopsys . This file can be
used by the Design Compiler as well as the FPGA Design Compiler.

To use this file, copy it from either of the above locations. Make substitutions as needed for the paths of the various libraries.
Copy the file to either the home directory as .synopsys_dc.setup or the current directory as .synopsys_dc.setup.

Some variables of interest are search_path and link_library, target_library. The following is a description of these variables.

search_path This variable defines the directory search order for the various libraries. It is functionally equivalent to the
UNIX path variable. It should be set to:

search_path = { Synopsys libraries,
/install/atmel/lib/synopsys }

The first directory should point to the libraries that are installed with the Synopsys software, the second corresponds to a
path where the Atmel synthesis library (at40k.syn) is located.

link_library This variable is used to link the gate level components in the source HDL to the target technology library so that
those components can participate functionally during synthesis.

link_library= {at40k.syn}

target_library This variable is used to set the target technology in which the output gate level netlist is to be produced.

target_library= {at40k.syn}

Edifout variables:
These variables are used to produce an EDIF netlist in the desired format.

edifout_netlist_only = “true”
edifout_power_and_ground_representation = “cell”
edifout_merge_libraries = “false”

Example Design

For this tutorial, the “averager” design will be used. This design implements a waveform smoothing function represented by:

The smoothing function is used in many DSP applications to filter out high frequency spikes. These spikes are the source of
noise commonly found in communication channels. They can be eliminated by taking the moving average of sample values
arriving at the input of the system.

The design in this example is an “averager” circuit with eight moving points. The hardware specific details of the design are
described below.

Interface The “averager” design has eight bit input and output data lines. The design also has a clock pin and a reset pin.

Assumptions and Other Details Only positive values can appear on the input data lines (the input is assumed to be level-
shifted). During the implementation of the system, a valid output waveform can be expected on the 9th clock. However, since
the outputs of the last and intermediate stages are registered, the actual output waveform starts occurring from the 11th clock
cycle onwards.

Synthesis - Synopsys

14-3

Design Files

The “averager” design consists of several design files:

§ Design vhdl files
§ Test bench file
§ Input stimulus file
§ Synopsys simulation and synthesis scripts

The files are kept in the /SystemDesigner/atmel/examples/at40k/synopsys/averager/vhdl directory. (A Verilog version of the
“averager” design is also available in the /SystemDesigner/atmel/examples/at40k/synopsys/averager/verilog directory.)
Perform the following commands to copy them to the local directory:

$ mkdir averager
$ cd averager

$ cp /SystemDesigner/atmel/examples/at40k/synopsys/averager/vhdl/* .

The following is a brief description of the design files.

averager.vhd Contains the top-level design. It has instantiations of the other modules of the design.

averager_tb.vhd This module contains the test bench file for the “averager” design (the file may not be needed for this
tutorial).

averager_tb.vhg This module contains the test bench file for the “averager” design. This test bench is to be used with Post-
layout gatelevel netlist only (the file may not be needed for this tutorial).

Invoking Figaro

Figaro can be started in the averager directory by typing “figaro” on the command-line.

$ cd averager
$ figaro

Figaro Design Setup

In the Figaro window, use the icon or File>Design Setup menu to set up the design and select its associated Tools Flow.
The Design Directory Setup dialog box will be brought up.

Design Setup Dialog Box

To create a new design click on the New Design button. The New Design Directory dialog box is shown below.

IDS Figaro Tutorial

14-4

New Design Directory Dialog Box

Inside the New Design dialog box:
§ Set Configuration to AT40K.
§ Enter the Design Name as “averager”.
§ Select Tools Flow as Synopsys-VSS or Synopsys-Verilog for the VHDL or verilog design respectively.
§ Verify Files of Type as EDIF Netlist.
§ Dismiss the New Design and Design Directory dialog boxes by pressing the respective OK buttons.

The synthesis tool, FPGA Compiler or Design Compiler, can be selected using Options>Options from the menu.

1. Select Synthesis Tool Invocation from the Topic list in the Options dialog box as shown below.

Options Dialog Box

2. Select the appropriate synthesis tool from the Synopsys group in the dialog box and press OK.

Library Setup

The “averager” design, once synthesized, will contain the macros inferred automatically by the Synopsys Design Compiler.
These components are created automatically with the Macro Generators. The associated FPGA layout and simulation models
will also be produced. Figaro treats these components as library modules and inserts them in the library. Consequently, a user
library must be set up.

1. A design library can be established by executing the Library>Library Setup menu.

Synthesis - Synopsys

14-5

Library Setup Dialog Box

2. In Library Setup, press the Add Before button to display the Add Library and Path dialog box.

Add Library and Path Dialog Box

3. In the Add Library and Path dialog box, enter Library Name as “averager.lib” (or any name of choice).
4. Dismiss the box by pressing OK.
5. Proceed to create the library by pressing OK.
6. Dismiss the Library Setup dialog box by pressing OK.
The design name has been entered as “averager” and the library name as “averager.lib”.

Component Generation

The “averager” design makes use of a number of components that can be automatically created using the Macro Generators
in Figaro. This macro generation function is designed to exploit Atmel’s register rich FPGA architecture, and produce a
component that is more compact in size and efficient in speed.

An examination of the averager.vhd file will reveal a very simple method of incorporating the Macro Generators in VHDL. The
process involves identifying the components that are going to be part of the design and inserting them one level deeper in the
design hierarchy. Care must be taken to ensure correspondence between the port names in the VHDL designs and the macros
created by the Generators. It is also imperative to maintain the component names in the VHDL design during macro
generation.

The following components must be generated for the “averager” design via the Macro Generators button on the Flowbar.
This will bring up the Generator Notebook as show below. Choose the category of macros using the bottom tabs and the
desired Generator using the right side tabs.

IDS Figaro Tutorial

14-6

Macro Generators Interface Dialog Box

To generate the macros one by one:

1. Choose the Generator according the type of macro.
2. Input the parameters for the macro.
3. Click GENERATE to start creating the macro. A statistics dialog box about that macro will appear upon completion.
4. Do the same procedures for all the other macros.
5. Click OK when all macros have been generated.

Statistics Dialog Box for Add8

The macro names and their appropriate parameters are mentioned below. All other parameters should be left to their default
settings.

Generator Arithmetic
Macro Type = Adder-Ripple Carry,
Macro Name = add8,
Width = 8.

Synthesis - Synopsys

14-7

Generator Arithmetic
Macro Type = Adder-Ripple Carry,
Macro Name = add9reg,
CarryOut = Register,
Register = Input,
Width = 9.

Generator Arithmetic
Macro Type = Adder-Ripple Carry,
Macro Name = add10reg,
CarryOut = Register,
Register = Input,
Width = 10.

Generator Register
Register Type = Flip-Flop D-type,
Macro Name = reg8,
Width = 8.

Generator Register
Register Type = Flip-Flop D-type,
Macro Name = reg8en,
Register Bank Enable = Group Enable,
Width = 8.

Generator Register
Register Type = Shift Register,
Macro Name = sr9,
Width = 9.

The hard layouts for the above-generated components are stored in the user defined library. They will be used by Figaro
during Compile, when the EDIF netlist of the design is being processed.

Setting for Reg8en using Add To Batch Function

IDS Figaro Tutorial

14-8

The Add to Batch Function
To use the Macro Generators Add To Batch function for building several macros at a time, follow the steps below.

1. Input the parameters for the macro into the Generator page.
2. Store the macro settings in the batch by pressing Add To Batch after each configuration. The Batch Size on the lower

right corner of the Macro Generators dialog box will get incremented by one.
3. Review the macros by pressing View Batch to bring up the following dialog box. To edit the list, select a macro or the

properties of the macro, and press Remove. Press Close to return to MGI.

View Batch Dialog Box

4. Press GENERATE to start the process when all macros are configured to the appropriate settings. The Batch Size field will
show the final count.

5 Upon successful completion, a message box as the following will appear.

Add To Batch Message Box

6. Click OK to continue.

Design Synthesis

Once the files are copied to the design directory and the library has been set up, the Design Compiler can be brought up. Press
the icon on the Flowbar in the desktop to invoke the Synopsys synthesis tool. Depending on the interface chosen in the
Options>Options>Synthesis Tool Invocation dialog box, the Command-shell Design compiler or the GUI Design Analyzer
will be invoked accordingly. The Design Compiler can also be brought up in a Shell window with a dc_shell command.

NOTE
All synthesis commands to follow are given in the Synopsys script file synth.script. The user can include that script
in the Design Compiler Shell to expedite synthesis runs.

Synthesis - Synopsys

14-9

For Command-shell users

Use the read command to enter the HDL design into the Design Compiler environment. All design files can be read
simultaneously into the Design Compiler using the following command:

dc_shell>read -format vhdl averager.vhd

NOTE
The Design Compiler will issue warnings about the use of generics in the design. These warnings can be ignored.
Please consult the Synopsys documentation for more details.

Optimization

Optimization of the previously read in design modules consists of: a) going through the design hierarchy, and b) optimizing
the individual modules by setting the appropriate constraints. Some constraints to consider are set_max_area,
set_max_delay, max_period, set_min_delay, set_clock, and create_clock. The actual optimization is done using the Compile
command. During optimization, the Design Compiler examines many design alternatives and chooses one that meets the
specified constraints. The amount of effort the Design Compiler uses can be controlled by the map_effort switch of the
Compile command. If constraints cannot be satisfied, the Design Compiler outputs the best design and issues appropriate
warnings. The commands report_area, report_timing and report_constraint are used to collect statistics on the design.

Optimization Recommendations
For inserting clock and reset buffers, the command insert_pads can be used to connect the ports to the pads of the design.
The port_is_pad attribute must be attached to the ports for the insert_pads command to work correctly.

To connect global clock and global reset signals to pads, two special buffers GCLKBUF and RSBUF are provided in the libraries.
These buffers must be attached to global clock and reset pins of the FPGA.

The Design Compiler can automatically connect GCLKBUF to a global clock signal of the FPGA when the command
insert_pads is used. To attach RSBUF to a global reset, the following command must be used: (for the exact command used in
this example design, please refer to the section I/O Pad Synthesis below.)

set_pad_type -exact rsbuf GlobalReset

Attaching GCLKBUF and RSBUF buffers are mandatory to ensure correct back annotation of the delay data during Post-layout
verification.

Performing Optimization
Once the design files are read in, optimization of the complete design can proceed hierarchically. Performing optimization hier-
archically is not mandatory but recommended. This allows strict control over the cells that are reported in the output netlist
(e.g. the user may want to preserve the counter in the output netlist and substitute its hard implementation during Place and
Route).

The sequence in which synthesis of the components should proceed is illustrated below.

Optimization of the Leaf Nodes
Use the command current_design to set sr9 as the active design in the Compiler as follows:

dc_shell> current_design sr9

The sr9 design may now be optionally optimized by specifying the constraints as follows:

1. dc_shell> set_max_area 0.0
2. dc_shell> compile -map_effort high

On completion of optimization, the Design Compiler will store a gate level netlist of sr9 in its internal database.

Compilation of leaf designs add8, add9reg, add10reg, reg8, and reg8en can be performed similar to the sequence mentioned
above.

IDS Figaro Tutorial

14-10

Optimization of the Non-Leaf Nodes
The optimization of the non-leaf nodes can proceed in the same way except the attribute dont_touch should be set on all the
leaf components of the design. For the initadd module, the following sequence of commands can be taken.

1. dc_shell> current_design initadd

2. dc_shell> set_dont_touch {add8 reg8}

3. dc_shell> set_max_area 0.0

4. dc_shell> compile -map_effort high

Similarly, optimization of the top-level design “averager” can proceed in the following fashion.

1. dc_shell> current_design averager

2. dc_shell> set_dont_touch {initadd add9reg add10reg sr9 reg8en}

3. dc_shell> set_max_area 0.0

4. dc_shell> compile -map_effort high

I/O Pad Synthesis

The final phase of optimization is to connect I/O pads to the pins of the “averager” design.

1. To do this, the attribute set_port_is_pad must be added to all pins that are connected to the I/O buffers as follows.
dc_shell> set_port_is_pad find(port)

2. After the set_port_is_pad attribute is set, a global reset pin must be connected to the RSBUF buffer using the following
command.

dc_shell> set_pad_type -exact rsbuf rst

3. Pads are inserted using the following command.
dc_shell> insert_pads

Netlist Generation

Two netlists must be written: one in EDIF to act as the interface between the Design Compiler and Figaro for placement and
routing, and another from a choice of formats to prepare for simulation. The Design Compiler command write can be used to
write the design into the output file.

For the “averager” design, these netlists can be generated using the following two commands.

1. To write the netlist for Figaro, the following options must be specified:
dc_shell> write -format edif -hierarchy -output averager.edf

2. To write the netlist for Functional and Post-layout Simulation the following options must be specified:
write -format vhdl -hierarchy -output averager.vhg

Please refer to the chapter “Simulation-Synopsys” in this Tutorial for details on gate level simulation using the VITAL
libraries.

Netlist Import

Once the netlist is created by synthesis, it can be imported into Figaro for gate level placement and routing.

On the Flowbar, press the Open button and choose to Open as Design. This will bring up the Open as Design dialog box.

Synthesis - Synopsys

14-11

Open as Design Dialog Box

Set the Files of Type field to EDIF Netlist (*.edf) . This will display the string “averager.edf” in the Existing Design File field.
Dismiss the dialog box by pressing the OK button.

While loading the EDIF file, Figaro recognizes the user defined components that have been generated by the Macro
Generators and applies those optimized hard macros from the user library, averager.lib, to the design .

For the “averager” design, Figaro has identified the following macros:

add10reg
add9reg
add8
reg8en
reg8
sr9

Mapping

In order to optimize the design and obtain better synthesis results, it is recommended that mapping be performed. The netlist
from the synthesis tools contains functional macros that can be packed into Look Up Tables by the technology mapper in
Figaro. After opening the design, use Options>Options>Mapping and activate the Mapping Enabled option. Then push the
Map button on the Flowbar to map the design. Pleases refer to the Mapping section in the “Figaro” chapter of this Tutorial
for more details about this process and the options available.

Placement and Routing

Specify the Atmel part by clicking on the Parts button. The Figaro interactive tool allows pin preplacement and pin lock
assignments on the device chosen. Select the appropriate part to fit the design. The “averager” design should fit on an
AT40K10 or bigger device. Click on the Add button and then OK to finish part selection.

Use Window>New Compile Window to bring up the Compile window. Initiate placement and routing by clicking on the
Compile button. The four phases in placement and routing are: Initial Placement, Optimized Placement, Initial Route, and
Optimized Route. Step-by-step placement and routing can be performed by clicking on the buttons in sequence. The last
button can be either Bitstream (for designs) or Check-in (for macros). Depending on the initial design setup, Figaro will create
a bitstream file for download to the device, or instantiate the component and store it in the user-specified library.

For more details on how to select the Atmel part and implement a design in Figaro, please refer to the “Figaro” section of this
Tutorial.

Post-layout Simulation

Post-layout Simulation can be performed by using the delay values extracted during Compile. The back annotation
information is then read into the design in the specified export file format. Figaro determines the file types to be exported based
on the selected tool flow and design implementation (whether the design is mapped or not, and if the implementation is for one
or more chips). If the design is mapped or partitioned into multiple chips, a flat VHDL (or Verilog) netlist and the
corresponding SDF netlist will be created. Otherwise a hierarchical SDF file will be generated and back annotated to the
structural post-synthesis VHDL (or Verilog) netlist from the synthesis tool. However even if the design is implemented on a
single chip and not mapped, the user can export a flat simulation netlist by using File>Export.

IDS Figaro Tutorial

14-12

Click on the Post-layout Simulation button on the Flowbar. This will export the required simulation netlist and a SDF back
annotation file into a directory called figba in the current design directory. A pop up dialog box will appear as shown below.

Exported Netlists Dialog Box

The box will give the name of the exported netlists. These netlists have to be compiled and the simulator invoked on them from
a command Shell outside Figaro.

NOTE
For Verilog users, if Post-layout Simulation is to be performed after Compile is completed, specify the export format
of flat Verilog and flat SDF using File>Export. Figaro will generate a design.v file and SDF file containing delay
information.

DownLoad Bitstream

After Post-layout Simulation with the appropriate simulator, the design is ready for downloading. For more information on
downloading and bitstream utilities, refer to the “Device Programming” chapter of the User’s Guide, and “Figaro” section of
this Tutorial.

NOTE
The DownLoad option is not available to Workstation users as the bitstream file can be downloaded from a PC only.

Synthesis - Synopsys FPGA Express

15-1

Synopsys

This Tutorial outlines the methodology for optimizing VHDL and Verilog designs using the Synopsys FPGA Express
Synthesis System in the PC environment. A method of integrating components created by the Macro Generators is also
outlined. The Macro Generators instantiated in the VHDL/Verilog design are identified by Figaro which then creates an area
or speed efficient hard macro layout. The results are used to create more efficient placement and routing in Figaro.

The design flow suggested in this Tutorial spans across two tools: Figaro is responsible for the design management and back
end layout, while Synopsys FPGA Express is used for synthesis and optimization of the design.

The following tools must be installed and running before starting this Tutorial.

1. Figaro
2. Synopsys FPGA Express

Design Flow

The design flow is briefly summarized below.

System Setup (Figaro)
§ Sets up the design directory and libraries

Design Entry (Figaro)
§ Enters the design in VHDL or Verilog

Design Synthesis (FPGA Express)
§ Sets up the software environment for synthesis
§ Reads in the design
§ Optimizes the design
§ Writes the post-synthesis EDIF netlist

Functional Simulation (Any available simulator)
§ Verifies functionality of the design

Layout Generation (Figaro)
§ Invokes automatic/manual placement and routing
§ Writes delay values for back annotation

Post-layout Simulation (Any available simulator)
§ Reads in delay file for simulation

Device Programming (Figaro)
§ Outputs Bitstream in the PC
§ Downloads onto Atmel part

IDS Figaro Tutorial

15-2

Tutorial Example

To work through the Tutorial, a design describing a moving point “averager” circuit is used. Both Verilog and VHDL versions
of the design are provided.

The “averager” has input and output ports which are 8 bits wide. The circuit smoothes out a noisy waveform arriving at an
input port by averaging the adjacent 8 values of the signal amplitude, and generating the averaged waveform at the output
port.

The “averager” example is partitioned into design components, each of which can be generated automatically using the Macro
Generators module in Figaro. While synthesis will still produce gate level connectivity for the components, Figaro will select
the hard layouts of these components from the layout library. In this way, a truly technology independent VHDL design can
be written for simulation and retargeting. The optimized netlist can use the best layout implementations to produce superior
results.

The VHDL files of the “averager” design can be copied from \SystemDesigner\atmel\examples\at6k\fpgaexp\averager\vhdl or
\SystemDesigner\examples\at40k\fpgaexp\averager\vhdl, which come as part of the Figaro installation.

The Verilog files of the “averager” design can be found in \SystemDesigner\Examples\AT40K\FPGAEXP\AVERAGER\VDHL

Or \SystemDesigner\Examples\AT40K\FPGAEXP\AVERAGER\Verilog

Creating and Setting up the Design Directory

In this first step, the user creates a design directory and assigns a CAE platform to the design so that tasks meaningful to the
chosen platform can be applied automatically during processing.

To create a new design, select the icon on the Flowbar or use File>Design Setup from the menu.

Select the New Design button to open the New Design Directory dialog box.

Figaro will input the “averager” design in EDIF format for use. Use the steps outlined as follows to set up the environment.
The dialog box will resemble that shown below.

New Design Directory Dialog Box

1. Under Design Directory, enter the path where the VHDL/Verilog files are to be located.

2. Enter the Design Name as “averager”.

3. Set Configuration to AT6K or AT40K.

4. Set Tools Flow to FPGA Express - VHDL if the design source is VHDL, or to FPGA Express - Verilog if the design source
is Verilog.

Synthesis - Synopsys FPGA Express

15-3

5. Under Files of Type, select EDIF Netlist (*.edf) .

6. Press OK to complete the Design Setup.

New Design Directory Dialog Box

Figaro supports application of a user library in which hard macro layouts can be stored for use in current or future designs.
The Macro Generators create such hard layouts and require a library for storage of the information. Besides the hard layouts,
simulation information and other important files are stored in this library directory. A library for the “averager” design is
created as follows:

1. Select the Library>Library Setup module to activate the Library Setup dialog box.
2. Press the Add Before button in the Library Search Path pane to activate the Add Library and Path dialog box.
3. Enter the Library Name as “averager.lib” and press OK.
4. Press OK again to complete the Library Setup.

Component Generation

The “averager” design makes use of a number of components that can be automatically created using the Macro Generators
in Figaro. This function produces a component or design that is more compact in size and efficient in speed.

An examination of the averager.vhd file will reveal a very simple method of incorporating the Macro Generators in VHDL. The
process involves identifying the components that are going to be part of the design and inserting them one level deeper in the
design hierarchy. Care must be taken to ensure correspondence between the port names in the VHDL designs and the macros
created by the Generators. It is also imperative to maintain the component names in the VHDL design during macro
generation.

The following components must be generated for the “averager” design via the Macro Generators button on the Flowbar.
This will bring up the Generator Notebook . Choose the category of macros using the bottom tabs and the desired Generator
using the right side tabs. The macro names and their appropriate parameters are mentioned below. All other parameters should
be left to their default settings.

Generator Flip-Flop D-type, Width=8, Macro Name=reg8.

Generator Adder-Ripple Carry, CarryIn=Disabled, Register=Input, Width=9, Macro Name=add9reg.

Generator Adder-Ripple Carry, CarryIn=Disabled, Register=Input, Width=10, Macro Name=add10reg.

Generator Flip-Flop D-type, Width=8, Macro Name=reg8en, Register Bank Enable=Group Enable.

IDS Figaro Tutorial

15-4

The Macro Generators are designed to exploit Atmel’s register rich FPGA architecture, and produce a component that is more
compact in size and efficient in speed. The hard layouts for the above-generated components are stored in the user defined
library. They will be used by Figaro during Compile, when the EDIF netlist of the design is being processed.

Design Entry

Once a design has been set up, the VHDL or Verilog files of the design description must be set up in the Design Directory for
synthesis to proceed. For the “averager” design, these files are located the Design Directory.

Synopsys FPGA Express can now be brought up by clicking on the Synthesis Tool Invocation push button from the Flowbar
on the IDS desktop.

Optimization and Netlist Generation

Once the design files are created, optimization of the completed design can proceed hierarchically in a top-down fashion.
Follow the sequence of commands mentioned below to set the appropriate options during synthesis.

1. Create a new project named tutorial using File>New from the menu bar in FPGA Express.
2. Specify the source files (VHDL or Verilog) using the menu selection Synthesis>Identify Sources. This step will automati-

cally analyze the VHDL or Verilog source files.
3. Select averager as the top-level from the Implementation Name drop down list and specify Atmel as the target device in

the Create Implementation dialog box as shown below.

Create Implementation dialog box

4. By default FPGA Express eliminates hierarchy. In order to preserve the hierarchy, select the chip and right click the mouse
button to bring up the pop-up menu to edit the constraints.
In the Modules page of the Constraints window set Hierarchy to Preserve by default.

5. Close the Constraints window and select the chip. Right click the mouse button again and chose Optimize chip.
6. Select the optimized chip and chose Export Netlist to write out an EDIF netlist which will be read into Figaro for final

implementation in the Atmel device.

Synthesis - Synopsys FPGA Express

15-5

Placement and Routing

Once the design is netlisted, it is ready for placement and routing. To read the averager.edf file into Figaro, click on the Open
button in the tool bar and proceed with Open as Design. Specify Files of Type to be EDIF Netlist (*.edf) and verify that the
Existing Design File is averager.edf.

Open as Design Dialog Box for design “averager”

1. Click OK for Figaro to load the EDIF file and generate a database file for the design. While loading the EDIF file, Figaro
identifies the Macro Generators that were generated in the previous steps and uses their hard layouts during placement
and routing.

In order to better optimize the synthesis results, it is recommended that mapping be performed. The netlist from the
synthesis tools contain functional macros that can be packed into Look Up Tables by the technology mapper in Figaro.
After opening the design, use Options>Options>Mapping and select the Mapping Enabled option. Then push the Map
button on the Flowbar to map the design. Please refer to the “Figaro - Mapping” section of this Tutorial for more details
about this process and the options available.

2. Specify an Atmel part by clicking on the Parts button. The Figaro interactive tool allows pin preplacement and pin lock
assignments on the device chosen. Select the appropriate part to fit the design. The “averager” design should fit on an
AT6005 or AT40K05 part but can be run on any device.

3. Initiate placement and routing by clicking on the Compile button. The four phases include Initial Placement, Optimized
Placement, Initial Route, and Optimized Route. The last button can be either Bitstream (for designs) or Check-in (for
macros). Depending on the initial design setup, Figaro will create a bitstream file for download to the device, or instantiate
the component and store it in the user-specified library.

Details on the Parts Assembler and Compile modules are covered in the “Figaro” chapter in the Tutorial.

Post-layout Simulation

Post-layout Simulation can be performed by using the delay values extracted during Compile. The back annotation
information is then read into the design in the specified export file format. Figaro determines the file types to be exported based
on the selected tool flow and design implementation (whether the design is mapped or not, and if the implementation is for one
or more chips). If the design is mapped or partitioned into multiple chips, a flat VHDL (or Verilog) netlist and the
corresponding SDF netlist will be created. Otherwise a hierarchical SDF file will be generated and back annotated to the
structural post-synthesis VHDL (or Verilog) netlist from the synthesis tool. However even if the design is implemented on a
single chip and not mapped, the user can export a flat simulation netlist by using File>Export.

IDS Figaro Tutorial

15-6

Click on the Post-layout Simulation button on the Flowbar. This will export the required simulation netlist and a SDF back
annotation file into a directory called figba in the current design directory. A pop-up dialog box will appear as shown below.

Exported Netlists Dialog Box

The dialog box will give the name of the exported netlists. These netlists have to be compiled and the simulator invoked on
them from a command Shell outside Figaro.

NOTE
For Verilog users, if Post-layout Simulation is to be performed after Compile is completed, specify the export format
of flat Verilog and flat SDF using File>Export. Figaro will generate a design.v file and SDF file containing delay
information.

DownLoad Bit Stream

For more information on downloading and bitstream utilities, refer to the “Device Programming” and “Figaro” chapters in the
User’s Guide and Tutorial respectively.

NOTE
The DownLoad option will only download the bitstream file from a PC. It is not available to Workstation users.

Simulation - Model Technology

16-1

Model Technology

This tutorial demonstrates the various steps involved in simulating VHDL designs using Model Technology’s VSIM V-
System VHDL Simulator.

Design simulation is performed at various stages as the design is transformed from a behavioral description to the FPGA
layout. This ensures that the functional and timing integrity of the design is within acceptable parameters of the original
specifications.

Design Flow

A well-integrated design flow that supports easy verification is provided in the Figaro software. This flow is outlined below.

§ Functional (Pre-synthesis) Simulation.
§ Synthesis.
§ Gate Level Netlist Creation.
§ Placement and Routing.
§ Post-layout Simulation.

The simulator supports numerous timing checks, recovery and error reporting mechanisms. For details on the default settings
in the VITAL libraries, please refer to the “Simulation - Exemplar” chapter of the CAE Interfaces section in the Technical
Reference.

This tutorial focuses more on the tools and methodology developed to perform simulation within the Figaro environment.

This tutorial assumes that the user is familiar with synthesis using Exemplar’s Leonardo Spectrum. Those unfamiliar with the
process are encouraged to go through the separate Exemplar synthesis tutorial.

Example Design

For this tutorial, the “averager” design will be used. This design implements a waveform smoothing function represented by:

The smoothing function is used in many DSP applications to filter out high frequency spikes. These spikes are the source of
noise commonly found in communication channels. They can be eliminated by taking the moving average of sample values
arriving at the input of the system.

The design in this example is an averager circuit with eight moving points. The hardware specific details of the design are
described below.

Interface The “averager” design has 8-bit input and output data lines. The design also has a clock pin and a reset pin.

Assumptions and Other Details Only positive values can appear on the input data lines (the input is assumed to be level-
shifted). During the implementation of the system, a valid output waveform can be expected on the 9th clock. However, since
the outputs of the last and intermediate stages are registered, the actual output waveform starts occurring from the 11th clock
cycle onwards.

IDS Figaro Tutorial

16-2

Design Files

The “averager” design consists of many design files

§ Test bench file

§ Input stimulus file

The files are kept under /SystemDesigner/examples/at40k/exemplar/averager/vhdl the
/SystemDesigner/examples/averager/vhdl directory.

Copy these files to the following directory: /SystemDesigner/examples/mti/averager/vhdl/* .

The averager design is kept in averager.vhd. This file has numerous entity-architecture pairs in them. The following is a brief
description of each of them.

averager - Contains the top-level design. It has instantiations of the other modules of the design.

initadd - This module adds two delayed signals. It instantiates reg8 and add8 modules.

reg8 - This module contains an 8-bit register.

add8 - This module contains an 8-bit adder and produces a 9-bit sum.

add9reg - This module adds two 9-bit numbers and produces a 10-bit registered sum.

add10reg - This module adds two 10-bit numbers and produces an 11-bit registered sum.

sr9 - This module is a shift register. It is used to implement a divide by 8 operation.

A description of other vhdl files is given below.

aver_tb.vhd - This module contains the testbench file for the “averager” design. This test bench should be used for functional
simulation.

post_tb.vhd - This module contains the testbench file for the “averager” design. This test bench should be used for post-
layout gate level simulation.

Invoking Figaro

Figaro can be started in the averager directory by selecting START > ATMEL > IDS

Figaro Design Setup

In the Figaro window, use the icon or File>Design Setup menu to set up the design and select its associated Tools Flow.
The Design Directory Setup dialog box will be brought up.

Design Setup Dialog Box

1. To create a new design click on the New Design button. The New Design Directory dialog box is shown below.

Simulation - Model Technology

16-3

New Design Directory Dialog Box

2. In the New Design dialog box, type the name of the design as “averager”. Set Configuration to AT6K/AT40K. Select
Tools Flow as Exemplar-MTI.

3. Dismiss the New Design and Design Directory dialog boxes by pressing the respective OK buttons.

Library Setup

The “averager” design, once synthesized, will contain the macros inferred automatically by Exemplar’s ModGen module
generation system. These components are created automatically with the Macro Generators. The associated FPGA layout and
simulation models will also be produced. Figaro treats these components as library modules and inserts them in the library.
Consequently, a user library must be set up.

1. A design library can be established by executing the Library>Library Setup menu.

Library Setup Dialog Box

2. In Library Setup, press the Add Before button to display the Add Library and Path dialog box.

IDS Figaro Tutorial

16-4

Add Library and Path Dialog Box

3. In the Add Library and Path dialog box, enter Library Name as “averager.lib” (or any name of choice). Dismiss the box
by pressing OK.

4. Dismiss the Library Setup dialog box by pressing OK.

The design name has been set as “averager” and the library name as “averager.lib”. The next step is to create the environment
in the simulation setup files and carry out the simulation at the functional level.

Functional (Pre-synthesis) Simulation

The command vsim is used for simulating the design. Normally, this command will bring up the user interface. However, if this
command is invoked with the -c switch, a Shell interface will be invoked. For the purpose of this tutorial, the Shell interface
will be used.

Before starting simulation, a brief discussion of the stimulus and response files used and created by the simulator is provided
below.

The test scaffold, specified in the aver_tb.vhd file, reads the file averager.sen that contains the waveform to be smoothed out.
Any waveform can be specified in that file. Upon completion of the simulation, a file averager.out is created. This file contains
the output values of the waveform.

The simulation script, “run -all; quit”, passed via the -do switch, executes the simulation and quits the simulator at its
conclusion.

CFG_AVER_TB is the name of the top-level configuration specification, which points to the simulation model that is built into
the work directory.

At the end of the simulation, edit the averager.out file and examine the output waveform.

Synthesis

After the design has been validated, it is ready for synthesis. At the end of synthesis, two files will be created in the design
directory: the averager.edf and averager.vhg. The former is the EDIF netlist for the synthesized design, and will be imported
into Figaro for placement and routing followed by the creation of the needed files for Post-layout Simulation. The file
averager.vhg will contain the gate level VHDL netlist. This netlist will be used for post-synthesis gate level simulation.

1. Invoke Leonardo from the Invoke Synthesis Tool button on the Figaro Flowbar. Refer to the CAE Interfaces section in the
IDS Tutorial on Exemplar Synthesis for more details.

2. In Leonardo , do the following:

§ Set the Input Design, File Name and Format to “averager.vhd” and “VHDL” respectively.
§ Set the Output Design, File Name and Format to “averager.vhg” and “VHDL” respectively.
§ Set the Output Design, Technology to “Atmel AT6K02/AT40K”.

Simulation - Model Technology

16-5

Leonardo Dialog Box

3. Under RUNTIME OPTIONS, check Preserve Hierarchy (do not flatten).
4. Click on the Synthesis Options... button of the Leonardo interface.

Synthesis Options Dialog Box

5. In the Special Options field, set the switch -modgen at40k or -modgen at6k.

6. Complete the synthesis session by executing the Start Run button of the Leonardo user interface.

Translating Gate level VHDL file to EDIF netlist
Leonardo cannot produce the EDIF and vhdl files simultaneously. To translate from averager.vhg to averager.edf file format,
do the following in the main window:

1. Set Input Design, Technology and Output Design, Technology to “Atmel AT6K02/AT40K”.
2. Set Input Design, File Name and Output Design, File Name to “averager.vhg” and “averager.edf” respectively.
3. Set the Input Design, Format and Output Design, Format to “VHDL” and “EDIF” respectively.
4. Check RUNTIME OPTIONS, Preserve Hierarchy (do not flatten).
5. Complete the file translation by initiating Start Run from the Leonardo user interface.

IDS Figaro Tutorial

16-6

Translation Setup Dialog Box

6. Alternatively, use the Create Netlist for Open button on the Figaro Flowbar. Enter the gate level VHDL netlist file name in
the Select VHDL File dialog box and press OK. This will convert the VHDL netlist into an EDIF file by invoking the
Exemplar tool in the command mode.

Exemplar tools can be dismissed after synthesis and translation is complete.

Gate Level Netlist Creation

The gate level VHDL and EDIF netlists created in the last step cannot be used directly for post-synthesis simulation as they
make use of macros which must be created by IDS. In order to complete these netlists certain macros must be created
interactively and others automatically from the EDIF netlist via the Macro Generators Interface (MGI).

Leonardo must be specified in Figaro as the input source. Access Options>Options from the menu and select Synthesis Tool
Invocation. Under the settings for Exemplar, set the Tool to Leonardo.

Interactive Macro Generation

The “averager” design gate level netlist contains components that are treated by the Leonardo as hard macros. These macros
are declared as NOMAP components in the averager.vhd design.

reg8: 8 bit register bank
reg8en: 8 bit register bank with enable
sr9: 9 bit shift register

These macros should be created using the Macro Generators. Click on the Macro Generators button in the user interface.

Simulation - Model Technology

16-7

For the reg8 macro:

7. Select the Register tab along the bottom of the Macro Generators notebook.
8. Select the Flip-Flop D-type tab along the side of the Macro Generators notebook.
9. Set Width of the macro to “8”.
10. Set Macro Name to “reg8”.

Generating the reg8 Macro

For the reg8en macro:

1. Use the same notebook page as above.
2. Set Width of the macro to “8”.
3. Set the Register Bank Enable to Group Enable.
4. Set Macro Name to “reg8en”.

Generating the reg8en Macro

IDS Figaro Tutorial

16-8

For the sr9 macro:

1. Select the “Shift Register” tab in the Macro Generators notebook.
2. Set Width of the macro to “9”.
3. Set Macro Name to “sr9”.

Generating the sr9 macro

The Macro Generators user interface can be dismissed now.

MGI Macro Generation

In addition to these components, the synthesized gate level netlist contains components that are inferred automatically by the
ModGen module generation system. ModGen does not create a VHDL description of these automatically generated
components. Consequently, the gate level models for these components must be created. Figaro automatically creates the gate
level models at the time of netlist import, and is described below.

Open as Design Dialog Box

1. On the Flowbar, press the Open button. This will bring up the Open as Design dialog box.

2. Set the Files of Type field, to EDIF Netlist (*.edf) . This will dis play the string “averager.edf” in the Existing Design File
field. Start the import process by pressing the OK button.

3. The automatic generation of inferred macros is undertaken by the Macro Generators Interface, and will be discussed
below.

Simulation - Model Technology

16-9

Macro Generators Interface (MGI)

Macro Generators Interface Dialog Box

During netlist import, Figaro recognizes the functions inferred automatically by the ModGen interface and displays them in the
user interface as shown above. For the “averager” design, Figaro has identified the following macros:

mg_aa_9

mg_aa_10

mg_aa_8

These macros can be generated via user specification by supplying the appropriate options, such as Layout Optimization
used for optimizing the layout. Note that options that determine the component’s functionality cannot be changed.

Press the GENERATE button and proceed with the macro generation.

The created components will be placed in the library displayed in the User Library field. In this case, they will be placed in
averager.lib.

NOTE
To automatically generate hard macros for the identified Macro Generators components without bringing up the
graphical user interface, use the Options>Options menu. In the Global Options dialog box, check Automatically
Generate Components under the topic MGI Support.

Placement and Routing

Once the design is verified with Gate Level Simulation, and the automatically inferred components are generated, it is ready
for placement and routing. Press the Compile button to implement the design.

Specify the Atmel part by clicking on the Parts button. The Figaro interactive tool allows pin preplacement and pin lock
assignments on the device chosen. For this exercise an AT6003/AT40K10 or larger device should be used.

Initiate placement and routing by clicking on the Compile button. The four phases are: Initial Placement, Optimize
Placement, Initial Route, and Optimize Route. For more detailed instructions on how to select the Atmel part and implement a
design in Figaro, please refer to the “Figaro” section of the IDS Tutorial.

IDS Figaro Tutorial

16-10

Post-layout Simulation

After placement and routing is complete, a post-layout gate level vhdl netlist and SDF file containing delay information should
be generated.

To create these files, press the Post-Layout Simulation button on the Flowbar.

Post-layout Simulation can be done along the same lines as Functional Simulation. The various steps involved are
described below.

Post-layout Simulation Files
To eliminate the possibility of gate level files from being overwritten, Figaro creates a separate directory, called figba, in the
design directory and places the post-layout simulation files in it.

In the Shell Window, change the directory to figba.

There will be a number of vhdl files in this directory. For the “averager” design, the list of files and a description of them are
given below.

averager.vhd

This is the top-level design for the entire circuit. If a design has multiple partitions, this file contains instantiations of the
individual designs that make up the circuit. Since the “averager” design has only one partition, only one design will be
instantiated in averager.vhd.

NOTE
The library statement “library averager” should be deleted from this file before continuing with simulation.

mg_.vhd

These are the design files that correspond to the macros identified automatically by the MGI. These components are
instantiated in the top-level vhdl file(s). In the case of the “averager”, these macros are instantiated in averager.vhd.

reg8.vhd, reg8en.vhd, sr9.vhd

These are the files corresponding to the reg8, reg8en and sr9 components generated using the Macro Generators.

In addition to the vhdl files, Figaro also outputs the SDF delay files corresponding to each partition. Since there is only one
partition in the “averager”, only averager.sdf is created.

Creating the modelsim.ini File
While in the figba directory, follow the procedure for creating the modelsim.ini file as outlined in the section “Simulation
Setup” above.

NOTE
Please ensure that the modelsim.ini file is deleted from, or renamed in, the project directory. The program vsim
searches the modelsim.ini file in all directories in the search path and may pick up the settings from the
modelsim.ini file in the project directory.

Copying Files to the figba Directory
Copy the testbench files post_tb.vhd and averager.sen from the design directory to the figba directory.

Analyzing the Design Files
Analyze the gate level design file averager.vhd and the testbench file by typing the following command at the Shell prompt.

$ vcom mg_* reg8.vhd reg8en.vhd sr9.vhd averager.vhd post_tb.vhd

The regular expression mg* will evaluate the vhdl file names of all components generated automatically by the Macro
Generators. At the end of this command, a simulation model for the “averager” will be built into the work directory.

Simulation - Model Technology

16-11

Simulating the Design
The Post-layout netlist is annotated using delays reported in the averager.sdf file. The design can be simulated by executing
the following command.

$ vsim -c -do “run -all; quit” \
-sdftyp aver_test=averager.sdf CFG_AVER_TB

At the end of the simulation run, the output file averager.out will be created.

PLA Optimization

17-1

PLA Optinization

The PLA Optimization module translates and optimizes PLD designs described in the PLA format. A design can be described
in equations, truth tables, state diagrams or any combination of all three with the equation entry method. DATA I/O’s ABEL
supports this design methodology, providing a very convenient and fast way of targeting PLA files for the Atmel FPGA. The
Integrated Development System offers a well-defined design flow for easy, efficient synthesis and optimization of ABEL
designs. This tutorial contains an example of how to create a design using both an ABEL translation and a schematic netlist.
Optimization recommendations for ABEL designs using the PLA2Cdb software are included below. Files compiled in CUPL
also observe similar processes.

Meeting performance specifications in an optimal way is determined in most cases by the ability to partition a system into its
logical sub-components. The system partitioned in this way can then be represented as an interconnection of blocks in which
the blocks themselves are specified at the behavioral level.

The design can be synthesized into a technology specific database and provided with multiple options to maximize a design
centered on such user criteria as area or speed. PLA Optimization generates components with better timing characteristics,
superior utilization, and supports a partitioning model that uses a schematic to tie the design together.

Using PLA Optimization, the PLA design can be translated into either a soft macro or a complete design. A complete design
has its pins connected to I/O buffers. A soft macro can be instantiated in a top-level schematic or optionally translated into a
hard macro using the Macro Check-in feature of IDS. Once a PLA file is turned into a design, it is ready for placement and
routing.

System Setup

It is important that the Design and Library files, with their respective root paths, be in place prior to opening a design. The cor-
rect setup of the environmental variables is also needed for proper execution of the programs.

Setup Files

Figaro can optimize the PLA-formatted files generated by ABEL or CUPL. The resulting component can be turned into a soft
macro for use in a larger circuit. The user can also translate the PLA file into a complete design, and generate a bitstream within
Figaro.

After entering the design with a text editor, the ABEL or CUPL compiler is invoked. Depending on whether the design was
optimized or not, the user can have either a *.tt1, *.tt2, or *.pla file as input to IDS. A brief explanation of the extensions is
shown in the Table below.

PLA Files for Figaro Interface

PLA File Extension Description

*.tt1 ABEL unoptimized *.pla file

*.tt2 ABEL optimized *.pla file

*.ttx PLA file optimized by REEDMUL

*.pla CUPL *.pla file

Atmel Libraries

Please refer to the Figaro Tutorial for step by step information on setting up a library, creating, using, and managing macros.

IDS Figaro Tutorial

17-2

Copying the Example

The example files for this tutorial can be found in the directory \SystemDesigner\examples\at40k\abel or
\SystemDesigner\examples\at6k\abel for AT40k and AT6k users respectively. There are 3 files that must be copied over once
the design directory has been created.

Design Entry

In this tutorial, the design flow is illustrated with the synthesis and optimization of an example digital system. The example is
chosen to provide insight into creating a design via Equation Entry using ABEL-HDL, and Schematic Entry with Viewlogic
PROcapture. A similar flow can be supported on other platforms as well.

Creating a Design

The example digital system performs arithmetic operations by decoding a string of numeric characters received on its serial
port. The numeric operands (undergoing computations) are read from the 2 n bit parallel ports of a system. The output is
placed on a 1 n bit output port.

If string 110 is placed on the control line, the function will add the two 4-bit input values to produce the 4-bit output.

If string 111 is placed on the control line, the function will subtract the two 4-bit input values to produce the 4-bit output.

System Partitioning
The system can be divided into three sub-modules.

1. An adder
2. A subtractor
3. A sequence detector to identify 110 and 111 sequences.

The process of creating a design starts with partitioning it into sub-modules and writing an ABEL description for each of
them.

1. Set up a Design Directory using File>Design Setup and select New Design. Fill in the dialog box to look like the following
and select OK. Then select OK for the Design Setup dialog box as well.

New Design Directory Dialog Box

PLA Optimization

17-3

NOTE
The user may specify AT40k or AT6k as the target FPGA.

IDS Figaro Tutorial

17-4

2. To describe a design in ABEL:
§ Click on the Open Shell Window button on the vertical toolbar to access the DOS environment in the design

directory.
§ Enter the ABEL description of the adder as specified below.
§ Invoke ABEL to translate the description. This is done by starting ABEL, opening up the adder.abl file, and then

choosing the Compile>Compile menu item. A PLA file with the extension *.tt1 will be created in the design directory.

3. Do the design setup again for the “sub” module. Again, run ABEL to create the *.tt1 file for the “sub” macro.

4. Repeat the same process for the “control” module. Additionally, run the optimization step in ABEL This will produce a
*.tt2 file.

The ABEL description of these three modules is given in the figures below.

module adder;
title '4 bit adder';

"inputs
a1,a2,a3,a4 pin 1,2,3,4;
b1,b2,b3,b4 pin 5,6,7,8;

"outputs
o1,o2,o3,o4 pin 9,10,11,12;

"sets
A = [a1,a2,a3,a4];
B = [b1,b2,b3,b4];
O = [o1,o2,o3,o4];

equations
 O = A + B;
end

ABEL Description of 4-bit Adder

module sub;
title '4 bit subtractor';

"inputs
a1,a2,a3,a4 pin 1,2,3,4;
b1,b2,b3,b4 pin 5,6,7,8;

"outputs
o1,o2,o3,o4 pin 9,10,11,12;

"sets
A = [a1,a2,a3,a4];
B = [b1,b2,b3,b4];
O = [o1,o2,o3,o4];

equations
 O = A - B;
end

ABEL Description of 4-bit Subtractor

PLA Optimization

17-5

module control
title 'Control state diagram for add/sub operation';

"inputs
clock, reset pin 1,2;
sin pin 3;

"outputs
sub, add pin 4,5;

"states
q1, q2 node istype 'reg_d,buffer';
add_sub_control = [q1,q2];

"state values
s1 = 0; s2 = 2; s3 = 3; s4 =4;

equations
add_sub_control.clk = clock;
add_sub_control.ar = reset;

state_diagram add_sub_control

State s1: sub = 0;
add = 0;
if (sin == 0) then s1 ;
else if(sin) then s2;
else s1;

State s2:
sub = 0;
add = 0;
if(sin) then s3;
else s1;

State s3:
if(sin) then s1 with add = 0; sub = 1;
else if(!sin) then s2 with add = 1; sub =0;

end

ABEL Description of Sequence Detector

Optimizing in the ABEL Environment

Some designs can be more efficiently optimized as AND-OR equations as opposed to AND-XOR equations. AND-XOR
optimization consists of reading a PLA file and optimizing it using AND-XOR optimization techniques. AND-OR minimization is
not done in PLA optimization. However, mapping of already optimized AND-OR equations is provided. If AND-OR
optimization is chosen, a *.tt2 file must already exist in the design directory.

Notes to ABEL 5.X users

In version 5.1 ABEL, a *.tt2 file can be generated by setting the PLA file option in the Xfer>Translate Options dialog box and
pressing the Xfer>Translate button.

The ABEL compiler from version 5.1 onwards does not produce a *.tt1 file. If AND-XOR optimization is desired, a *.tt2 file can
be renamed to *.tt1 before invoking the PLA optimization user interface.

IDS Figaro Tutorial

17-6

Optimizing with Figaro

The 3 designs will now be brought back into Figaro to minimize logic and perform technology mapping. The first step to
minimization consists of setting the optimization criteria. Knowledge of the design will help in this determination. Since adders
and subtractors are arithmetic functions, AND-XOR technology may work most efficiently, while the control state machine can
work better with AND-OR technology.

Once the optimization criteria is determined, the next step is to minimize and map an ABEL module to the FPGA layout. Steps
involved in optimizing and translating the adder are listed below. Similar steps should be taken to optimize the “sub” and
“control” modules.

1. Use File>Design Setup to select the adder again.

2. Click on the PLA Optimization button. The PLA2Cdb window will appear. Complete the screen settings as described
below.

PLA2Cdb Dialog Box

3. Specify the Technology as AndOr.

4. Click OK.

The program runs are displayed on screen that shows a summary of all warnings and errors. Details of the process can be
found in the file pla2cdb.lst.

For a full explanation of IDS messages, refer to the Technical Reference manual.

Complete running pla2cdb on the other 2 modules, specifying the Technology to be AndOr for the “control” block.

PLA Optimization

17-7

Creating A Top-level Design

Once all sub-modules are created, they can be connected to each other and to I/O pads in the top-level schematic. Steps
involved in creating a top-level design are listed below.

1. Use File>Design Setup to create a new design called “Toplevel”.

2. Press the Schematic Entry button to bring up the Viewlogic schematic editor and create the top-level schematic.

3. Interconnect the modules and I/Os.

Once the modules are connected, a design can be placed and routed using IDS programs.

Recommendations for describing a design in ABEL

1. Partition the system carefully to produce medium sized modules. Medium sized modules produce optimal logic minimi-
zation and efficient implementation in a layout.

2. Decide on the optimization criteria first.

3. Avoid using JK flip-flops.

4. Use of tri-state nodes is discouraged. Tri-stating of non-combinatorial nodes, with the exception of a D-type flip-flop, is
not supported.

5. The use of multiple clocks and resets is discouraged.

It should be noted that some syntactic conventions related to ABEL extensions must be followed when designs are targeted
to AT6000 FPGAs. Refer to the “CAE Interfaces” section of the Technical Reference for a list of supported extensions and
their meanings.

QuickChange

18-1

QuickChange

The QuickChange software is used to access the Cache Logic capability of the Atmel FPGAs.

The design used in the tutorial contains a number of pulse generators. The QuickChange software is used to select the output
of one of the pulse generators. This output is fed to a LED, which blinks at a rate equal to the frequency of that pulse
generator.

The design created in this tutorial contains 4 pulse generators. The outputs of these pulse generators are multiplexed together
using a 4 to 1 MUX macro. The output of this macro is assumed to be connected to an LED, which will blink at an interval
equal to the selected frequency. The two select lines of the 4 to 1 MUX are connected to a two-bit array of constants. The
constants are modified using QuickChange to make the appropriate selection.

The output of each individual pulse generator should also be connected to its own LEDs. This facilitates observation of the
QuickChange LED versus the original setup.

Software Requirements

The following software setup is needed to create the demonstration design:

§ WorkView Office or other Viewlogic schematic capture software to view the schematic.
§ Atmel IDS

Hardware Requirements

In addition to the software setup, the following hardware components are needed:

§ 32 HZ square wave frequency source
§ 5 LEDs

The Blinker Schematic

IDS Figaro Tutorial

18-2

The circuit used in the tutorial is shown in the schematic diagram above. This example uses four counters to divide the input
frequency of 32 Hz. cnt2 is a 2-bit counter and its RCO pin toggles every 8 Hz. cnt3 is a 3-bit counter and its RCO pin toggles
every 4 Hz. cnt4 is a 4-bit counter and its RCO pin toggles every 2 Hz. Finally, cnt5 is a 5-bit counter and its RCO pin toggles
every 1 Hz. The four outputs of these counters are multiplexed using a 4 to 1 MUX macro. The select lines of this macro are
controlled by an array of constant cells with the output bus called BLINK_FREQUENCY[1:0].

NOTE
The design files for Viewlogic can be copied from the \SystemDesigner\atmel\examples\at6k\clogic directory or
generated by following the steps in this tutorial.

Design Setup

To set up the environment for this exercise, follow the steps below:

1. Start IDS by clicking on the Figaro.

2. In Figaro, use the icon or File>Design Setup menu to set up the design and select the associated tool flow for it. The
Design Directory Setup dialog box will be brought up.

Design Setup Dialog Box

NOTE
The QuickChange software is supported for AT6k FPGAs only.

3. Click on New Design to invoke the New Design dialog box. Set the Design Directory and Design Name fields to \qchange
and “blinker” respectively. Set Tools Flow to Viewlogic - WorkView Office or the appropriate tool flow.

QuickChange

18-3

New Design Directory Dialog Box

4. Dismiss New Design Directory and Design Setup dialog boxes by clicking on OK.

Library Setup

The design consists of components (counters and an array of constants) that are to be created using the Macro Generators.
Figaro treats these macros as library modules and inserts them into the library. Consequently, a user library must be set up.
This library can be established by selecting the Library>Library Setup menu.

Library Setup Dialog Box

1. Click on Add Before to invoke the Add Library and Path dialog box. Enter the Library Name as “qchange.lib”.

IDS Figaro Tutorial

18-4

Add Library and Path Dialog Box

2. Dismiss the Add Library and Path and Library Setup dialog boxes by pressing OK.

Generating Components

Select the Macro Generators icon from the Figaro Flowbar to bring up the user interface.

Generating Counters

Generating Counters
1. Select the COUNTERS tab in the Macro Generators user interface. Then select the Counter-Ripple Carry tab. To gen-

erate a 2-bit counter, set the various fields as shown in the figure above (Direction UP, Width 2, Macro Name cnt2.)
Create the macro by pressing the GENERATE button.

2. Using the same procedure, generate the 3, 4, and 5 bit counters and name them cnt3, cnt4 and cnt5 respectively.

Generating Constants
1. Change the Generators page of the Macro Generators Interface to MISC and select the Constant generator.

2. Set the fields of the Generators as shown in the figure below (Width 2 and Macro Name const2).

QuickChange

18-5

Generating Constants

3. Create the macro by pressing the GENERATE button. Dismiss the Macro Generators User Interface. Note that the
default value of const2 is set to 00.

Creating the Schematic
The “blinker” schematic has been provided in the \SystemDesigner\atmel\examples\clogic directory in Viewlogic format. If
another CAE system is to be used, the schematic must be created.

Components cnt2, cnt3, cnt4, cnt5 and const2 are accessed from the “qchange” library. The remaining components, ITTL, OD,
CLKBUF, RSTBUF and MUX41 are accessed from the “AT6K” library.

Label the output bus name of const2 to BLINK_FREQUENCY[1:0]. This bus name will be displayed in the QuickChange user
interface.

Placement and Routing
The netlist file can be read into Figaro by clicking on the Open button on the toolbar. Answer the Macro or Design dialog box
with the Design option. Specify Files of Type as Viewlogic Wir (*.1) and verify that Existing Design File is set to blinker.1 .

Selecting Parts
1. Press on the Parts button on the toolbar.

2. Select AT6002-2JC part and add it to the Device Browser by pressing the Add button. Dismiss the Part Select dialog box
by pressing the OK button.

IDS Figaro Tutorial

18-6

The Part Select Dialog Box

Assigning Pin Locks
1. Invoke the Assign Pin Locks dialog box by selecting Edit>Assign Pin Locks from the menu bar.

3. Assign the pins to BLINK1, BLINK2, BLINK4, BLINK8 and BLINKOUT signals as shown below. These pins will be
connected to the LED pins on an actual hardware set up.

Assign Pin Locks Dialog Box

Placement and Routing
Press the Compile button on the Flowbar to complete the placement and routing of the design.

Setting Up the Hardware

The hardware should be set up as follows:

1. Install an AT6002-2JC device on the FPGA prototype board supplied by Atmel.
2. Install 5 LEDs on the board.
3. Connect a pin of each LED to system ground.
4. Connect the other LED pins to pins 1, 2, 3, 4 and 5 of the FPGA (or whichever pins were assigned during the layout

process).

5. Connect a 32 Hz clock source to Pin 1 of the FPGA. The user may optionally connect the RST pin (pin 53) to VDD.

QuickChange

18-7

Reconfiguring with QuickChange

After the hardware is properly set up, the FPGA can be reconfigured to create the flickering of the LED connected to the net
labeled “BLINKOUT”.

The first step in the download sequence is to configure a complete FPGA with the bitstream produced from the design.

1. Power up the FPGA prototype board.

2. Press the Download button provided on the Figaro Flowbar, to display the Bitstream Download dialog box.

Bitstream Download Dialog Box

3. Select the blinker.bst bitstream displayed in the Design Bitstreams list. Press the OK button to download the initial
bitstream.

4. Since the value of the BLINK_FREQUENCY is 00, the BLINKOUT LED should flicker with a 1 Hz frequency (tied to the 5
bit or divide by 32 counter).

5. Invoke the QuickChange software by pressing the QuickChange button provided on the Figaro Flowbar.

QuickChange Dialog Box

IDS Figaro Tutorial

18-8

The settings on the user interface above will create a new bitstream named blink2z, which changes the blinking frequency of
the LED from 1 Hz (original blinking frequency) to 2 Hz. This is done by changing the BLINK_FREQUENCY constant to select
the output of the 4 bit counter. This will divide the 32 Hz clock by 16 to produce a 2 Hz signal. Make sure that the Download
LPT1 box is checked to automatically download the results to the prototype board. Execute the bitstream generation by
pressing OK. The BLINK LED should blink twice as fast as before.

Using the same procedure, generate blink4z (new value 10) and blink8z (new value 11) bitstreams and download them onto the
FPGA.

Retrieving and Downloading Old Bitstreams

If required, the bitstreams can be created with QuickChange in one session and downloaded later.

The QuickChange software produces two bitstreams:

1. OutputDesign.bst, a complete bitstream which contains the original design with the changed constants.
2. OutputDesign.win, a windowed bitstream which contains only the constants (absolute) or only the changed constants

(relative).

3. If the bitstreams generated in the steps above are to be downloaded onto an FPGA in a separate session, power down the
chip at this point.

4. Power up the device when ready to resume the session and invoke the Bitstream Download dialog box.

Bitstream Download with *.bst and *.win Files

5. Select blinker.bst from the list and press OK. The bitstream will be downloaded onto the FPGA.

6. Scroll down to the bitstreams with the *.win extensions.

Bitstream Download with *.win Files

QuickChange

18-9

6. Select the blink2z.win bitstream and download it onto the FPGA. Other bitstreams can be selected and downloaded in the
same fashion.

Making Relative Bitstreams

The configuration contents of any bitstream that was previously generated by the QuickChange software can be displayed by
choosing the appropriate name in the Design field of the QuickChange dialog box.

For example, to inspect the configuration of blink2z, scroll the design list and select the blink2z design. The information in the
Configuration Information fields below changes immediately to reflect the newly selected design.

In relative cache logic, when a base line bitstream is selected and displayed in the Design field, its associated Old Value is
shown. Information entered in the New Value field is implemented relative to that specified in the Old Value field. For absolute
cache logic, the Design name is irrelevant because the bitstream location is changed in an absolute fashion.

	Title Page
	Introduction
	Figaro
	About Figaro and this Guide
	Getting Started
	A Quick Implementation
	Timing-Driven Implementation
	Manual Editing and User Macros
	Mapping
	Mapping AT6K Designs to AT40K
	Partitioning
	Additional Features
	Troubleshooting and Support
	A Summary of Menu Commands
	Figaro Files

	CAE Interfaces
	Schematic Entry
	ORCAD
	Viewlogic

	HDLPlanner
	Synthesis
	Exemplar Logic
	Synopsys FPGA Compiler
	Synopsys FPGA Express

	Model Technology Simulation
	PLA Optimization
	QuickChange

