
IAR Application Note

Migrating from the previous product

SUMMARY
This application note describes how to modify source code written for the AT90S IAR
Compiler in order to use it with the AVR IAR Compiler.

KEYWORDS
ATMEL AT90Sxxx, C, AVR, migrate.

Background
Your application was originally written for the AT90S IAR Compiler, but now you want to
take advantage of the brand new features of the AVR IAR Compiler, which is based on the
latest IAR compiler technology. This technology allows you to enhance your application
code in a way that was previously not possible. The highlights are that there is:

• Availability of embedded C++.

• A new global optimizer, which improves the efficiency of the generated code.

• Stronger adherence to the ISO/ANSI standard; for example, it is possible to use #pragma
directives instead of extended keywords for defining special function registers (SFRs). In
addition, the checking of data types adheres more strictly to the ISO/ANSI standard in the
AVR IAR Compiler than in products using a previous generation of compiler technology.

The AVR IAR Compiler generates more efficient object code than previously possible. It
is, however, required that you make some modifications to your existing source code
before compiling it with the new AVR IAR Compiler, which may otherwise generate
warnings or error messages.

The Modifications Required
The following aspects of the source code are affected by the new compiler technology and
therefore, need modification:

• Extended keywords

• #pragma directives



• Intrinsic functions

• Startup sequence Mainly, it is the notation of the language extensions that has changed.
In some cases, the behavior and scope is also different. For example, some extended
keywords and #pragma directives have been removed, while new ones have been added.

The new compiler technology also introduces new compiler options. This means that the
project configuration in the IAR Embedded Workbench differs between the AT90S IAR
Compiler and the AVR IAR Compiler. It is therefore very important that you install the
AVR IAR Compiler toolkit in a separate directory and that you keep all source files and
project files apart. You will then be able to continue using the AT90S IAR Compiler if
you so wish.

Note: The mechanisms that control the initialization of segments differ completely
between the two products. This means that you cannot use a CSTARTUP file from the
AT90S IAR Compiler in an AVR IAR Compiler project.

The Solution
IAR Systems offers the following solutions:

• The file comp_a90.h, which is included with the product, helps you get your AVR
project up and running quickly. It contains translation macros that facilitate the migration
by taking care of changes in the notation such as new names on intrinsic functions and
double underscores on extended keywords; for example, __near instead of near.

• A comprehensive and detailed chapter, Migrating to the AVR IAR Compiler in the AVR
IAR Compiler Reference Guide, is available for reference.

• A step-by-step process is clearly outlined in order for you to verify that you have covered
the required steps.

The Migration Process
1. Install the IAR Embedded Workbench toolkit with the AVR IAR Compiler toolkit in a

directory separate from the AT90S IAR Compiler. Make sure that all your source code
files and project files are kept apart.

2. Create a new project and copy your existing source code files to it.

3. Examine the use of doubles in the existing source code.

The AT90S IAR Compiler supports only 4-byte doubles, while the AVR IAR Compiler
supports both 4-byte and 8-byte doubles. Use the compiler option -–64bit_doubles to
control the size of the double type.

If you do not use 8-byte doubles, it is not necessary not modify doubles in the source
code.



4. Replace the AT90S IAR Compiler extended keywords in the source code with AVR IAR
Compiler keywords.

In the AVR IAR Compiler, all extended keywords except asm start with two underscores,
for example __near. This is managed by the migration macros in the file comp_a90.h.

Notice that the behavior of the following extended keywords has changed: memory
specification keywords (for example, __near and __flash), __no_init, __interrupt,
and __monitor.

In the AVR IAR Compiler, the sfrb and sfrw keywords are not available. Replace sfrb
with volatile __io unsigned char and replace sfrw with volatile __io unsigned
int.

Refer to the AVR IAR Compiler Reference Guidefor details.

5. Replace the AT90S IAR Compiler #pragma directives with AVR IAR Compiler
directives. Notice that the behavior differs between the two products. For example:

• In the AT90S IAR Compiler, the directives #pragma memory and #pragma
function change the default attribute to use for declared objects; they do not
have any effect on pointer types.

• In the AVR IAR Compiler the directives #pragma type_attribute and #pragma
object_attribute change the next declared object or typedef.

The set of #pragma directives in the AVR IAR Compiler is quite different from that in
the AT90S IAR Compiler. Refer to the AVR IAR Compiler Reference Guide for details.

6. Replace the AT90S IAR Compiler intrinsic functions with AVR IAR Compiler intrinsic
functions.

In the AVR IAR Compiler, the intrinsic functions start with two underscores, for example
__enable_interrupt. This is handled by the migration macros in the file comp_a90.h.

The AT90S IAR Compiler intrinsic functions _args$ and _argt$ are not available in the
AVR IAR Compiler. Other AT90S IAR Compiler intrinsic functions are available, but
have new names in the AVR IAR Compiler. The translation of names is handled by the
migration macros in the file comp_a90.h.

New intrinsic functions have been added in the AVR IAR Compiler. Refer to the AVR
IAR Compiler Reference Guide for details.

7. Rewrite interrupt functions from:
interrupt void [vector] func()

to

#pragma vector=vector
__interrupt void func()



8. Modify the predefined symbols.

In the AVR IAR Compiler, all predefined symbols start and end with double underscores,
for example __IAR_SYSTEMS_ICC__.

New predefined symbols have been added in the AVR IAR Compiler, for example,
__ICCAVR__ which allows you to distinguish between the compilers. See the AVR IAR
Compiler Reference Guide for details.

9. Compile the code using appropriate AVR IAR Compiler compiler options; these are
described in the chapter Compiler options in the AVR IAR Compiler Reference Guide. If
you use the IAR Embedded Workbench, refer to the AVR IAR Embedded Workbench
User Guide.

10. Link the code by using one of the ready-made linker command files provided with the
product. Alternatively, use the appropriate linker command file template and modify in
accordance with the requirements of your application. This is described in the
Configuration chapter in the AVR IAR Compiler Reference Guide.

11. Run the project in the IAR C-SPY Debugger in order to sort out any remaining problems.

Note: When your project compiles without problem, you should substitute the intrinsic
functions properly in the source code. The comp_a90.h migration file is intended as an
interim solution.

The User Benefits
By following the migration process described above, you will be able to compile your
existing application with the brand new AVR IAR Compiler compiler with minimal effort.

Conclusion
In spite of the obvious differences between the AT90S IAR Compiler and the AVR IAR
Compiler, existing AT90S IAR Compiler applications can easily be adapted to benefit from
the advantages of the new AVR IAR Compiler.

Copyright 2000 IAR Systems. All rights reserved.


