FPSLIC Training Series (AVR Assembly based designs)

Software Requirements Hardware Requirements

e System Designer o ATSTK94 Starter Kit
e Atmel AVR Macro Assembler
e Atmel AVR Studio

e CPS

LAB 1 - AVR Assembler and Programming Utility
LAB 2 - AVR Studio

LAB 3 - Using PORTD and PORTE

LAB 4 - Using Timer/Counter0

LAB 5 - Using the SRAM Memory

LAB 6 - Reaction Tester

System Designer 3.0 ASM/09/02

LAB 1: AVR Assembler and Programming Utility

The goal of LABI is to familiarize yourself with the 4VR Macro Assembler (included with System Designer), the FPSLIC
Programming Utility (CPS), and the ATSTK94 FPSLIC Starter Kit. This LAB will teach you how to assemble and download
a program to the Starter Kit using the Atmel FPSLIC Tools.

Design Overview-LEDTEST.ASM

The LEDTEST .ASM program (Figure 1) is an assembly language program, which uses the LEDs
(LED1-LEDS) on the Starter Kit board to display a binary counter pattern. This program configures
PORTD (AT94K) as an output and uses a variable, “Temp”, to store the current count.

.include "at94kdef.inc" ; LED Test

.def Temp =rlé6 ;temporary register
.def Delay =rl7

.def Delay2 =rl8

;*¥***xx Initialization

RESET:
1di temp, low (0x0FFF)
out SPL, temp
1di temp, high (0XO0FFF)
out SPH, temp ;init Stack Pointer
ser Temp
out DDRD, Temp ;PORTD = all outputs
clr Temp ;Clear Temp = $00

;**%% Test input/output

loop:
out PORTD, Temp ;joutput data to PORTD
inc Temp

;**** Now wait a while to make LED changes visible.

DLY:
dec Delay
brne DLY
dec Delay2
brne DLY
rjmp loop jrepeat loop endlessly

Figure 1: LEDTEST . ASM

Creating a New Project in System Designer

1. Go to Start > Programs > Atmel > System Designer3.0 to open System Designer .
2. From the “Project” menu select “New...”

3. Select “New Project Wizard”. This will open the New Project Wizard, which allows you to choose your project
directory, select which part you want to design with and configure the design tool flow.

4. Press “Next >”

5. Set-up the Design Directory — C: \TRAINING\AVR\LAB1

6. Setup the Design File Name — LAB1

7. Press “Next >”

8. Inthe “New Project Wizard Parts Dialog” select the AT94K40-25DQC, this is the 208-pin TQFP device on the

ATSTK94.

9. Press “Next >”

10. In the “New Project Wizard Tool Flow Dialog select “Mentor — VHDL”

11. Press “Next >"

12. Tt is possible to add multiple parts to work on using the New Project Wizard Add More Parts Dialog, but for this lab
session we will focus on a single AT94K device.

13. Press “Next >”

14. Press “Finish” on the New Project Wizard Congratulations Dialog.

15. Upon clicking the “Finish” button, the “Device View” will be present, click on the part to enter the “Design Flow View”.

Project Edit Tool: Options Help

Davice View
N Project: Lab1.apj Part - L1 : AT94K40-2500C
~ | Lab1 apj = -
= |- ERSEm FPG& Specificati Interface Specificat AWR Specificati
eCcIfIicCaon eCITICENon
H - A HOL Syrthesiz: [ctraining. ® EINFELES SSEIE B
- F Software Compiler : [c:'train ‘L ¢
- A Pre-layvout Coverification : [o HOL Ertry Dievice Options Code Entry
dir-e
il 2 FPGA Place and Router: [c Text Editar AT34K Device Option Test Editar
S a Post-layout Coverification : [ﬁ_ l l
Standalone Functional Interface Connections Compiler
Simulation
) EVR-FPGA Interface S Campiler. ..
Sl atar
% + ' ;
HOL Synthesis Prelayout Coverification Standalone Functional
Debug
Synthesiz Tool Pre-lapout Coverify....
l Sw Debugger. ..
FPGA Place & Route Postlayout Coverification
Figara ID'S.... Post-layout Coverify..
| |_i_| -
Standalone Postlavout
K1 — I | >
Log
Log: Part U1 : AT94K40-250QC added to project Lab1.apj ﬂ
Log: Part U1 (AT94K40-2500C) toolflow et to Mentor-YHOL j
-
Ut | AT34K40-2500C

Figure 1: System Designer Design Flow

The Design Flow view shows the steps required in doing a design for FPSLIC, using System Designer and Co-verification.
The arrows on the diagram show dependencies between the steps. So for example if you want to run Pre-layout Co-
verification, you have to do HDL Entry, Code Entry and compilation, and then define the interface between the AVR and
FPGA first.

In these labs we only concentrate on AVR part of FPSLIC (AVR Standalone) not on FPGA/Co-verification part of it. To do
an AVR design entry we can either follow the purple path or use the included editor in WAVRASM for source code entry; we
will choose the second option.

Writing Assembly in WAVRASM

The included Assembler in System Designer translates assembly source code into object code. The generated object code can
then be used by 4VR Studio to simulate or emulate the behavior of the AVR Microcontroller. The Assembler generates fixed
code allocations; consequently, no linking is necessary.

AVR Assembler Exercises

1. Open AVR Macro Assembler program by using the “Software Compiler” button in System Designer.

2. Open the Assembly file for editing by choosing File -> Open and navigating to the C\TRAINING\AVR\LABI directory
and select LEDTEST . ASM (See Figure 2).

Assemble the file by pressing “Assemble”.

4. Answer the questions below, and close the assembler.

(%)

Dpen HE|
File name: Fnlders: 0g
ILedtest.asm c:whraininghawrslabl -

Cancel
- (== ;I 4'
(== Training Metwork... |
[= &WR
#= Lab
[Bead only

Lizt files of type: Drrives:
| &ssembler Files [+ 45M) x| | B WINDOWS NT =]

Figure 2: WAVRASM Open File Dialog

AVR Assembler Questions
1. How many bytes of Program Memory does this program require? Answer:

Programming the Device

1. Press the “Device Programming” Button in System Designer
2. A window similar to Figure 3 will open

FPSLIC Control Register Settings

~ FPGA Bitstream

File Settings
[T Include FPGA Bitstream

FPSLIC CR Settin
Erawse | :

AWR Hex
¥ Include AVA Hex File

| CourainingyavRNab1\LEDTEST hey .., |

- Data RAM
" Load Data RAM during configuration

I Erowse |

Data Ram File Format:
| Atrnel Text Forrmat j

Help

Cansel

{1

Bitstream Download

¥ Program Configursic

Output Bitstream File: Density

I CMrainingvaRYabivpslic_testbst Browse | I 1 j'

Figure 3: Bitstream File Settings Window

3. Uncheck the “Include FPGA Bitstream” Option

4. Under “AVR Hex File” press the “Browse” Button, navigate to and select the
CATRAINING\AVR\LABI\LEDTEST .hex File

5. Press the “FPSLIC Control Register Settings” Tab and confirm that the options are set according to Figure 4.

FPSLIC Control Regi

~FPSLIC Contral Registers

[(B28) On Chip Debug Enable

™ (B27) JTAG Enable

¥ (Bas) AR Reset Pin Enabled

[(B3] Allow writes to AVR Program SREAM

o (B3] Allow cver write AVR Program SHAM Boothbl

¥ (BS&) XTAL Pad Bias Resister Enabled

v (B&7) TOSC Pad Bias Resister Enabled

- (BE2) Enable Cache Writes to FPGA by AVR

[(BE.3) Enable FPGA to ReadMrite to Data SRAM

- External Interrupts (B48 -BST} Help
Ext-INTO driven by:{™ PortE<ds> & INTPO pad

Ext-INTA driven by: (" PotE«<f= & |

‘o

=

File Settings

Lk

Cansel

EXt-INT2 driven by: © FortE<» @

Ext-INTS driven by: € Port E<f = :iNTF'é"pad' Bitetrearn Dowhload

~UART Fins (B5Z - BS3)

M Program Configurste
UARTO assigned tof . Port E<1:0=% UARTO pads

UART! assigned tof” Port E<3:2x0 UARTY pads Density
- AR ports O drive (BG4 -BES)———————— [1 =l
AR portD VD & BmA 20 ma

AMR port E 10 & 6ma 20 me,

Figure 4: Bitstream Control Register Settings

Before pressing “OK”, some hardware connections need to be performed:

Connect the 25-pin parallel cable to the 25-pin Male connector of the ATDH2225 download cable, the 10-pin
female header plugs into the 10-pin male header (J1) on the ATSTK94 Board.

Connect the power supply from an AC outlet to the 9V DC connector (P3) on the ATSTK94 Board

Make sure to set the Jumpers that are located in between the LEDs and Switches to the AVR (Switch side)
Adjust SW10 to PROG

Adjust SW14 to ON position

Press “OK” on the FPSLIC Control Settings dialog. CPS will automatically open and download the design to the device.

Check if AT94K Configuration has been successful:
Adjust SW10 to RUN Position

Press Reset switch (SW12) on the right hand board edge
You should see the LEDs count-up in a binary pattern

LAB 2: AVR Studio

AVR Studio

AVR Studio enables the user to fully control execution of programs on the built-in 4 VR Instruction Set Simulator. AVR
Studio supports source level execution of Assembly programs assembled with the built in 4 VR Assembler, compiled with
IAR’s C Compiler or the ImageCraft C Compiler. In this lab AVR Studio will be used together with the built-in 4VR
Instruction Set Simulator.

AVR Studio Exercises

1. Open the AVR Studio program using the “SW Debugger” button within System Designer.

2. Select “Open” from the “File” menu in AVR Studio. Browse to the C:\TRAINING\AVR\LAB2\ folder and double-click
on the LAB2.0OBJ file. AVR Studio may prompt you for some device information, enter the following information if
prompted. This will open the compiled source code.

1. Device: Custom

2. Program Memory: 16384
3. Data Memory: 4096

4. EEPROM: 0

5. 1/O Size: 64

6. Frequency: 4 MHz
3. Open the following additional views and arrange them as shown in Figure 5. This is done from the “View”menu. If you

are prompted for the location of the .AIO file navigate to C:\SYSTEMDESIGNER\BIN\FPSLIC.AIO.

File Edit Debug Breakpoints Trace & triggers ‘Watch DOptions View ‘wWindow Help

e EEEE e R G ek e

T
= Regiter MTES] [10 o BTE
B | o Taring R bz]| b dh A gg : gzgg Name Value Lacation

--— File: C:4Training', AVR\Lahz)LAEZ,ASH ——— “llzz - o=oo % FPSLIC
B3 = 0x00 =B CPu
cinclude "atSdkdef.inc” : LED Test R4 = 0z00 -5 FPGA Interrupt...
RS = 0=00 =-S5 External Interu...
.def Temp =rig JLENDOrary register RE = 0=00 T!merf[:nunlell]
.def Delay =ri7 R? = 0=00 -8 Timer/Counterl
_def Delayz =ri8 k8 - 0=00 Timer/Counter2
ggﬂ - gzgg =-¢ Watchdog
- 5 - -2 Port D
sREEEE Initializacion R11 = 0=00
B12 - nenn 2 putDData FEEEEECE o2
RESET: R13 = 0=00 2 DataDirection CEEEEECE 01
e Rl4 = 0=00 =2 Input Pins FEEEEEMCE 00
out SPL, temp g%g z gzgg £ PortE
1di temp, high |0xOFFF) B17 - 0200 33 I12C Interface
out SPH, tenp ;init Stack Fointer Rl - 0=00 -39 UART Interfac...
ser Temp 19 = =00 E-53 UART Interfac. ..
out DDRD, Terp sPORTD = all outputs RE20 = 0=00
clr Temp ;Clear Temp = 300 R21 = 0=00
R22 = 0=00
;*E%% Teat input/output ggi : gzgg
toop: R25 - 0z00
out PORTD, Temp ;output data to FORTD RB26 = 0=00
ine Tewp R27 = 0=00
R28 = 0=00
s#%%% ow wait & while to make LED changes wvisible. R29 = 0=00
BLY: R30 - 0=00 « |
4 bel R31 = 0=00
bi;e DEYEY E3 Processor O] x|
Et pelayz = I A
A es elay. | iy Program Counter |0=00000000 *-Register {00000
v — ——
Gl Stack Painter 0x00000000 “-Register {00000
BfwWatches Prev—— ——
= Cycle Counter 00000000 Z-Fegister |00000
£ Hessages =3 Time Elapsed |0.00us Frequency |4.0 MHz
% Flag: StopWwatch
(Flllﬂlélilﬂlzﬁurgearl 0.00 us ‘
| | Simulatar |Custom NUM |

Figure 5: AVR Studio
AVR Studio Questions
These questions will step you through several features of AVR Studio. This will make you more familiar with AVR Studio,
which will help you debug your programs in LAB3, LAB4, and LABS.

AVR Studio Basics

1. After AVR Studio environment is loaded, use the “Debug — Step Over” (F10) or the shortcut icon to single step five
instruction. What is the value of the Temp wvariable (R16)?

2. Single step another instruction (F10). How is PORTD configured? Use Flgure 6 to show your answer.

T THNELS LUUTNIE L

- wWatchdog

Port D

2 Poit D Data FEEEEEIET 002
2 DataDiection FTEEFEECEIE 0411
22 |nput Ping FEEFEEIET o0
Port E

197 lobacfann

B (18 E-E-E 7

Figure 6: PORTD

3. Is PORTD configured as an “Input” or an “Output”?

AVR Studio Advanced

1. Reset AVR Studio. This is done by using the “Debug — Reset” (Shift + F5) from the menus.

2. Use the “View — New Memory View” (Alt + 4) to open a Memory Window. Once the Memory Window is open, select
Program Memory and “16-Bits” (Figure 7). What are the contents at Program Memory location 0x0000?

|F'rngram Memory vl ap g |0x0000

Innnn M AT TT AT T AT TIT AT TIT AT T A T e e e e a.l

Figure 7: Memory Window Display Configuration

4. What are the Operational Codes (opcode) and instructions of LEDTEST . OBJ in Disassembly Mode? Toggle the
Disassembly Mode icon to switch to Disassembly Mode. Complete Table 1 to answer this question.

opcode | Instruction
EFOF LDI R16,0xFF

EFOF LDI R16,0xFF
BBO01 OouT 0x11,R16
2700 CLR RI16
BB02 OuT 0x12,R16
9503 INCR16

F7E1 BRNE -0x04

Table 1: Disassembled LEDTEST . OBJ

4. Toggle the Disassembly Mode icon to switch back to Source Mode. Once this is complete, set a breakpoint at the “inc
Temp” instruction. This is done by using “Breakpoints — Toggle Breakpoints” (F9). Use “Breakpoints — Show List” (Ctrl +
B) to view the address of this breakpoint. What is the address?

LAB 3: Using PORTD and PORTE

In this lab, a template, SWITCH . ASM, is provided to write a program to interface to the LEDs (LED1-

LEDS) and Switches (“SW5” and “SW6”) on the ATSTK94 FPSLIC Starter Kit using PORTD and PORTE. The function of

this program is outlined below:

1. When “SW5” is pushed, the LEDs Count Up (Binary Counter Pattern).

2. When “SW6” is pushed, the LEDs Count Down (Binary Counter Pattern).
3. When no Switches are pushed, the LEDs are Off.

Design Overview-SWITCH.ASM

The SWITCH.ASM program is outlined in Figure 8 and provides the basic template for this lab exercise. This file is located

at C:\TRAINING\AVR\LAB3\.

j*¥***%* Switch Test

.include "at94kdef.inc"

.def Temp =rlé6 ;jtemporary register

.def Test =rl9 ;jtemporary test register
.def Delay =rl17 ;Delay Variable

.def Delay2 =rl8 ;Delay

;*¥**xx% Tnitialization

RESET:
1di temp, low (0xO0FFF)
out SPL, Temp
1di temp, high (0x0FFF)
out SPH, Temp ;init Stack Pointer
ser Temp ;Set Temp = SFF
< AVR Instruction ;PORTD = all outputs
< AVR Instruction ;Enable pull-ups on PORTE
< AVR Instruction ;Set Temp = $00
< AVR Instruction ;Initialize PORTD = $00

V.V VYV

;***x%x Tegt SW5 and SW6

loop:
sbis PINE, 0 ;Is SW5 pushed?
dec Temp ;Decrement Temp

< AVR Instruction > ;Is SW6 pushed?

< AVR Instruction > ;Increment Temp

< AVR Instruction > ;Read PORTE

< AVR Instruction > ;Mask Off PE4 - PE7

< AVR Instruction > ;Check Switches

< AVR Instruction > ;Is SW5 or SW6 pushed?

clr Temp ;SW5 & SW6é Off/LEDs Off
outled: out PORTD, Temp joutput data to PORTD

j**** TED changes visible with delay

DLY:
Dec Delay
brne DLY
dec Delay2
brne DLY
rjmp loop ;repeat loop endlessly

Figure 8: SWITCH.ASM

10

LAB 3 Exercises

1. Use the template, SWITCH . ASM, and insert actual 4 VR Instructions to complete the program in Figure 18.
2. Once you have completed this program, assemble it using WAVRASM, and debug any errors that are present.
3. Run the program using AVR Studio and the ATSTK94 FPSLIC Starter Kit, to verify correct operation.

Note:
1. You can use any of the AVR Software Tools to help debug your program.

LAB3 Hints and Tips

Please refer to the “Programmable Logic and System Level ICs, FPSLIC Datasheet, 2000” for more information on
configuring PORTD and PORTE. To configure a PORTD as an Output, use the DDRD to select the direction. An LED is
illuminated when the corresponding pin is high or “1”. When using PORTE to interface the switches, the internal pull-ups
are used to force the input pins to a known state when they are not pushed.

11

LAB 4: Using Timer/Counter0

The goal of LAB 4 is to become more familiar with Timer /Counter0. In this LAB, Timer/Counter(will be configured to
count based on “CLK/1024” and will be displayed to the LEDs when SW5 is pressed. The function of the program is as
follows:

1. When “SW5” is pushed, the current count (binary counter pattern) will be displayed on LED1-LEDS.
2. When “SW5” is not pushed, the current count will not be displayed on the LEDs (the LEDs will hold the last valid count
after SW5 was released.)

Design Overview-TC0.ASM

The TCO . ASM program is outlined in Figure 9 and provides the basic template for this lab exercise.
This file is located at C:\TRAINING\AVR\LAB4\.

j**x*%* Ugsing Timer/Counter0
.include "at94kdef.inc"
.def Temp =rl6 ;temporary register
.def Delay =rl7 ;Delay Variable
.def Delay2 =rl8 ;Delay
;*¥**xx% Tnitialization
RESET:
1di temp, low (0xOFFF)
out SPL, temp
1di temp, high (0xX0FFF)
out SPH, temp ;init Stack Pointer
<AVR Instruction> ;Set Temp = S$FF
<AVR Instruction> ;PORTD = all outputs
<AVR Instruction> ;Enable pull-ups on PORTE
<AVR Instruction> ;Clear Temp = $00
<AVR Instruction> ;Initialize PORTD = $00
<AVR Instruction> ;T/CO Initialization Value (CLK/1024)
<AVR Instruction> ;Load T/CO Control Register
loop:
<AVR Instruction> ;Poll PORTEO
<AVR Instruction> ;Wait for Switch
<AVR Instruction> ;Get T/CO Count
<AVR Instruction> ;Output data to PORTD
DLY: dec Delay
brne DLY
dec Delay2
brne DLY
rjmp loop ;repeat loop endlessly

Figure 9: TCO.ASM

LAB 4 Exercises

1. Use the template, TCO . ASM, and insert actual A VR Instructions to complete the program in Figure 19.
2. Once you have completed this program, assemble it and debug any errors that are present.
3. Use AVR Studio and ATSTK94 to verify correct operation.

LAB 4 Hints and Tips

Please refer to the “Programmable Logic and System Level ICs, FPSLIC Datasheet, 2000” for more information on
configuring Timer/Counter0. “SWS5” is mapped to an input pin on PORTE. When configuring PORTE, the pin should
be configured as an input with an internal pull-up. PORTD is configured the same as in LAB 3.

12

LAB 5: Using the SRAM Memory

There are two goals for LAB 5: the first goal is become familiar with “Macros,” while the second goal is to write a program
to create a message in the SRAM. A template, SRAM.ASM (Figure 20) is provided as a starting point for this LAB. The
function of this program is as follows:

1. Clear the first 64 (0 to $3F) locations of SRAM using the SRAMCLEAR Macro.
2. Write a message in SRAM using an SRAMWRITE Macro. The contents of this message are indicated in the SRAM . ASM
template. Note that a single ASCII Character is written to memory each time that the SRAMWRITE Macro is executed.

Design Overview-SRAM.ASM

The SRAM. ASM program is outlined in Figure 20 and provides the basic template for this lab exercise. This file is located at
CATRAINING\AVR\LABS\.

LAB 5 Exercises

1. Use the template, SRAM . ASM, and insert actual 4 VR Instructions to complete the program in Figure 20.
2. Once you have completed this program, assemble it using WAVRASM, and debug any errors that are present.
3. To read the contents of SRAM, you can do the following:

e Simulate the SRAM.OBJ program is AVR Studio and use “View — New Memory View” to view the contents
of the SRAM.

LAB 5 Hints and Tips

e When using hex numbers in macros use the $VALUE notation, not the 0xVALUE notation.

LABS5 Questions
1. What is the message in SRAM?

13

j***%%x% Using the SRAM Memory

.include "at94kdef.inc"

.def Temp =rl6 ;temporary register
.def Index =rl7 ;SRAM Address Index

.macro SRAMWRITE

1di Temp, @1 ;Get SRAM Data
< AVR Instruction > ;Store Data Direct at SRAM Location
.endmacro

.macro SRAMCLEAR

1di XL, low (0x60)
1di XH,high (0x60) ;Initialize X Pointer = $0060
< AVR Instruction > ;Clear Index = $00
< AVR Instruction > ;Clear Temp = $00
loop : < AVR Instruction > ;Store Data and Post-increment X
cpi Index, @0 ;Compare Address with SRAM Size
< AVR Instruction > ;Address = Size, then done
< AVR Instruction > ;Inc Address to next location
rimp loop
done:
.endmacro
RESET: 1di temp, low (0xXFFF)
out SPL, temp
1di temp, high (0XFFF)
out SPH, temp ;init Stack Pointer
ser Temp ;Set Temp = SFF
out DDRD, Temp ;PORTB -> Output
clr Temp ;Clear Temp = $00
out PORTD, Temp ;Initialize PORTD
< AVR Macro > ;Clear EEPROM
< AVR Macro > ;SRAM ->Addr=$00, Data=$43
< AVR Macro > ;SRAM ->Addr=$01, Data=$4F
< AVR Macro > ;SRAM ->Addr=$02, Data=$4E
< AVR Macro > ;SRAM ->Addr=$03, Data=$47
< AVR Macro > ;SRAM ->Addr=$04, Data=$52
< AVR Macro > ;SRAM ->Addr=$05, Data=$41
< AVR Macro > ;SRAM ->Addr=$06, Data=$54
< AVR Macro > ;SRAM ->Addr=$07, Data=$55
< AVR Macro > ;SRAM ->Addr=$08, Data=$4C
< AVR Macro > ;SRAM ->Addr=$09, Data=$41
< AVR Macro > ;SRAM ->Addr=$0A, Data=$54
< AVR Macro > ;SRAM ->Addr=$0B, Data=$49
< AVR Macro > ;SRAM ->Addr=$0C, Data=$4F
< AVR Macro > ;SRAM ->Addr=$0D, Data=$4E
< AVR Macro > ;SRAM ->Addr=$S0E, Data=$53
< AVR Macro > ;SRAM ->Addr=$0F, Data=$21
loop: 1di Temp, $81 ;Turn LED7 & LEDO ON
out PORTD, Temp joutput data to PORTD
rjmp loop

Figure 10: SRAM.ASM

LAB 6: Reaction Tester

LAB6 combines LABI1 to LABS in a real application. The application is a reaction tester that measures how long it takes
from an LED being lit to a button being pressed. The final code should be run on the ATSTK94 FPSLIC Starter Kit
Evaluation Board.

To ease the task of generating the program a file named START1 . ASM is provided. This file includes some ready-made
functions, and provides the skeleton program. The code writing should follow the following steps:

Step 1. Generate Random Number

Use the Linear congruential method:

o X, =(19X, +27) mod 255

e X, is the old number.

e Use the AVR Hardware Multiplier for multiplication.
e Use 10 as the old value.

Step 2. Variable Delay

Generate a variable delay of length X*0.01s

e Use timer Counter 1.

e Count 40,000 Cycles at 4 MHz.

e Enable Clear Timer on Compare Match and count FCK/1 (TCCR1B)
Write 40,000 into OCR1A register

e Decrement X each time the OCF1A flag is set. Exit when X is 0.

e Turn on an LED when delay has expired.

Let X be the pseudo-random number from step 1.

Step 3. Measure Reaction Time

Measure time from LED lit until key pressed

e Use same delay in step 2, but modify slightly.
e This time, exit when any key is pressed.
e Time used is then -X

e Display time on LEDs in Binary.

e Let LEDs be lit for 2.5 seconds, then turn off.

Step 4. High Score

Store the best time in the SRAM

e Compare each time against the high-score

e Iftime is better, write the new high-score

e Blink result if it is high-score. Else turn LEDs on static.

Step 5. Reduce Power Consumption

Use Power-down Mode when waiting for player in Main.

e Enable power down mode in MCUR. Enable External Interrupt 0 and 1 in EIMF. Execute the sleep instruction

to enter power down mode.
Use Idle Mode in Delay routine
e Enable Timer/Counterl Compare Match interrupt (TIMSK). Enable idle mode in MCUR.

15

Solution LAB3

s**%%% Qwitch Test

.include "at94kdef.inc"

.def Temp =rl6 stemporary register
.def Test =r19 stemporary test register
.def Delay =rl17 ;sDelay Variable

.def Delay2 =r18 ;Delay

s¥*% %% Initialization

RESET:
Idi temp,low(0xOFFF)
out SPL,temp
Idi temp,high(0x0FFF)
out SPH,temp sinit Stack Pointer
ser Temp ;Set Temp = $FF
out DDRD, Temp ;PORTD = all outputs
out PORTE, Temp ;Enable pull-ups on PORTE
clr Temp ;Set Temp = $00
out PORTD, Temp ;Initialize PORTD = $00

;¥%%% Test SW0 and SW1

loop: sbis PINE,0 ;Is SW5 pushed?
dec Temp ;sDecrement Temp
sbis PINE,1 ;Is SW6 pushed?
inc Temp sIncrement Temp

in Test, PINE ;Read PORTE

andi Test, 0xOF ;Mask Off PE4 — PE7

cpi Test,0x00 ;Check Switches

brne outled ;Is SWS or SW6 pushed?

clr Temp ;SW5 & SW6 Off/LEDs Off
outled: out PORTD,Temp ;output data to PORTD

;¥%%% LED changes visible with delay

DLY: dec Delay
brne DLY
dec Delay2
brne DLY
rjmp loop jrepeat loop endlessly

16

Solution LAB4

yexxE% Using Timer/Counter(

.include "at94kdef.inc"

.def Temp =rl6 stemporary register
.def Delay =r17 ;Delay Variable
.def Delay2 =r18 ;Delay

s¥*%%% [nitialization

RESET:
Idi temp,low(0xOFFF)
out SPL,temp
Idi temp,high(0xOFFF)
out SPH,temp sinit Stack Pointer
ser temp ;Set Temp = $FF
out DDRD,temp ;PORTD = all outputs
out PORTE, temp ;Enable pull-ups on PORTE
clr temp ;Clear Temp = $00
out PORTD, temp ;Initialize PORTD = $00
Idi temp, 0x05 ;T/CO Initialization Value (CLK/1024)
out TCCRO, temp ;Load T/CO Control Register

loop: sbis PINE, 0 ;Poll PORTEOQ
rjmp loop sWait for Switch
in Temp, TCNT0 ;Get T/CO Count
out PORTD, Temp ;Output data to PORTD

DLY: dec Delay
brne DLY
dec Delay2
brne DLY
rjmp loop srepeat loop endlessly

17

Solution LABS

j¥FF*% Using the SRAM Memory

.include "at94kdef.inc"
.def Temp =rl6 stemporary register
.def Index =r17 ;SRAM Address Index

.macro SRAMCLEAR
Idi XL,low(0x60)
Idi XH,high(0x60) ;Initialize X Pointer = $0060

clr Index ;Clear Index = $00
clr Temp ;Clear Temp = $00
loop : st X+, Temp ;Store Data and Increment X
cpi Index, @0 ;sCompare Address with SRAM Size
breq done ;Address = Size, then done
inc Index ;sInc Address to next location
rjmp loop
done:
.endmacro

.macro SRAMWRITE

Idi Temp, @1 ;Get SRAM Data

sts @0, Temp ;Store Data Direct at SRAM Location
.endmacro

RESET: Idi temp,low(0xFFF)
out SPL,temp
Idi temp,high(0xFFF)
out SPH,temp sinit Stack Pointer
ser Temp ;Set Temp = $FF
out DDRD,Temp ;sPORTD -> Output
clr Temp ;Clear Temp = $00
out PORTD, Temp ;Initialize PORTD
SRAMCLEAR $3F ;Clear EEPROM
SRAMWRITE $60,$43 ;SRAM ->Addr=$00, Data=$43
SRAMWRITE $61,$4F ;SRAM ->Addr=$01, Data=$4F
SRAMWRITE $62,$4E ;SRAM ->Addr=$02, Data=$4E
SRAMWRITE $63,$47 ;SRAM ->Addr=$03, Data=$47
SRAMWRITE $64,$52 ;SRAM ->Addr=$04, Data=$52
SRAMWRITE $65,$41 ;sSRAM ->Addr=$05, Data=$41
SRAMWRITE $66,$54 ;SRAM ->Addr=$06, Data=$54
SRAMWRITE $67,$55 ;SRAM ->Addr=$07, Data=$55
SRAMWRITE $68,$4C ;SRAM ->Addr=$08, Data=$4C
SRAMWRITE $69,$41 ;sSRAM ->Addr=$09, Data=$41
SRAMWRITE $6A,$54 ;SRAM ->Addr=$0A, Data=$54
SRAMWRITE $6B,$49 ;SRAM ->Addr=$0B, Data=$49
SRAMWRITE $6C,$4F ;SRAM ->Addr=$0C, Data=$4F
SRAMWRITE $6D,$4E ;SRAM ->Addr=$0D, Data=$4E
SRAMWRITE $6E,$53 ;SRAM ->Addr=$0E, Data=$53
SRAMWRITE $6F,$21 ;sSRAM ->Addr=$0F, Data=$21
loop: I1di Temp, $81 sTurn LED7 & LEDO ON
out PORTD,Temp ;outputdata to PORTD
rjmp loop

18

