
System Designer 3.0 ASM/09/02

FPSLIC Training Series (AVR Assembly based designs)

Software Requirements Hardware Requirements
• System Designer • ATSTK94 Starter Kit

• Atmel AVR Macro Assembler
• Atmel AVR Studio

• CPS

LAB 1 - AVR Assembler and Programming Utility

LAB 2 - AVR Studio

LAB 3 - Using PORTD and PORTE

LAB 4 - Using Timer/Counter0

LAB 5 - Using the SRAM Memory

LAB 6 - Reaction Tester

2

LAB 1: AVR Assembler and Programming Utility

The goal of LAB1 is to familiarize yourself with the AVR Macro Assembler (included with System Designer), the FPSLIC
Programming Utility (CPS), and the ATSTK94 FPSLIC Starter Kit. This LAB will teach you how to assemble and download
a program to the Starter Kit using the Atmel FPSLIC Tools.

Design Overview-LEDTEST.ASM
The LEDTEST.ASM program (Figure 1) is an assembly language program, which uses the LEDs
(LED1-LED8) on the Starter Kit board to display a binary counter pattern. This program configures
PORTD (AT94K) as an output and uses a variable, “Temp”, to store the current count.

.include "at94kdef.inc" ; LED Test

.def Temp =r16 ;temporary register

.def Delay =r17

.def Delay2 =r18

;***** Initialization

RESET:
 ldi temp,low(0x0FFF)
 out SPL,temp
 ldi temp,high(0x0FFF)
 out SPH,temp ;init Stack Pointer
 ser Temp
 out DDRD,Temp ;PORTD = all outputs
 clr Temp ;Clear Temp = $00

;**** Test input/output
loop:
 out PORTD,Temp ;output data to PORTD
 inc Temp

;**** Now wait a while to make LED changes visible.
DLY:
 dec Delay
 brne DLY
 dec Delay2
 brne DLY
 rjmp loop ;repeat loop endlessly

Figure 1: LEDTEST.ASM

3

Creating a New Project in System Designer
1. Go to Start > Programs > Atmel > System Designer3.0 to open System Designer .
2. From the “Project” menu select “New…”
3. Select “New Project Wizard”. This will open the New Project Wizard, which allows you to choose your project

directory, select which part you want to design with and configure the design tool flow.
4. Press “Next >”
5. Set-up the Design Directory – C:\TRAINING\AVR\LAB1
6. Setup the Design File Name – LAB1
7. Press “Next >”
8. In the “New Project Wizard Parts Dialog” select the AT94K40-25DQC, this is the 208-pin TQFP device on the

ATSTK94.
9. Press “Next >”
10. In the “New Project Wizard Tool Flow Dialog select “Mentor – VHDL”
11. Press “Next >”
12. It is possible to add multiple parts to work on using the New Project Wizard Add More Parts Dialog, but for this lab

session we will focus on a single AT94K device.
13. Press “Next >”
14. Press “Finish” on the New Project Wizard Congratulations Dialog.
15. Upon clicking the “Finish” button, the “Device View” will be present, click on the part to enter the “Design Flow View”.

Figure 1: System Designer Design Flow

4

The Design Flow view shows the steps required in doing a design for FPSLIC, using System Designer and Co-verification.
The arrows on the diagram show dependencies between the steps. So for example if you want to run Pre-layout Co-
verification, you have to do HDL Entry, Code Entry and compilation, and then define the interface between the AVR and
FPGA first.

In these labs we only concentrate on AVR part of FPSLIC (AVR Standalone) not on FPGA/Co-verification part of it. To do
an AVR design entry we can either follow the purple path or use the included editor in WAVRASM for source code entry; we
will choose the second option.

5

Writing Assembly in WAVRASM
The included Assembler in System Designer translates assembly source code into object code. The generated object code can
then be used by AVR Studio to simulate or emulate the behavior of the AVR Microcontroller. The Assembler generates fixed
code allocations; consequently, no linking is necessary.

AVR Assembler Exercises
1. Open AVR Macro Assembler program by using the “Software Compiler” button in System Designer.
2. Open the Assembly file for editing by choosing File -> Open and navigating to the C:\TRAINING\AVR\LAB1 directory

and select LEDTEST.ASM (See Figure 2).
3. Assemble the file by pressing “Assemble”.
4. Answer the questions below, and close the assembler.

Figure 2: WAVRASM Open File Dialog

AVR Assembler Questions
1. How many bytes of Program Memory does this program require? Answer: ___________

6

Programming the Device
1. Press the “Device Programming” Button in System Designer
2. A window similar to Figure 3 will open

Figure 3: Bitstream File Settings Window
3. Uncheck the “Include FPGA Bitstream” Option
4. Under “AVR Hex File” press the “Browse” Button, navigate to and select the

C:\TRAINING\AVR\LAB1\LEDTEST.hex File
5. Press the “FPSLIC Control Register Settings” Tab and confirm that the options are set according to Figure 4.

7

Figure 4: Bitstream Control Register Settings

6. Before pressing “OK”, some hardware connections need to be performed:
• Connect the 25-pin parallel cable to the 25-pin Male connector of the ATDH2225 download cable, the 10-pin

female header plugs into the 10-pin male header (J1) on the ATSTK94 Board.
• Connect the power supply from an AC outlet to the 9V DC connector (P3) on the ATSTK94 Board
• Make sure to set the Jumpers that are located in between the LEDs and Switches to the AVR (Switch side)
• Adjust SW10 to PROG
• Adjust SW14 to ON position

7. Press “OK” on the FPSLIC Control Settings dialog. CPS will automatically open and download the design to the device.
• Check if AT94K Configuration has been successful:
• Adjust SW10 to RUN Position
• Press Reset switch (SW12) on the right hand board edge
• You should see the LEDs count-up in a binary pattern

8

LAB 2: AVR Studio

AVR Studio
AVR Studio enables the user to fully control execution of programs on the built-in AVR Instruction Set Simulator. AVR
Studio supports source level execution of Assembly programs assembled with the built in AVR Assembler, compiled with
IAR’s C Compiler or the ImageCraft C Compiler. In this lab AVR Studio will be used together with the built-in AVR
Instruction Set Simulator.

AVR Studio Exercises
1. Open the AVR Studio program using the “SW Debugger” button within System Designer.
2. Select “Open” from the “File” menu in AVR Studio. Browse to the C:\TRAINING\AVR\LAB2\ folder and double-click

on the LAB2.OBJ file. AVR Studio may prompt you for some device information, enter the following information if
prompted. This will open the compiled source code.

1. Device: Custom
2. Program Memory: 16384
3. Data Memory: 4096
4. EEPROM: 0
5. I/O Size: 64
6. Frequency: 4 MHz

3. Open the following additional views and arrange them as shown in Figure 5. This is done from the “View”menu. If you
are prompted for the location of the .AIO file navigate to C:\SYSTEMDESIGNER\BIN\FPSLIC.AIO.

Figure 5: AVR Studio
AVR Studio Questions
These questions will step you through several features of AVR Studio. This will make you more familiar with AVR Studio,
which will help you debug your programs in LAB3, LAB4, and LAB5.

9

AVR Studio Basics
1. After AVR Studio environment is loaded, use the “Debug → Step Over” (F10) or the shortcut icon to single step five

instruction. What is the value of the Temp variable (R16)? __________.
2. Single step another instruction (F10). How is PORTD configured? Use Figure 6 to show your answer.

Figure 6: PORTD

3. Is PORTD configured as an “Input” or an “Output”? __________.

AVR Studio Advanced
1. Reset AVR Studio. This is done by using the “Debug → Reset” (Shift + F5) from the menus.
2. Use the “View → New Memory View” (Alt + 4) to open a Memory Window. Once the Memory Window is open, select
Program Memory and “16-Bits” (Figure 7). What are the contents at Program Memory location 0x0000? __________.

Figure 7: Memory Window Display Configuration

4. What are the Operational Codes (opcode) and instructions of LEDTEST.OBJ in Disassembly Mode? Toggle the
Disassembly Mode icon to switch to Disassembly Mode. Complete Table 1 to answer this question.

opcode Instruction
EF0F LDI R16,0xFF

EF0F LDI R16,0xFF
BB01 OUT 0x11,R16
2700 CLR R16
BB02 OUT 0x12,R16
9503 INC R16

…
F7E1 BRNE -0x04

Table 1: Disassembled LEDTEST.OBJ

4. Toggle the Disassembly Mode icon to switch back to Source Mode. Once this is complete, set a breakpoint at the “inc
Temp” instruction. This is done by using “Breakpoints → Toggle Breakpoints” (F9). Use “Breakpoints → Show List” (Ctrl +
B) to view the address of this breakpoint. What is the address? __________.

10

LAB 3: Using PORTD and PORTE

In this lab, a template, SWITCH.ASM, is provided to write a program to interface to the LEDs (LED1-
LED8) and Switches (“SW5” and “SW6”) on the ATSTK94 FPSLIC Starter Kit using PORTD and PORTE. The function of
this program is outlined below:
1. When “SW5” is pushed, the LEDs Count Up (Binary Counter Pattern).
2. When “SW6” is pushed, the LEDs Count Down (Binary Counter Pattern).
3. When no Switches are pushed, the LEDs are Off.

Design Overview-SWITCH.ASM
The SWITCH.ASM program is outlined in Figure 8 and provides the basic template for this lab exercise. This file is located
at C:\TRAINING\AVR\LAB3\.

;***** Switch Test

.include "at94kdef.inc"

.def Temp =r16 ;temporary register

.def Test =r19 ;temporary test register

.def Delay =r17 ;Delay Variable

.def Delay2 =r18 ;Delay

;***** Initialization

RESET:
 ldi temp,low(0x0FFF)
 out SPL,Temp
 ldi temp,high(0x0FFF)
 out SPH,Temp ;init Stack Pointer
 ser Temp ;Set Temp = $FF
 < AVR Instruction > ;PORTD = all outputs
 < AVR Instruction > ;Enable pull-ups on PORTE
 < AVR Instruction > ;Set Temp = $00
 < AVR Instruction > ;Initialize PORTD = $00

;**** Test SW5 and SW6

loop:
 sbis PINE,0 ;Is SW5 pushed?
 dec Temp ;Decrement Temp
 < AVR Instruction > ;Is SW6 pushed?
 < AVR Instruction > ;Increment Temp
 < AVR Instruction > ;Read PORTE
 < AVR Instruction > ;Mask Off PE4 – PE7
 < AVR Instruction > ;Check Switches
 < AVR Instruction > ;Is SW5 or SW6 pushed?
 clr Temp ;SW5 & SW6 Off/LEDs Off
outled: out PORTD,Temp ;output data to PORTD

;**** LED changes visible with delay

DLY:
 Dec Delay
 brne DLY
 dec Delay2
 brne DLY
 rjmp loop ;repeat loop endlessly

Figure 8: SWITCH.ASM

11

LAB 3 Exercises
1. Use the template, SWITCH.ASM, and insert actual AVR Instructions to complete the program in Figure 18.
2. Once you have completed this program, assemble it using WAVRASM, and debug any errors that are present.
3. Run the program using AVR Studio and the ATSTK94 FPSLIC Starter Kit, to verify correct operation.

Note:
1. You can use any of the AVR Software Tools to help debug your program.

LAB3 Hints and Tips
Please refer to the “Programmable Logic and System Level ICs, FPSLIC Datasheet, 2000” for more information on
configuring PORTD and PORTE. To configure a PORTD as an Output, use the DDRD to select the direction. An LED is
illuminated when the corresponding pin is high or “1”. When using PORTE to interface the switches, the internal pull-ups
are used to force the input pins to a known state when they are not pushed.

12

LAB 4: Using Timer/Counter0

The goal of LAB 4 is to become more familiar with Timer/Counter0. In this LAB, Timer/Counter0 will be configured to
count based on “CLK/1024” and will be displayed to the LEDs when SW5 is pressed. The function of the program is as
follows:

1. When “SW5” is pushed, the current count (binary counter pattern) will be displayed on LED1-LED8.
2. When “SW5” is not pushed, the current count will not be displayed on the LEDs (the LEDs will hold the last valid count

after SW5 was released.)

Design Overview-TC0.ASM
The TC0.ASM program is outlined in Figure 9 and provides the basic template for this lab exercise.
This file is located at C:\TRAINING\AVR\LAB4\.

;***** Using Timer/Counter0

.include "at94kdef.inc"

.def Temp =r16 ;temporary register

.def Delay =r17 ;Delay Variable

.def Delay2 =r18 ;Delay

;***** Initialization

RESET:
 ldi temp,low(0x0FFF)
 out SPL,temp
 ldi temp,high(0x0FFF)
 out SPH,temp ;init Stack Pointer
 <AVR Instruction> ;Set Temp = $FF
 <AVR Instruction> ;PORTD = all outputs
 <AVR Instruction> ;Enable pull-ups on PORTE
 <AVR Instruction> ;Clear Temp = $00
 <AVR Instruction> ;Initialize PORTD = $00
 <AVR Instruction> ;T/CO Initialization Value (CLK/1024)
 <AVR Instruction> ;Load T/C0 Control Register

loop:
 <AVR Instruction> ;Poll PORTE0
 <AVR Instruction> ;Wait for Switch
 <AVR Instruction> ;Get T/CO Count
 <AVR Instruction> ;Output data to PORTD

DLY: dec Delay
 brne DLY
 dec Delay2
 brne DLY
 rjmp loop ;repeat loop endlessly

Figure 9: TC0.ASM

LAB 4 Exercises
1. Use the template, TC0.ASM, and insert actual AVR Instructions to complete the program in Figure 19.
2. Once you have completed this program, assemble it and debug any errors that are present.
3. Use AVR Studio and ATSTK94 to verify correct operation.

LAB 4 Hints and Tips
Please refer to the “Programmable Logic and System Level ICs, FPSLIC Datasheet, 2000” for more information on
configuring Timer/Counter0. “SW5” is mapped to an input pin on PORTE. When configuring PORTE, the pin should
be configured as an input with an internal pull-up. PORTD is configured the same as in LAB 3.

13

LAB 5: Using the SRAM Memory

There are two goals for LAB 5: the first goal is become familiar with “Macros,” while the second goal is to write a program
to create a message in the SRAM. A template, SRAM.ASM (Figure 20) is provided as a starting point for this LAB. The
function of this program is as follows:

1. Clear the first 64 (0 to $3F) locations of SRAM using the SRAMCLEAR Macro.
2. Write a message in SRAM using an SRAMWRITE Macro. The contents of this message are indicated in the SRAM.ASM

template. Note that a single ASCII Character is written to memory each time that the SRAMWRITE Macro is executed.

Design Overview-SRAM.ASM
The SRAM.ASM program is outlined in Figure 20 and provides the basic template for this lab exercise. This file is located at
C:\TRAINING\AVR\LAB5\.

LAB 5 Exercises
1. Use the template, SRAM.ASM, and insert actual AVR Instructions to complete the program in Figure 20.
2. Once you have completed this program, assemble it using WAVRASM, and debug any errors that are present.
3. To read the contents of SRAM, you can do the following:

• Simulate the SRAM.OBJ program is AVR Studio and use “View → New Memory View” to view the contents
of the SRAM.

LAB 5 Hints and Tips
• When using hex numbers in macros use the $VALUE notation, not the 0xVALUE notation.

LAB5 Questions
1. What is the message in SRAM? _________________________________.

14

;***** Using the SRAM Memory

.include "at94kdef.inc"

.def Temp =r16 ;temporary register

.def Index =r17 ;SRAM Address Index

.macro SRAMWRITE
 ldi Temp, @1 ;Get SRAM Data
 < AVR Instruction > ;Store Data Direct at SRAM Location
.endmacro

.macro SRAMCLEAR
 ldi XL,low(0x60)
 ldi XH,high(0x60) ;Initialize X Pointer = $0060
 < AVR Instruction > ;Clear Index = $00
 < AVR Instruction > ;Clear Temp = $00
loop : < AVR Instruction > ;Store Data and Post-increment X
 cpi Index, @0 ;Compare Address with SRAM Size
 < AVR Instruction > ;Address = Size, then done
 < AVR Instruction > ;Inc Address to next location
 rjmp loop
done:
.endmacro

RESET: ldi temp,low(0xFFF)
 out SPL,temp
 ldi temp,high(0xFFF)
 out SPH,temp ;init Stack Pointer
 ser Temp ;Set Temp = $FF
 out DDRD,Temp ;PORTB -> Output
 clr Temp ;Clear Temp = $00
 out PORTD, Temp ;Initialize PORTD
 < AVR Macro > ;Clear EEPROM
 < AVR Macro > ;SRAM ->Addr=$00, Data=$43
 < AVR Macro > ;SRAM ->Addr=$01, Data=$4F
 < AVR Macro > ;SRAM ->Addr=$02, Data=$4E
 < AVR Macro > ;SRAM ->Addr=$03, Data=$47
 < AVR Macro > ;SRAM ->Addr=$04, Data=$52
 < AVR Macro > ;SRAM ->Addr=$05, Data=$41
 < AVR Macro > ;SRAM ->Addr=$06, Data=$54
 < AVR Macro > ;SRAM ->Addr=$07, Data=$55
 < AVR Macro > ;SRAM ->Addr=$08, Data=$4C
 < AVR Macro > ;SRAM ->Addr=$09, Data=$41
 < AVR Macro > ;SRAM ->Addr=$0A, Data=$54
 < AVR Macro > ;SRAM ->Addr=$0B, Data=$49
 < AVR Macro > ;SRAM ->Addr=$0C, Data=$4F
 < AVR Macro > ;SRAM ->Addr=$0D, Data=$4E
 < AVR Macro > ;SRAM ->Addr=$0E, Data=$53
 < AVR Macro > ;SRAM ->Addr=$0F, Data=$21
loop: ldi Temp, $81 ;Turn LED7 & LED0 ON
 out PORTD,Temp ;output data to PORTD
 rjmp loop

Figure 10: SRAM.ASM

15

LAB 6: Reaction Tester
LAB6 combines LAB1 to LAB5 in a real application. The application is a reaction tester that measures how long it takes
from an LED being lit to a button being pressed. The final code should be run on the ATSTK94 FPSLIC Starter Kit
Evaluation Board.
To ease the task of generating the program a file named START1.ASM is provided. This file includes some ready-made
functions, and provides the skeleton program. The code writing should follow the following steps:

Step 1. Generate Random Number
Use the Linear congruential method:
• Xn+1 = (19Xn + 27) mod 255
• Xn is the old number.
• Use the AVR Hardware Multiplier for multiplication.
• Use r0 as the old value.

Step 2. Variable Delay
Generate a variable delay of length X*0.01s
• Use timer Counter 1.
• Count 40,000 Cycles at 4 MHz.
• Enable Clear Timer on Compare Match and count FCK/1 (TCCR1B)

Write 40,000 into OCR1A register
• Decrement X each time the OCF1A flag is set. Exit when X is 0.
• Turn on an LED when delay has expired.
Let X be the pseudo-random number from step 1.

Step 3. Measure Reaction Time
Measure time from LED lit until key pressed
• Use same delay in step 2, but modify slightly.

• This time, exit when any key is pressed.
• Time used is then -X

• Display time on LEDs in Binary.
• Let LEDs be lit for 2.5 seconds, then turn off.

Step 4. High Score
Store the best time in the SRAM
• Compare each time against the high-score
• If time is better, write the new high-score
• Blink result if it is high-score. Else turn LEDs on static.

Step 5. Reduce Power Consumption
Use Power-down Mode when waiting for player in Main.
• Enable power down mode in MCUR. Enable External Interrupt 0 and 1 in EIMF. Execute the sleep instruction

to enter power down mode.
Use Idle Mode in Delay routine
• Enable Timer/Counter1 Compare Match interrupt (TIMSK). Enable idle mode in MCUR.

16

Solution LAB3

;***** Switch Test

.include "at94kdef.inc"

.def Temp =r16 ;temporary register

.def Test =r19 ;temporary test register

.def Delay =r17 ;Delay Variable

.def Delay2 =r18 ;Delay

;***** Initialization

RESET:
 ldi temp,low(0x0FFF)
 out SPL,temp
 ldi temp,high(0x0FFF)
 out SPH,temp ;init Stack Pointer
 ser Temp ;Set Temp = $FF
 out DDRD, Temp ;PORTD = all outputs
 out PORTE, Temp ;Enable pull-ups on PORTE
 clr Temp ;Set Temp = $00
 out PORTD, Temp ;Initialize PORTD = $00

;**** Test SW0 and SW1

loop: sbis PINE,0 ;Is SW5 pushed?
 dec Temp ;Decrement Temp
 sbis PINE,1 ;Is SW6 pushed?
 inc Temp ;Increment Temp
 in Test, PINE ;Read PORTE
 andi Test, 0x0F ;Mask Off PE4 – PE7
 cpi Test, 0x00 ;Check Switches
 brne outled ;Is SW5 or SW6 pushed?
 clr Temp ;SW5 & SW6 Off/LEDs Off
outled: out PORTD,Temp ;output data to PORTD

;**** LED changes visible with delay

DLY: dec Delay
 brne DLY
 dec Delay2
 brne DLY
 rjmp loop ;repeat loop endlessly

17

Solution LAB4

;***** Using Timer/Counter0

.include "at94kdef.inc"

.def Temp =r16 ;temporary register

.def Delay =r17 ;Delay Variable

.def Delay2 =r18 ;Delay

;***** Initialization

RESET:
 ldi temp,low(0x0FFF)
 out SPL,temp
 ldi temp,high(0x0FFF)
 out SPH,temp ;init Stack Pointer
 ser temp ;Set Temp = $FF
 out DDRD, temp ;PORTD = all outputs
 out PORTE, temp ;Enable pull-ups on PORTE
 clr temp ;Clear Temp = $00
 out PORTD, temp ;Initialize PORTD = $00
 ldi temp, 0x05 ;T/CO Initialization Value (CLK/1024)
 out TCCR0, temp ;Load T/C0 Control Register

loop: sbis PINE, 0 ;Poll PORTE0
 rjmp loop ;Wait for Switch
 in Temp, TCNT0 ;Get T/CO Count
 out PORTD, Temp ;Output data to PORTD

DLY: dec Delay
 brne DLY
 dec Delay2
 brne DLY
 rjmp loop ;repeat loop endlessly

18

Solution LAB5

;***** Using the SRAM Memory

.include "at94kdef.inc"

.def Temp =r16 ;temporary register

.def Index =r17 ;SRAM Address Index

.macro SRAMCLEAR
 ldi XL,low(0x60)
 ldi XH,high(0x60) ;Initialize X Pointer = $0060
 clr Index ;Clear Index = $00
 clr Temp ;Clear Temp = $00
loop : st X+, Temp ;Store Data and Increment X
 cpi Index, @0 ;Compare Address with SRAM Size
 breq done ;Address = Size, then done
 inc Index ;Inc Address to next location
 rjmp loop
done:
.endmacro

.macro SRAMWRITE
 ldi Temp, @1 ;Get SRAM Data
 sts @0, Temp ;Store Data Direct at SRAM Location
.endmacro

RESET: ldi temp,low(0xFFF)
 out SPL,temp
 ldi temp,high(0xFFF)
 out SPH,temp ;init Stack Pointer
 ser Temp ;Set Temp = $FF
 out DDRD,Temp ;PORTD -> Output
 clr Temp ;Clear Temp = $00
 out PORTD, Temp ;Initialize PORTD
 SRAMCLEAR $3F ;Clear EEPROM
 SRAMWRITE $60,$43 ;SRAM ->Addr=$00, Data=$43
 SRAMWRITE $61,$4F ;SRAM ->Addr=$01, Data=$4F
 SRAMWRITE $62,$4E ;SRAM ->Addr=$02, Data=$4E
 SRAMWRITE $63,$47 ;SRAM ->Addr=$03, Data=$47
 SRAMWRITE $64,$52 ;SRAM ->Addr=$04, Data=$52
 SRAMWRITE $65,$41 ;SRAM ->Addr=$05, Data=$41
 SRAMWRITE $66,$54 ;SRAM ->Addr=$06, Data=$54
 SRAMWRITE $67,$55 ;SRAM ->Addr=$07, Data=$55
 SRAMWRITE $68,$4C ;SRAM ->Addr=$08, Data=$4C
 SRAMWRITE $69,$41 ;SRAM ->Addr=$09, Data=$41
 SRAMWRITE $6A,$54 ;SRAM ->Addr=$0A, Data=$54
 SRAMWRITE $6B,$49 ;SRAM ->Addr=$0B, Data=$49
 SRAMWRITE $6C,$4F ;SRAM ->Addr=$0C, Data=$4F
 SRAMWRITE $6D,$4E ;SRAM ->Addr=$0D, Data=$4E
 SRAMWRITE $6E,$53 ;SRAM ->Addr=$0E, Data=$53
 SRAMWRITE $6F,$21 ;SRAM ->Addr=$0F, Data=$21
loop: ldi Temp, $81 ;Turn LED7 & LED0 ON
 out PORTD,Temp ;output data to PORTD
 rjmp loop

