AVR32738: AVR32 AP700X Schematic Checklist

AMEL

32-bit **AVR**® Microcontrollers

Application Note

Features

- Power circuit
- · Reset and wake circuit
- USB connection
- External bus interface
- · ABDAC sound DAC interface
- JTAG and Nexus debug ports
- · Clock, crystal oscillator and PLL filter circuits

1 Introduction

A good hardware design comes from a proper schematic. Since AP7 devices have a fair number of pins and functions, the schematic for these devices can be large and quite complex.

This application note describes a common checklist which should be used when starting and reviewing the schematics for an AP7 design.

Rev. 32096C-AVR32-09/08

2 Power circuit

2.1 Power supply

Figure 2-1. Power supply example schematic

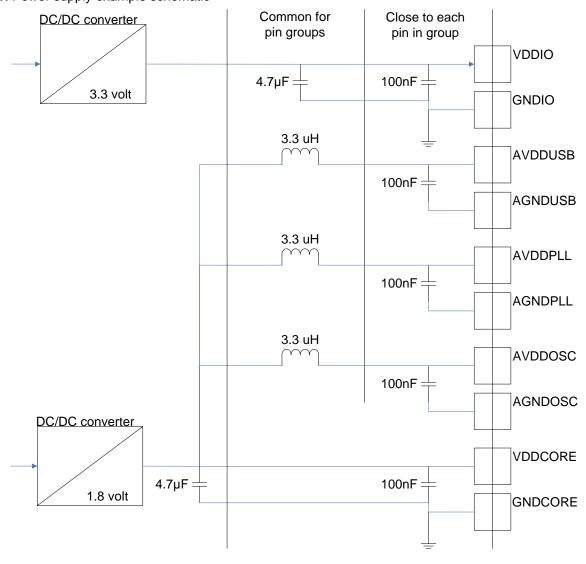


Table 2-1. Power supply checklist

V	Signal name	Recommended pin connection	Description
			Powers I/O lines and USB transceiver.
		2014-201	
		3.0 V to 3.6 V	Decoupling/filtering capacitors must be added to improve startup
	VDDIO	Decoupling capacitor 100 nF ⁽¹⁾⁽²⁾	stability and reduce source voltage drop.

\checkmark	Signal name	Recommended pin connection	Description	
			Powers the USB.	
	AVDDUSB	1.65 V to 1.95 V Decoupling capacitor 100 nF ⁽¹⁾⁽²⁾ Serial inductor 3.3 µH ⁽¹⁾	Decoupling/filtering capacitors and serial inductor must be added to improve startup stability and reduce source voltage drop.	
	AVDDOSB	Serial inductor 5.5 µm	The inductor may be dropped if USB is not to be used in the design. Powers the PLLs.	
			Powers the PLLs.	
		1.65 V to 1.95 V	Decoupling/filtering capacitors must be added to improve startup stability and reduce source voltage drop.	
	AVDDPLL	Decoupling capacitor 100 nF ⁽¹⁾⁽²⁾ Serial inductor 3.3 µH ⁽¹⁾	The inductor may be dropped if the PLLs are not to be used in the design.	
		Powers the oscillators.		
	AVDDOSC	1.65 V to 1.95 V Decoupling capacitor 100 nF ⁽¹⁾⁽²⁾ Serial inductor 3.3 µH ⁽¹⁾	Decoupling/filtering capacitors must be added to improve startup stability and reduce source voltage drop.	
			Powers the core, memories and peripherals.	
	VDDCORE	1.65 V to 1.95 V Decoupling capacitor 100 nF ⁽¹⁾⁽²⁾	Decoupling/filtering capacitors must be added to improve startup stability and reduce source voltage drop.	
	AGNDxxx	Connected to ground	Ground pins in a group should be matched with the VDD pins in the same group.	
	GNDxxx	Connected to ground	Ground pins in a group should be matched with the VDD pins in the same group.	

Note 1: These values are given only as a typical example.

Note 2: Decoupling capacitor should be placed as close as possible to each pin in the signal group, vias should be avoided.

3 Reset and wake

3.1 Reset circuit

Figure 3-1. Reset circuit example schematic

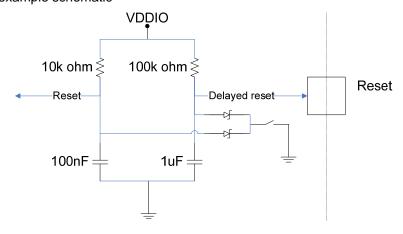


Table 3-1. Reset circuit checklist

\checkmark	Signal name	Recommended pin connection	Description
			The RESET_N pin is a Schmitt input and integrates a permanent pull-up resistor to VDDIO.
	RESET	Can be left unconnected in case no reset from the system needs to be applied to the product	The external reset should in most designs be delayed from the rest of the circuit. This is to assure that external devices are ready when the MCU starts.

3.2 Wake circuit

Figure 3-2. Wake circuit example schematic

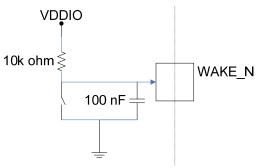


Table 3-2. Wake circuit checklist

V	Signal name	Recommended pin connection	Description	
	WAKE_N	I	The WAKE_N pin is a Schmitt trigger input integrating a permanent pull-up resistor to VDDIO.	

4 Clock, crystal oscillator and PLL filter circuits

4.1 External clock source

Figure 3-3. External clock source schematic

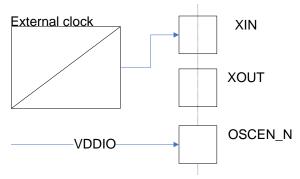


Table 3-3. External clock source checklist

ightleftarrow	Signal name	Recommended pin connection	Description
	XIN	Connected to clock output from external clock source	1.8 volt (VDDPLL) square wave signal up to 50 MHz on XIN0 and XIN1 ⁽¹⁾ , while 32 kHz on XIN32 ⁽²⁾ .
	XOUT	Can be left unconnected	
	OSCEN_N	Connected to VDDIO	OSCEN_N high will disable the internal oscillators.

Note 1: XIN1 **must** be 12 MHz if device is going to use the USB device controller.

Note 2: 32 kHz clock is **mandatory** for device to work.

4.2 Crystal oscillator OSC0, OSC1 and OSC32

Figure 3-4. Crystal oscillator example schematic

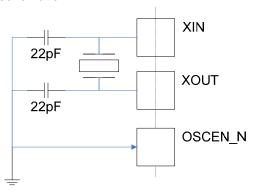


Table 3-4. Crystal oscillator checklist

V	Signal name	Recommended pin connection	Description
	XIN	Biasing capacitor 22 pF ⁽¹⁾⁽²⁾	External crystal between 10 MHz and 27 MHz for XIN0 and XIN1 ⁽³⁾ , 32 kHz for XIN32 ⁽⁴⁾ .
	XOUT	Biasing capacitor 22 pF ⁽¹⁾⁽²⁾	
	OSCEN_N	Connected to ground	OSCEN_N low will enable the internal oscillators.

Note 1: These values are given only as a typical example.

Note 2: Decoupling capacitor should be placed as close as possible to each pin in the signal group, vias should be avoided.

Note 3: XIN1 **must** be 12 MHz if device is going to use the USB device controller.

Note 4: 32 kHz oscillator is **mandatory** for device to work.

4.3 PLL filter

Figure 3-5. PLL filter example schematic

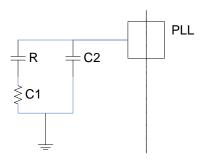


Table 3-5. PLL filter checklist

\checkmark	Signal name	Recommended pin connection	Description
	PLL	Passive RC filter resistor R ⁽¹⁾ and capacitors C1 ⁽¹⁾ and C2 ⁽¹⁾ .	See the Excel spreadsheet ATMEL_PLL_LFT_Filter_CALCULATOR_AT91_xxx.zip (available on the Atmel Web site) to calculate the best R, C1 and C2 component values for the PLL loop back filter.

Note 1: Components should be placed as close as possible to the PLL pin, vias should be avoided.

5 USB connection

5.1 Device mode, powered from bus connection

Figure 5-1. USB in device mode, bus powered connection example schematic

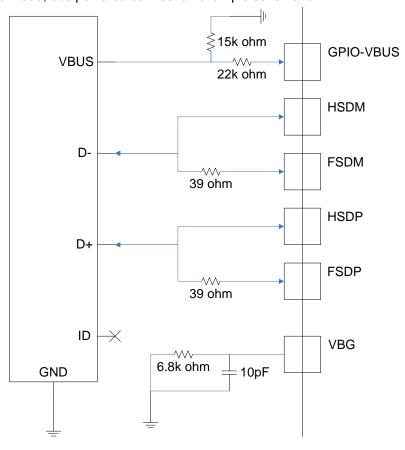


Table 5-1. USB bus powered connection checklist

V	Signal name	Recommended pin connection	Description	
		Can be left unconnected		
	GPIO-VBUS	Use a 22k ohm + 15k ohm voltage divider to limit the voltage to 3.3 V.	USB power measurement pin. The GPIO pin can be used to trigger a USB plug connection or disconnection.	
	HSDM	Directly to connector	High speed USB interface data -	
		39 ohm series resistor		
	FSDM	Placed as close as possible to pin	Full speed USB interface data -	
	HSDP	Directly to connector	High speed USB interface data +	
		39 ohm series resistor		
	FSDP	Placed as close as possible to pin	Full speed USB interface data +	
	VBG	Connected to a 6810 ohm 0.5% ⁽¹⁾ resistor and a 10 pF ⁽¹⁾ capacitor	USB bandgap.	

Note 1: Component should be placed as close as possible to pin, vias should be avoided.

6 Ethernet interface

When designing in the Ethernet physical device (PHY) the designer should refer to the datasheet for the PHY. This datasheet usually contains layout advice, connection schematics, reference design, etc.

The information in the PHY datasheet is vital to get optimal performance and stability.

6.1 Ethernet interface in MII mode

Figure 6-1. Ethernet interface in MII mode example schematic

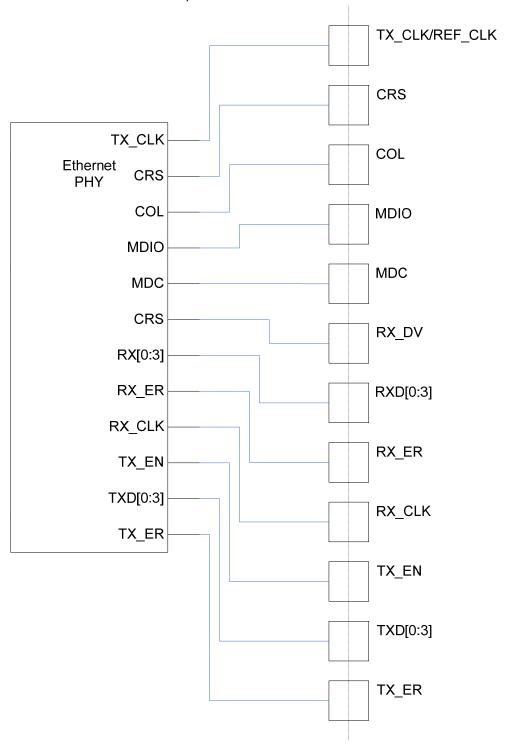


Table 6-1. Ethernet interface in MII mode checklist

V	Signal name	Recommended pin connection	Description
	TX_CLK/		
	REF_CLK		Transmit clock, 25 MHz for 100 Mb/s data rate
	CRS		Carrier sense
	COL		Collision detect
	MDIO		PHY maintenance data
	MDC		PHY maintenance clock
	RX_DV		Receive data valid
	RXD[0:3]		Receive data 4-bit
	RX_ER		Receive error
	RX_CLK		Receive clock, 25 MHz for 100 Mb/s data rate
	TX_EN		Transmit enable
	TXD[0:3]		Transmit data 4-bit
	TX_ER		Transmit error

6.2 Ethernet interface in RMII mode

Figure 6-2. Ethernet interface in RMII mode example schematic

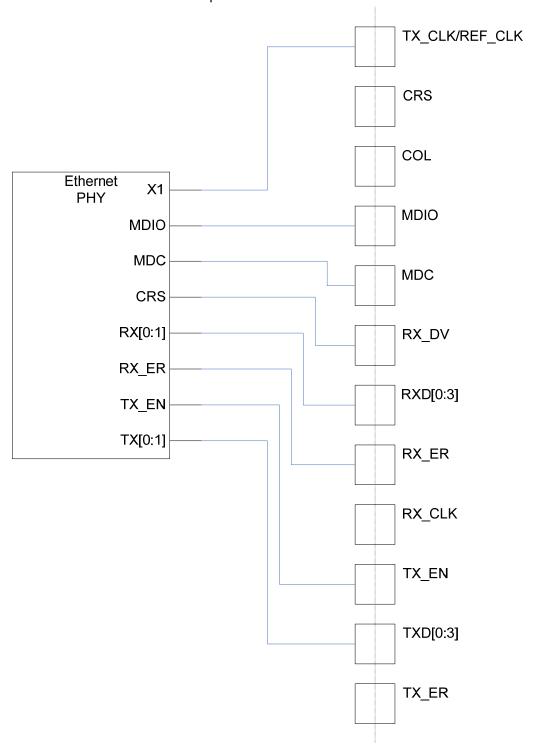


Table 6-2. Ethernet interface in RMII mode checklist

\checkmark	Signal name	Recommended pin connection	Description
	TX_CLK/		
	REF_CLK		Reference clock, 50 MHz for 100 Mb/s data rate
	CRS	Not used in RMII mode	
	COL	Not used in RMII mode	
	MDIO		PHY maintenance data
	MDC		PHY maintenance clock
	RX_DV		Carrier sense, data valid
	RXD[0:1]		Receive data 2-bit
	RXD[2:3]	Not used in RMII mode	
	RX_ER		Receive error
	RX_CLK	Not used in RMII mode	
	TX_EN		Transmit enable
	TXD[0:1]		Transmit data 2-bit
	TXD[2:3]	Not used in RMII mode	
	TX_ER	Not used in RMII mode	

7 External bus interface

7.1 Static memory

7.1.1 32-bit static memory

Table 7-1. 32-bit static memory pin wiring

V	SMC EBI signal	32-bit static memory
	D[0:31]	D[0:31]
	A[2:25] ⁽¹⁾	A[0:23]
	NBS0 (A[0])	Byte enable 0
	NBS1 (NWR[1])	Byte enable 1
	NBS2 (A[1])	Byte enable 2
	NBS3 (NWR[3])	Byte enable 3
	NWR0	WE
	NRD	OE
	NWAIT	WAIT
	NCSx	CS

Notes: 1. When using address A[23:25] on PORTE the I/O lines must have a 5k ohm pull-down to ground for the static memory device to work as intended during boot.

7.1.2 16-bit static memory

Table 7-2. 16-bit static memory pin wiring

SMC EBI signal 16-bit static memory

$\overline{\mathbf{V}}$	SMC EBI signal	16-bit static memory
	D[0:15]	D[0:15]
	A[1:25] ⁽¹⁾	A[0:24]
	NBS0 (A[0])	Byte enable low
	NBS1 (NWR[1])	Byte enable high
	NWR0	WE
	NRD	OE
	NWAIT	WAIT
	NCSx	CS

Notes: 2. When using address A[23:25] on PORTE the I/O lines must have a 5k ohm pull-down to ground for the static memory device to work as intended during boot.

7.1.3 2 x 16-bit static memory

Table 7-3. 2 x 16-bit static memory pin wiring

V	SMC EBI signal	16-bit static memory	16-bit static memory
	D[0:15]	D[0:15]	
	D[16:31]		D[0:15]
	A[2:25] ⁽¹⁾	A[0:23]	A[0:23]
	NBS0 (A[0])	Byte enable low	
	NBS1 (NWR[1])	Byte enable high	
	NBS2 (A[1])		Byte enable low
	NBS3 (NWR[3])		Byte enable high
	NWR0	WE	WE
	NRD	OE	OE
	NWAIT	WAIT	WAIT
	NCSx	CS	CS

Notes: 1. When using address A[23:25] on PORTE the I/O lines must have a 5k ohm pull-down to ground for the static memory device to work as intended during boot.

7.1.4 8-bit static memory

Table 7-4. 8-bit static memory pin wiring

$\overline{\mathbf{V}}$	SMC EBI signal	8-bit static memory
	D[0:7]	D[0:7]
	A[0:25] ⁽¹⁾	A[0:25]
	NWR0	WE
	NRD	OE
	NWAIT	WAIT
	NCSx	CS

Notes: 1. When using address A[23:25] on PORTE the I/O lines must have a 5k ohm pull-down to ground for the static memory device to work as intended during boot.

7.1.5 2 x 8-bit static memory

Table 7-5. 2 x 8-bit static memory pin wiring

V	SMC EBI signal	8-bit static memory	8-bit static memory
	D[0:7]	D[0:7]	
	D[8:15]		D[0:7]
	A[1:25] ⁽¹⁾	A[0:24]	A[0:24]
	NWR0	WE	
	NWR1		WE
	NRD	OE	OE
	NWAIT	WAIT	WAIT
	NCSx	CS	CS

Notes: 1. When using address A[23:25] on PORTE the I/O lines must have a 5k ohm pull-down to ground for the static memory device to work as intended during boot.

7.1.6 4 x 8-bit static memory

Table 7-6. 4 x 8-bit static memory (SM) pin wiring

$\overline{\mathbf{V}}$	SMC EBI signal	8-bit SM	8-bit SM	8-bit SM	8-bit SM
	D[0:7]	DQ[0:7]			
	D[8:15]		DQ[0:7]		
	D[16:23]			DQ[0:7]	
	D[24:31]				DQ[0:7]
	A[2:25] ⁽¹⁾	A[0:23]	A[0:23]	A[0:23]	A[0:23]
	NWR0	WE			
	NWR1		WE		
	NWR2 (A[1])			WE	
	NWR3				WE
	NRD	OE	OE	OE	OE
	NWAIT	WAIT	WAIT	WAIT	WAIT
	NCSx	CS	CS	CS	CS

Notes: 1. When using address A[23:25] on PORTE the I/O lines must have a 5k ohm pull-down to ground for the static memory device to work as intended during boot.

7.2 SDRAM

7.2.1 32-bit SDRAM

Table 7-7. 32-bit SDRAM pin wiring

V	SMC EBI signal	32-bit SDRAM
	D[0:31]	DQ[0:31]
	A[2:11]	A[0:9]
	SDA10	A[10]
	A[13:14]	A[11:12]

\checkmark	SMC EBI signal	32-bit SDRAM
	BA[0:1]	BA[0:1]
	SDCK	CLK
	SDCKE	CKE
	SDWE	WE
	RAS	RAS
	CAS	CAS
	NBS0 (A[0])	DQM0
	NBS1 (NWR[1])	DQM1
	NBS2 (A[1])	DQM2
	NBS3 (NWR[3])	DQM3
	SDCS (NCS1)	CS

7.2.2 16-bit SDRAM

Table 7-8. 16-bit SDRAM pin wiring

\checkmark	SMC EBI signal	16-bit SDRAM
	D[0:15]	DQ[0:15]
	A[2:11]	A[0:9]
	SDA10	A[10]
	A[13:14]	A[11:12]
	BA[0:1]	BA[0:1]
	SDCK	CLK
	SDCKE	CKE
	SDWE	WE
	RAS	RAS
	CAS	CAS
	NBS0 (A[0])	DQML
	NBS1 (NWR[1])	DQMH
	SDCS (NCS1)	CS

7.2.3 2 x 16-bit SDRAM

Table 7-9. 2 x 16-bit SDRAM pin wiring

\checkmark	SMC EBI signal	16-bit SDRAM	16-bit SDRAM
	D[0:15]	DQ[0:15]	
	D[16:31]		DQ[0:15]
	A[2:11]	A[0:9]	A[0:9]
	SDA10	A[10]	A[10]
	A[13:14]	A[11:12]	A[11:12]
	BA[0:1]	BA[0:1]	BA[0:1]
	SDCK	CLK	CLK

\checkmark	SMC EBI signal	16-bit SDRAM	16-bit SDRAM
	SDCKE	CKE	CKE
	SDWE	WE	WE
	RAS	RAS	RAS
	CAS	CAS	CAS
	NBS0 (A[0])	DQML	
	NBS1 (NWR[1])	DQMH	
	NBS2 (A[1])		DQML
	NBS3 (NWR[3])		DQMH
	SDCS (NCS1)	cs	cs

7.2.4 2 x 8-bit SDRAM

Table 7-10. 2 x 8-bit SDRAM pin wiring

\checkmark	SMC EBI signal	8-bit SDRAM	8-bit SDRAM
	D[0:7]	DQ[0:7]	
	D[7:15]		DQ[0:7]
	A[2:11]	A[0:9]	A[0:9]
	SDA10	A[10]	A[10]
	A[13:14]	A[11:12]	A[11:12]
	BA[0:1]	BA[0:1]	BA[0:1]
	SDCK	CLK	CLK
	SDCKE	CKE	CKE
	SDWE	WE	WE
	RAS	RAS	RAS
	CAS	CAS	CAS
	NBS0 (A[0])	DQM	
	NBS1 (NWR[1])		DQM
	SDCS	cs	cs

7.2.5 4 x 8-bit SDRAM

Table 7-11. 4 x 8-bit SDRAM pin wiring

$\overline{\mathbf{V}}$	SMC EBI signal	8-bit SDRAM	8-bit SDRAM	8-bit SDRAM	8-bit SDRAM
	D[0:7]	DQ[0:7]			
	D[7:15]		DQ[0:7]		
	D[16:23]			DQ[0:7]	
	D[24:31]				DQ[0:7]
	A[2:11]	A[0:9]	A[0:9]	A[0:9]	A[0:9]
	SDA10	A[10]	A[10]	A[10]	A[10]
	A[13:14]	A[11:12]	A[11:12]	A[11:12]	A[11:12]
	BA[0:1]	BA[0:1]	BA[0:1]	BA[0:1]	BA[0:1]

\checkmark	SMC EBI signal	8-bit SDRAM	8-bit SDRAM	8-bit SDRAM	8-bit SDRAM
	SDCK	CLK	CLK	CLK	CLK
	SDCKE	CKE	CKE	CKE	CKE
	SDWE	WE	WE	WE	WE
	RAS	RAS	RAS	RAS	RAS
	CAS	CAS	CAS	CAS	CAS
	NBS0 (A[0])	DQM			
	NBS1 (NWR[1])		DQM		
	NBS2 (A[1])			DQM	
	NBS3 (NWR[3])				DQM
	SDCS	CS	CS	CS	CS

7.3 CompactFlash

Table 7-12. 8-bit and 16-bit CompactFlash pin wiring

V	SMC EBI signal	16-bit CompactFlash
	D[0:7]	D[0:7]
	D[8:15] ⁽¹⁾	D[8:15]
	A[0:10]	A[0:10]
	A[22]	REG
	NSC[4] ⁽²⁾	CFCS[0]
	NSC[5] ⁽²⁾	CFCS[1]
	NRD	OE
	NWR0	WE
	NWR1	IOR
	NWR3	IOW
	CFRNW ⁽²⁾	CFRNW
	CFCE1	CE1
	CFCE2	CE2
	NWAIT	WAIT
	PIO[n] ⁽³⁾	CD1 or CD2

- Notes: 1. Only needed for 16-bit CompactFlash.
 - 2. Not directly connected to the CompactFlash slot. Permits control of a bidirectional buffer between the EBI and the CompactFlash slot.
 - 3. Any PIO line.

7.4 NAND

Table 7-13. 8-bit and 16-bit NAND pin wiring

\checkmark	SMC EBI signal	8-bit NAND
	D[0:7]	I/O[0:7]
	D[8:15] ⁽¹⁾	I/O[8:15]

\checkmark	SMC EBI signal	8-bit NAND
	A[21]	CLE
	A[22]	ALE
	NANDOE	RE
	NANDWE	WE
	NCS[3]	CE
	GPIO[n] ⁽²⁾	R/B

- Notes: 1. Only needed for 16-bit NAND.
 - 2. Any PIO line.

8 ABDAC stereo sound DAC interface

8.1 Directly connected speakers

Figure 8-1. Directly connected speakers example schematic

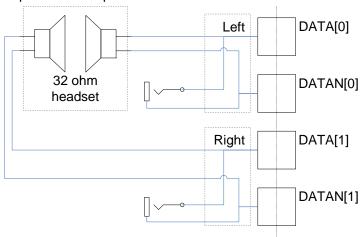


Table 8-1. Directly connected speakers checklist

\checkmark	Signal name	Recommended pin connection	Description
	DATA[0]	Can be directly connected for testing purposes	Current limited by device pad. Speaker must be connected between DATA[0] and DATAN[0] for best signal to noise ratio.
	DATAN[0]	Can be directly connected for testing purposes	Current limited by device pad. Speaker must be connected between DATA[0] and DATAN[0] for best signal to noise ratio.
	DATA[1]	Can be directly connected for testing purposes	Current limited by device pad. Speaker must be connected between DATA[1] and DATAN[1] for best signal to noise ratio.
	DATAN[1]	Can be directly connected for testing purposes	Current limited by device pad. Speaker must be connected between DATA[1] and DATAN[1] for best signal to noise ratio.

8.2 Line out with passive filter

Figure 8-2. Line out with passive filter example schematic

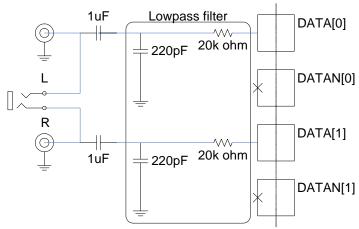


Table 8-2. Line out with passive filter checklist

V	Signal name	Recommended pin connection	Description
	DATA[0]	Connected to low pass filter and 1 µF capacitor to remove DC bias	
	DATAN[0]	Not in use	
	DATA[1]	Connected to low pass filter and 1 µF capacitor to remove DC bias	
	DATAN[1]	Not in use	

8.3 High power output with external amplifier

Figure 8-3. High power output with external amplifier example schematic

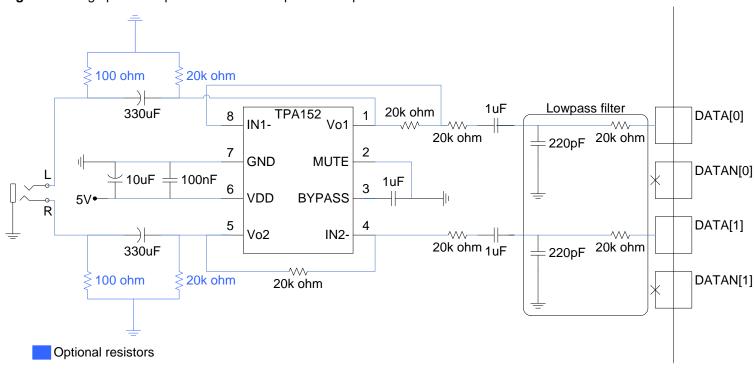


 Table 8-3. High power output with external amplifier checklist

V	Signal name	Recommended pin connection	Description
	DATA[0]	Connected to low pass filter and external amplifier	
	DATAN[0]	Not in use	
	DATA[1]	Connected to low pass filter and external amplifier	
	DATAN[1]	Not in use	

9 JTAG and Nexus debug ports

9.1 JTAG port interface

Figure 9-1. JTAG port interface example schematic

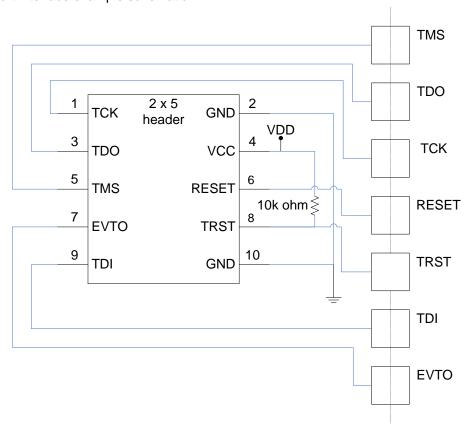


Table 9-1. JTAG port interface checklist

V	Signal name	Recommended pin connection	Description
	TMS		Test mode select, sampled on rising TCK.
	TDO		Test data output, driven on falling TCK.
	TCK		Test clock, fully asynchronous to system clock frequency.
	RESET		Device external reset line.
	TDI		Test data input, sampled on rising TCK.
	EVTO		Event output.
	TRST		Test reset.

9.2 Nexus port interface

Figure 9-2. Nexus port interface example schematic

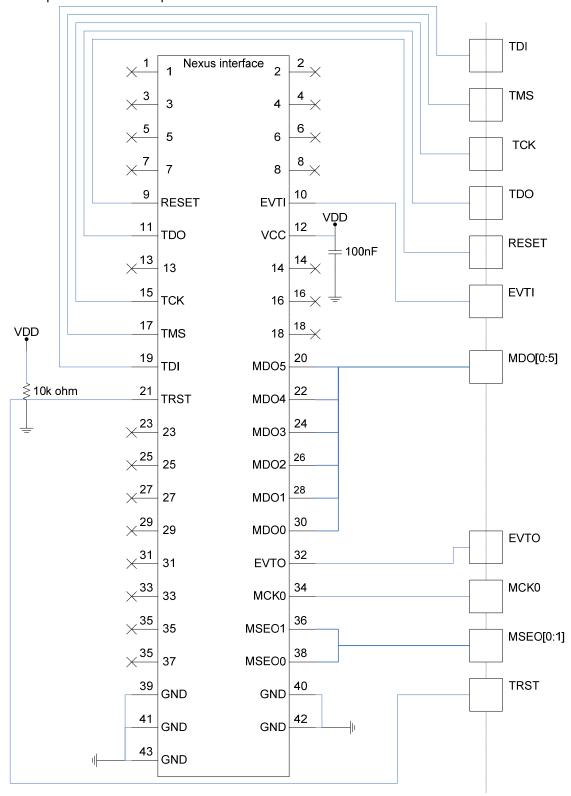


Table 9-2. Nexus port interface checklist

\checkmark	Signal name	Recommended pin connection	Description
	TDI		Test data input, sampled on rising TCK.
	TMS		Test mode select, sampled on rising TCK.
	TCK		Test clock, fully asynchronous to system clock frequency.
	TDO		Test data output, driven on falling TCK.
	RESET		Device external reset line.
	EVTI		Event input.
	MDO[0:5]		Trace data output.
	EVTO		Event output.
	MCK0		Trace data output clock.
	MSE[0:1]		Trace frame control.

10 Suggested reading

10.1 Device datasheet

The device datasheet contains block diagrams of the peripherals and details about implementing firmware for the device. The datasheet is available on http://www.atmel.com/AVR32 in the *Datasheets* section.

10.2 Evaluation kit schematic

The starter kit STK®1000/STK1002 and reference design NGW100 contains a full schematic for the boards; they can be used as a reference design. The schematics are available on http://www.atmel.com/AVR32 in the *Tools & Software* section.

Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe

Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033

Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com

Technical Support avr32@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Request www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR®, STK® and others, are the registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.