
  

 
 

AVR453: Smart Battery Reference Design 

Features 
� Support for up to 4 Li-Ion series-connected battery cells  
� Battery protection by dedicated Hardware 

- Deep under voltage protection 
- Over-current protection during charging 
- Over-current protection during discharging 
- Short circuit protection 

� Charging and discharging current monitoring with 18 bit ADC 
- Automatic Precharging after under-voltage situations 
- State-of-Charge and State-of-Health status 

� SMBus communication 
- Full smart battery SMBus support 
- Support for In-System Programming through SMBus 
- Support for AES encrypted Firmware updates 

1 Introduction 
Rechargeable Lithium-Ion (Li-Ion) batteries are widely used in portable electronics 
such as cell phones, digital cameras and laptop computers. This is mainly due to 
the high energy to weight ratio of these batteries. Maximizing the lifetime and 
energy storage of Li-Ion batteries requires careful monitoring and control of the 
charge and discharge cycles. Incorrect use may even pose a threat to safety, as Li-
Ion batteries can explode under extreme conditions. For these reasons intelligent 
batteries � smart batteries � have been introduced. 

The Atmel ATmega406 AVR microcontroller has been created with smart battery 
applications in mind. The feature set includes high accuracy ADCs, a TWI interface 
for SMBus communications, as well as independent hardware features that can 
protect the battery from incorrect use. This application note describes the 
implementation of a smart battery using the Atmel ATmega406 microcontroller. 

Figure 1-1. Smart battery from the author�s laptop 
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2 Scope of implementation 
The intent of the software associated with this application note is to provide an 
infrastructure for dealing with issues that will be faced when designing a battery pack. 
Although a functional battery pack has been implemented, there are likely many 
customizations and feature enhancements that can be made. The designer is 
encouraged to take what has been provided and personalize it.  

The application note describes how the ATmega406 capabilities are employed to 
achieve the functionality needed when implementing a smart battery. 

The application note software has not implemented battery authentication, which is 
desired in applications where the aftermarket represents significant revenue. This is 
used to ensure that only an �original� battery can be used with the product. 
Authentication is discussed further in section 6.7. 

A Table of Contents is found on page 35. 

Warning! 
Incorrect handling of Li-Ion batteries poses a safety hazard: If Li-Ion batteries are 
mistreated they can explode. Use caution when dealing with any aspect of the design 
that may adversely impact safety; make sure you fully understand the behavior of the 
hardware and the software as a system. 

3 Release Notes for preliminary release of AVR453 
Note that this document and the source code are preliminary. This release targets 
ATmega406 rev E, older revisions of ATmega406 are not supported. For release 
notes, please check the Release Notes section in the doxygen documentation 
(readme.html), included with the source code. 

Further, please refer to Table 5-2, to see which SMBus commands that can be 
expected to respond correctly without modifications to the code. 

4 Theory of operation 
Smart battery systems consists of three elements:  

• Smart battery host  
• Smart battery pack 
• Smart battery charger 
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Figure 4-1. A typical smart battery system 
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The smart battery host draws power from the smart battery pack (or just �smart 
battery�) and can obtain information about type, brand, remaining charge status and 
much more. Communication between the Host and the Battery is based on the 
System Management Bus (SMBus). The smart battery charger is a charger that can 
adapt its output based on the requests from the connected smart battery pack. This 
information is either transmitted directly from the smart battery to the charger, or 
retrieved directly from the smart battery pack by the charger, through the SMBus. The 
safety signal communicates critical errors directly from the battery to the charger. 

More information about the smart battery system is available in the Smart Battery 
System Specification [1].  

4.1 Li-Ion Battery technology 
Li-Ion batteries are among the highest energy density cells on the market today, but 
they require careful management to yield optimum life. Specifically, overcharging and 
over-discharging are to be strictly avoided. Additionally, as with many battery types, 
excessive discharge currents can overheat the cell. Due to the lithium content of the 
cell, overheating is particularly dangerous and must be avoided. Further, the 
temperature of the cells affects the charge capacity and must be taken into account 
during charging, discharging and capacity estimation. By using the highly integrated 
ATmega406 device, component count and hence cost can be kept to a minimum 
while providing highly accurate charge estimates. Additionally, the presence of both 
EEPROM and Flash on the ATmega406 permits storing of battery history information 
such as temperature and current extremes that may aid in failure analysis of defective 
packs. 

4.1.1 Charging profile of Li-Ion batteries 

A typical charging profile for Li-Ion cells is shown in Figure 4-2. In today�s portable 
equipment, having the shortest possible charging time is often a key requirement. 
Although less-optimal charging methods can be used, for fastest charging generally a 
constant-current charge source is required until the cell reaches a defined threshold 
voltage. The remaining charge is supplied by use of a constant-voltage charging 
source. This is referred to as the Constant Current � Constant Voltage charging 
method (CC-CV). 
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Figure 4-2. Typical charging profile for a Li-Ion battery 
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It is important that the supplied current and voltage do not exceed the manufacturer�s 
specifications for the cells, or overheating and cell rupture may result. The 
ATmega406 monitors pack current and voltage independently in hardware and can 
disconnect the pack from the charger in the event of over-current or over-voltage. 
Additionally, if the designer incorporates thermal sensors the ATmega406 can sense 
temperature and request the charger to reduce the charging current or voltage if 
needed. The ATmega406 device includes an on-chip temperature sensor to provide a 
low-cost alternative to external sensors or to serve as a backup in the event of an 
external sensor failure. 

A key in providing accurate state-of-charge estimates is the ability to monitor 
precisely the charge and discharge currents. The ATmega406 device includes a high-
accuracy Coulomb Counter ADC that provides both high sensitivity and high 
resolution for this purpose. 

4.1.2 Discharging Li-Ion batteries 

Discharge of Li-Ion cells must be terminated when the cell voltages reach a defined 
lower limit. Discharging below this point will cause a structural change within the cell 
and reduce its capacity permanently. Additionally, excess current during discharge 
will overheat the cell and may cause a mechanical rupture. 

Figure 4-3. Typical discharge profile for a Li-Ion battery. 
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To make best use of the available cell capacity, it is crucial that the cell voltage can 
be accurately measured to allow operation down to as low voltage as possible without 
going below the cell�s discharge voltage limit. By having the bottom limit of the 
working voltage span as close as possible to the discharge cut-off voltage, the 
unused capacity is minimized (see Figure 4-3). For this reason, it is advantageous to 
have a high-accuracy ADC to measure the cell voltages. It is also critical to have as 
little series resistance as possible in the system to prevent unnecessary voltage 
drops. With the redundant safety features present in the ATmega406, it may be 
possible to eliminate one or more stages of safety circuitry from the pack, thus 
reducing the losses and increasing the pack output. Additionally, it is important to use 
a low-resistance device for current measurement. The reference design uses a 5mΩ 
resistor for this purpose and is able to measure current flow with a resolution better 
than 1mA. 

4.1.3 Cell balancing 

Cell balancing is the technique of adjusting the voltage of the cells in a series-
connected stack to match each other. If cells have different charge and thus voltage, 
the cell with the highest voltage determines the charge termination point, and the cell 
with the lowest voltage determines the pack discharge termination point. Thus, any 
deviations between cells will effectively double the error by affecting both the charge 
and the discharge terminations. At manufacturing time, pack vendors typically match 
cell capacities very closely. However, due to normal manufacturing variations, after 
tens or hundreds of charge/discharge cycles even cells that were closely matched will 
diverge in terms of their operating voltage and remaining capacity. Another possibility 
is a weak cell, which will charge and discharge more quickly than the others in the 
pack due to low capacity. This forces early termination of the charge and discharge 
cycles, and may thus stop charging before the other cells are completely charged. 

Voltage variations between cells should be kept as small as possible, preferably 
under 5mV, but it should also be noted that system noise in measuring cell voltages, 
such as may be generated by short current spikes which reduce the apparent cell 
voltage due to internal resistance of the cell, must be taken into account when 
deciding if the cells need to be balanced. 

The ATmega406 device includes cell-balancing FETs across the cell voltage 
monitoring pins. Thus, balancing always involves reducing the voltage and charge of 
the highest voltage cell. These devices are rated for 2mA typical current. Although 
this does not seem large enough at first glance, it is adequate for balancing. The 
current through the balancing FET is limited by the series resistors in the filter 
network on each of the differential cell voltage inputs (please refer to the datasheet). 
Since the FET essentially shorts across the input, it is not possible to perform 
accurate voltage measurements on any of the cell voltage inputs while any one of the 
cell balancing FETs is enabled, as the filtering networks interact between channels to 
a small extent.  

If cell balancing is performed during charging the balancing FET allows a small 
amount of the charge current to �bypass� the cell, thus it does not receive as much 
charge as the other cells in the stack. During discharge, balancing increases the 
discharge rate for the cell. Balancing is only performed on one cell at a time, and it 
should always be the cell with the highest voltage that has its discharge rate 
increased. 
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4.2 Smart battery definition 
There are several types of smart batteries, some smarter than others. The simplest 
form of a smart battery provides information about the battery technology and charge 
algorithm. The definition provided by the Smart Battery System Forum states that a 
smart battery must at least be able to provide State-of-Charge information. 

A fundamental need for Li-Ion batteries is short-circuit protection. More sophisticated 
packs also include enhanced safety mechanisms to prevent over-charging, over-
discharging, over-temperature and other conditions that are dangerous or could 
adversely affect battery longevity. 

4.2.1 State of Charge 

It is helpful to define the scope of functionality of a smart battery, both in terms of 
what it does as well as what it does not do. Smart battery technology provides means 
to track the State-of-Charge (SoC) of the battery by means of both hardware and by 
algorithms, which predict cell behavior. The smart battery is therefore able to 
calculate optimum voltage and current and send requests to the smart battery charger 
during the charging cycle. 

Further, the smart battery also enables the Host system to manage its power usage 
so as to get maximum benefit from the remaining charge. Accurate measurements of 
cell voltages and charge/discharge currents are the basis of any prediction, so the 
ATmega406 device provides high-accuracy measurements and factory calibration 
values. The SMBus protocol defines a number of commands that provide this 
information to the Host system. 

4.2.2 State of Health 

A battery pack�s state of health is not a measure of its state of charge, but rather its 
ability to accept and retain a charge as well as its current capacity. Due to aging, 
number of charge/discharge cycles and other factors, a cell�s capacity will naturally 
diminish over its lifetime. It is useful to be able to assess the condition of the battery 
pack so that it can be determined if and when a replacement may be required. The 
ATmega406 device is capable of providing enhanced measurements and performing 
user-defined computations to aid in this determination. Pack capacity is continuously 
recalibrated in the supplied software whenever the pack reaches the full charge or full 
discharge state. Additionally the fast-responding Voltage ADC peripheral, when 
combined with the Coulomb Counter ADC, makes cell impedance measurements 
possible. The on-chip EEPROM also contributes by permitting the permanent storage 
of historical data. 

4.3 Smart batteries and SMBus 
The SMBus is the protocol used with smart batteries. This Bus and protocol 
architecture provides a means for keeping hardware costs low while also providing 
flexible functionality in a modular way. SMBus is a protocol that allows multiple nodes 
to respond to unique addresses. The Protocol is designed to handle multiple master 
devices being connected to the bus (arbitration control) and to ensure that a node will 
never lock the SMBus. The integrity of data can be verified by using Packet Error 
Checking. Details and specifications for SMBus can be found at www.smbus.org.  

An SMBus device can provide manufacturer information, tell the system what its 
model/part number is, save its state for a suspend event, report different types of 
errors, accept control parameters, and return its status. A smart battery can manage 

http://www.smbus.org/
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its own charging, report errors, inform the Host of low-charge conditions, predict 
remaining run-time, provide temperate, voltage and current information and 
continuously self-correct to maintain prediction accuracy. The SMBus specification 
also allows for five separate manufacturer-defined commands. One of these is used 
in this reference implementation for performing in-system programming of the 
ATmega406 device over SMBus. Another command is used to initiate, delete or 
check status of calibration. 

4.4 A Very smart battery controller – ATmega406 
The features of the ATmega406 that pertain especially to use in smart battery 
applications are as follows: 

• Two Wire Interface (TWI) for SMBus communications 
• High Resolution, high sensitivity ADC (referred to as a Coulomb Counter ADC) 
• Multi-channel 12-bit voltage-measurement ADC (referred to as VADC) 
• High-accuracy, calibrated voltage reference  
• CPU-independent battery protection circuitry  
• Integrated on-chip calibrated temperature sensor  
• High-voltage-capable input and output pins 
• High-voltage FET drivers for external charge, discharge and precharge FETs 
• Integrated Cell-balancing FETs 
• Wake-up timer 
• Independent Watchdog timer 
• On-chip low quiescent current voltage regulator 

4.4.1 Two Wire Interface and SMBus 

The communication mechanism of a smart battery system is the SMBus, which is 
fundamentally based on the Two-Wire Interface (TWI). One primary difference from 
TWI is that the SMBus specifies a minimum clock speed of 10kHz and a SMBCLK 
low timeout of 35ms, mainly to identify Slave-device faults and to allow recovery from 
such lockup conditions.  

Another difference is that SMBus devices are expected to identify and report flaws in 
the communication on the fly. Two mechanisms are provided in the SMBus 
specification: the flaw is signaled either by withholding the ACK after the flawed byte 
is received, or by holding the clock line low for more than 25ms. This latter is the 
mechanism that is employed in this design. 

Additional hardware has been provided to detect when the battery pack has been 
removed or reinserted into the target system. This Bus Connect/Disconnect function 
includes a timed filter to delay the indication of pack removal (Disconnect) in 
accordance with the SMBus specification. 

4.4.2 Analog to digital converters 

The ATmega406 includes two separate ADCs: the 18-bit Coulomb Counter ADC 
(CCADC) and the 12-bit Voltage ADC (VADC). Both use an internal high accuracy 
calibrated voltage reference. 

The CCADC is used to very accurately measure the current that flows in and out of 
the battery pack, enabling reliable monitoring of the battery�s SoC (state of charge). 
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Factory calibration of the CCADC offset must be performed to ensure maximum 
accuracy. 

The VADC is used to monitor the individual cell voltages, the chip temperature from 
the internal temperature sensor, and can be used to monitor the temperature of the 
batteries. 

More details about the capabilities and the operation of these ADCs can be found in 
the ATmega406 data sheet. 

4.4.3 CPU-independent battery protection  

The Battery Protection circuitry in the ATmega406 device provides CPU-independent 
hardware monitoring of the pack voltage and current levels, and can disconnect the 
pack from the load or charger to prevent critical failure by shutting off the two primary 
control FETs. Specifically, there are four conditions that are monitored: deep under-
voltage, over-current during both charging and discharging, and short circuit. Short 
circuit is distinct from discharge over-current in that it reacts more quickly and has a 
higher threshold, whereas over-current protection is intended to watch for a 
continuous condition that exceeds the cell ratings. 

 

4.4.4 High Voltage tolerant I/O 

Many pins of the ATmega406 are capable of accepting high voltage without damage. 
This allows the ATmega406 to detect charger presence, monitor the pack and directly 
control the external high-current pack-protection FETs using very few external 
components. 

The SMBus standard also requires an additional redundant Safety Signal line that can 
communicate critical pack state information to the charger. Since this line connects 
outside of the pack, a high-voltage line (PC0) is used for this purpose since it requires 
no special protection circuitry to guard it from the voltage on the pack�s positive 
terminal. 

4.4.5 Integrated cell-balancing FETs 

The integrated cell balancing FETs in ATmega406 save valuable board space and 
help to achieve maximum pack performance for its entire life. Hardware ensures that 
no more than one balancing FET is enabled at any given time. The software in this 
design automatically disables and re-enables the balancing FET to yield correct 
readings when performing cell voltage measurements. 

4.4.6 Low power operation 

The combination of low power CPU clock modes, low quiescent current voltage 
regulator, low power Wake-up timer and oscillator, and low-power watch dog timer 
enables the ATmega406 to provide full functionality while drawing the absolute 
minimum power. Its low power modes ensure that pack shelf life is determined 
primarily by self-discharge rather than circuitry power consumption. 
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5 Implementation of smart battery 
The software for this application is documented in the doxygen documentation 
(readme.html), which is downloaded with the source. Please see the Compilation 
info section first for details on complier(s) and settings. The software is targeted 
specifically to the ATAVRSB100 development board hardware, which can be 
purchased through Atmel sales channels and Atmel Distributors. The hardware is 
described separately in application note AVR454. Both this application note, and the 
source code for this implementation are available from the Atmel web site 
(http://www.atmel.com/products/avr/). 

The following description of the implementation assumes that the reader is somewhat 
familiar with SMBus, smart battery and Rechargeable Batteries. 

Figure 5-1. Typical operating circuit for the ATmega406 (from datasheet). 

 
 

 

http://www.atmel.com/products/avr/
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5.1 Overview of the software implementation 
The software implementation consists of two separate projects: a bootloader, and the 
main battery application. The bootloader includes a subset (only enough code to 
perform programming tasks over SMBus) of the application program�s SMBus code, 
but implemented in a polled manner rather than using interrupts (no interrupts are 
used in the bootloader). It also includes a small command interpreter and various low-
level memory programming functions. Optionally, AES or other encryption algorithms 
may be added to protect the memory image during transfer. 

The application program is more complex. In general, timer interrupts trigger the 
VADC to perform periodic scans, and computations are performed on the results to 
generate the data required to support the individual SMBus commands. The CCADC 
produces its own interrupts when its charge-monitoring data is ready, and calculations 
are performed on those results when they become available. SMBus communications 
are handled almost entirely by the TWI interrupt�s state machine. Timer0 provides a 
periodic timer tick that allows up to eight generic timer event users, and also controls 
the duty-cycling and scanning of the LEDs.  

The following table details the usage of each peripheral and the interrupts it uses. 

 

Table 5-1. Interrupt Usage 
Peripheral  Interrupt Source File  Usage  

Battery Protection BP safety.c  Shut down pack due to fault condition 

External interrupts INT0-3 Gpio.c  Unused 

Pin Change PCINT0 Smbus.c PA6 monitoring SMBCLK for bus idle before Master Transmit mode 

 PCINT1 Smbus.c Unused 

Watchdog WDT Timer.c Software safety 

Wake-up timer WAKEUP Timer.c Periodic wake-up during pack �Standby� operating mode 

Timer1 TIMER1_COMP Timer.c Unused 

 TIMER1_OVF Timer.c Unused 

Timer0 TIMER0_COMPA Timer.c LED duty-cycle and multiplexing 

 TIMER0_COMPB Timer.c PWM for main FETs; not presently used 

 TIMER0_OVF Timer.c 2.048mS timer tick 

TWI TWICD Smbus.c Pack insertion/removal notification 

 TWI Smbus.c SMBus protocol state machine 

VADC ADC Analog.c Automatic scanning of analog sources 

CCADC CCCONV Analog.c Quick-response, non-accumulating current measurement 

 CCREG Analog.c Triggers change from sampling to integrating current measurement 

 CCACC Analog.c Indicates that a new Accumulated-current result is ready 

EEPROM EE_READY n/a Unused 

Flash SPM_READY n/a Unused 
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5.1.1 Normal Code Execution 

The primary code execution begins with a hardware initialization. All peripherals and 
interrupt sources are set up, and interrupts are then enabled. SRAM variables are 
initialized, and normal execution flow begins. 

In addition to normal activity invoked by interrupts, there are two primary mechanisms 
used to affect main loop code execution: generic timers and action flags. 

The Timer0 Overflow interrupt provides eight generic software timers. When these 
timers expire, a corresponding function is called (from within the ISR, so its execution 
must be kept very short). This function may restart the timer, enable or disable a 
peripheral, or take other small actions. If a larger task must be performed, this 
function will assert an Action Flag. 

Action flags are monitored in the main loop. When an action flag is asserted, a set of 
actions will be taken and the flag will be cleared. To provide longer duration timers 
than those available from the Generic Timers directly, one of the Generic Timer 
channels asserts an action flag, which in turn tracks longer intervals within the main 
loop. Based on these longer timeouts, other more infrequent actions are taken. 

One such activity is the initiation of SMBus Master transactions as required by the 
SMBus standard. Another activity is the initiation of VADC scanning for measuring 
cell voltages, on-chip temperature, and thermistor reading. After a complete scan is 
done, the VADC conversion results are used to recalculate these parameters, and 
this in turn result in updates to the various SMBus variables.  

A mechanism has been established in the VADC Conversion Complete ISR to handle 
automatic scanning of all ten VADC channels. Besides taking readings, this scan 
automatically manages the disabling and re-enabling of the cell balancing FETs. 
Since filters are used on the cell inputs, the cell balancing FETs must be disabled 
early enough in the scan to allow the filters to reach full voltage before a cell reading 
is taken. The present implementation of the software scans all other channels before 
scanning the cells, thus allowing maximum recovery time for the filter�s R-C time 
constant. See section 4.1.3 for more details on cell balancing theory. 

The Coulomb Counter ADC (CCADC) utilizes several different interrupts, depending 
on the pack�s operating mode. Foreground code determines which mode to operate 
the Coulomb Counter in, and this further influences the choice of CCADC operating 
modes for the purpose of power management. Additionally, the 32kHz Crystal 
oscillator supplies clock for the Wakeup timer, which is used in lower-power operating 
modes. 

As shown in the flowchart in Figure 5-2, the application first initializes all modules and 
then enters an eternal loop. In every iteration, the loop first checks if any action flags 
are set by the interrupt controlled parts of the application and acts accordingly. Four 
times per second the quarter-second flag is set and the loop performs its regular 
tasks. Inside the quarter-second flag check, the user can insert custom code to be 
executed four times per second. Every fourth time the quarter-second flag is set, once 
per second, there is a similar place to insert custom code to be executed once per 
second. 

When starting the 32kHz oscillator, it takes up to 2 seconds for it to stabilize. 
Therefore, when the oscillator is started, a startup delay counter is initialized. The box 
'Enable 32kHz oscillator...' in the flowchart takes care of updating this delay counter 
and enabling the real-time clock when the startup delay has elapsed. 
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Figure 5-2. Overview of the main loop 
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Most of the charge and discharge control, cell balancing and thermal checks are 
performed once per second, when a ADC scan sequence is finished. Updated ADC 
readings are then available and ready for processing. 
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Figure 5-3. Flowchart for �Handle ADC scan results� 
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To prevent alarm conditions from continuously generating alarm messages, an inter-
alarm-message delay counter is implemented. It is set up so that persistent alarm 
messages are sent only once every 10 seconds. The SMBus specification also allows 
a Host to disable the transmission of AlarmWarning messages temporarily for up to 
60 seconds. The �Alarm mode flag set� decision box in the flowchart of Figure 5-2 
takes care of starting this timer when required. When this timer expires, AlarmMode is 
automatically re-enabled. 

When a message has been transmitted on the SMBus interface, the �SMBus master 
transmission done� decision box takes care of starting an inter-message delay 
counter to leave some space between transmitted messages on the bus. 

5.2 Battery Charging and Discharging 
Three factors are involved in cell charge management: voltage, current, and 
temperature. By monitoring current, it is possible to predict how much of the cell�s 
capacity remains or how long a charging operation will take. Temperature may affect 
the charging parameters as well as the estimates of cell capacity, and is also a 
safety-monitoring tool. 

Three variables are used to maintain state-of-charge information. They are: 

• RunningAcc 
• MaxTopAcc 
• MaxBottomAcc 
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RunningAcc holds the present state of charge at all times. It is possible that this 
value may go negative, especially if the pack has not yet been fully calibrated. In 
normal operation, when the pack reaches full charge this value will be reset to the 
difference between its present value and the MaxBottomAcc value, and 
MaxToppAcc will be assigned the result as well, and MaxBottomAcc will be zeroed. 
A similar approach is used to recalibrate at full discharge. 

While this reference implementation provides all the basic data gathering and 
reporting functions needed for a smart battery, software algorithms must be added to 
provide accurate capacity estimates as well as specific charging control methods. 

5.3 Voltage ADC Results 
Cell voltage is measured by the VADC. Up to four cells may be independently 
measured. Although the range of the VADC itself is 0-1.1V, cell voltages are scaled 
down in hardware by a factor of approximately 5.6, allowing a range of approx. 0-
6.2V. With 12 bits available to cover an input range of 0 to 1.100V, the discernable 
voltage increment is 1.100V/4096 = 268µV, assuming no prescaling. With the 
prescaling, the step corresponds to approximately 1.5mV. To ensure maximum 
accuracy, calibration data for correct gain is generated during factory testing at 85°C 
and is stored in the Signature Row (please refer to the ATmega406 datasheet for 
details). A function call is provided to handle reading the desired value from this 
storage area. 

In the reference software, a VADC conversion is started every second. When this 
conversion completes, the ADC_INT ISR will store the conversion result, then 
automatically switch to the next VADC input and initiate a new conversion. This cycle 
will continue until all inputs have been read. During this process, the cell balancing 
FETs will be disabled and then re-enabled when appropriate. The point where the 
balancing FETs are being disabled is chosen as a multiple of the 512µs VADC 
conversion time, and is currently set at 512 µs. With the current circuit values of 
500Ω+500Ω and 0.1µF, this corresponds to more than 5 RC time constants and the 
error will thus be insignificant as long as the battery has negligible internal resistance. 

5.3.1 Compensation of VADC results using Signature Row Data 

The ATmega406 includes factory-determined calibration values. The function 
ReadFactoryCalibration() is implemented to read these values into SRAM at 
startup and to adjust the affected peripherals. Calibration values are available for the 
RC oscillators, Bandgap, on-chip temperature sensor and all four cell inputs.  

In some cases, such as the four cell measurement channels, the factory values must 
be used as part of further calculations rather than directly adjusting the peripheral. 

While the cell calibration values produce mV results as required for SMBus 
commands through the use of simple binary math, the SMBus specification requires 
temperature data to be produced in 0.1°K increments rather than whole degrees. As 
such, the calculations for deriving temperature from the on-chip temperature sensor 
are not as straightforward. The routine CalculateADCresults() performs all 
calculations using the available calibration parameters. 

Equation 5-1 shows how the cell voltages are calculated from the raw ADC reading 
and the Voltage ADC Cell Gain (VADCCG) Calibration Word. The resulting values are 
given in millivolts. 
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Equation 5-1. Calculation to obtain correct cell voltage in mV 
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Equation 5-2 shows how the internal temperature is calculated from the raw ADC 
reading and the Voltage Proportional to Absolute Temperature (VPTAT) Calibration 
Word. The equation shows how to get the temperature in Kelvin and 1/10 Kelvin. 

Equation 5-2. Calculation to obtain temperature in Kelvin and 1/10 Kelvin 
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5.4 Coulomb Counter ADC results 
Current is monitored by the CCADC. The CCADC provides three main features: 
Accumulated Current measurement, Instantaneous Current measurement and 
detection of Regular Current condition. Each of these three modes has a dedicated 
interrupt. All three modes are used in the reference software. The Accumulate 
Current conversion result is the most accurate (18 bits including sign). The 
Instantaneous Current conversion result has lower resolution (13 bit including sign) 
but provides a new output every 3.9mS, allowing very fast response to system 
changes. This result is used to compute the Current and AverageCurrent 
parameters for SMBus reporting. When the connected system is operating in a very 
low power mode, it is advantageous to reduce the ATmega406 operating power as 
well so that it does not dominate the power consumption. In these cases it is 
permissible to disable the CCADC and accumulate estimated current rather than 
measured current. The Regular Current interrupt provides a mechanism to detect if 
the target system has switched to a higher power operating mode so that the CCADC 
can be re-enabled. 

The Accumulate Current conversion produces a result of 17 bits plus sign. The actual 
range of the converter's input signal is specified to be ±VREF / 5, or ±0.22V, and the 
step size of the converter is therefore (0.22V / 217) = 1.678µV. However, it is not 
recommended to use the full input voltage range of the ADC due to linearity issues 
near the upper end of the range. Therefore, the useable range has been specified as 
±0.15V, which is approximately 2/V22.0 . An example follows. 

Assume a 5000mAh battery pack is used. The pack voltage is irrelevant as we are 
only here concerned with current: A charge current of 1A flowing through a 5mΩ 
sense resistor will yield 14,898.69 counts in the CCACC result registers each second. 
This result consumes 15 bits (14 plus sign). Since this pack can only produce that 
current flow for 1 hour, or 3600 seconds, the total accumulated result would fit in 
(15+12) bits, or 27 bits. Thus, a 32-bit signed integer could handle a battery pack of 
200,193mAh when using a 5mΩ sense resistor. The maximum current allowed to flow 
could not be that high due to the input voltage range of the CCADC, so the current 
flow would have to be limited to 30A. Further, SMBus commands are limited to 
allowing only up to 32,767mAh, unless scaling factors are specified in the SMBus 
SpecificationInfo() command, so the result will easily fit by a factor of 6. 
Clearly, the use of a 32-bit value to hold the accumulated charge is more than 
adequate for today's laptop systems. A higher value sense resistor could therefore be 
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used and would yield even more resolution on low-current readings, specifically, up to 
Ω⋅ m56  could be used without overflowing the 32-bit accumulator while still allowing 

the maximum possible SMBus pack capacity. 

Note that any CCADC offset that is present should be removed from each sample 
before accumulation. Since such offset may be influenced by temperature, additional 
algorithms may be required. Since the resolution of the offset is limited to the step 
size of the converter, for smaller currents the error of only being able to use an 
integer value for offset becomes a larger portion of the result. This fact may determine 
both the value of sense resistor chosen as well as the point where a change is made 
from using Accumulator mode to using periodically sampled or estimated 
measurements. 

5.4.1 CCADC result scaling 

Since the CCADC accumulates steps of 1.678µV, which corresponds to 335.6µA 
through a 5mΩ resistor, the accumulated results must be adjusted to correspond to a 
1mAh scale for reporting purposes. The scale factor is 727,103600)3356.0/1( =⋅ . 
To convert from 0.3356mAs to 1mAh scale, the accumulated result must be divided 
by this number. To confirm, assume a 1A current is flowing for 1 hour. The 
accumulated counts will be 2979.7 per second, or 10,727,056 per hour. Dividing by 
10,727 will yield 1000, which is in the mAh scale. 

Performing a division of a 32-bit integer by a 16-bit integer will produce a 32-bit result. 
However, if the total value in the 32-bit accumulator is always lower than 336,582,624 
( 727,10215 ⋅ ) then the result of the division will not overflow. As discussed 
previously, SMBus commands have as an upper limit 32,767mAh, so this is not an 
issue when a 5mΩ sense resistor is used. 

5.5 Customer calibration 
Using the SMBus command OptionalMfgFunction4 the user controls calibration 
of the internal 1.100V reference voltage and the charge/discharge current 
measurement offset. The SMBus commands are described in section 5.9.1. The 
software maintains separate state machines for the two calibration operations. When 
using the OptionalMfgFunction4 in a read operation, the current calibration 
states for both state machines are returned. However, when using the function in a 
write operation, the state request is stored and handled later in the main loop. 

Figure 5-4. Calibration word usage 
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Figure 5-5. Calibration states 
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5.5.1 Calibrating the internal 1.100V Voltage Reference 

Voltage reference calibration is implemented in the function CalibrateVREF() in 
the file analog.h. The function assumes that a highly accurate reference voltage of 
4.096V is connected to analog input ADC0 before initiating calibration. If 4.096V is not 
present, calibration fails, but if a voltage close enough is present the VREF will be 
calibrated wrongly and all subsequent ADC measurements will be incorrect. If 
calibration fails, the voltage reference is reset to the factory calibration value, but the 
old calibration values are still in eeprom and can be reloaded. 

Figure 5-6. Flowchart for CalibrateVREF() 
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Please refer to the ATmega406 datasheet for more details on the Bandgap Reference 
Calibration registers, BGCRR and BGCCR. 
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5.5.2 CCADC offset calibration 

Calibration for current measurement offset, or CCADC offset, is implemented in the 
function CalibrateCCoffset() in the file analog.h. The function assumes that 
the current through the sense resistor has been zero for at least one second before 
initiation calibration. The result from the CCADC is then used to update the offset 
calibration values. If the measured offset is outside predefined limits, the calibration 
process fails and the offset calibration value is set to a default value of zero. 

5.5.3 Storage of calibration values 

If the calibration routine(s) are successful, the resulting values are stored in eeprom 
at the addresses given in ee.h. When the Atmega406 is reset it checks if there are 
valid values, and if so, uses them and updates the calibration state to reflect this. 

5.6 Battery Protection 
The Battery Protection Interrupt (BPINT) is used to indicate that a fault condition was 
detected by the Battery Protect hardware. Tripping the safety mechanism forces the 
pack into Power-Off Mode, but first a status flag is written to EEPROM to indicate the 
reason for entering Power-Off Mode, to aid in debugging. This is implemented in the 
routine DoShutdown(), and the Reason codes are defined in the file pwrmgmt.h. In 
this implementation, no error messages are sent on the SMBus when battery 
protection is triggered. 

5.7 Pack Configuration 
The header file pack.h and other related header files define critical parameters of the 
pack, such as over-voltage, under-voltage, over-current, and thermal parameters, as 
well as the number of stacked cells. 

During debugging, it may be helpful to modify these values to prevent unintentional 
triggering of hardware and software error detection mechanisms.  Note that if such 
mechanisms are tripped, the software will typically force the AVR into a Sleep mode, 
resulting in a loss of control over the CPU via JTAG until a Reset is issued. 

5.8 LED Control 
The OC0A PWM output is used to control the brightness of five external LEDs. These 
LEDs can be used for any purpose, but are typically used as charge indicators. Inside 
the Timer 0 Compare Match A ISR, a counter variable cycles between each LED�s 
corresponding control signal, forcing the output pin low if the LED has been enabled 
in the LEDflags global variable. Thus, the battery capacity indicator function requires 
no mainline code for its operation, other than that of deciding which LEDs to enable or 
disable. 

5.9 SMBUS Protocol Implementation 
The reference software fully implements the required command set from Smart 
Battery Data Specification version 1.1. AlarmWarning messages (command 0x16), 
ChargingCurrent (0x15) and ChargingVoltage (0x15) are the only messages 
generated by the software in SMBus Master Mode. All other commands are handled 
by the pack as an SMBus Slave device. As a Slave, it will either accept data or 
provide data as a response to a command originated from a smart battery host or a 
smart battery charger. 
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All word-size data maintained for SMBus commands are kept in the union variable 
SV. The header file smbus.h includes two different ways to access this data, either 
through the SMBvariables[][] array which provides byte-level access, or the 
SMBvar_int[] array which provides word-level access. This approach reduces 
code size and improves speed when dealing with flags and byte-wide data. 

Table 5-2 provides details on the default value of each of these variables. 

Table 5-2. SMBus Commands and Default data values 
Command (ID) Data Direction & Size Default Value  Data Source  

ManufacturerAccess (0x00) R/W Word 0x4060  Initialized at startup 

RemainingCapacityAlarm (0x01) R/W Word  PACK_DESIGNCAPTYP(1) / 10 From battery specs  

RemainingTimeAlarm (0x02) R/W Word 10 Per sbdat110, section 4.4.1 

BatteryMode (0x03) R/W Word 0 Per sbdat110, section 5.1.4 

AtRate (0x04) R/W Word Calculated as needed Per sbdat110, section 5.1.5 

AtRateTimeToFull (0x05) Read Word Calculated as needed Per sbdat110, section 5.1.6 

AtRateTimeToEmpty (0x06) Read Word Calculated as needed Per sbdat110, section 5.1.7 

AtRateOK (0x07) Read Word Calculated as needed Per sbdat110, section 5.1.8 

Temperature (0x08) Read Word Calculated as needed On-chip sensor 

Voltage (0x09) Read Word Calculated as needed VADC readings 

Current (0x0A) Read Word Calculated as needed CCADC Instantaneous 

AverageCurrent (0x0B) Read Word Calculated as needed CCADC Instantaneous, avg�d

MaxError (0x0C) Read Word Calculated as needed Per sbdat110, section 5.1.13 

RelativeStateOfCharge (0x0D) Read Word Calculated as needed Per sbdat110, section 5.1.14 

AbsoluteStateOfCharge (0x0E) Read Word Calculated as needed Per sbdat110, section 5.1.15 

RemainingCapacity (0x0F) Read Word Calculated as needed Per sbdat110, section 5.1.16 

FullChargeCapacity (0x10) Read Word Calculated as needed Per sbdat110, section 5.1.17 

RunTimeToEmpty (0x11) Read Word Calculated as needed Per sbdat110, section 5.1.18 

AverageTimeToEmpty (0x12) Read Word Calculated as needed Per sbdat110, section 5.1.19 

AverageTimeToFull (0x13) Read Word Calculated as needed Per sbdat110, section 5.1.20 

ChargingCurrent (0x14) Read Word or Write to Charger Calculated as needed Per sbdat110, section 5.2.1 

ChargingVoltage (0x15) Read Word or Write to Charger Calculated as needed Per sbdat110, section 5.2.2 

BatteryStatus (0x16) Read Word or Write to Host 0x0080 Per sbdat110, section 4.4.1 

CycleCount (0x17) Read Word 0 Per sbdat110, section 4.4.1 

DesignCapacity (0x18) Read Word Calculated as needed From battery specs 

DesignVoltage (0x19) Read Word Calculated as needed From battery specs 

SpecificationInfo (0x1A) Read Word 0x0031 Per sbdat110, section 5.1.25 

ManufactureDate (0x1B) Read Word Calculated at compile time Per sbdat110, section 5.1.26 

SerialNumber (0x1C) Read Word User-defined Per sbdat110, section 5.1.27 

Reserved (0x1D-0x1F) Read Word N/A N/A 

ManufacturerName (0x20) Read String/Block User-defined Per sbdat110, section 5.1.28 

DeviceName (0x21) Read String/Block User-defined Per sbdat110, section 5.1.29 

DeviceChemistry (0x22) Read String/Block �LION� Per sbdat110, section 5.1.30 

ManufacturerData (0x23) Read String/Block User-defined Per sbdat110, section 5.1.31 
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Command (ID) Data Direction & Size Default Value  Data Source  

Reserved (0x24-0x2E) N/A N/A N/A 

OptionalMfgFunction5 (0x2F) R/W Block N/A Bootloader 

Reserved (0x30-0x3B) N/A N/A N/A 

OptionalMfgFunction4 (0x3C) R/W Word N/A Calibration state 

OptionalMfgFunction3 (0x3D) R/W Word N/A N/A 

OptionalMfgFunction2 (0x3E) R/W Word N/A N/A 

OptionalMfgFunction1 (0x3F) R/W Word N/A N/A 

Notes: 1. Typical capacity in mAh for the battery pack. Defined in pack.h. 
 

Local copies of all variables required by the SMBus command set are maintained in 
SRAM. In some cases, these values are treated as read-only; in other cases, the 
Battery pack, the Host, the Charger or any of these may modify the variables.  

Some variables affect other commands and variables. For instance, the 
CapacityMode flag will affect all calculations involving mA vs. mW. For more 
information, see the Smart Battery Data Specification, section 5.1.4. The AtRate() 
function is part of a two-stage procedure for determining time remaining for either 
charging or discharging at a given rate. See the Smart Battery Data Specification, 
section 5.1.6 for more information on the AtRate() command. The 
SpecificationInfo() command contains bits that define scaling parameters for 
the pack voltage and current to allow very high capacity and high voltage packs. See 
the Smart Battery Data Specification, section 5.1.25 for more information on the 
AtRate() command. 

5.9.1 SMBus Slave Mode 

Slave Mode SMBus communications are almost entirely interrupt-driven in the AVR. 
The ATmega406 TWI module is able to receive a Slave Address transmission from a 
Master device even if the system clock to the TWI peripheral is not enabled. Upon 
completion of the byte, an interrupt will be generated if enabled and if the received 
address matches that programmed in the TWAR register. This will wake the 
ATmega406 from all but the Power-Off Sleep Mode. 

When the SMBus itself is inactive, as determined by if both clock (SCL/SMBCLK) and 
data (SDA/SMBDATA) lines being low for more than 2 seconds, the TWI Bus 
Connect/Disconnect Interrupt will alert the smart battery that it may switch to Power-
Save mode (please refer to section 5.10 for operation modes). Likewise, when bus 
activity resumes, the same interrupt will immediately awaken the ATmega406 to 
restore operation. 

Once the system is active, upon receiving a match to the pack�s address the TWI 
interrupt service routine will track the protocol state by means of a state machine. The 
diagram of Figure 5-7 defines the behavior. 
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Figure 5-7. Flowchart for TWI Interrupt Service Routine 
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When the AVR receives the Command byte, a table look-up is used to check that the 
command is valid for SMBus Slave mode. If it is not, a bus timeout error is generated 
to inform the sender of the fault. If the command is valid, the bus is re-enabled by 
clearing the TWI Interrupt flag (TWINT) and the state machine advances. 

5.9.1.1 SMBus Slave Write 

If the next action on the bus, after the acknowledge of the Command byte, is that a 
byte is received, this indicates a WRITE sequence so the state machine remains in 
Slave Receive mode and collects the remaining data (see Figure 5-7). When all bytes 



 

22 AVR453 
2599B-AVR-09/05 

have been received, a flag is set asking for the foreground code to process the 
received command. 

Figure 5-8. SMBus Slave Write command examples 
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In the foreground code, a PEC validation is performed if the byte count indicates that 
PEC has been sent. Once it is determined that the data is valid, the command byte is 
used as an index into a table of pointers to functions, with each function 
corresponding to one and only one command. In most cases the function will write the 
received data to the SRAM-based SMBus variables. As needed, other actions will 
also be taken. Once the action is completed, the bus is re-enabled and is then ready 
for further transactions. If modifications are made to the software, it is important that 
the bus is re-enabled in less than 25ms or the Host may assume that the pack is 
generating a bus timeout error. 

5.9.1.2 SMBus Slave Read 

Alternately, if the next bus action after receiving a Command byte is a Repeated 
Start, this indicates that a READ is being requested (see Figure 5-9). The command 
value is stored and a flag is set for requesting the foreground code, in the main loop 
that is, to generate the data for the response. The command value is used by the 
foreground code as an offset into a table of pointers to functions. The referenced 
function will assemble the required data, calculating PEC if needed, and trigger the 
sequence for transmitting the data back to the bus master. 

Figure 5-9. SMBus Slave Read command example 

To slave From slave

AS Slave Address Command CodeW A
Read Byte Protocol format with PEC

S Slave Address RA Data Byte PA

 

5.9.1.3 SMBus time-out error generation 

Error checking is performed at appropriate points in the flow. For instance, if an 
invalid command is received, this can be detected immediately. When errors are 
detected, the ATmega406 returns to the IDLE state of the TWI state machine and 
does not clear the TWINT flag in TWCR, thereby leaving the SCL line stuck low. A 
25ms timer is also started; when this timer expires, foreground code releases the SCL 
line by clearing TWINT and resetting the TWI peripheral to an Idle condition, and the 
SMBus is free to resume activity. See Section 5.8.3 for more details. 

5.9.2 SMBus Master Mode 

Master mode is initiated by the foreground code. When a message is available for 
transmission via Master mode, typically caused by a timer event expiring, it is placed 
in the TWI Master Transmit Buffer. However, transmission cannot begin immediately 



 AVR453
 

 23

2599B-AVR-09/05 

due to the SMBus requirement that a bus master is required to check for bus idle time 
of 50µs. 

To meet this requirement, the ATmega406 pin-change detection mechanism is used 
to monitor for bus idle conditions. This reference implementation assumes that PA6 is 
connected to the SMBCLK (SCL) signal. Alternatively, in a user specific 
implementation, any I/O signal with pin-change capability can be used instead of PA6. 
Note that the SCL line may not be read directly as the SCL and SDA lines are not 
shared with general-purpose I/O ports. 

A multi-stage method is employed to ensure bus availability (refer to Figure 5-10). 
First, the presence of a message in the Transmit Buffer results in execution of the 
foreground code that manages Master mode. Next, if the Slave state machine is not 
in the IDLE state, no attempt is made to take control of the bus. Next, the SCL line is 
checked by reading PA6 to be sure it is not currently at a logical zero condition. At 
this point the bus appears to be free, so as the last stage a flag (TEST50US) is 
asserted to indicate that the 50µs bus-free test has now begun. During this time the 
SCL line is monitored by means of enabling the Pin-Change Interrupt for PA6. The 
foreground SMBus Master mode management code is then exited. With a clock 
speed of 1MHz, 50µs corresponds to 50 instructions at most. Therefore, when the 
code is re-entered it is guaranteed that at least 50µs has passed and handling the 
timing of the 50µs by the use of a timer is thus not required. 

Figure 5-10. Initiation of Master Transmit from smart battery 
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When the Pin-Change Interrupt is enabled, any bus activity will trigger the interrupt. 
The corresponding ISR will clear the TEST50US flag, indicating that the bus is not 
free. Thus, when the foreground code is re-entered, if this flag is not asserted but 
there is a message in the buffer, it is understood that the test has failed and must be 
started again; thus the flag will again be asserted and the routine will be exited. 
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When the foreground code is eventually called again from the main loop and the 
TEST50US flag is still asserted, conditions are good for beginning a transmission. 
One last check is performed to ensure that the SMBCLK line is not low and the TWI 
ISR State Machine is in the IDLE state. Finally, a START bit is transmitted to take 
control of the bus. An additional lock flag (SMLOCK) is also asserted to indicate that 
Master mode has been entered by the TWI Hardware, so that the foreground code 
will not attempt to repeatedly initiate a transmission for the same message. 

If the ATmega406 is successful in taking ownership of the bus, at the completion of 
the transmission of the Start bit the TWI ISR will be activated with a Status code of 
0x08. As a result, the state machine will now vector into the states related to Master 
Mode transmission, and the ISR will handle all further aspects of the transmission. 
Alternatively, if the TWI module is unsuccessful in taking over the bus, the TWI ISR 
will still be entered but with status codes that are indicative of an error having 
occurred. In this latter case, the SMLOCK and TEST50US flags will be cleared to 
force another bus takeover attempt in the future. 

5.9.3 Handling SMBus Errors 

When an error is detected in SMBus communications while operating as a Slave 
device, there are two ways to signal this to the Master: (1) withhold the ACK, or (2) 
generate a Bus Timeout. The ATmega406 TWI peripheral only activates TWINT after 
it has already provided either an ACK or a NAK automatically; therefore, the 
ACK/NAK response cannot be based on a validity check of the data that was just 
transferred. As a result, the only viable response mechanism for the AVR is to force 
the Bus Timeout error. The first possible point in time where an error could be 
detected is dependent on whether the ATmega406 is receiving data, or is expected to 
send data back to the Master.  

In an SMBus Slave Write transaction, such as �Write Word�, the ISR handles all facets 
of the transaction without intervention from the foreground code; therefore, there is 
little opportunity to check for errors until all of the data for this command has been 
transferred to the ATmega406. The Slave Write transactions are also �blind� in the 
sense that all received data bytes, including the final byte, are to be ACK�d. Although 
this would normally simplify the Slave�s receive routine by not requiring it to know how 
many bytes should be received (and thus be in a position to NAK the final byte rather 
than simply ACKing everything), the lack of such knowledge results in the ISR being 
unable to generate a Bus Timeout error. This is because the Master will send a STOP 
after the final byte has been ACK�d, and as a result the ATmega406 has lost control 
over the SCL line since it is now in the �not addressed Slave� mode. 

To resolve this issue, on Write-type transactions the command byte must be checked 
to determine how many additional data bytes are expected. Thus, after the specified 
number of bytes has been received, the complete received command can be passed 
to the foreground code for error checking while still holding SCL and therefore stalling 
the bus. The foreground code is thereafter responsible for forcing TWINT to be 
cleared after its check is completed. If the received command is error-free, it will clear 
TWINT immediately. If there are one or more errors, the TWINT, and thereby also the 
SCL line, will not be cleared until after the Timeout period has elapsed, and the 
received command will be discarded. 

Since the command byte must be checked itself, it can also be easily validated from 
within the ISR. If any error conditions are discovered, the ISR resets its state back to 
IDLE and leaves SCL asserted low by not clearing TWINT, and signals the 
foreground code to cause a bus timeout error. After generating the timeout the 
foreground code clears TWINT, thereby restarting the TWI module. 
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The two-wire interface is designed to inherently handle a number of physical-layer 
errors as well. Since the bus is open-drain with pull-up resistors, bus contention is 
resolved at the time of the first bit-level difference between two bus masters 
transmitting simultaneously. The ACK/NAK bit after each byte serves as a presence 
indicator for the addressed device. However, the protocol does not guarantee 
uncorrupted delivery, as there is no provision for parity or other detection mechanism 
on a byte-for-byte basis. The inclusion of PEC in the specification is intended to 
provide an indication of whether error-free delivery has been achieved. 

Please refer to Table 5-3 for details about error handling. 

Table 5-3. Error handling in SMBus slave mode 
Moment of Occurrence  Error  Responsive action 

Command value out of 
range 

This error can only be detected after the ACK for the (erroneous) Command 
Byte has already been sent. The next transaction on the bus could be either a 
data write to the Slave (which could therefore be NAK�d), or a Repeated Start 
condition as a precursor to initiating a Read from the Slave. 

After receipt of 
Command Byte  

Command not valid in 
slave mode 

This error can only be detected after the ACK for the (erroneous) Command 
Byte has already been sent. The next transaction on the bus could be either a 
data write to the Slave (which could therefore be NAK�d), or a Repeated Start 
condition as a precursor to initiating a Read from the Slave. 

Command only allowed 
in Slave Read mode 

The TWINT flag is not cleared, a timeout error is generated, and the packet is 
discarded. 

After receipt of the first 
data byte during Slave 
Write transactions Attempted to write bits 

that are read-only or 
�reserved� 

In this case, the Write-type command itself was valid, but the action requested 
for that command type was not valid. This error is identified by the foreground 
command interpreter code. If the Slave discovers such an error, the TWINT 
flag is not cleared, a timeout error is generated, and the packet is discarded. 

PEC error The ISR software determines in advance precisely how much data is 
expected so that it can halt the bus prior to the Master issuing a STOP, when 
dealing with a Write-type command. When all data bytes have been received, 
the received message (including PEC) is passed to the foreground code for 
interpretation and error checking. If the Slave�s received PEC from the Master 
does not match its internally-generated value a transmission error has 
occurred, so the TWINT flag is not cleared, a timeout error is generated, and 
the packet is discarded. 

After receipt of the 
complete packet 

Value out of range The TWINT flag is not cleared, a timeout error is generated, and the packet is 
discarded. 

5.9.4 Packet Error Checking Implementation 

The SMBus implementation in this reference design supports the use of Packet Error 
Checking (PEC). When a Master device communicates with the ATmega406 as a 
Slave, its desire to use PEC is indicated by whether it provides an ACK or a NAK 
after the last data byte is transferred during a Slave Read command. If an ACK is 
issued, it indicates that the Master still needs more data; this must be assumed to be 
a request for the PEC byte. Please refer to the SMBus specification for more details. 

To accommodate the request for a PEC byte, the firmware will always generate a 
PEC value, but when handling a �Read� command the firmware allows the Master to 
determine whether it is sent or not, as described above. Whenever any Master 
(whether the Host, a Charger or other device) requests PEC information on a Read 
command, a flag, UsePEC, is asserted indicating that the AVR should use PEC on its 
transmissions from then on (for both Slave Transmit functions as well as its own 
SMBus Master mode commands). Likewise, if any Master performs a Slave Read 
command and does not request PEC, then the flag is de-asserted. 
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For Slave Read command types, PEC is generated using all bytes from the complete 
transaction. This includes the original Slave Address + W, the Command, the Slave 
Address + R, and all of the reply data. Depending on whether the slave address is 
assigned by the Host system or is fixed, it may be possible to pre-calculate a partial 
CRC value based on the Slave address and the command, rather than generating it 
on-the-fly each time. 

For Slave Write command types, it is not known for certain whether PEC will be 
included in the transmission. Therefore the TWI ISR code must accommodate the 
presence or absence of PEC, regardless of the state of the UsePEC flag. Upon 
completion of the receive operation, it is determined whether the PEC value is 
included as part of the received packet. As discussed in the previous section, the 
number of expected bytes is determined in advance according to the specific 
command, knowing that PEC may or may not be present in addition to this. After all 
expected bytes are received, the ISR leaves TWINT asserted and notifies the 
foreground code of the presence of a complete packet. The foreground code then 
analyzes the packet for errors, and if any are found a timeout error is generated and 
the packet is discarded. Otherwise, the command action is carried out and TWINT is 
cleared, freeing the bus to allow the Master to send a STOP and return the ISR state 
machine to the IDLE state. 

In cases where errors are detected by the foreground code, it is necessary to be able 
to force the ISR back to the IDLE state. Therefore, the ISR�s state variable has scope 
beyond the ISR itself. 

5.10 In System Programming (ISP) over SMBus 
This feature allows upgrades to a smart battery firmware, or rather the ATmega406 
firmware, while in its target application. There are many possible ways of 
implementing the ISP functionality; the one provided offers basic ISP through the 
SMBus and does not require any additional hardware connections on the battery 
pack. Alternatively, advanced ISP with support for encrypted firmware upgrades could 
be added. Please refer to the Application Notes AVR230 and AVR231 for respectively 
DES and AES encryption for ISP firmware upgrades, and AVR109 for a general 
treatment of the bootloader concept. Please study the sections in the datasheet 
regarding self-programming and lock-bits to ensure correct protection of the firmware. 

The software structure used is essentially two separate code images. One image 
contains the smart battery application itself and resides in the lower portion of the 
Flash memory area, called the Application Section. A second code image resides in 
the Boot Section of the ATmega406 Flash memory.  

The boot loader functionality is restricted to a simplistic SMBus protocol handler, 
capable only of managing ISP over SMBus. In order to force the compiler to create 
code that begins at Flash memory address 0x4800 (word address) rather than at 
0x0000, a special linker (.XCL) file is used to define a different memory range for 
program space. No special compiler settings are required beyond the normal settings 
for the ATmega406 device, except for the use of this customized linker file. Since the 
boot loader section only has up to 4Kbytes of code space, care has been taken to 
ensure that only necessary functionality is included. The present code implementation 
uses less than 1800 bytes of code space, so there is still space to expand the 
functionality while using less than 4Kbytes if desired. 

To start code execution of a Boot Loader located in the Boot Section after RESET, 
rather than at the beginning of the Application Section, the BOOTRST fuse should be 
programmed (Please refer to the ATmega406 datasheet for details on fuse settings). 
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The Boot Loader code initially performs a simple check of the Application Section of 
the flash memory to determine if it contains a valid program image. In the 
low_level_init() function of the bootloader code, if the Reset vector at location 
0x0000 contains 0xFFFF, it can be safely assumed that the Application area does not 
contain a valid image, and control will stay with the boot loader. Otherwise, a jump to 
address 0x0000 is performed, effectively starting the main application code. 

Since the SMBus imposes a startup time limit of 500ms, the number of clock cycles 
available for the Boot Loader to perform extensive validity checks, like a complete 
CRC of the application section, is limited. It is possible to implement a more complete 
validation of the Application code and to also perform a very thorough verification in 
the primary application, and run this after the SMBus interface is brought into 
operation. This is left up to the user to implement.  

If the Application Section of flash memory does not contain a valid image, then 
execution continues in the Boot Loader�s code. The entry point for the bootloader 
when being accessed from the application area is the entry point to the bootloader�s 
main() function. Note that if any changes are made to the bootloader code or if it is 
recompiled, this address should be verified and the smbus.c code should reflect the 
correct address in its handler for OptionalMfgFunction5. Since this could be 
entered from either the boot loader or from the application area, all critical variables 
for the boot loader are initialized inside of main() to ensure that they are properly 
initialized regardless of how main() was entered. It also ensures that all interrupts 
are disabled to prevent inadvertent execution of any application-area code. Next, it 
initializes the TWI port to prepare it for SMBus communications. Finally, control 
passes to the main loop of the loader. 

The main loop waits for the only SMBus command that is valid for the boot loader, 
namely, OptionalMfgFunction5. Upon receiving this command, it interprets the 
contents per the protocol defined below and performs the requested action. 

Each SMBus Slave Write command modifies a Status flag based on success or 
failure of the command. It is possible, but not necessary, to query this Status flag after 
each Slave Write operation, even those that only update a portion of the SRAM data 
buffer. For operations that take a relatively long time, such as erasing flash or 
EEPROM, the Status flag will also indicate if the device is busy. 

All communications are expected to use the standard smart battery address. 
Likewise, only command identifier 0x2F, OptionalMfgFunction5, is used for ISP 
over SMBus. All Slave Write operations use the Write Block mode and must all 
conform to the protocol defined below. Slave Read operations use only the Read 
Block protocol and will only return the Status value. It is left to the designer to 
implement a Memory Read command if this is desired, but this may expose the 
internal memory contents to copying. 

Figure 5-11. Boot loader Write command frame (Slave Write). 
OptionalMfgFunction5 (0x2F) Byte Count

Sub-command Mem Type Offset

Addr High Addr Low Block Size

Data                                    Data P

A A

A A A

A A A

A

S Slave Address (0x16) W A
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Note that both EEPROM and Flash memory addresses are given as byte addresses. 
For the Slave Write commands, the meaning of the fields varies by the specific 
command and the memory type. 

Five primary commands are implemented within the OptionalMfgFunction5 
command: Write, Erase, Patch, Insert and Verify. Provision is also included for a 
Read command, but this should be omitted in final products as it poses a security 
hole. Alternatively, one could consider adding an encryption layer. 

There are also two secondary commands, Exit and Activate. Activate is used to 
switch to bootloader mode while running in the main application, and is ignored if 
received while already in the bootloader. Exit is used when all bootloader tasks have 
been completed and it is desired to start executing the main application code. 

Two additional optional commands may be implemented by the user, the �w� and �v� 
commands (distinguished by the use of lower-case letters). These commands 
indicate that decryption should be performed on the data block (either an entire page 
for Flash, or the specified block size for EEPROM) prior to the write or verify 
operation. In this way, encrypted data may be transferred to the internal SRAM buffer 
but will be decrypted before use, ensuring data security. 

Table 5-4. OptionalMfgFunction5 Sub-commands 
Command Command fields required Functionality(1) 

WRITE (�W� / �w�) Mem Type: (F)lash / (N)onvolatile EEPROM 
Offset: Buffer offset (EEPROM only) 
Addr High/Low: Start address in Flash/EEPROM 
Block Size: Bytes to write (EEPROM only) 

Write the contents of the internal SRAM buffer to the 
specified memory region. Operation may fail based on 
settings of the �lock� fuse bits. 

ERASE (�E�) Mem Type: (F)lash / (N)onvolatile EEPROM 
Addr High/Low: Start address in Flash/EEPROM 
Block Size: Bytes to erase (EEPROM only) 

Erase the specified memory region. Operation may fail 
based on settings of the �lock� fuse bits. This operation 
does not affect or make use of the internal SRAM buffer. 

PATCH (�P�) Mem Type: (F)lash / (N)onvolatile EEPROM 
Offset: Buffer offset (EEPROM only) 
Addr High/Low: Start address in Flash/EEPROM 
Block Size: Bytes to read (EEPROM only) 

Loads the internal SRAM buffer with the present 
contents of the specified memory region. The buffer may 
then be partially overwritten using the INSERT command 
and then written back to memory. 

INSERT (�I�) Offset: Buffer offset 
Block Size: Byte count 
Data: Data bytes to write to SRAM buffer 

Place the specified data into the internal SRAM buffer, 
starting at the specified buffer offset. Note that a 
complete fill of the buffer is not possible in a single 
INSERT operation. 

VERIFY(�V� / �v�) Mem Type: (F)lash / (N)onvolatile EEPROM 
Offset: Buffer offset (EEPROM only) 
Addr High/Low: Start address in Flash/EEPROM 
Block Size: Bytes to verify (EEPROM only) 

After loading the internal SRAM buffer, the Verify 
command will perform a comparison to the specified 
memory region. The Status flag will indicate the 
good/bad result of the comparison. 

READ Not implemented at this time The Read command may be used primarily to read out 
the contents of the device�s EEPROM memory so that it 
may be restored after a programming operation. 

ACTIVATE (�A�) None, but data Byte Count has to be 1, i.e. 
equivalent to Word Write. 

Transfer control from Application code to Bootloader. All 
other smart battery functions stop. 

EXIT (�X�) None Transfer control from Bootloader to Application code. All 
smart battery functions start again. 

Notes: 2. Setting of lock bits may limit the possibilities to read and write to the Flash from the Boot Loader. Please refer to 
the datasheet for more details. 
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W: If Flash is specified, the address is the base of the Flash page to be written, in 
bytes. No other information is required as only a complete page can be written to 
flash. If EEPROM is specified, then the address is the starting address in EEPROM 
space; offset is the starting location within the on-chip SRAM buffer, and the byte 
count must be provided in the Block Size parameter. 

w: Same as the �W� command, but the contents of the SRAM buffer must first be 
decrypted before being written. Also, the contents of this message are also encrypted 
to prevent an attacker from gaining information about the target location of the write 
command. 

V: For both Flash and EEPROM, the address is any valid address (byte-based); it is 
not restricted to page boundaries. If flash is specified, the byte count is assumed to 
be 128 bytes as a precaution against someone easily mapping the contents of flash 
one byte at a time. For EEPROM, and byte size from 1 to 128 may be used. 

v: Same as the �V� command, but the contents of the SRAM buffer must first be 
decrypted before being verified. Additionally, the contents of this message block are 
also encrypted to prevent an attacker from gaining information about the target 
location of the write command. 

E: For Flash memory, an entire Flash page will be erased; the address is forced to 
the beginning of the specified page. Any EEPROM address and byte count is 
allowed, up to 128 bytes. 

P: To �patch� a memory area, first the Patch command is issued to copy the original 
memory contents to the internal SRAM buffer. The address must be at a page 
boundary for Flash memory. Next, the �I� command is used to supply �repair� data that 
overwrites only parts of the buffer contents. Finally, a �W� is performed to save the 
update. 

I: Since this command writes only to the internal SRAM buffer, the Address field is 
ignored. The Offset and Block Size values are required, as well as the data block. 
Due to SMBus packet size limits, only up to 24 bytes may be transferred on the initial 
packet. However, if the Byte Count field specifies more than 24 bytes, then 
subsequent �chained� SMBus packets are expected to contain only data, thus 
allowing up to 32 bytes to be transferred in each subsequent packet until the Block 
Size that was specified in the initial packet has been fulfilled. The most that can ever 
be transferred is dictated by the SRAM buffer size (128 bytes) minus the starting 
offset. Thus, for a complete fill of the buffer using chained packets, an offset of zero 
must be specified. Alternately, individual Insert command packets may be issued with 
any amount of data as long as the offset plus the size of any packet does not exceed 
128. 

Note that the Write and Verify commands, whether for EEPROM or Flash memory as 
its target, use only the contents of the on-chip data buffer, not the data block within 
the �W� or �V� SMBus message. All data must first be written to the on-chip SRAM 
data buffer using the �I� command, and subsequently stored or verified from there. 
Note that data held in the buffer is not destroyed after a Write or Verify operation, so if 
the same data needs to be repeatedly written to different memory locations, this can 
be done by sending new �W� commands without having to reload the SRAM buffer 
after each �W� operation; simply supply a different address in the �W� command each 
time. 

Encrypted data may be used for writing or verifying EEPROM or SRAM memory as 
well if desired. Note that use of the Patch command cannot be supported when using 
encryption. 



 

30 AVR453 
2599B-AVR-09/05 

5.11 Power Modes of Operation 
The battery pack can be in one of four power modes: Power-Off, Power-Save, Idle 
and Active. These mode names reflect the Sleep Modes for ATmega406. Refer to 
Table 5-5. Note that the implementation made is meant as a reference to how the 
power management can be implemented; it can be implemented differently if desired. 

Table 5-5. Smart battery modes of operation 
Mode of Operation Used when: 

Power-Off Used when battery fully drained, also referred to as a 
Deep Under-voltage condition. Only charging through 
pre-charge FET is supported. Host cannot draw power 
from battery. 

Power-Save Used when Host is turned off, or if the battery is 
disconnected from Host/ Charger.  

Idle Used when discharge rate is low. 

Active Used during charging and �normal� discharging rates 
 

In all modes except Power-Off Mode, the Hardware Battery Protect circuitry is 
initialized and operational. See the accompanying state chart in Figure 5-12 for a 
graphical view of the interaction of these modes. 

Figure 5-12. Operating modes 
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5.11.1 Power-Off Mode 

In this mode, the pack has no charge remaining and is waiting for a recharge cycle. 
The ATmega406 is prevented from operating due to the on-chip voltage regulator 
being in power-off mode (please refer to the ATmega406 datasheet for details on the 
Power-Off Sleep Mode). In the Power-Off Sleep Mode the ATmega406 draws virtually 
no current from the battery. This mode is used to protect the battery: If a Li-Ion battery 
discharged under a certain limit it will be subject to permanent damage. 

The Precharge FET is enabled automatically in hardware, allowing low-current 
charging to occur. The Charge and Discharge FETs are disabled via hardware. Since 
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the ATmega406 is not executing code, no current measurement nor time 
measurement takes place in this mode. The SMBus is also inactive. 

This mode is entered automatically by hardware if the battery voltage drops below the 
ATmega406 Deep Under-Voltage detection level that result in an automatic power-off 
of the on-chip voltage regulator (See datasheet regarding available Deep Under-
Voltage levels). Software can also force entry into this mode when the pack voltage 
drops below minimum cell voltage levels in order to prevent permanent cell damage. 
The hardware protection can thus be seen as a secondary independent battery 
protection circuit. 

This mode is exited by a hard Reset is caused by the BATT pin going higher than 6 - 
8V, which causes a Power-On-Reset with the PORF bit in MCUSR set to 1. 
Therefore, upon initial execution of the main() function after a Reset, when the 
PORF flag is set the operating mode will, in this implementation, be forced to be the 
Power-Save mode. 

5.11.2 Power-Save Mode 

In this mode, the battery is essentially asleep due to having been either removed from 
the Host or Charger, or the Host having been turned off. However, the CPU is ready 
to wake up immediately in response to either SMBus activity, which generates a TWI 
Bus Connect interrupt, or external low-level interrupts. Low-level interrupts are 
typically generated by a Charge Display pushbutton, used to show the charge state of 
the battery using a bar of LEDs. 

In this mode, the Precharge FET is deliberately enabled to allow low-current charging. 
The Charge and Discharge FETs are disabled to prevent accidental short-circuits 
from occurring outside of the pack. Upon entering Power-Save Mode, the software 
disables the CCADC, configures the Wake-Up Timer and switches the ATmega406 to 
Power-Save Sleep Mode. Since the CCADC is disabled, battery drain cannot be 
measured and must be estimated. To aid in estimating battery drain, elapsed time is 
maintained through the use of the Wake-Up Timer. Thus, fixed periodic subtractions 
from the battery�s available charge can be made to maintain a reasonably accurate 
charge estimate. The SMBus is not active in this mode except for the TWI Bus 
Connect/Disconnect interrupt, which is used to detect activity on the SMBus.  

This mode is entered when either an SMBus Power-Down command is received while 
in either Idle or Active Mode, or when the SMBus has been disabled. The TWI Bus 
Connect/Disconnect interrupt is used to detect the latter condition. 

This mode is exited when either the battery's available power has dropped to zero, in 
which case the Power-Off Mode will be entered; or the host system has activated the 
SMBus, typically due to either the battery being inserted into the system or the 
system being activated. When the host system has activated the SMBus, the battery 
will switch to Active Mode, from which it can change to Idle Mode if appropriate. 

5.11.3 Idle Mode 

This mode is used when the battery is active, but is discharged at a low rate, e.g. 
when maintaining a laptop computer's memory in Standby mode. The Precharge FET 
is disabled but the Charge and Discharge FETs are enabled. At low discharge rates, 
the current consumption of the ATmega406 itself could be a contributing factor in the 
overall power consumption and therefore the ATmega406 is operated in a reduced 
power configuration; hence the use of Idle Sleep Mode. Rather than continuously 
measuring the current consumption of the system, the current drain is only 
periodically sampled by using the Regular Current operating mode of the CCADC. 
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Despite the somewhat relaxed timing requirements, the 32kHz crystal oscillator is 
used as the CCADC clock source in this mode. The SMBus must be fully active and 
ready to respond to all requests, but other tasks such as battery voltage and 
temperature measurements can operate at a reduced rate in order to save power. 

This mode is entered only from Active Mode, as the main difference from that mode is 
the accuracy of the method of measuring pack current. Specifically, when battery 
current drain falls below a predetermined level, the software changes to this mode in 
order to conserve power. Upon entry, the CCADC operating mode is reconfigured to 
use the Regular Current mode rather than the Accumulate Mode. Note that the result 
of the first four conversions is discarded by software as they do not hold reliable 
measurements. The CCADC Regular Discharge Current register is initialized upon 
entry. The CCADC Regular Charge Current register is not used in this 
implementation. 

This mode will be exited if a charge current is detected, in which case Active Mode 
will be used. Also, if the battery current drain exceeds a selected level, the Regular 
Current Interrupt will fire and the software will switch back to Active Mode. 

Since any interrupt will bring the ATmega406 out of Idle Sleep Mode, a mechanism 
must be established to identify when it is allowable for the ATmega406 to re-enter Idle 
Sleep Mode. In this implementation, if all active tasks in the main loop have been 
handled, it is ok to enter Idle Sleep Mode again. 

The tasks that need to be handled include periodic VADC scans and calculations of 
the cell voltages, SMBus communication, CCADC current measurements and charge 
tracking. All of these are initiated or maintained by interrupts, and therefore sleeping 
while waiting for interrupts is not problematic in this application. The VADC peripheral 
receives clock in Active, Idle and ADC Noise Reduction Sleep Modes, while SMBus 
transmissions (including Slave-mode responses) requires either Active or Idle Sleep 
Mode. Therefore, Idle Sleep Mode is used instead of ADC Noise Reduction Sleep 
Mode. 

5.11.4 Active Mode 

In this mode, the battery is either charged or discharged at a relatively high current. 
When charging, the ATmega406 current consumption is unimportant. When 
discharging at a high rate, the ATmega406 current consumption is negligible 
compared that of the Host. Therefore in this mode the ATmega406 could be left 
running continuously without detrimental impact on battery life. However, since the 
software is already designed to utilize Idle Sleep Mode, it is used in the battery�s 
Active Mode also. 

In Active Mode, the Charge and Discharge FETs are enabled and the Precharge FET 
is disabled. The CCADC runs in Accumulate mode for maximum accuracy, using the 
32kHz crystal clock oscillator. The SMBus is fully active. 

Active Mode can be entered from either Idle or Power-Save Mode. When the battery 
is awake while being charged, Active Mode is always used. When high discharge 
currents exist or when first waking up from Power-Save Mode, Active Mode is 
selected because it measures the pack conditions with maximum accuracy. The 
CCADC is switched to Accumulate mode upon entry. The first four CCADC 
conversions after a mode switch, both for Instantaneous and Accumulate 
conversions, must be ignored, as they will not be accurate. This is handled in the 
software; however, the current gained or lost during that time is not accounted for in 
this implementation. 
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The software exits Active Mode in response to one of two conditions: either the 
SMBus has gone inactive, in which case it switches to Power-Save Mode; or when 
the current drain falls below a predetermined level, in which case it switches to Idle 
Mode. 

6 Areas for Potential Improvement 

6.1 Calibration 
Depending on the accuracy of the sense resistor used, it may be necessary to include 
gain calibration on the current measurement. In order to avoid frequently dealing with 
expensive 'long' multiply operations, it is recommended to add scaling to the routines 
that report results and capacities, rather than correcting each and every sample. It is 
possible to adjust the calibration of the Current and AverageCurrent readings in 
approximately 0.5% steps by modifying the number of samples of the Instantaneous 
CCADC interrupt that are used each second. Please see the source code for details. 

6.2 Power Management 
The three active power modes have been designed as an example to highlight how 
the various peripherals and capabilities of the ATmega406 device can be exploited. 
More sophisticated modes can be added as desired. 

It is possible to use the Interrupt mode of the watchdog timer to provide a periodic 
wakeup in Power-Down Sleep Mode rather than using the Wakeup Timer with the 
Power-Save Sleep Mode. This would result in slightly lower current consumption 
since the SlowRC Oscillator could then be turned off in Power-Down Sleep Mode. 

Also, if better resolution is needed for the Wake Up Timer�s estimated power 
consumption while in Shutdown mode, the WakeUp_ISR() routine can be enhanced. 

6.3 Temperature Measurement and Utilization 
Thermal effects on pack capacity are not presently being taken into account, as this 
effect can vary widely from one cell manufacturer to another. 

Additionally, since it is not possible to know in advance what thermistor the designer 
will choose, the temperature calculations for thermistors is left to the designer. The 
supplied software provides the necessary infrastructure to measure the VADC result 
for each thermistor. 

6.4 Hardware Battery Protection 
In the present software, any fault condition resulting in triggering of HWP_int() will 
result in the pack switching to Power-Off Mode. A status code is saved to EEPROM 
to aid in determining the specific fault that occurred. This routine can be enhanced to 
allow multiple retries before shutting down the pack completely. 

6.5 EEPROM 
Considerably more use can be made of the on-chip EEPROM memory of the 
ATmega406, such as maintaining pack charge state information, and historical data 
such as the number of charge/discharge cycles or thermal extremes. 
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6.6 Encrypted firmware updates 
The bootloader in this implementation is prepared for, but does not implement 
encrypted communication. If desired, please also check out the application notes 
AVR230: DES Bootloader and AVR231: AES Bootloader. 

6.7 Battery Authentication 
If the bootloader or application code were enhanced to include encryption, it would be 
possible to implement secure authentication codes via a challenge/response 
mechanism to ensure that only the right battery can be used with a given product. 

7 Literature reference list 
1. SMBus specification 

http://www.smbus.org/specs/smbus110.pdf 
2. Smart Battery Data Specification 

http://www.sbs-forum.org/specs/sbdat110.pdf 
3. Smart Battery Charger Specification 

http://www.sbs-forum.org/specs/sbc110.pdf 
4. ATmega406 Datasheet 

http://www.atmel.com/dyn/resources/prod_documents/doc2548.pdf 
5. Application note: AVR454: HW User�s Guide � ATAVRSB100 - Smart Battery 

Development Board 
http://www.atmel.com/dyn/products/app_notes.asp?family_id=607 

6. Doxygen documentation: readme.html and doxygen directory downloaded with 
the source code. 
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