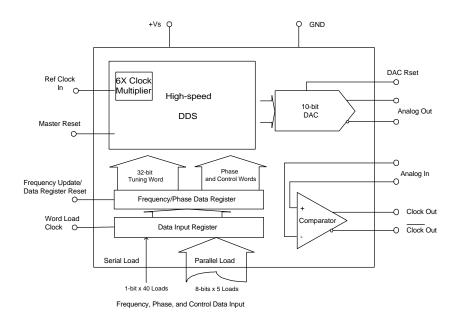


# CMOS 175 MHz DDS/DAC Synthesizer

# PRELIMINARY TECHNICAL DATA

### **FEATURES**

175 MHz Clock Rate 6X Internal Reference Clock Multiplier On-chip High-performance 10-bit DAC & High-speed Comparator SFDR >48 dB@70 MHz Aout 32-bit Frequency Tuning Word Simplified Control Interface: Parallel or Serial Loading Format Phase Modulation Capability Comparator Jitter <10pS RMS @ 20MHz +5V or +3.0V Single Supply Operation Low Power: 400 mW @ 175 MHz Power-down Function Ultra-Small 28-pin SSOP Packaging


### **APPLICATIONS**

Frequency/phase-Agile Sinewave Synthesis Clock Recovery and Locking Circuitry for Digital Communications Digitally-controlled ADC Encode Generator Agile L.O. applications in communications Quadrature oscillator AM, FM, FSK, MSK mode transmitter

### **GENERAL DESCRIPTION**

The AD9851 is a highly integrated device that uses advanced DDS technology, coupled with an internal high-speed, high performance D/A converter, and comparator, to form a digitallyprogrammable frequency synthesizer and clock generator function. When referenced to an accurate clock source, the AD9851 generates a stable frequency and phase-programmable digitized analog output sinewave. This sinewave can be used directly as a frequency source, or internally converted to a square wave for agile-clock generator applications. The AD9851's innovative high-speed DDS core provides a 32-bit frequency tuning word, which results in an output tuning resolution of 40 milli-Hertz, for a 175 MHz reference clock. The AD9851 contains a unique X6 reference clock multiplier circuit that obviates the need for a high-speed reference oscillator. The 6X PLL multiplier has minimal impact on SFDR and phase noise characteristics. The device provides 5-bits of digitally-controlled phase modulation which enables phase shifting of its output in increments of 180°, 90°, 45°, 22.5°, 11.25°, and any combination thereof. 6/12/98

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights



## AD9851 FUNCTIONAL BLOCK DIAGRAM

The AD9851 contains an improved internal high-speed comparator which can be configured to accept the (externally) filtered output of the DAC to generate a low-jitter output pulse.

The frequency tuning, control, and phase modulation words are loaded into the AD9851 via parallel or serial loading format. The parallel load format consists of five iterative loads of an 8-bit control word (byte). The first 8-bit byte controls output phase, power-down enable, and loading format; bytes 2-5 comprise the 32-bit frequency tuning word. Serial loading is accomplished via a 40-bit serial data stream on a single pin. The AD9851 uses advanced CMOS technology to provide this breakthrough level of functionality on just 550 mW of power dissipation (+5 V supply), at the maximum clock rate of 175 MHz.

The AD9851 is available in a space-saving 28-pin SSOP, surface mount package that is pin-for-pin compatible with the popular AD9850 125 MHz DDS. It is specified to operate over the extended industrial temperature range of  $-40^{\circ}$  to  $+85^{\circ}$ C.

of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

# AD9851

# ABSOLUTE MAXIMUM RATINGS $^{1}$

| Maximum Junction Temp+165° C | Storage Temperature65°C to +150°C      |
|------------------------------|----------------------------------------|
| Vs                           | <b>Operating Temp40° C to +85° C</b>   |
| Digital Inputs0.7 V to +Vs   | Lead Temp. (10 sec. soldering) +300° C |
| Digital Output Current 5 mA  |                                        |

## AD9851 ELECTRICAL CHARACTERISTICS (Vs=+5 V ±5 % or +3.0 V ±5 % except as noted, Rset=3.9 kΩ)

| Parameter                                | Temp  | Test Level | AD9851BRS |     |               | Units |  |
|------------------------------------------|-------|------------|-----------|-----|---------------|-------|--|
|                                          |       |            | Min       | Тур | Max           |       |  |
| CLOCK INPUT CHARACTERISTICS              |       |            |           |     |               |       |  |
| Frequency Range                          |       |            |           |     |               |       |  |
| +5 V Supply                              | FULL  | VI         | 10        |     | 175           | MHz   |  |
| +3.0 V Supply                            | FULL  | VI         | 10        |     | 125           | MHz   |  |
| Duty Cycle                               | +25°C | I          |           | 50  |               | %     |  |
| Input Capacitance                        | +25°C | IV         |           | 3   |               | pF    |  |
| Input Impedance                          | +25°C | IV         |           | 100 |               | MΩ    |  |
| Input Threshhold Voltage                 |       |            |           |     |               |       |  |
| +5 V Supply                              | +25°C | IV         |           | TBD |               |       |  |
| +3.0 V Supply                            | +25°C | IV         |           | TBD |               |       |  |
| DAC OUTPUT CHARACTERISTICS               |       |            |           |     |               |       |  |
| Full Scale Output Current                | +25°C | V          |           | 10  | 20            | mA    |  |
| Gain error                               | +25°C | I          | -10       |     | 10            | %FS   |  |
| Output Offset                            | +25°C | I          |           |     | 10            | uA    |  |
| Differential Non-linearity               | +25°C | I          |           | .5  |               | lsb   |  |
| Integral Non-linearity                   | +25°C | I          |           | .5  |               | lsb   |  |
| Output Slew Rate                         | +25°C | IV         |           | 400 |               | V/nS  |  |
| Residual Phase Noise                     |       |            |           |     |               |       |  |
| PLL On                                   | +25°C | IV         |           | TBD |               |       |  |
| PLL Off                                  | +25°C | IV         |           | TBD |               |       |  |
| Output Impedance                         | +25°C | I          |           | 120 |               | kΩ    |  |
| Voltage Compliance Range                 | +25°C | Ī          |           |     | 1.5           | V     |  |
| Spurious-free Dynamic Range (SFDR):      |       | _          |           |     |               |       |  |
| 1 MHz Analog Out                         | +25°C | V          |           | 72  |               | dBC   |  |
| 20 MHz Analog Out                        |       | V          |           | 58  |               | dBC   |  |
| 40 MHz Analog Out                        |       | V          |           | 54  |               | dBC   |  |
| 70 MHz Analog Out                        | +25°C | v          |           | 48  |               | dBC   |  |
| COMPARATOR INPUT                         |       |            |           |     |               |       |  |
| CHARACTERISTICS                          |       |            |           |     |               |       |  |
| Input Capacitance                        | +25°C | V          |           | 3   |               | pF    |  |
| Input Resistance                         | +25°C | IV         |           | 200 |               | kΩ    |  |
| Input Bias Current                       | +25°C | I          |           | 25  |               | nA    |  |
| Input Voltage Range                      | +25°C | IV         | 0         |     | 3             | V     |  |
| Input Bandwidth                          | +25°C | IV         | -         | TBD |               | MHz   |  |
| Input Sensitivity                        | +25°C | IV         |           | TBD |               | mV    |  |
| COMPARATOR OUTPUT                        |       |            |           |     |               |       |  |
| CHARACTERISITICS                         |       |            |           |     |               |       |  |
| Logic "1" voltage +5V supply             | FULL  | VI         | +4.8      |     |               | V     |  |
| Logic "1" voltage +3.0V supply           | FULL  | VI<br>VI   | +3.1      |     |               | v     |  |
| Logic "0" voltage                        | FULL  | VI<br>VI   | 1.3.1     |     | +0.4          | v     |  |
| Short Circuit Output Current             | +25°C | IV         |           | TBD | т <b>0</b> .т | •     |  |
| Maximum Safe Steady-State Output Current | +25°C | IV         |           | TBD |               |       |  |
| (Voh= )                                  | 125 C | 11         |           | 100 |               |       |  |
| Minimum Hysteresis                       | +25°C | IV         | 10        |     |               | mV    |  |
| Propagation Delay                        | +25°C | IV,        | 10        | 7   |               | ns    |  |
| Maximum Toggle Frequency                 | +25°C | IV,<br>IV  |           | 200 |               | MHz   |  |
|                                          |       |            |           |     |               |       |  |
| Rise/Fall Time                           | +25°C | IV         |           | 3   |               | ns    |  |

| Parameter                                                           | Temp Test Level |    | AD9851B | Units |        |
|---------------------------------------------------------------------|-----------------|----|---------|-------|--------|
|                                                                     | -               |    | Min Typ | Max   |        |
| CLOCK OUTPUT CHARACTERISTICS                                        |                 |    |         |       |        |
| Clock Output Duty Cycle                                             | FULL            | VI | 50±10   |       | %      |
| TIMING CHARACTERISTICS                                              |                 |    |         |       |        |
| t <sub>wh</sub> , t <sub>wl</sub> (W_CLK min. pulse width high/low) | +25°C           | IV | 3.5     |       | ns     |
| $t_{ds}$ , $t_{dh}$ (Data to W_CLK setup and hold                   | +25°C           | IV | 3.5     |       | ns     |
| times)                                                              |                 |    |         |       |        |
| t <sub>fs</sub> , t <sub>fh</sub> (FQ_UD to REF CLK setup and       | +25°C           | IV | 3.5     |       | ns     |
| hold times)                                                         |                 |    |         |       |        |
| t <sub>fh</sub> , t <sub>fl</sub> (FQ_UD min. pulse width high/low) | +25°C           | IV | 7       |       | ns     |
| t <sub>rs</sub> (RESET minimum pulse width)                         | +25°C           | IV | 5       |       | ns     |
| t <sub>sr</sub> (RESET to REF CLK setup time)                       | +25°C           | IV | 3.5     |       | ns     |
| t <sub>fd</sub> (FQ_UD min. delay after W_CLK)                      | +25°C           | IV | 7       |       | ns     |
| CMOS LOGIC INPUTS                                                   |                 |    |         |       |        |
| Logic "1" Voltage, +5V Supply                                       | +25°C           | Ι  | 3.5     |       | V      |
| Logic "1" Voltage, +3.0V Supply                                     | +25°C           | I  | 3.0     |       | V      |
| Logic "0" Voltage                                                   | +25°C           | I  |         | 0.4   | V      |
| Logic "1" Current                                                   | +25°C           | IV |         | 12    | uA     |
| Logic "0" Current                                                   | +25°C           | IV |         | 12    | uA     |
| Minimum Rise/Fall Time                                              | +25°C           | IV |         |       |        |
| Input Capacitance                                                   | +25°C           | V  | 3       |       | pF     |
| POWER SUPPLY                                                        |                 |    |         |       |        |
| +Vs Current @:                                                      |                 |    |         |       |        |
| 62.5MHz Clock, +3.0V Supply                                         | +25°C           | Ι  | 55      |       | mA     |
| 125MHz Clock, +3.0V Supply                                          | +25°C           | Ι  | 85      |       | mA     |
| 175 MHz Clock, 3.0 V Supply                                         | +25°C           | Ι  | 90      |       | mA     |
| 62.5MHz Clock, +5V Supply                                           | +25°C           | Ι  | 56      |       | mA     |
| 125MHz Clock, +5V Supply                                            |                 |    | mA      |       |        |
| 175 MHz Clock, +5 V Supply                                          | +25°C           | Ι  | 100     |       | mA     |
| P <sub>DISS@:</sub>                                                 |                 |    |         |       |        |
| 62.5MHz Clock, +5V Supply                                           | +25°C           | Ι  | 280     |       | mW     |
| 62.5MHz Clock, +3.0V Supply                                         | +25°C           | Ι  | 180     |       | mW     |
| 125MHz Clock, +5V Supply                                            |                 |    | mW      |       |        |
| 125MHz Clock, +3.0V Supply                                          | +25°C           | Ι  | 280     |       | mW     |
| 175 MHz Clock, 3.0 V Supply                                         | +25°C           | Ι  | 300     |       | mW     |
| 175 MHz Clock, +5 V Supply                                          | +25°C           | Ι  | 500     |       | mW     |
| P <sub>DISS</sub> Relative to CLK Frequency                         | +25°C           | V  | 1.6     |       | mW/MHz |
| P <sub>DISS</sub> Power-down Mode                                   | +25°C           | Ι  | 30      |       | mW     |

### AD9851 ELECTRICAL CHARACTERISTICS (Vs=+5 V ± 5% or +3.0 V ± 5% except as noted, Rset=3.9 k<sup>Ω</sup>)

### NOTES

<sup>1</sup>Absolute maximum ratings are limiting values, to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied. Exposure of absolute maximum rating conditions for extended periods of time may affect device reliability.


### **EXPLANATION OF TEST LEVELS**

#### Test Level

- I 100% Production Tested.
- III Sample Tested Only.
- IV Parameter is guaranteed by design and characterization testing.
- V Parameter is a typical value only.
- VI All devices are 100% production tested at +25°C.
  100% production tested at temperature extremes for military temperature devices; guaranteed by design and characterization testing for industrial devices.

| Table I. AD985    | 1 PIN-FUNCTION DESCRIPTIONS                                                                                   |
|-------------------|---------------------------------------------------------------------------------------------------------------|
| REFCLK            |                                                                                                               |
|                   | Reference clock input. This may be a continuous TTL-level pulse train or sine input biased at +2.5V.          |
| (Pin 9)           | The rising edge of this clock initiates operation.                                                            |
| Rset              | This is the DAC's external Rset connection. This resistor value sets the DAC fullscale output current.        |
| (Pin 12)          | For normal applications (FS Iout =10mA), the value for Rset is $3.9k\Omega$ connected to ground.              |
| AGND              | Analog Ground. These pins are the ground return for the analog circuitry (DAC and                             |
| (Pins 10, 19)     | comparator).                                                                                                  |
| DGND              | Digital Ground. These are the ground return pins for the digital circuitry.                                   |
| (Pins 5, 24)      |                                                                                                               |
| VDD               | Supply voltage pins for digital circuitry.                                                                    |
| (Pins 6, 23)      |                                                                                                               |
| AVCC              | Supply voltage for the analog circuitry (DAC and comparator).                                                 |
| (Pins 11, 18)     |                                                                                                               |
| W_CLK             | Word load clock. This clock is used to load the parallel or serial frequency/phase/control words              |
| (Pin 7)           |                                                                                                               |
| FQ_UD             | Frequency Update. When this pin is set high, the DDS will update to the frequency                             |
| (Pin 8)           | (or phase) loaded in the data input register, it then resets the data register.                               |
| D0-D7             | 8-bit Data Input. This is the 8-bit data port for iteratively loading the 32-bit frequency & and 8-bit phase/ |
| (Pins 1-4, 25-28) | control word. D7=MSB; D0=LSB. D7 (Pin 25) also serves as the input pin for the 40-bit serial data word.       |
| RESET             | Reset. This is the master reset pin; when set high it clears all registers and the DAC                        |
| (Pin 22)          | output will go to Cosine 0 (after additional clock cycles).                                                   |
| IOUT              | The true output of the differential DAC.                                                                      |
| (Pin 21)          |                                                                                                               |
| IOUTB             | The complementary output of the differential DAC.                                                             |
| (Pin 20)          |                                                                                                               |
| DACBP             | DAC Bypass. This is the DAC baseline reference; this pin is internally bypassed and should normally be        |
| (Pin 17)          | considered a "no connect" for optimum performance.                                                            |
| VINP              | Voltage input positive. This is the comparator's positive input pin.                                          |
| (Pin 16)          |                                                                                                               |
| VINN              | Voltage input negative. This is the comparator's negative input pin.                                          |
| (Pin 15)          |                                                                                                               |
| VOUTP             | Voltage output positive. This is the comparator's positive output pin.                                        |
| (Pin 14)          |                                                                                                               |
| VOUTN             | Voltage output negative. This is the comparator's negative output pin.                                        |
| (Pin 13)          |                                                                                                               |

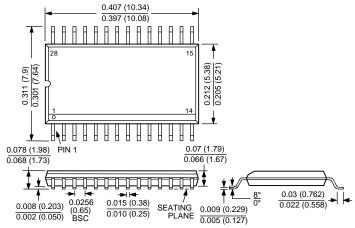




|    | data[7]   | data[6]   | data[5]   | data[4]   | data[3]   | data[2]   | data[1]     | data[0]   |
|----|-----------|-----------|-----------|-----------|-----------|-----------|-------------|-----------|
|    |           |           |           |           |           |           |             |           |
| W0 | Phase-b0  | Phase-b1  | Phase-b2  | Phase-b3  | Phase-b4  | Power-    | Logic 0     | 6X REF    |
|    | (MSB)     |           |           |           | (LSB)     | down      | for factory | CLK       |
|    |           |           |           |           |           |           | use only    | enable    |
| W1 | Freq -b0  | Freq -b1  | Freq -b2  | Freq -b3  | Freq -b4  | Freq -b5  | Freq -b6    | Freq -b7  |
|    | (MSB)     |           |           |           |           |           |             |           |
| W2 | Freq -b8  | Freq -b9  | Freq -b10 | Freq -b11 | Freq -b12 | Freq -b13 | Freq -b14   | Freq -b15 |
| W3 | Freq -b16 | Freq -b17 | Freq -b18 | Freq -b19 | Freq -b20 | Freq -b21 | Freq -b22   | Freq -b23 |
| W4 | Freq -b24 | Freq -b25 | Freq -b26 | Freq -b27 | Freq -b28 | Freq -b29 | Freq -b30   | Freq -b31 |
|    |           |           |           |           |           |           |             | (LSB)     |

## Table II. 8-bit Parallel Control Word Functional Assignment

Table III. 40-bit Serial-load Word Functional Assignment:


| W0                                                       | Freq-b31 (LSB)                                                       |
|----------------------------------------------------------|----------------------------------------------------------------------|
| W1                                                       | Freq-b30                                                             |
| W2                                                       | Freq-b29                                                             |
| W3                                                       | Freq-b28                                                             |
| W4                                                       | Freq-b27                                                             |
| W5                                                       | Freq-b26                                                             |
| W6                                                       | Freq-b25                                                             |
| W7                                                       | Freq-b24                                                             |
| W8                                                       | Freq-b23                                                             |
| W9                                                       | Freq-b22                                                             |
| W10                                                      | Freq-b21                                                             |
| W11                                                      | Freq-b20                                                             |
| W12                                                      | Freq-b19                                                             |
| W13                                                      | Freq-b18                                                             |
| W14                                                      | Freq-b17                                                             |
| W8        W9        W10        W11        W12        W13 | Freq-b23<br>Freq-b22<br>Freq-b21<br>Freq-b20<br>Freq-b19<br>Freq-b18 |

| W15 | Freq-b16 |  |
|-----|----------|--|
| W16 | Freq-b15 |  |
| W17 | Freq-b14 |  |
| W18 | Freq-b13 |  |
| W19 | Freq-b12 |  |
| W20 | Freq-b11 |  |
| W21 | Freq-b10 |  |
| W22 | Freq-b9  |  |
| W23 | Freq-b8  |  |
| W24 | Freq-b7  |  |
| W25 | Freq-b6  |  |
| W26 | Freq-b5  |  |
| W27 | Freq-b4  |  |
| W28 | Freq-b3  |  |
| W29 | Freq-b2  |  |

| W30 | Freq-b1        |
|-----|----------------|
| W31 | Freq-b0 (MSB)  |
| W32 | 6X REFCLK      |
|     | enable         |
| W33 | Always logic 0 |
| W34 | Power-down     |
| W35 | Phase-b0 (LSB) |
| W36 | Phase-b1       |
| W37 | Phase-b2       |
| W38 | Phase-b3       |
| W39 | Phase-b4 (MSB) |

Logic High = true Logic Low = false

Figure 2. Mechanical Diagram 28-pin Shrink Small Outline Package



For additional information regarding the AD9851 contact:

Jim Surber, Product Marketing Manager Analog Devices, Inc. 7910 Triad Center Drive Greensboro, NC 27409 Phone: 336 605 4365 FAX 336 605 4187 EMAIL: jim.surber@analog.com

or

Rick Cushing, Applications Engineer Analog Devices, Inc. 7910 Triad Center Drive Greensboro, NC 27409 Phone: 336 605 4258 FAX 336 605 4187 EMAIL: rick.cushing@analog.com